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Abstract

In this paper we examine the model-building issue relateduti-objective esti-
mation of distribution algorithms (MOEDASs) and show thatreoof their, as yet over-
looked, characteristics render most current MOEDASs urigialihen addressing opti-
mization problems with many objectives. We propose a nowalehbuilding growing
neural gas (MB-GNG) network that is specially devised fapgarly dealing with that
issue and therefore yields a better performance. A seriespEriments are conducted
in order to show from an empirical point of view the advantagkthe new algorithm.

Keywords: Multi-objective optimization, estimation of distributicalgorithm, model
building, growing neural gas

1. Introduction

Most human endeavors involve the creation of artifacts pitperties that must be
tuned to be asfcient as possible. This fact has prompted the creation ofrzbeu of
interrelated research areas like optimization, mathemalgtrogramming, operational
research and decision-making. Although these areas strae af their goals, each of
them diters from the others on the approaches put forward by thgiertiyze commu-
nities and the characteristics of the problems they deé&l. wit

Many real-world optimization problems involve more thaneogoal to be op-
timized. This type of problems is known asulti-objective optimization problems
(MOPs). A MOP can be expressed as the problem in which a sdtjettive functions
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f1(x), ..., fu(x) should be jointly optimized;
min F(x) = (fi(X),..., fu(X)); X € S; 1)

whereS C R"is known as théeasible se&ind could be expressed as a set of restrictions
over the decision seR" . The image set af produced by function vectdf (), O C
RM is calledfeasible objective seir criterion set (see [1, 2] for details on notation).

In this class of problems the optimizer must find one or moesifde solutions
that jointly minimize (or maximize) the objective functienTherefore, the solution to
this type of problem is a set of tradéE@oints. The optimality of a solution can be
expressed in terms of the Pareto dominance relation.

Definition 1 (Pareto dominance relation). For the optimization problem specified in
(1) and havingx,y € S, x is said to dominaty (expressed ag < y) iff Vfj, fj(x) <
fj(y) and3f; such thatfi(x) < fi(y).

Definition 2 (non-dominated subset).In problem (1) and having the sgt  S. The
non-dominated subsef A, A C A, is defined as

A={xe A e A:x <x]. 2)
Definition 3. The solution of (1) isS, the non-dominated subsetsf

S is known as thefficient setor Pareto-optimal sef2]. The elements of this set
are to be assessed and evaluated dg@sion makein order to select which one(s)
will be part of the final solution of the problem. It is worthtimgy that some alternative
notations, likenon-inferioror non-dominated setan be found in the literature (again,
see [1, 2]).

If problem (1) has certain characteristics, e. g., lingasitconvexity of the objec-
tive functions or convexity of, the dficient set can be determined by mathematical
programming approaches. However, in the general casendjride solution of (1) is
an NP-complete problem [3]. In this case, heuristic or metalstisrmethods can be
applied in order to have solutions of practical value at amiadible computational
cost.

A broad range of heuristic and metaheuristic approachebéas used to address
MOPs [4]. Of these, multi-objective evolutionary algorita (MOEAS) [5] have been
found to be a competent approach in a wide variety of appticatomains. Their main
advantages are ease of use, inherent parallel search asdslesceptibility to the shape
or continuity of the image of theflécient set, compared with traditional mathematical
programming techniques for multi-objective optimizat[dh

There is a class of MOPs that are particularly appealing Usexaf their inherent
complexity: the so-called many-objective problems [6].e$& are problems with a
relatively large number of objectives (normally, four or mp Although somewhat
counterintuitive and hard to visualize for a human decisi@ker, these problems are
not uncommon in real-life engineering practice. For exam] details some relevant
real problems of this type.
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The scalability issues of traditional MOEAs in these promdehave triggered a
sizable amount of research, aiming to provide alternafy®@aches that can properly
handle many-objective problems and perform reasonably.

Estimation of distribution algorithms (EDAs) are one supp@aches [8]. EDAs
have been hailed as a paradigm shift in evolutionary contipatal hey build a model
of the population instead of applying evolutionary operatd his model is then used
to synthesize new individuals. Probably because of theicess in single-objective
optimization, EDAs have been extended to the multi-obyectiptimization problem
domain, leading to the so-called multi-objective EDAs (MQ4S) [9].

Although MOEDASs have yielded some encouraging resultsy thieoduction has
not lived up toa priori expectations. This can be attributed to a number fiédént
causes. We have recognized three of them, in particulasgttierived from the incor-
rect treatment of population outliers; the loss of popolatiiversity, and that too much
computational #ort is being spent on finding an optimal population model.

A number of works have dealt with the issues listed abovejquéarly with loss
of diversity. Nevertheless, in our opinion, the communigstiailed to acknowledge
that the underlying cause for all those problems could, ggeshbe traced back to the
algorithms used for model building in EDAs.

In this paper we examine the model-building issue of curkld@EDASs and show
that some of its characteristics, which have been disreglsd far, render most current
approaches unsuitable for tackling MOPs. We then proposeel model-building al-
gorithm, based on the growing neural gas (GNG) network. Trtadel-building GNG
(MB-GNG) is the main contribution of this paper. It has beerided with this partic-
ular problem in mind, and therefore addresses the problémsent approaches.

The remainder of this paper is organized as follows. Se@igerves as a brief
introduction to MOEDASs and the issues present in currentehbdilding algorithms.
After this, MB-GNG is described in Section 4. Then, in Sectio a comparative study
is carried outin order to establish from an experimentatpai view the improvements
introduced by MB-GNG with respect to similar algorithmsné&lly, some conclusive
remarks are put forward.

2. Multi-Objective Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAS) are poputetibased optimization
algorithms. Instead of applying evolutionary operatorghe population like other
evolutionary approaches, EDAs build a statistical modehefmost promising subset
of the population. The introduction of machine learninghteques implies that these
new algorithms lose the straightforward biological inafion of their predecessors.
Nonetheless, they gain the capacity of scalably solvingynwdnallenging problems,
in some cases significantly outperforming standard EAs dheramptimization tech-
niques.

Multi-objective EDAs (MOEDAS) [9] are the extensions of EBAo0 the multi-
objective domain. Most MOEDAs consist of a modification ofsting EDAs whose
fithess assignment function is substituted by one taken &omxisting MOEA.

In general terms, MOEDAs follow a common algorithmic schefsee Figure 1).
At a given iterationt, a MOEDA has a populatio®; of individuals, each one repre-
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Parameters
> Npop € N, population size.
> a € (0, 1], selection percentile.
> w € (0, 1], substitution percentile.
> stop P — {true falsg, stopping criterion function oveg, the ordered
collection of populations.
Algorithm :
t« 0.
Generate the initial populatiagPy with nyep individuals.
B = {Po}.
repeat
Rank individuals inP; according to the fithess assignment function.
Extract the subse¥; with the bes{a npopJ elements ofP.
Build model of M;.
Sample w npop| new individuals from the model to creaf.
Substitute part of; with #; to create®, ;.
t=t+1.
B =P U{P.
until stopg) = true.
return P, the set of non-dominated individuals#f.

aStopping a multi-objective optimization is a non-triviabk. We refer the interested readef to
[10, 11]

Figure 1: A general MOEDA algorithm.

senting a point in the search space. In every iterafpe)ements are ranked according
to a given fitness assignment function. A sub&ét with the best elements @?; is
computed. The model-building algorithm relies M to create a model of the best
part of the population. This model is sampled in order to tere@w elements which
are combined witkP; to create the population to be used in the next iterafiyn,.

A given stopping criterion determines when the optimizatpocess should be
interrupted. When this happeng, the set of non-dominated individuals #%, is
returned as solution.

Although there are dlierent approaches for determining; and#.1, MOEDASs
are better characterized by their two main components, tiines assignment function
and the model-building algorithm.

Fitness functions have been mostly taken from MOEAs and eadldssified in
three main groups: objective function aggregation, Padletninance-based ranking,
and indicator-based ranking. An in-depth discussion cdehadternatives is out of the
scope on this paper, but it should be noted that the Paretindoe-based approach
proposed by the NSGA-Il algorithm is, by far, the most popirahe current literature.
See [5] for a survey on this topic.

The model-building algorithm is the kernel of an EDA. There awo main types
of methods for addressing this problem: those based on ig@phodels and those
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based on mixture distributions.

2.1. Graphical Model MOEDASs

Most EDAs based on graphical models rely on Bayesian nesvoFkom these,
the Bayesian optimization algorithm (BOA) [12] is the specapproach that has been
extrapolated to the multi-objective domain.

The exhaustive synthesis of a Bayesian network from therighg's population is
an NP-hard problem [13, 14]. Therefore, these EDAs must eynipéuristic alterna-
tives for building their networks while keeping the comgigaal cost under reasonable
margins.

BOA-based MOEDAs combine the Bayesian model-building sehevith an al-
ready existing Pareto-based fithess assignment. This safeof the multi-objective
BOA (mBOA) [15] that exploits the fithess assignment used 8G¥-II. Another al-
gorithm based on hierarchical BOA (hBOA), called mhBOA [1&ls0 uses the same
form of fitness assignment but introduces clustering in #asible objective set. A
similar idea is proposed in [17], where the mixed BOA (mBOA)combined with
SPEAZ2’s selection scheme [5] to form the multi-objective @B (mmBOA). The
multi-objective real BOA (MrBOA) [18] also extends a prestng EDA, namely, the
real BOA (rBOA). MrBOA combines the fithess assignment of MSIBwith rBOA.

2.2. Mixture Distribution MOEDASs

Another approach to modelling the subset with the best @dion elements is to
apply a distribution mixture approach. Bosman and Thief&8% proposed several
variants of their multi-objective mixture-based iteratehsity estimation algorithm
(MIDEA). They are based on their IDEA framework. They alstranluced a novel
Pareto-based and diversity-preserving fithess assignfueation. The model con-
struction is inherited from the single-objective versidrhe proposed MIDEAs con-
sidered several types of probabilistic models for bothréigcand continuous problems.

MIDEAs do not provide a specific mechanism to ensure equatreme of the
Pareto-optimal front if the number of representatives ims@arts of the front is much
larger than the number of representatives in some othes.pditte clustering algo-
rithms applied for this task include the randomized leadtporithm [20], thek-means
algorithm and the expectation-maximization algorithm][21

MIDEAs are not the only mixture-based algorithms. The malijective Parzen
EDA (MOPED) [22] puts forward a similar mixture-based apmb. MOPED uses the
NSGA-II ranking method and the Parzen estimator.

2.3. Other MOEDA Approaches

There are some other approaches for model building. Soneeddkantage of
the mathematical properties of the Pareto-optimal frortr éxample, the regularity
model-based multi-objective estimation of distributidgaithm (RM-MEDA) [23]
is based on the regularity property derived from the Karstr—Tucker condition.
At each iteration, RM-MEDA models the most promising aredhef decision space
using a probability distribution whose centroid is i ¢ 1)-dimensional piecewise
continuous manifold. Again, this model adopts the fitnessgasnent of NSGA-II.
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Its main drawback is its high computational requiremehist tender it unsuitable for
problems with many objective functions.

The covariance matrix adaptation evolution strategies AGESE) [24] have been
used in the multi-objective context. CMA-ES consists of ahod for updating the
covariance matrix of the multivariate normal mutationdiition used in an evolution
strategy. They can be viewed as EDAs, as new individualsarpked according to
the mutation distribution. Adaptation of the covariancenmas equivalent to learning
a second-order model of the underlying objective function.

3. Model-Building in the Multi-Objective Case

Regardless of the manyferts at providing usable model-building methods for
EDAs, the nature of the problem itself has received relbtilittle attention. In spite
of the succession of gradually improving results of EDAse guuestion hangs over
the search for possibilities for further improvement: wbalrrent statistically sound
and robust approaches be valid for the problem being adeit@s&enerally, model-
building algorithms are fé-the-shelf machine learning methods that were originally
intended for other classes of problems. On the other haedntidel-building prob-
lem has particular requirements that the above methods dmeet and may even go
against.

In this paper we argue that the model-building problem ha®een properly iden-
tified. For this reason, it has been treated like other preshoexisting problems over-
looking that this problem has particular requirements.sThatter did not show up as
clearly in single-objective EDAs. Thanks to the extensiorhte multi-objective do-
main this issue has become more evident, as we will debatesineimainder of this
section.

There are at least three properties of current model-lmgjldpproaches that hinder
their performance, in particular,

1. the incorrect treatment of data outliers;
2. the loss of population diversity; and
3. the excess of computationéi@t devoted to finding an optimal population model.

The data outliers’ issue is a good example of the defectigerstanding of the na-
ture of the model-building problem, and is, in our opinioa ttornerstone for reaching
a better understanding of the problem.

In machine-learning practice, outliers are handled asynaisonsistent or irrele-
vant data. Therefore, outlying data is expected to have liifluence on the model or
it is just disregarded. However, this behavior is not appede for model building. In
this case, it is known beforehand that all elements in tha slet should be taken into
account, as they represent newly discovered or candidgiensof the search space
and, therefore, must be explored. Therefore, these inssestould be at least equally
represented by the model and perhaps even reinforced. Alrbadding algorithm
that properly handles outliers might actually speed up ¢&aech process and lower the
rate of the exponential dimension-population size depecaye

Another weakness of most MOEDASs (and most EDAs, for that enpis the loss
of population diversity. This is a point that has alreadyrbemde, and some proposals
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for addressing the issue have been laid out [25, 26, 27]. [bbgsof diversity can be
traced back to the above outliers’ issue of model-buildilgpdthms. The repetitive

application of an algorithm that disregards outliers tetodgenerate more individuals
in areas of the search space that are more densely reprsdiitieough there have
been some proposals to circumvent this problem, we takeidve that the ultimate

solution is the use of an appropriate algorithm.

The third issue to be dealt with is the computational resesiveasted on finding an
optimal description for the subpopulation being modelledhe model-building case,
optimal model complexity can be sacrificed in the intere$es faster algorithm. This
is because the only constraint is to have a model thatfig®ntly, but not necessarily
optimal in terms of complexity, in order to represent theadata correct manner. This
is particularly true when dealing with high-dimensional M) as, in these cases, there
will be large amounts of data to be repeatedly processedeay @eration. Even so,
most current approaches spend considerafiteteon determining the optimal model
complexity, using minimum description length, structuigk minimization, Bayesian
information criterion or other similar heuristics.

In conclusion, we can deduce that understanding the nafuhe enodel-building
problem and the application of suitable algorithms seemoiatpghe way forward in
this area.

4. Model-Building Growing Neural Gas

Clustering algorithms [21] have been used as part of the rmdkling algorithms
of EDAs and MOEDASs. However, as we discussed in the previeaga, a custom-
made algorithm might be one of the ways of achieving a sigmifigmprovement in
this field.

The growing neural gas (GNG) network [28] has been chosenstaréing point
after surveying the literature for suitable candidates.Gaietworks are intrinsic self-
organizing neural networks based on the neural gas [29] m®tle term “neural gas”
refers to the behaviour of the center of the nodes duringdlagtation process, which
distribute themselves like a gas within an imaginary comadefined by the bounds
implicitly given by the dataset on which the network is beiregned.

Among the vast number of existing clustering methods wedigtito base our
approach on GNG because of its interesting properties,rircpkar:

¢ the network has been shown to be sensitive to outliers [8dpething undesir-
able in typical applications but suitable for model-builglj

e the network adapts its topology automatically to meet thelexity of the prob-
lem being solved;

e it has a fast convergence to low distortion errors and thesgseare better
than those yielded by “standard” algorithms likeneans clustering, maximum-
entropy clustering and Kohonen'’s self-organizing feataegps [29];

e although it benefits from the topological ordering of the @®d does not ster
the problem associated to Kohonen networks, where a nodaudiats neighbors
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to invalid or non-representative locations of the netwsiput set (which, in our
case, is the decision set), and;

¢ the introduction of a novel cluster repulsion mechanisnteiiesthe exploration
of the input space.

A GNG network creates an ordered topology of classes of eéatdements and
associates a cumulative error to each. The topology anduhmilative errors are
conjointly used to determine how new classes should betetsedsing these heuristics
the model can fit the network’s dimension to the complexitytted problem being
solved.

Our model-building GNG (MB-GNG) is an extension of the onigli GNG. It in-
troduces a cluster repulsion term that fosters a betteadpséthe clusters along the
training dataset, as explained in [31].

MB-GNG is a one-layer network that defines each class as aGasssian density
and adapts them using a local learning rule. The layer comi@iset of node§ =
{C1,...,Cn+}, With Ng < N* < Npmax HereNg andNpax represent initial and maximal
number of nodes in the network. The network receives inp@&d in its input set,z.

In our case this input set is the decision set: R".

A nodec; describes a local multivariate Gaussian density that stsef a center,
pi, and a standard deviations vectot, It also has an accumulated erréy, and a
set of edges that define the set of topological neighbors, oF;. Each edge has an
associated age;; .

The network is initialized witiNg nodes with their centers set to randomly chosen
inputs. A training iteration starts after an inpuis randomly selected from the training
data set. Then, two nodes are selected for being the clogesttox. The best-
matching nodgcy,

b = arg mind (u;, X) , (3)
i=1,..,N*
is the closest node tn. Consequently, theecond best-matching nad®, is deter-
mined as
b’ = arg mind (u;, x). (4)
i=1,...N*izb

Hered (a, b) is a metric, in our case, the Euclidean one.

If ¢y is not a neighbor of, then a new edg®’,, is established between them, where
Vy = Vp U {cy} with zero ageypy = 0. If, on the other handy, € V}, the age of the
corresponding edge is resetwg, = 0.

At this point, the age of all edges is incremented by one. Iédge is older than
the maximum ageyi; > vmax then the edge is removed. If a node becomes isolated
from the rest of the nodes because no edges connecting itrrairia also deleted.

The clustering error is then added to the best-matching eode accumulator,

A&y = d (i, X)? . )

After that, learning takes place in the best-matching naukits neighbors with
ratesepestandeic (evest> €vic), respectively. These two rates gate the movement of the
centers of the nodes involved towards the current input
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For ¢y, adaptation follows the rule originally used by GNG,

Aptp = €pest(X — tp) (6)

However, for the neighbors @f,, a cluster repulsion term [31] is added to the original
formulation. This repulsion term avoids the meaninglesgeatration of nodes in the
data space and therefore, promotes a proper representétion data set with fewer
nodes.

Following that, the learning rule for those nodes can beesged as/c, € Vy,

e(_d X )ZCuE’Vn d (o o) (v — piv)
Vol d(uvpn)

This approach was already used as part of the robust GNG {@Ditdas proven
itself useful for obtaining a good spread of the clusterb@ihputs’ space. In the afore-
mentioned work, it was stated that the adaptation rule iseositive to its parameters.
We have set them 10 = 2 and/ = 0.1 as suggested in [30].

After a given numbeiT ., of dataset iterations have taken place, it can be assumed
that there is enough information stored in the error accatous &. This information
is used to determine where to add new nodes to the networlarticplar, if the current
iteration is an integer multiple &f, and the network has not reached its maximum size
(N* < Nmax) then a new node is inserted in the network.

First, the node with the largest errag, is selected. Then, the worst node among
its neighborsee, is located. ThemN* is incremented and the new nodg;s, is inserted
between the two nodes,

N = 0.5(ue + pe); én = 0.5 + &e). (8)

The edge betweeny andcy is removed and two new edges connectiggwith ¢, and
Ce are created. The accumulated errors are decreased

Apy = &ic (X = py) + B (7)

&e = 01e, §e = Oiée, ()]
by arate 0< 6§, < 1. Finally, the errors of all nodes are decreased by a fagtor
& =668, 1=1,..,N". (10)

The algorithm stops after a learning epoch if the standaviatien of the accumu-
lated errors is smaller than a certain threshp]d,

(11)

This means that it will stop when the outliers are as well@espnted as possible.
After training has ended the deviations, of the nodes must be computed. For
this task we employ the unbiased normal estimator of theatievis [32].

marti-mb-gng-or-letters.tex 1248 2010-11-24 04:24:46&-deep



The local Gaussian densities resulting from the descrilgaatithm can be com-
bined to synthesize the Gaussian mixture with parameélers

1 &
P(4O) = G 0 Pk 7). (12)
Each Gaussian density is formulated as

P (X ) = exp(- 5 0c-m) T ) @9

(2n)V2im 2
with the covariance matriceg defined as a diagonal matrix with its non-zero elements
set to the values of the deviatioos The Gaussian mixture can be used by the EDA to
generate new individuals. These new individuals are codayesampling® (x|®). The
generation of randomly distributed numbers that follow\aegidistribution has been
dealt in depth by many authors. In our case, we applied the-BloXer transformation
[33].

5. Experimental Study

A comprehensive comparative study is essential in ordefyviiat the novel MB-
GNG actually yields a substantial improvement. In these&rpents we compare MB-
GNG and some of the alternative model-building algorithmder a common EDA
framework like the one presented in Section 2. The modétlmg algorithms that
also take part in the tests are: Bayesian networks, as usktiiBOA; randomized
leader algorithmk-means algorithm and E-M algorithm, as described for MIDEAS
(1+ 2)-CMA-ES as described in [24]; and the original GNG. Furthere, the NSGA-

I and SPEA2 MOEAs [5] were also involved in the experimentstider to provide a
baseline for the comparisons. The performance of eachitdgois assessed in terms
of approximation to the Pareto-optimal front and the corapanal cost of each one.

Six well known community-accepted problems are addresbedVFG4 to WFG9
problems [34]. These problems posé&elient classes of challenges, like local-optima,
parameter-bias, uni- and multi-modality, etc., to the mjer. See the corresponding
paper for a full description of each one. Each problem is goinéd with 3, 5, 7 and 9
objective functions. For all cases, the decision space msina was set at 15. All the
algorithms were executed 30 times for each prolmension pair.

The quality of the solutions is determined by the use of thgelhyolume indicator
[35]. This is the only indicator that has the properties of etnic and the only to be
strictly Pareto monotonic. However, it must be noted thatetare other alternatives.

Statistical hypotheses tests have to be applied to edtahésvalidity of the results.
For this, we perform a Kruskal-Wallis test [36] with the iodior values yielded by
each algorithm’s run for each problggimension combination. In the context of these
experiments, the null hypothesis for the test was that gbrithms were equally ca-
pable of solving the problem. If the null hypothesis wasaeggd, which was the case
in all the experimental instances, the Conover—Inman phaee[36, pp.288—290] was

10
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(a)ﬁp (), mean values for each problem. (b) Pm (), mean values for each dimension.

Figure 2: Mean values of the performance index across thiereint problems and
objective space dimensions.

applied in a pairwise manner to determine if the results &f algorithm were signif-
icantly better than those of the other. A significance lewebf 0.05 was used for all
the tests.

Understanding these results in a one-by-one basis is ratimbersome as it im-
plies cross-examining and comparing the results presesgpdrately and would re-
quire larger amount of space anffagt. That is why we decided to adopt a more
integrative representation.

That is, for a given set of algorithn®s,,. .., A, a set ofP test problem instances
D1 m,. . . Ppm, configured withm objectives, the functiod(-) is defined as

N _ [ 1 if A> Ajsolving®pn,
6(A.,A,,cl>p,m) - { 0 inother case ’ (14)

where the relatiody > A; defines ifA; is significantly better thaA; when solving the
problem instance,m, as computed by the statistical tests previously described

Relying ond(-), the performance indeR, m(A) of a given algorithmA; when solv-
ing @, is then computed as

K

Pom(A) = > 6 (A, AL Opm). (15)
=L
This index intends to summarize the performance of eaclrighgowith regard to its
peers.
Figure 2 exhibits the results computing the performancexed. Figure 2a rep-
resents the mean performance indexes yielded by eachthlgorihen solving each
problem in all of its configured objective dimensions,

— 1
Po(A)= i D Pam(A) § M=(35.7,9). (16)
meM

It is worth noticing that GNG and, particularly, MB-GNG hakietter overall re-
sults than the other algorithms. It is somewhat unexpetigitihhe randomized leader

11
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Figure 3: Progression of the mean floating-point CPU opematused by the model-
building algorithms as the objective space dimension segs. For each algorithm
four points are plotted correspondinghb= {3, 5, 7, 9.

and thek-means algorithms do not have a very good overall performdoicsome
problems, like WFG5 and WFG7 for the randomized leader andc®/&nd WFG9
for k-means. A possible hypothesis is that these results maydsediby the three-
objective problems, where there are sizabl@edences compared with the results of
the other dimensions.

This situation is clarified in Figure 2b, which presents treamvalues of the index
computed for each dimension,

P
Pn(A) =5 > Pon(A) (17)
p=1

In this representation, it becomes noticeable that MB-GN@Gerforms the other
approaches in dimensions larger than three, with the except the nine objectives
case, in which the original GNG outperforms MB-GNG.

Another key issue when dealing with high-dimensional peotd is the computa-
tional cost of the algorithms. One simple way of inspecthmg point is to compute the
number of CPU operations dedicated to model building in ezade. Figure 3 sum-
marizes these results. NSGA-Il and SPEA2 are not includétbimanalysis, since they
do not perform any model building. The main conclusion is ttase is that MB-GNG
requires more or less the same amount of resources to yitéd besults than the other
approaches.

6. Final Remarks

In this paper we have discussed an important issue in cuekahiitionary multi-
objective optimization: how to build algorithms that hawetter scalability with regard
to the number of objectives. In particular, we have focusewme promising set of
approaches: estimation of distribution algorithms.

We have argued that most of the current approaches do nointtakaccount the
particularities of the model-building problem that theg addressing and that, for this
reason, they fail to yield results of substantial quality.
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Regarding this, we have presented a new model-buildingighgo, the MB-GNG,
which was assembled in order to meet the requirements ofdtieplar problem.

We have also carried out a set of experiments that showeddimésbeing dis-
cussed. The experiments illustrated empirically that MB&outperforms current
approaches and is a valid starting point for future advarmcesin this area. The main
aim of this paper is to trigger further studies on this topid,aultimately, to produce
more model-building algorithms.
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