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Abstract

In this paper we examine the model-building issue related tomulti-objective esti-
mation of distribution algorithms (MOEDAs) and show that some of their, as yet over-
looked, characteristics render most current MOEDAs unviable when addressing opti-
mization problems with many objectives. We propose a novel model-building growing
neural gas (MB-GNG) network that is specially devised for properly dealing with that
issue and therefore yields a better performance. A series ofexperiments are conducted
in order to show from an empirical point of view the advantages of the new algorithm.

Keywords: Multi-objective optimization, estimation of distribution algorithm, model
building, growing neural gas

1. Introduction

Most human endeavors involve the creation of artifacts withproperties that must be
tuned to be as efficient as possible. This fact has prompted the creation of a number of
interrelated research areas like optimization, mathematical programming, operational
research and decision-making. Although these areas share some of their goals, each of
them differs from the others on the approaches put forward by their respective commu-
nities and the characteristics of the problems they deal with.

Many real-world optimization problems involve more than one goal to be op-
timized. This type of problems is known asmulti-objective optimization problems
(MOPs). A MOP can be expressed as the problem in which a set ofobjective functions
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f1(x), . . . , fM(x) should be jointly optimized;

min F(x) = 〈 f1(x), . . . , fM(x)〉 ; x ∈ S ; (1)

whereS ⊆ Rn is known as thefeasible setand could be expressed as a set of restrictions
over the decision set,Rn . The image set ofS produced by function vectorF(·), O ⊆
RM, is calledfeasible objective setor criterion set (see [1, 2] for details on notation).

In this class of problems the optimizer must find one or more feasible solutions
that jointly minimize (or maximize) the objective functions. Therefore, the solution to
this type of problem is a set of trade-off points. The optimality of a solution can be
expressed in terms of the Pareto dominance relation.

Definition 1 (Pareto dominance relation). For the optimization problem specified in
(1) and havingx, y ∈ S, x is said to dominatey (expressed asx ≺ y) iff ∀ f j , f j(x) ≤
f j(y) and∃ fi such thatfi(x) < fi(y).

Definition 2 (non-dominated subset).In problem (1) and having the setA ⊆ S. The
non-dominated subsetofA, Â ⊆ A, is defined as

Â =
{

x ∈ A
∣

∣

∣∄x′ ∈ A : x′ ≺ x
}

. (2)

Definition 3. The solution of (1) iŝS, the non-dominated subset ofS.

Ŝ is known as theefficient setor Pareto-optimal set[2]. The elements of this set
are to be assessed and evaluated by adecision makerin order to select which one(s)
will be part of the final solution of the problem. It is worth noting that some alternative
notations, likenon-inferioror non-dominated set, can be found in the literature (again,
see [1, 2]).

If problem (1) has certain characteristics, e. g., linearity or convexity of the objec-
tive functions or convexity ofS, the efficient set can be determined by mathematical
programming approaches. However, in the general case, finding the solution of (1) is
anNP–complete problem [3]. In this case, heuristic or metaheuristic methods can be
applied in order to have solutions of practical value at an admissible computational
cost.

A broad range of heuristic and metaheuristic approaches hasbeen used to address
MOPs [4]. Of these, multi-objective evolutionary algorithms (MOEAs) [5] have been
found to be a competent approach in a wide variety of application domains. Their main
advantages are ease of use, inherent parallel search and lower susceptibility to the shape
or continuity of the image of the efficient set, compared with traditional mathematical
programming techniques for multi-objective optimization[4].

There is a class of MOPs that are particularly appealing because of their inherent
complexity: the so-called many-objective problems [6]. These are problems with a
relatively large number of objectives (normally, four or more). Although somewhat
counterintuitive and hard to visualize for a human decisionmaker, these problems are
not uncommon in real-life engineering practice. For example, [7] details some relevant
real problems of this type.
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The scalability issues of traditional MOEAs in these problems have triggered a
sizable amount of research, aiming to provide alternative approaches that can properly
handle many-objective problems and perform reasonably.

Estimation of distribution algorithms (EDAs) are one such approaches [8]. EDAs
have been hailed as a paradigm shift in evolutionary computation. They build a model
of the population instead of applying evolutionary operators. This model is then used
to synthesize new individuals. Probably because of their success in single-objective
optimization, EDAs have been extended to the multi-objective optimization problem
domain, leading to the so-called multi-objective EDAs (MOEDAs) [9].

Although MOEDAs have yielded some encouraging results, their introduction has
not lived up toa priori expectations. This can be attributed to a number of different
causes. We have recognized three of them, in particular, those derived from the incor-
rect treatment of population outliers; the loss of population diversity, and that too much
computational effort is being spent on finding an optimal population model.

A number of works have dealt with the issues listed above, particularly with loss
of diversity. Nevertheless, in our opinion, the community has failed to acknowledge
that the underlying cause for all those problems could, perhaps, be traced back to the
algorithms used for model building in EDAs.

In this paper we examine the model-building issue of currentMOEDAs and show
that some of its characteristics, which have been disregarded so far, render most current
approaches unsuitable for tackling MOPs. We then propose a novel model-building al-
gorithm, based on the growing neural gas (GNG) network. Thismodel-building GNG
(MB-GNG) is the main contribution of this paper. It has been devised with this partic-
ular problem in mind, and therefore addresses the problems of current approaches.

The remainder of this paper is organized as follows. Section2 serves as a brief
introduction to MOEDAs and the issues present in current model-building algorithms.
After this, MB-GNG is described in Section 4. Then, in Section 5, a comparative study
is carried out in order to establish from an experimental point of view the improvements
introduced by MB-GNG with respect to similar algorithms. Finally, some conclusive
remarks are put forward.

2. Multi-Objective Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are population-based optimization
algorithms. Instead of applying evolutionary operators tothe population like other
evolutionary approaches, EDAs build a statistical model ofthe most promising subset
of the population. The introduction of machine learning techniques implies that these
new algorithms lose the straightforward biological inspiration of their predecessors.
Nonetheless, they gain the capacity of scalably solving many challenging problems,
in some cases significantly outperforming standard EAs and other optimization tech-
niques.

Multi-objective EDAs (MOEDAs) [9] are the extensions of EDAs to the multi-
objective domain. Most MOEDAs consist of a modification of existing EDAs whose
fitness assignment function is substituted by one taken froman existing MOEA.

In general terms, MOEDAs follow a common algorithmic scheme(see Figure 1).
At a given iterationt, a MOEDA has a populationPt of individuals, each one repre-
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Parameters:
⊲ npop ∈ N, population size.
⊲ α ∈ (0, 1], selection percentile.
⊲ ω ∈ (0, 1], substitution percentile.
⊲ stop :P→ {true, false}, stopping criterion function overP, the ordered

collection of populations.a

Algorithm :
t ← 0.
Generate the initial populationP0 with npop individuals.
P = {P0}.
repeat

Rank individuals inPt according to the fitness assignment function.
Extract the subsetMt with the best

⌊

αnpop

⌋

elements ofPt.
Build model ofMt.
Sample

⌊

ωnpop

⌋

new individuals from the model to createP′t .
Substitute part ofPt with P′t to createPt+1.
t = t + 1.
P = P ∪ {Pt}.

until stop(P) = true.
return P̂, the set of non-dominated individuals ofPt.

aStopping a multi-objective optimization is a non-trivial task. We refer the interested reader to
[10, 11]

Figure 1: A general MOEDA algorithm.

senting a point in the search space. In every iteration,Pt elements are ranked according
to a given fitness assignment function. A subsetMt, with the best elements ofPt is
computed. The model-building algorithm relies onMt to create a model of the best
part of the population. This model is sampled in order to create new elements which
are combined withPt to create the population to be used in the next iteration,Pt+1.

A given stopping criterion determines when the optimization process should be
interrupted. When this happens,P̂, the set of non-dominated individuals ofPt, is
returned as solution.

Although there are different approaches for determiningMt andPt+1, MOEDAs
are better characterized by their two main components, the fitness assignment function
and the model-building algorithm.

Fitness functions have been mostly taken from MOEAs and can be classified in
three main groups: objective function aggregation, Paretodominance-based ranking,
and indicator-based ranking. An in-depth discussion of these alternatives is out of the
scope on this paper, but it should be noted that the Pareto dominance-based approach
proposed by the NSGA-II algorithm is, by far, the most popular in the current literature.
See [5] for a survey on this topic.

The model-building algorithm is the kernel of an EDA. There are two main types
of methods for addressing this problem: those based on graphical models and those

4



marti–mb-gng–or-letters.tex 1248 2010-11-24 04:24:46Z lm-deep

based on mixture distributions.

2.1. Graphical Model MOEDAs

Most EDAs based on graphical models rely on Bayesian networks. From these,
the Bayesian optimization algorithm (BOA) [12] is the specific approach that has been
extrapolated to the multi-objective domain.

The exhaustive synthesis of a Bayesian network from the algorithm’s population is
an NP-hard problem [13, 14]. Therefore, these EDAs must employ heuristic alterna-
tives for building their networks while keeping the computational cost under reasonable
margins.

BOA-based MOEDAs combine the Bayesian model-building scheme with an al-
ready existing Pareto-based fitness assignment. This is thecase of the multi-objective
BOA (mBOA) [15] that exploits the fitness assignment used in NSGA-II. Another al-
gorithm based on hierarchical BOA (hBOA), called mhBOA [16], also uses the same
form of fitness assignment but introduces clustering in the feasible objective set. A
similar idea is proposed in [17], where the mixed BOA (mBOA) is combined with
SPEA2’s selection scheme [5] to form the multi-objective mBOA (mmBOA). The
multi-objective real BOA (MrBOA) [18] also extends a preexisting EDA, namely, the
real BOA (rBOA). MrBOA combines the fitness assignment of NSGA-II with rBOA.

2.2. Mixture Distribution MOEDAs

Another approach to modelling the subset with the best population elements is to
apply a distribution mixture approach. Bosman and Thierens[19] proposed several
variants of their multi-objective mixture-based iterateddensity estimation algorithm
(MIDEA). They are based on their IDEA framework. They also introduced a novel
Pareto-based and diversity-preserving fitness assignmentfunction. The model con-
struction is inherited from the single-objective version.The proposed MIDEAs con-
sidered several types of probabilistic models for both discrete and continuous problems.

MIDEAs do not provide a specific mechanism to ensure equal coverage of the
Pareto-optimal front if the number of representatives in some parts of the front is much
larger than the number of representatives in some other parts. The clustering algo-
rithms applied for this task include the randomized leader algorithm [20], thek-means
algorithm and the expectation-maximization algorithm [21].

MIDEAs are not the only mixture-based algorithms. The multi-objective Parzen
EDA (MOPED) [22] puts forward a similar mixture-based approach. MOPED uses the
NSGA-II ranking method and the Parzen estimator.

2.3. Other MOEDA Approaches

There are some other approaches for model building. Some take advantage of
the mathematical properties of the Pareto-optimal front. For example, the regularity
model-based multi-objective estimation of distribution algorithm (RM-MEDA) [23]
is based on the regularity property derived from the Karush–Kuhn–Tucker condition.
At each iteration, RM-MEDA models the most promising area ofthe decision space
using a probability distribution whose centroid is a (M − 1)-dimensional piecewise
continuous manifold. Again, this model adopts the fitness assignment of NSGA-II.
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Its main drawback is its high computational requirements, that render it unsuitable for
problems with many objective functions.

The covariance matrix adaptation evolution strategies (CMA-ES) [24] have been
used in the multi-objective context. CMA-ES consists of a method for updating the
covariance matrix of the multivariate normal mutation distribution used in an evolution
strategy. They can be viewed as EDAs, as new individuals are sampled according to
the mutation distribution. Adaptation of the covariance matrix is equivalent to learning
a second-order model of the underlying objective function.

3. Model-Building in the Multi-Objective Case

Regardless of the many efforts at providing usable model-building methods for
EDAs, the nature of the problem itself has received relatively little attention. In spite
of the succession of gradually improving results of EDAs, one question hangs over
the search for possibilities for further improvement: would current statistically sound
and robust approaches be valid for the problem being addressed? Generally, model-
building algorithms are off-the-shelf machine learning methods that were originally
intended for other classes of problems. On the other hand, the model-building prob-
lem has particular requirements that the above methods do not meet and may even go
against.

In this paper we argue that the model-building problem has not been properly iden-
tified. For this reason, it has been treated like other previously existing problems over-
looking that this problem has particular requirements. This matter did not show up as
clearly in single-objective EDAs. Thanks to the extension to the multi-objective do-
main this issue has become more evident, as we will debate in the remainder of this
section.

There are at least three properties of current model-building approaches that hinder
their performance, in particular,

1. the incorrect treatment of data outliers;
2. the loss of population diversity; and
3. the excess of computational effort devoted to finding an optimal population model.

The data outliers’ issue is a good example of the defective understanding of the na-
ture of the model-building problem, and is, in our opinion the cornerstone for reaching
a better understanding of the problem.

In machine-learning practice, outliers are handled as noisy, inconsistent or irrele-
vant data. Therefore, outlying data is expected to have little influence on the model or
it is just disregarded. However, this behavior is not appropriate for model building. In
this case, it is known beforehand that all elements in the data set should be taken into
account, as they represent newly discovered or candidate regions of the search space
and, therefore, must be explored. Therefore, these instances should be at least equally
represented by the model and perhaps even reinforced. A model-building algorithm
that properly handles outliers might actually speed up the search process and lower the
rate of the exponential dimension-population size dependency.

Another weakness of most MOEDAs (and most EDAs, for that matter) is the loss
of population diversity. This is a point that has already been made, and some proposals
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for addressing the issue have been laid out [25, 26, 27]. Thisloss of diversity can be
traced back to the above outliers’ issue of model-building algorithms. The repetitive
application of an algorithm that disregards outliers tendsto generate more individuals
in areas of the search space that are more densely represented. Although there have
been some proposals to circumvent this problem, we take the view that the ultimate
solution is the use of an appropriate algorithm.

The third issue to be dealt with is the computational resources wasted on finding an
optimal description for the subpopulation being modelled.In the model-building case,
optimal model complexity can be sacrificed in the interests of a faster algorithm. This
is because the only constraint is to have a model that is sufficiently, but not necessarily
optimal in terms of complexity, in order to represent the data in a correct manner. This
is particularly true when dealing with high-dimensional MOPs, as, in these cases, there
will be large amounts of data to be repeatedly processed at every iteration. Even so,
most current approaches spend considerable effort on determining the optimal model
complexity, using minimum description length, structuralrisk minimization, Bayesian
information criterion or other similar heuristics.

In conclusion, we can deduce that understanding the nature of the model-building
problem and the application of suitable algorithms seem to point the way forward in
this area.

4. Model-Building Growing Neural Gas

Clustering algorithms [21] have been used as part of the model-building algorithms
of EDAs and MOEDAs. However, as we discussed in the previous section, a custom-
made algorithm might be one of the ways of achieving a significant improvement in
this field.

The growing neural gas (GNG) network [28] has been chosen as astarting point
after surveying the literature for suitable candidates. GNG networks are intrinsic self-
organizing neural networks based on the neural gas [29] model. The term “neural gas”
refers to the behaviour of the center of the nodes during the adaptation process, which
distribute themselves like a gas within an imaginary container defined by the bounds
implicitly given by the dataset on which the network is beingtrained.

Among the vast number of existing clustering methods we decided to base our
approach on GNG because of its interesting properties, in particular:

• the network has been shown to be sensitive to outliers [30], something undesir-
able in typical applications but suitable for model-building;

• the network adapts its topology automatically to meet the complexity of the prob-
lem being solved;

• it has a fast convergence to low distortion errors and these errors are better
than those yielded by “standard” algorithms likek-means clustering, maximum-
entropy clustering and Kohonen’s self-organizing featuremaps [29];

• although it benefits from the topological ordering of the nodes it does not suffer
the problem associated to Kohonen networks, where a node canpull its neighbors
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to invalid or non-representative locations of the network’s input set (which, in our
case, is the decision set), and;

• the introduction of a novel cluster repulsion mechanism fosters the exploration
of the input space.

A GNG network creates an ordered topology of classes of dataset elements and
associates a cumulative error to each. The topology and the cumulative errors are
conjointly used to determine how new classes should be inserted. Using these heuristics
the model can fit the network’s dimension to the complexity ofthe problem being
solved.

Our model-building GNG (MB-GNG) is an extension of the original GNG. It in-
troduces a cluster repulsion term that fosters a better spread of the clusters along the
training dataset, as explained in [31].

MB-GNG is a one-layer network that defines each class as a local Gaussian density
and adapts them using a local learning rule. The layer contains a set of nodesC =
{c1, . . . , cN∗ }, with N0 ≤ N∗ ≤ Nmax. HereN0 andNmax represent initial and maximal
number of nodes in the network. The network receives inputsx ∈ I in its input set,I.
In our case this input set is the decision set:I = Rn.

A nodeci describes a local multivariate Gaussian density that consists of a center,
µi , and a standard deviations vector,σi . It also has an accumulated error,ξi , and a
set of edges that define the set of topological neighbors ofci , Vi . Each edge has an
associated age,νi j .

The network is initialized withN0 nodes with their centers set to randomly chosen
inputs. A training iteration starts after an inputx is randomly selected from the training
data set. Then, two nodes are selected for being the closest ones tox. The best-
matching node, cb,

b = arg min
i=1,..,N∗

d (µi , x) , (3)

is the closest node tox. Consequently, thesecond best-matching node, cb′ , is deter-
mined as

b′ = arg min
i=1,..,N∗;i,b

d (µi , x) . (4)

Hered (a, b) is a metric, in our case, the Euclidean one.
If cb′ is not a neighbor ofcb then a new edgeVb is established between them, where

Vb = Vb ∪ {cb′ } with zero age,νbb′ = 0. If, on the other hand,cb′ ∈ Vb the age of the
corresponding edge is reset toνbb′ = 0.

At this point, the age of all edges is incremented by one. If anedge is older than
the maximum age,νi j > νmax, then the edge is removed. If a node becomes isolated
from the rest of the nodes because no edges connecting it remain, it is also deleted.

The clustering error is then added to the best-matching nodeerror accumulator,

∆ξb = d (µi , x)2 . (5)

After that, learning takes place in the best-matching node and its neighbors with
ratesǫbestandǫvic (ǫbest> ǫvic), respectively. These two rates gate the movement of the
centers of the nodes involved towards the current inputx.
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Forcb, adaptation follows the rule originally used by GNG,

∆µb = ǫbest(x − µb) . (6)

However, for the neighbors ofcb, a cluster repulsion term [31] is added to the original
formulation. This repulsion term avoids the meaningless concentration of nodes in the
data space and therefore, promotes a proper representationof the data set with fewer
nodes.

Following that, the learning rule for those nodes can be expressed as,∀cv ∈ Vb,

∆µv = ǫvic (x − µv) + βe

(

−
d(µv,µb)
ζ

) ∑

cu∈Vb
d (µu, µb)

|Vb|

(µv − µb)
d (µv, µb)

. (7)

This approach was already used as part of the robust GNG [30] and it has proven
itself useful for obtaining a good spread of the clusters in the inputs’ space. In the afore-
mentioned work, it was stated that the adaptation rule is notsensitive to its parameters.
We have set them toβ = 2 andζ = 0.1 as suggested in [30].

After a given number,T+, of dataset iterations have taken place, it can be assumed
that there is enough information stored in the error accumulators,ξi . This information
is used to determine where to add new nodes to the network. In particular, if the current
iteration is an integer multiple ofT+ and the network has not reached its maximum size
(N∗ < Nmax) then a new node is inserted in the network.

First, the node with the largest error,ce, is selected. Then, the worst node among
its neighbors,ce′ , is located. ThenN∗ is incremented and the new node,cN∗ , is inserted
between the two nodes,

µN∗ = 0.5(µe+ µe′) ; ξN∗ = 0.5(ξe+ ξe′ ). (8)

The edge betweence andce′ is removed and two new edges connectingcN∗ with ce and
ce′ are created. The accumulated errors are decreased

ξe = δIξe, ξe′ = δIξe′ , (9)

by a rate 0≤ δI ≤ 1. Finally, the errors of all nodes are decreased by a factorδG,

ξi = δGξi , i = 1, ..,N∗. (10)

The algorithm stops after a learning epoch if the standard deviation of the accumu-
lated errors is smaller than a certain threshold,ρ,

√

√

√

1
N∗

N∗
∑

i=1

(ξi − ξ)2 < ρ. (11)

This means that it will stop when the outliers are as well represented as possible.
After training has ended the deviations,σi , of the nodes must be computed. For

this task we employ the unbiased normal estimator of the deviations [32].
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The local Gaussian densities resulting from the described algorithm can be com-
bined to synthesize the Gaussian mixture with parametersΘ,

P (x|Θ) =
1

N∗

N∗
∑

i=1

P (x|µi ,σi) . (12)

Each Gaussian density is formulated as

P (x|µi ,σi) =
1

(2π)n/2|Σi |1/2
exp

(

−
1
2

(x − µi)⊤ Σ−1
i (x − µi)

)

, (13)

with the covariance matricesΣi defined as a diagonal matrix with its non-zero elements
set to the values of the deviationsσi . The Gaussian mixture can be used by the EDA to
generate new individuals. These new individuals are created by samplingP (x|Θ). The
generation of randomly distributed numbers that follow a given distribution has been
dealt in depth by many authors. In our case, we applied the Box–Muller transformation
[33].

5. Experimental Study

A comprehensive comparative study is essential in order verify that the novel MB-
GNG actually yields a substantial improvement. In these experiments we compare MB-
GNG and some of the alternative model-building algorithms under a common EDA
framework like the one presented in Section 2. The model-building algorithms that
also take part in the tests are: Bayesian networks, as used inMrBOA; randomized
leader algorithm,k-means algorithm and E-M algorithm, as described for MIDEAs;
(1+ λ)-CMA-ES as described in [24]; and the original GNG. Furthermore, the NSGA-
II and SPEA2 MOEAs [5] were also involved in the experiments in order to provide a
baseline for the comparisons. The performance of each algorithm is assessed in terms
of approximation to the Pareto-optimal front and the computational cost of each one.

Six well known community-accepted problems are addressed:the WFG4 to WFG9
problems [34]. These problems pose different classes of challenges, like local-optima,
parameter-bias, uni- and multi-modality, etc., to the optimizer. See the corresponding
paper for a full description of each one. Each problem is configured with 3, 5, 7 and 9
objective functions. For all cases, the decision space dimension was set at 15. All the
algorithms were executed 30 times for each problem/dimension pair.

The quality of the solutions is determined by the use of the hypervolume indicator
[35]. This is the only indicator that has the properties of a metric and the only to be
strictly Pareto monotonic. However, it must be noted that there are other alternatives.

Statistical hypotheses tests have to be applied to establish the validity of the results.
For this, we perform a Kruskal–Wallis test [36] with the indicator values yielded by
each algorithm’s run for each problem/dimension combination. In the context of these
experiments, the null hypothesis for the test was that all algorithms were equally ca-
pable of solving the problem. If the null hypothesis was rejected, which was the case
in all the experimental instances, the Conover–Inman procedure [36, pp.288–290] was
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Figure 2: Mean values of the performance index across the different problems and
objective space dimensions.

applied in a pairwise manner to determine if the results of one algorithm were signif-
icantly better than those of the other. A significance level,α, of 0.05 was used for all
the tests.

Understanding these results in a one-by-one basis is rathercumbersome as it im-
plies cross-examining and comparing the results presentedseparately and would re-
quire larger amount of space and effort. That is why we decided to adopt a more
integrative representation.

That is, for a given set of algorithmsA1,. . . , AK , a set ofP test problem instances
Φ1,m,. . . ,ΦP,m, configured withm objectives, the functionδ(·) is defined as

δ
(

Ai ,A j ,Φp,m

)

=

{

1 if Ai ≫ A j solvingΦp,m

0 in other case
, (14)

where the relationAi ≫ A j defines ifAi is significantly better thanA j when solving the
problem instanceΦp,m, as computed by the statistical tests previously described.

Relying onδ(·), the performance indexPp,m(Ai) of a given algorithmAi when solv-
ingΦp,m is then computed as

Pp,m (Ai) =
K

∑

j=1; j,i

δ
(

Ai ,A j,Φp,m

)

. (15)

This index intends to summarize the performance of each algorithm with regard to its
peers.

Figure 2 exhibits the results computing the performance indexes. Figure 2a rep-
resents the mean performance indexes yielded by each algorithm when solving each
problem in all of its configured objective dimensions,

Pp (Ai) =
1
|M|

∑

m∈M

Pp,m (Ai) ; M = {3, 5, 7, 9} . (16)

It is worth noticing that GNG and, particularly, MB-GNG havebetter overall re-
sults than the other algorithms. It is somewhat unexpected that the randomized leader
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Figure 3: Progression of the mean floating-point CPU operations used by the model-
building algorithms as the objective space dimension increases. For each algorithm
four points are plotted corresponding toM = {3, 5, 7, 9}.

and thek-means algorithms do not have a very good overall performance for some
problems, like WFG5 and WFG7 for the randomized leader and WFG8 and WFG9
for k-means. A possible hypothesis is that these results may be biased by the three-
objective problems, where there are sizable differences compared with the results of
the other dimensions.

This situation is clarified in Figure 2b, which presents the mean values of the index
computed for each dimension,

Pm (Ai) =
1
P

P
∑

p=1

Pp,m (Ai) . (17)

In this representation, it becomes noticeable that MB-GNG outperforms the other
approaches in dimensions larger than three, with the exception of the nine objectives
case, in which the original GNG outperforms MB-GNG.

Another key issue when dealing with high-dimensional problems is the computa-
tional cost of the algorithms. One simple way of inspecting this point is to compute the
number of CPU operations dedicated to model building in eachcase. Figure 3 sum-
marizes these results. NSGA-II and SPEA2 are not included inthe analysis, since they
do not perform any model building. The main conclusion in this case is that MB-GNG
requires more or less the same amount of resources to yield better results than the other
approaches.

6. Final Remarks

In this paper we have discussed an important issue in currentevolutionary multi-
objective optimization: how to build algorithms that have better scalability with regard
to the number of objectives. In particular, we have focused on one promising set of
approaches: estimation of distribution algorithms.

We have argued that most of the current approaches do not takeinto account the
particularities of the model-building problem that they are addressing and that, for this
reason, they fail to yield results of substantial quality.

12
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Regarding this, we have presented a new model-building algorithm, the MB-GNG,
which was assembled in order to meet the requirements of the particular problem.

We have also carried out a set of experiments that showed the points being dis-
cussed. The experiments illustrated empirically that MB-GNG outperforms current
approaches and is a valid starting point for future advancements in this area. The main
aim of this paper is to trigger further studies on this topic and, ultimately, to produce
more model-building algorithms.

Acknowledgements

The authors wish to thank the referee and the associate editor assigned to this paper
for their comments and suggestions. They helped to substantially improve the paper.
They also wish to thank Prof. Elisenda Molina for her assistance in the preparation of
the manuscript.

L. Martı́, J. Garcı́a, A. Berlanga and J. M. Molina were supported by projects CI-
CYT TIN2008-06742-C02-02/TSI,CICYT TEC2008-06732-C02-02/TEC,SINPROB,
CAM MADRINET S-0505/ TIC/0255 and DPS2008-07029-C02-02. C. A. Coello
Coello acknowledges support from CONACyT project 103570.

References

[1] K. Miettinen, Nonlinear Multiobjective Optimization,volume 12 ofInternational
Series in Operations Research& Management Science, Kluwer, Norwell, MA,
1999.

[2] M. Ehrgott, Multicriteria Optimization, volume 491 ofLecture Notes in Eco-
nomics and Mathematical Systems, Springer, 2005.
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