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ABSTRACT Convergence and diversity of solutions play an essential role in the design multi-objective
evolutionary algorithms (MOEAs). Among the available diversity mechanisms, the ε-dominance has shown
a proper balance between convergence and diversity. When using ε-dominance, diversity is ensured by
partitioning the objective space into boxes of size ε and, typically, a single solution is allowed at each of
these boxes. However, there is no easy way to determine the precise value of ε. In this paper, we investigate
how this goal can be achieved by using a co-evolutionary scheme that looks for the proper values of ε
along the search without any need of a previous user’s knowledge. We include the proposed co-evolutionary
scheme into an MOEA based on ε-dominance giving rise to a new MOEA. We evaluate the proposed MOEA
solving standard benchmark test problems. According to results, it is a promising alternative for solving
multi-objective optimization problems because three main reasons: i) it is competitive concerning state-
of-the-art MOEAs, ii) it does not need extra information about the problem, and iii) it is computationally
efficient.

INDEX TERMS Evolutionary Multi-objective Algorithms, ε-dominance, co-evolutionary schemes, param-
eter setting.

I. INTRODUCTION

MANY real-world applications involve the solution of
problems with multiple conflicting objective functions

which have to be simultaneously optimized. They are called
multi-objective optimization problems (MOPs). Since their
objective functions conflict with each other, MOPs do not
have a single optimal solution but a set of trade-off solutions
for which no objective can be improved without worsening
any other. This set of solutions is called Pareto optimal set
(PS), and its image is known as Pareto front (PF).

In recent years, the use of multi-objective evolutionary
algorithms (MOEAs) to solve MOPs has become very pop-
ular. Since their origins, MOEAs have had two main goals
[1]: (i) to find solutions that are as close as possible to PF

and, (ii) to produce solutions that are spread along PF as
uniformly as possible. We can classify MOEAs according
to their selection mechanism, in two classes: (i) those that
incorporate the concept of Pareto dominance, and (ii) those
that do not use Pareto dominance. MOEAs of type (i) have
several disadvantages, e.g., they cannot scale appropriately
regarding the number of objective functions, because the
number of nondominated solutions overgrows as the number
of objective functions is increased. This, in fact, dilutes the
effect of the selection mechanism of an MOEA [2] in high-
dimensional objective spaces. For this reason, the use of
MOEAs of type (ii) has steadily grown in the last few years.

In this work, we are interested in MOEAs based on ε-do-
minance (MOEAs of type (ii)) which have shown to be an
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excellent alternative to deal with the two challenges that we
mentioned before (convergence and distribution of solutions
along the PF).

For instance, Deb et al. [3] proposed the ε-MOEA. This
MOEA uses an archive with a fixed size in which the non-
dominated solutions are stored. The idea is that the search
space is divided into hypercubes of size equal to ε and only
one nondominated individual can reside in each hypercube.
ε-MOEA is computationally efficient. However, the most
critical disadvantage of MOEAs based on ε-dominance is
related to set the value of ε correctly. Therefore, to define
a proper ε value, it is necessary to know the PF as well as
the number of nondominated solutions that we want to store.

In our investigation, we depart from the following hypoth-
esis: The optimal value of ε depends on the MOP that we
want to solve. Besides, we consider the possibility of having
a different ε value per objective function. To validate our hy-
pothesis, we use the “Evolutionary Calibrator (EVOCA) [4]”
which is a specialized parameters tuning method. Once
the hypothesis is validated, we propose a co-evolutionary
scheme to set the ε values which can be adopted by any ε-
dominance-based MOEA. Our proposed approach employs
two populations: (i) a population of candidate solutions of
the MOP and (ii) a population of individuals representing the
possible values of ε. For the latter, we propose new operators
(crossover and mutation) for evolving the ε individuals, and
we also define the fitness function for them.

To validate our co-evolutionary scheme, we incorporate
it into an MOEA based on ε-dominance called “Genera-
tional Distance and ε-dominance-based Multi-Objective Evo-
lutionary Algorithm (GDE-MOEA) [5]”. GDE-MOEA in-
corporates a mechanism to find the right values of ε dur-
ing the search. Therefore, we can validate whether our co-
evolutionary scheme can improve it, regarding the qual-
ity of the PF approximation obtained and the consump-
tion time required. The resulting approach is called “Co-
evolutionary Generational Distance and ε-dominance-based
Multi-Objective Evolutionary Algorithm (CoGDE-MOEA)”.

We compare CoGDE-MOEA concerning GDE-MOEA,
MOEA/D [6], and a version of SMS-EMOA [7] that uses an
approximation of the hypervolume indicator [8] as its fitness
assignment scheme, we call this version hypeSMS-EMOA.
As we will see later on, the proposed co-evolutionary scheme
is a viable alternative to deal efficiently with MOPs, since
CoGDE-MOEA can outperform the original GDE-MOEA
and a version of GDE-MOEA that incorporates the ε values
tuned by EVOCA. Additionally, we show the potential of
our proposed approach when solving MOPs with both low
(three objective functions) and high (four, five and six ob-
jective functions) dimensionality. CoGDE-MOEA was able
to outperform MOEA/D and obtained competitive results
concerning hypeSMS-EMOA but at a lower computational
cost.

The main contributions of our work can be summarized as
follows:

1) Validation of the hypothesis: The optimal value of ε

depends on the MOP that we want to solve. We also
consider the possibility of having a different ε value
per objective function. In Section III, we can see that
none of the previous works make an in-depth study of
this hypothesis and they assume that it is true.

2) A co-evolutionary scheme for MOEAs based on ε-
dominance that looks for the most suitable values of
ε during the search without any need of previous user’s
knowledge.

The remainder of this paper is organized as follows.
Section II states the problem of our interest and explains
the concept of ε-dominance. The motivation and previous
related work on MOEAs based on ε-dominance are presented
in Section III. Section IV presents a study about suitable
ε values for problems with different features (e.g., linear,
concave, degenerate, and disconnected Pareto Fronts). Our
proposal is explained in Section V. Our experimental setup
and the obtained results are provided in Section VI. Finally,
our conclusions and some possible paths for future research
are discussed in Section VII.

II. BACKGROUND
Without loss of generality, assuming minimization, a multi-
objective optimization problem (MOP) consists in finding the
vector of decision variables x? = (x?1, x

?
2, . . . , x

?
n)T that

minimizes:

f(x) = (f1(x), f2(x), . . . , fk(x))T (1)

such that x? ∈ Ω, where Ω ⊂ Rn defines the feasible region
of the problem. The optimal solutions of an MOP are defined
by the concept of dominance: a vector y ∈ Ω is dominated by
a vector x ∈ Ω (x ≺ y) if fi(x) ≤ fi(y) for all i = 1, . . . , k,
and there exists a j such that fj(x) < fj(y). Otherwise, y is
nondominated by x. A decision vector x ∈ Ω is called Pareto
optimal if there is no y ∈ Ω which dominates x. The set of
all Pareto optimal solutions is called Pareto optimal set (PS),
and its image is called Pareto Front (PF).

The concept of ε-dominance was proposed by Laumanns
et al. [9] as an archiving technique. As mentioned before,
ε-dominance divides the whole objective space into hyper-
cubes, each having an εj size in the jth objective. For this,
an identification vector, b = (b1, b2, · · · , bk)T , is defined for
each solution x as follows:

bj = (b(fj(x)− fminj )/εjc)× εj , j = 1, · · · , k (2)

where fminj is the minimum value of the jth objective and
εj > 0 is the allowable tolerance of the jth objective. Then,
we say that all solutions dominated by b are ε-dominated
by x. Figure 1 illustrates the concept of ε-dominance. It is
worth noticing that all points in the same hypercube have the
same identification vector.

III. MOTIVATION AND PREVIOUS RELATED WORK
In the specialized literature, we can find several works that
use ε-dominance in the same way as ε-MOEA, see for exam-
ple those reported in [10]–[16].
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FIGURE 1: Illustration of ε-dominance. b is the identifica-
tion vector of solution x. We say that the area ABCDA is ε-
dominated by x. On the other hand, x dominates any solution
in the area EFCGE.

Therefore, they use an ε value for all the objective func-
tions of the MOP and, in order to define a suitable ε value, it
is necessary to know the true PF as well as the number of
nondominated solutions to be reached. Evidently, this is not
possible to establish a priori in real-world applications where
the features of the problem are unknown. Nonetheless, some
investigations try to address this issue, and we discuss them
below.

Sato et al. [17] proposed a method to control the degree of
expansion or contraction of the dominance area of solutions
using a user-defined parameter S. Although the authors did
not use ε-dominance, they modified the fitness value for
each objective function allowing to modify the size of the
dominance area. This has a strong connection with MOEAs
based on ε-dominance if the ε values change during the
search. One disadvantage that we see in this proposal is that
another parameter to determine the degree of expansion or
contraction is defined and, apparently, this parameter also
depends on the MOP that we want to solve. On the other
hand, the authors of this work performed an interesting
study in which they analyzed the effects of modifying the
dominance area. They concluded that both convergence and
diversity are affected, and also showed that the optimal value
of the area of dominance depends strongly on the number of
objectives, the size of the search space and the complexity
of the problem. It is worth noticing that they only used the
knapsack problem in their experiments.

Sato et al. [18] addressed the main disadvantage in [17],
and they proposed to calculate S during the search. In their
investigation, the S value depends on the individual and
of the objective function. Therefore, each individual uses a
different S value for each objective function, even different
individuals use different values. This proposal considers dif-
ferent dominance areas for each objective function. However,
it does not take into account the geometrical characteristics of

the PF . It only considers the spread of the PF . Moreover,
the authors only performed experiments with the knapsack
problem.

Hernández-Díaz et al. [19] identified some disadvantages
of ε-dominance, e.g., MOEAs based on it can lose a high
number of efficient solutions if the geometrical characteris-
tics of the PF are not considered. In order to address this
disadvantage, the authors employed not only different values
of ε for each objective function but also different intensities
of dominance which are defined according to the position of
each point along the PF . To achieve this, they used a family
of curves. The main disadvantage of this proposal is that they
require to know the PF shape to determine the type of curve
that should be used.

Aguirre et al. [20] proposed an adaptative ε-ranking
method to improve Pareto-based selection. The authors dis-
cussed the difficulties to know precisely how many solutions
should be assigned with the highest rank for a given value
of ε. The authors noticed that for larger ε values decrease
the number of highest ranked solutions and vice versa. Thus,
the authors proposed to set ε values at each generation with
the aim that the number of the highest ranked solutions will
be close to α × |P |, where α ∈ [0, 1] is a parameter set
by the user and |P | is the population size. If the number
of solutions in the first rank is greater than α × |P |, the
adaptation step ∆ is multiplied by a factor of 2 and added to
ε. Otherwise, ∆ is divided by two and subtracted from ε. ∆ is
kept in the range [∆min,∆max] and ε > 0. In this work, the
authors performed a study about α and they used ∆0 = 0.005
(initial value), ∆min = 0.0001 and ∆max = 0.05 for all
experiments. Other works use this proposal, e.g. [21]–[23].
Kowatari et al. [23] studied the behavior of an MOEA setting
a fixed value of ε = {0.01, 0.1, 0.5, 1} and they concluded
that adapting ε during the search is better than fixing it with
one of the values adopted in their experiments. The method
proposed by Aguirre et al. in [20] seems to be an excellent
choice to state the ε value. However, this proposal possesses
two disadvantage: (i) it employs a unique ε value for all the
objective functions, and (ii) to find the optimal ε value can be
slow and several iterations of the MOEA could be wasted.

Menchaca et al. addressed the second disadvantage in [5].
In their work, the authors guarantee that at each generation
the MOEA can select the number of individuals that are
desired in the following way. They proposed a new MOEA
called “Generational Distance and ε-dominance-based Multi-
Objective Evolutionary Algorithm (GDE-MOEA)”. This ap-
proach uses a selection mechanism based on the generational
distance indicator (IGD) 1 to achieve convergence and uses a
selection based on ε-dominance to explore the whole search
space at early stages of the search. and to improve the dis-
tribution of solutions along PF at the end of the search. The
authors also used a single value of ε for all objective functions
of an MOP. To determine the ε value, GDE-MOEA divides

1IGD reports how far, on average, A is from the true PF [24]–[26],
whereA is an approximation of the true PF . IGD is Pareto non-compliant.
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the objective space into two equal parts for each objective
function. Then, it proceeds to select the individuals (it selects
a single nondominated individual for each hypercube in the
search space) and puts them in a set called S. After that,
if the desired number of individuals has not been selected
(i.e., |S| < N , assuming N as the number of individuals to
be selected), it divides the objective space into three equal
parts for each objective function and selects the remaining
individuals. This process is repeated (at each iteration one
division is added to each objective function) until selecting
N individuals.

Sanghamitra et al. [27] proposed an approach called Prior-
ity Based ε (PBE). PBE determines the value of ε which is
different for each objective function. To achieve this, PBE
computes the average correlation value of every objective
function with all the others, and then, it assigns priorities
to each objective: when one objective is highly positively
correlated with others, its priority value is low; if the ob-
jective is negatively correlated with others, then its priority
value is high. This process is performed during a predefined
number of iterations. The authors said that the intuition
behind their idea is that when an objective conflicts a lot
with other objectives, it is considered essential and the ε value
denotes the amount of relaxation. Thus, for the high priority
objective, the ε value is lower compared to an objective with a
lower priority value. The main disadvantage of this proposal
is that Sanghamitra et al. updates the value of ε according to
the degree of correlation between objective functions without
considering the shape of PF nor the number of objective
functions.

The above works assumed that the optimal value of ε
depends on features of the MOP to be solved, e.g., on the
geometrical characteristics of the true PF , on the correlation
between the objective functions, on the number of objec-
tive functions, and on the size of the search space. Indeed,
Hernández-Díaz et al. [19] and Sato et al. [18] proposed
to use a different dominance area per objective function.
However, none of them makes an in-depth study to validate
their corresponding hypotheses. Sato et al. [18] conducted an
extensive study but only considered the knapsack problem.
Kowatari et al. [23] conducted a study to show that adapting
ε during the search is better than using a fixed ε value.
Nevertheless, they only used four values for ε in their study.

On the other hand, there are several grid-based MOEAs,
see for example [28]–[31]. These MOEAs also divide the
search space in hypercubes, but they do not preserve the main
ideas of the ε-dominance, e.g., in [31] the authors proposed
a grid-based MOEA called “GrEA” which can select grid-
dominated solutions, where the concept of grid-dominated is
very similar to the concept of ε-dominance (both are a relaxed
form of the Pareto dominance relation). On the other hand,
GrEA allows more than one solution per hypercube. We have
paid particular attention to GrEA because it adjusts the size
of its hypercubes during the search. For that, the number
of divisions into the search space is fixed, but it considers
the spread of the PF . Although GrEA modifies the grid

size to maintain a fixed number of divisions at each axis, it
does not consider the shape of the PF (e.g., if the PF is
disconnected) to determine the hypercube size.

With the aim of addressing the disadvantages detected
in the works reviewed in this section, we perform an in-
depth study of the proper ε values in MOPs with different
features. Mainly, we consider multimodal/unimodal MOPs
with a different number of objectives, and different geome-
tries of their true PFs (linear, concave, disconnected, etc.).
Besides, we propose a co-evolutionary scheme to find the
proper values of ε that should use the MOEA based on ε-
dominance at each stage of the search. Since we use another
evolutionary algorithm to find the proper ε values, we aim
that the ε-dominance-based MOEA which incorporates our
co-evolutionary scheme can deal with MOPs different fea-
tures.

IV. SUITABLE ε VALUES
As a result of the review of state of the art, we have stated
the following hypothesis: “The optimal value of ε depends
on the MOP that we want to solve. We also argue that it
is possible to define a different ε value for each objective
function”. In order to validate our hypothesis, we use an al-
gorithm for automatic parameter tuning called “Evolutionary
Calibrator (EVOCA) [4]” to calibrate the ε value in one of
the MOEAs mentioned in Section III: “GDE-MOEA”.

GDE-MOEA follows the basic structure of evolutionary
algorithms. First, it creates an initial population of size N
called P . After that, it creates N new individuals using
the operators of NSGA-II [32] (crossover and mutation). It
combines the population of parents and offspring to obtain a
population of size 2N . Then, it selects the N individuals that
will take part in the following generation (the new population
P ). Finally, it repeats this process for a (pre-defined) number
of generations. It is worth noticing the selection mechanism
is applied to the objective function space, and the population
has to be normalized.

In Algorithm 1, we show the selection mechanism. In
this process, the nondominated individuals are obtained and
stored in S. If the number of nondominated individuals is
lower than N , the generational distance indicator (IGD) is
used to select the (N − |S|) remaining individuals, using S
as the reference set, see Lines 3–23. The computational cost
of this selection procedure is O(|P |2). We use the concept
of ε-dominance, if the number of nondominated solutions is
greater than N , see Lines 26–47. The computational cost of
this procedure is O(m ∗ |P |2), where m is the number of
divisions in each objective function2.

EVOCA is itself an evolutionary algorithm that works with
a population of parameter configurations. A parameter con-
figuration is a set of values for each parameter that the tuned
algorithm must set. Algorithm 2 shows EVOCA’s structure.

The population size of EVOCA is set considering the
number of parameters tuned as well as their domain sizes in

2In the multi-objective optimization problems adopted in our experiments,
m did not exceed the value of 100.
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Algorithm 1: GDE-MOEA Selection
Input : P (population) and N (number of individuals to choose).
Output: S (selected individuals).

1 Put the nondominated individuals of P in S;
2 if N > |S| then

/*IGD-selection */
3 Put the dominated individuals of P inB;
4 Calculate the Euclidean distance di from each individual xi ∈ B

to its nearest neighbor in S (S is the reference set) and we also
save its closest nondominated neighbor;

5 SortB with respect to di (ascending order);
6 S′ ← ∅, allowedNeighbors← 0, i← 0;
7 while |S′| < N − |S| do
8 countNeighbors← 0;
9 foreach s ∈ S′ do

10 if s.neighbor = B.xi.neighbor then
11 countNeighbors← countNeighbors+ 1;

12 if countNeighbors ≤ allowedNeighbors then
13 S′ ← S′ ∪B.xi,B ← B −B.xi;
14 else
15 i← i+ 1;

16 if i = |B| then
17 i← 0,

allowedNeighbors← allowedNeighbors+ 1;

18 return S ∪ S′;
19 else

/*ε-selection */
20 if N < |S| then
21 n← 1, S′ ← ∅;
22 while |S′| < N do
23 n← n+ 1;
24 Set the vector ε: εj ← 1/n (where j indicates the

objective function);
25 Update the identification vector, b, for each individual

in S and for each individual in S′;
26 foreach xi ∈ S and |S′| < N do
27 if xi /∈ S′ then
28 flag ← 0;
29 foreach si ∈ S′ do
30 if si.b = xi.b then
31 if xi is nearest to b than si then
32 xi replaces si, flag ← 1;

33 if flag = 0 then
34 S′ ← S′ ∪ xi;

35 return S′;

36 return S;

Algorithm 2: EVOCA tuning method
Input :At (tuned algorithm), P (parameters), R (repetitions) and pc

(precision).
Output: c∗ (best parameter configuration).

1 Generate Population of configuations (P , pc, Evocapsize);
2 while not termination condition met do
3 Child←Wheel-crossover(Population);
4 Evaluate (At, Child, R);
5 Replace the worst configuration in Population by Child;
6 Mutatedchild← Hillclimbing(Child);
7 Evaluate (At,Mutatedchild, R);
8 if Mutatedchild is better than Child then
9 Replace the second worst configuration in Population by

Mutatedchild;

10 return c∗ (best parameter configuration in Population);

order to include a set of relevant values for each parameter in
an independent way on its initial population. For real-valued
parameters, an initial precision level (pc) is established in
order to determine a maximum number of relevant values for
those parameters without exceeding a maximum population
size (Evocapsize). EVOCA uses two transformation opera-
tors.

First, it adopts a wheel-crossover operator that constructs
one offspring parameter configuration from the whole popu-
lation. For each parameter, EVOCA selects its value from the
parent configuration according to the roulette-wheel based
on the quality of parameter configurations in the current
population. The crossed configuration replaces the worst
configuration on the current population. Second, it adopts a
hill climbing-based mutation operator. Mutation takes a copy
of the offspring generated by crossover and tries to improve it
by modifying one of its parameter values. Initially, it selects
a parameter to mutate and then tries domainsize times to
generate a new random value on its domain to improve the
parameter configuration quality. The precision level of real-
valued parameters is increased when using this operator. If a
better configuration is obtained, it replaces the second worst
configuration in the current population.

EVOCA defines three (meta)-parameters which were set
as follows: population size (Evocapsize)= 20, number of
repetitions (R)=10, and termination condition= 10,000 GDE-
MOEA executions. EVOCA has been successfully applied
to several tuning scenarios in the literature [33], [34] and
its implementation is available at its author’s website (http:
//ecco.informaticae.org/).

In our study, we adopted ε as a vector of k components,
where k is the number of objective functions. The idea is the
following: Let A be the approximate PF found by GDE-
MOEA. Then, we use EVOCA to maximize the hypervol-
ume indicator, i.e., max IH(A). For this task, we execute
Algorithm 2 with At = GDE-MOEA, P = {ε}, R = 10,
and pc = 1 decimal positions. We chose IH because it is
the unique unary indicator which is strictly “Pareto compli-
ant”3 [35]. Furthermore, IH rewards convergence towards
the PF as well as the maximum spread of the solutions
obtained. Additionally, we adopted four MOPs taken from
DTLZ [36] test suite: DTLZ1, DTLZ2, DTLZ5, and DTLZ7,
all of them with 3, 4, 5, and 6 objective functions. We chose
these problems because they have different characteristics:
DTLZ1 is multimodal with a linear PF , DTLZ2 is unimodal
with a concave PF , DTLZ5 is unimodal with a degenerate
PF , and DTLZ7 has a disconnected PF .

In Table 1, we show the best ε values found by EVOCA
for these test problems. It is worth noticing the following:

(i) In all cases, the ε value is different for each objective
function.

3An indicator I : Ω → R is Pareto compliant if for all A,B ⊆
Ω : A � B ⇒ I(A) ≥ I(B) assuming that greater indicator values
correspond to higher quality, where A and B are approximations of the
Pareto optimal set, Ω is the feasible region and A � B means that every
point b ∈ B is weakly dominated by at least one point a ∈ A.
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(ii) There is no relationship between the ε values found
for the same problem with the different number of
objective functions.

(iii) There is no connection between the ε values found for
problems with different geometrical characteristics in
their PF and the same number of objective functions.

With these results, we can corroborate our hypothesis
and the assumptions made by the previous related works.
However, a new question arises: Is it better to set the ε values
during the search instead of using a specialized algorithm to
set parameters like EVOCA? From the study done so far, we
consider that it could be better to set the ε values during the
search because of two important reasons: 1) Using a tuning
method like EVOCA implies a high computational effort to
execute several times the tuned MOEA, which can be very
expensive. In these experiments, the tuning processes took
from 86 to 262 minutes depending on the number of objec-
tives considered; and 2) Adjusting the ε values during the
search, the MOEA can exploit the accumulated information
at each moment of the search.

Therefore, we propose a co-evolutionary scheme that al-
lows us to adjust the value of ε for each objective function as
the search progresses. We introduce this scheme in the next
Section.

V. OUR PROPOSED APPROACH: COGDE-MOEA
As mentioned before, one of the main problems of using ε-
dominance is to determine the appropriate values for ε in a
specific MOP. In this section, we propose a co-evolutionary
scheme to deal with this issue.

A. CO-EVOLUTIONARY ALGORITHMS
A co-evolutionary search involves the use of multiple species
as the representation of a solution to an optimization prob-
lem. Each species population represents a piece of a larger
problem, and it is the task of those populations to evolve
increasingly fit pieces for the larger problem. Recent work
in co-evolutionary algorithms (CAs) research considers co-
evolution as a form of multi-objective optimization [1], [37],
[38]. In our investigation, the focus is on how coevolution can
be integrated in order to provide a better way of computing ε
values for an MOEA which uses ε-dominance as its density
estimator. Here, we adopt two populations. The first has
individuals who are candidate solutions to solve the MOP
(we call it the main population) and the second population
contains the possible values of ε. In the following, we provide
a more detailed description of this approach.

B. ε-POPULATION
We propose the use of an evolution strategy (µ + 1)-ES to
evolve a population of ε-individuals, i.e., we generate a new
individual at each iteration and it competes against the µ
individuals in the current population (the best µ individuals
will survive). We construct an ε-population of size equal to
a percentage of the main population. At each iteration, we
carry out the parent selection as follows: the first parent is the

best ε-individual in the ε-population, and we chose the second
parent randomly. We aim to find the ε values that allow to
select exactly N individuals from the main population. For
this reason, the best ε-individual is the one who achieves to
select a number of individuals of the main population close to
N , and we use this individual to guide the search for the best
ε values in a generation. Algorithm 3 shows how to evolve
the ε-population.

In the following subsections, we define the representation
of an ε-individual, its fitness, the initialization process, and
the genetic operators (crossover and mutation).

1) Representation
One ε-individual represents, for each objective function, the
number of divisions on the current objective, e.g., the individ-
ual ε1 = (12, 16) indicates that we will have twelve divisions
for the first objective function and sixteen divisions for the
second objective function. It is worth mentioning that the ob-
jective space is normalized, see Figure 2a. Note besides that
ε value commonly indicates the size of the hypercube, i.e.,
for the previous example ε1 = (0.08333, 0.0625). However,
for convenience, we employ the integer representation for the
ε-individual. This representation does not affect the meaning
of ε-dominance.

2) Initialization
In our proposed approach, we initialize each component of
an ε-individual with a random value in the range [2, 100]. We
chose this range according according to the results shown in
Table 1, i.e., the best values for ε found by EVOCA, which
aimed to maximize the hypervolume of the PF approxima-
tion achieved by GDE-MOEA.

3) Fitness evaluation
Let us assume that we are solving an MOP and we desire to
obtain a PF approximation with N nondominated solutions.
If we use an MOEA based on ε-dominance with a population
size N , we need to know which are the values for each
component of vector ε that allow us to select exactly N
solutions at each generation. If we are not able to obtain these
values, our MOEA will not be able to produce good results.

For the above reason, we evaluate each ε-individual as
follows. Let us assume that we want to select N solutions
from a set P such that N < |P |. Our aim is to find an
ε-individual such that the partitions in the objective space
imply to select exactly N solutions. It is worth remembering
that we can only select one individual per hypercube. Sup-
pose that the ε-individual ε1 allows selecting M individuals.
Therefore, we define the fitness of ε1 as the distance between
M and N . For example, let us assume that it is required to
select 10 individuals in Figure 2. By using ε1 = (12, 16),
we shall select 15 individuals. Therefore, the distance of ε1
is equal to 5 (i.e., |15− 10|). On the other hand, considering
ε2 = (3, 4) then we shall select 5 individuals. Therefore, the
distance of ε2 is also 5 (i.e., |5− 10|). However, we consider
that ε1 is better than ε2. In the first case, we can randomly
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TABLE 1: Best values found by EVOCA for ε using DTLZ1, DTLZ2, DTLZ5 and DTLZ7 with 3, 4, 5, and 6 objective
functions.

3 4 5 6
DTLZ1 [0.03, 0.058, 0.055] [0.142, 0.09, 0.033, 0.021] [0.058, 0.5, 0.5, 0.029, 0.023] [0.09, 0.25, 0.333, 0.142, 0.25, 0.1]
DTLZ2 [0.111, 0.142, 0.125] [0.25, 0.111, 0.5, 0.333] [0.25, 0.166, 0.5, 0.052, 0.055] [0.111, 0.2, 0.111, 0.5, 0.055, 0.022]
DTLZ5 [0.013, 0.25, 0.017] [0.014, 0.5, 0.5, 0.333] [0.033, 0.010, 0.071, 0.5, 0.037] [0.1, 0.013, 0.018, 0.5, 0.5, 0.016]
DTLZ7 [0.055, 0.111, 0.125] [0.2, 0.09, 0.5, 0.166] [0.166, 0.047, 0.013, 0.017, 0.5] [0.029, 0.01, 0.166, 0.021, 0.071, 0.018]

select ten individuals from the set of current fifteen well-
distributed selected individuals. While in the second case, we
have five individuals and we need to select the remaining five
individuals from the nondominated individuals that have not
been selected yet. Then, the probability that the distribution
obtained in the first case is better than the distribution ob-
tained in the second case is high. Therefore, we define the
fitness of one ε-individual as follows:

fitness(εj) = −1× (|xj −N |+ yj) (3)

where xj is the number of individuals that we will select if
we use εj and, yj is equal to 0.0 if xj ≥ N and it is equal to
0.5 if xj < N . See Lines 2–8 in Algorithm 3.

4) Crossover operator
In our proposed approach, we employ intermediate recombi-
nation. Let us assume that we have two parents ε1 and ε2.
Then, the offspring ε is obtained by:

ε =
1

2
× (ε1 + ε2) (4)

5) Mutation operator
We perform the mutation operator of each ε-individual ac-
cording to the following scheme:

1) If both parents select more individuals than required,
we reduce the number of divisions in the objective
space because we need bigger hypercubes.

2) If both parents select fewer individuals than required,
we increase the number of divisions in objective space
because we need smaller hypercubes.

Let us assume that ε1 and ε2 are the parents of individual
ε and such individual ε must be mutated. For each j-th
component of ε (i.e., εj), we simulate a coin toss to decide
whether the j-th component is perturbed, see Algorithm 3,
Lines 14–15 and 24–25. In the case 1, εj will be a random
value between 0.5×

(
min{ε1j , ε2j}

)
and min{ε1j , ε2j}, see Line

16 in Algorithm 3. In the case 2, εj will be a random value
between max{ε1j , ε2j} and 1.5 ×

(
max{ε1j , ε2j}

)
, see Line 26

in Algorithm 3. Note besides that the minimum number of
divisions is 2.

C. MAIN POPULATION
We use GDE-MOEA to evolve the main population, but using
individuals from the ε-Population to set the ε value for each
objective function. Our proposal only affects the selection
process based on ε-dominance as follows. Before choosing
the ε-individual that we will use in the selection operator

1

f2

f1

1

(a)

1

f2

f1

1

(b)

FIGURE 2: ε-individuals. Suppose that we want to select ten
individuals. (a) If we use ε1 = [12, 16], we select fifteen in-
dividuals from the main population (blue points). Therefore,
the fitness of ε1 is equal to −5. (b) If we use ε2 = [3, 4], we
select five individuals from the main population (blue points).
Therefore, the fitness of ε2 is equal to −5.5.
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of GDE-MOEA, we perform one iteration of the (µ + 1)-
ES for the ε-population, see Algorithm 3. After that, we
choose the best-known ε-individual and use it to select the
individuals that will take part in the following generation.
Let us assume that it is desirable to select N individuals. If
the best ε-individual allows us to select M individuals with
M > N , we randomly select N individuals from those M
individuals. If the best ε-individual allows us to select M
individuals with M < N , we randomly select the remaining
N − M individuals from the current set of nondominated
individuals that have not been selected. The new MOEA is
called “CoGDE-MOEA: Co-evolutionary Generational Dis-
tance and ε-dominance-based Multi-Objective Evolutionary
Algorithm”, see Algorithm 4.

Algorithm 3: Evolve ε-Population
Input :E (current ε-Population), P (current main population and N

(number of individuals that we want to select).
Output:E (the new ε-Population).
/*Calculate the fitness of each ε-individual */

1 foreach ε ∈ E do
/*Remember that this fitness depends on the
current main population P */

2 xj ← number of individuals that we will select from P , if we use
ε;

3 if xj ≥ N then
4 yj ← 0.0;
5 else
6 yj ← 0.5;

7 fitness(εj)← −1 ∗ (|xj −N |+ yj);

8 Select the best ε-individual (ε1);
9 Select a random ε-individual (ε2);
/*Apply the crossover operator */

10 ε = 0.5 ∗ (ε1 + ε2);
/*Apply the mutation operator */

11 if bfitness(ε1)c = fitness(ε1) and
bfitness(ε2)c = fitness(ε2) then

12 foreach εj ∈ ε do
13 if rand(0, 1) < 0.5 then
14 εj ← rand

(
0.5 ∗min(ε1j , ε

2
j ),min(ε1j , ε

2
j )
)

;
15 if εj < 2 then
16 εj ← 2;

17 else
18 if bfitness(ε1)c! = fitness(ε1) and

bfitness(ε2)c! = fitness(ε2) then
19 foreach εj ∈ ε do
20 if rand(0, 1) < 0.5 then
21 εj ← rand

(
max(ε1j , ε

2
j ), 1.5 ∗max(ε1j , ε

2
j )
)

;

22 Select the worst ε-individual (εw);
23 if ε is better than εw then
24 ε replaces εw;

VI. EXPERIMENTAL RESULTS
In our experimental study, we adopted seven problems from
the DTLZ [36] test suite and seven problems from the
Walking-Fish Group (WFG) test suite [39]. The adopted
MOPs were employed up to six objective functions. For the
DTLZ test problems, we adopted k = 5 for DTLZ1, DTLZ3,

Algorithm 4: CoGDE-MOEA
Input : N (size of the main population) and p (size of ε-population:

percentage regarding the main population).
Output: P (final main population).

1 Create the initial main population of size N called P ;
2 Create the initial ε-population of size p ·N calledE;
3 while numGeneration < totalGenerations do
4 Create N new individuals using the operators of NSGA-II

(crossover and mutation) and put them inO;
/*Select the best N individuals */

5 Obtain the nondominated individuals in P ∪O and put them in
S;

6 Obtain the dominated individuals in P ∪O and put them inB;
7 if |S| < N then
8 Calculate the Euclidean distance di from each individual

xi ∈ B to its nearest neighbor in S (S is the reference set)
and we also save its closest nondominated neighbor;

9 SortB with respect to di (ascending order);
10 S′ ← ∅, allowedNeighbors← 0, i← 0;
11 while |S′| < N − |S| do
12 countNeighbors← 0;
13 foreach s ∈ S′ do
14 if s.neighbor = B.xi.neighbor then
15 countNeighbors← countNeighbors+1;

16 if countNeighbors ≤ allowedNeighbors then
17 S′ ← S′ ∪B.xi,B ← B −B.xi;
18 else
19 i← i+ 1;

20 if i = |B| then
21 i← 0, allowedNeighbors←

allowedNeighbors+ 1;

22 P ← S ∪ S′;

23 if |S| > N then
24 Evolve the ε-population, see Algorithm 3;
25 Use the best ε-individual to calculate the identification vector

b of each individual in S;
26 P ← ∅, S′ ← ∅;
27 foreach xi ∈ S do
28 flag ← 0;
29 foreach yi ∈ P do
30 if yi.b = xi.b then
31 if xi is nearest to b than yi then
32 xi replaces yi;
33 S′ ← S′ ∪ yi;
34 flag ← 1;

35 if flag = 0 then
36 P ← P ∪ xi;

37 if |P | > N then
38 Delete |P | −N random individuals from P ;

39 if |P | < N then
40 Select N − |P | random individuals from S′ and

append them to P ;

41 numGeneration← numGeneration+ 1;

and DTLZ6, and k = 10 for the remaining DTLZ test
problems. For the WFG test problems, we use k_factor = 2
and l_factor = 10. For each test problem, we performed 30
independent runs. All MOEAs adopted the genetic operators
of NSGA-II using the parameters suggested by its authors,
i.e., pc = 0.9 (crossover probability), pm = 1/n (mutation
probability), where n is the number of decision variables. For
crossover and mutation operators, we adopted ηc = 15 and
ηm = 20, respectively. We performed a maximum of 50,000
fitness function evaluations (we used a population size of 100
individuals and we iterated for 500 generations).
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To assess the performance of the adopted MOEAs, we
employed the following indicators:

a: Hypervolume indicator (IH )
It was proposed by Zitzler et al. [40], and it is defined as
the size of the space covered by the Pareto optimal solutions.
This indicator is used to assess convergence towards the PF ,
as well as maximum spread of the solutions obtained. IH is
mathematically stated as:

IHv(A) = L

(⋃
z∈A
{x|z ≺ x ≺ yref}

)
(5)

where L denotes the Lebesgue measure and yref ∈ RM
denotes a reference vector being dominated by all solutions
in A. To calculate IH , we normalized the approximations
of the PF , generated by the MOEAs and we used yref =
(y1, · · · , yk) such that yi = 1.1 as our reference point. We
perform the normalization considering all approximations
generated by the different MOEAs adopted in each compar-
ison (i.e., we put, in one set, all the nondominated solutions
found and from this set we calculated the maximum and
minimum for each objective function).

b: Two Set Coverage (ISC )
We used this indicator to assess the convergence of the
MOEAs adopted in this paper. It was proposed by Zitzler et
al. [41], and it is a binary Pareto compliant indicator. ISC is
defined as follows: Let A,B be two approximations of PF ,
we have that:

ISC(A,B) =
|b ∈ B such that ∃a ∈ A with a ≺ b|

|B|
If all points in A dominate or are equal to all points in B,
then by definition ISC = 1. ISC = 0 implies that no element
in B is dominated by any element of A. In general, both
ISC(A,B) and ISC(B,A) have to be considered.

c: Spacing (IS)
We used this indicator to measure the spread of solutions in
the approximate PF . It was proposed by Schott [42] and it is
defined as follows:

IS(A) =

√√√√ 1

|A| − 1

|A|∑
i=1

(
d− di

)2
where: di = minj,j 6=i

∑
k |f ik − f

j
k | and d = 1

|A|
∑|A|
i=1 di,

k is the number of objective functions, i, j = 1, · · · , |A|.
When IS = 0, all the solutions inA are uniformly spread.

A. STUDY: SIZE OF THE ε-POPULATION
Before comparing our CoGDE-MOEA against the other
MOEAs, we show a study of the behavior of CoGDE-MOEA
when using different sizes for the ε-population. Figure 3
shows two histograms. The first histogram corresponds to
the results obtained in the DTLZ test problems with three,

four, five, and six objective functions. The second histogram
corresponds to the WFG test problems with the same number
of objective functions as DTLZ test problems. The value
plotted corresponds to the number of times that each version
of CoGDE-MOEA obtains specific place (first, second, ...,
ninth).

From these plots, we can observe that all versions of
the algorithm are competitive with each other. However,
in the DTLZ test problems, it is clear that the versions in
the extremes (10%, 20%, 80%, and 90%) are better and
quite competitive among them. In the WFG test problems,
it is clear that the version that uses 10% is the best. This
characteristic caught our attention, and then we decided to
compare in more detail the versions that use an ε-population
size equal to 10% and 90% of the main population.

Table 2 summarizes the results obtained by performing 30
independent runs for each of the 56 adopted test problems.
For the comparison, we used the hypervolume indicator and
we applied a statistical analysis using Wilcoxon’s rank sum to
know how many times one algorithm outperformed another
one (the null hypothesis “medians are equal” can be rejected
at the 5% level) and how many times they had a similar
behavior (the null hypothesis cannot be rejected at the 5%
level).

It is also possible to observe that the version that uses an ε-
population size equal to 90% of the main population obtained
better results in problems with few objective functions (three
and four). On the other hand, the version with an ε-population
size equal to 10% of the main population obtained better
results in problems with more objective functions (five and
six). In fact, the use of large ε-populations promotes the ex-
ploration, in a better way, of the search space corresponding
to the problem of finding the optimal ε value. It is worth
noticing that in problems with few objective functions, the
number of iterations used was sufficient to approximate the
optimal ε value. However, in problems with more objective
functions, the problem of approximating the optimal ε value
is much more difficult, and the ε-population cannot converge
to a good value in a fast way.

Therefore, we hypothesized that the use of small ε-
population sizes in these test problems would not be able to
explore the whole search space and it is very likely that the ε-
population will converge to a local optimum. To validate our
hypothesis, we plotted the convergence of the ε-population.
Figures 4 and 5 show the convergence plots for DTLZ4,
DTLZ7, WFG2, and WFG6 with three and six objective
functions and we can see that in most cases the version that
uses a smaller ε-population achieves convergence to an ε-
individual with the best fitness (0). Conversely, when we use
a larger population, we cannot converge to an ε-individual
with the best fitness in problems with six objective functions.
Moreover, in these plots, we can see that the convergence
of smaller ε-populations is faster than the one of larger ε-
populations.

For the above reasons and in order to perform a fair
comparison, we use an ε-population size equal to ten percent
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of the main population size for all the comparisons reported
in the following.

TABLE 2: Results obtained in the DTLZ and WFG test
problems with up to six objective functions. We group the
test problems by the number of objective functions (k). We
compare two versions of CoGDE-MOEA: the first one uses
an ε-population equal to 10% and the other one uses an ε-
population equal to 90%. For the comparison, we used the
hypervolume indicator and Wilcoxon’s rank sum. The format
is as follows: number of times that the algorithm won /
number of times that the algorithm tied / number of times
that the algorithm lost.

k
CoGDE-MOEA

(10%)
CoGDE-MOEA

(90%)
3 0 / 5 / 2 2 / 5 / 0
4 0 / 6 / 1 1 / 6 / 0
5 1 / 6 / 0 0 / 6 / 1
6 0 / 7 / 0 0 / 7 / 0

DTLZ test problems

k
CoGDE-MOEA

(10%)
CoGDE-MOEA

(90%)
3 0 / 6 / 1 1 / 6 / 0
4 0 / 6 / 1 1 / 6 / 0
5 3 / 4 / 0 0 / 4 / 3
6 2 / 5 / 0 0 / 5 / 2

WFG test problems

B. COMPARISON OF MOEAS BASED ON ε-DOMINANCE
In this section, we compare the proposed CoGDE-MOEA
concerning a version of GDE-MOEA that uses the ε values
found by EVOCA (we call this version Evoca GDE-MOEA)
and with respect to the original GDE-MOEA. EVOCA was
employed to find good-performing ε values for problems with
three, four, five, and six objective functions considering both
the DTLZ and the WFG test problems. See Table 3.

TABLE 3: ε values found by EVOCA considering the DTLZ
and WFG test problems. k denotes the number of objective
functions.

k ε values
3 [0.04, 0.012, 0.045]
4 [0.012, 0.5, 0.014, 0.018]
5 [0.035, 0.5, 0.142, 0.09, 0.1]
6 [0.026, 0.033, 0.052, 0.023, 0.01, 0.02]

Tables 4(a) and 4(b) summarize the results obtained over
30 independent runs for each of the 56 adopted test problems.
We used the hypervolume indicator and Wilcoxon’s rank sum
in the same way that in the previous experimental study. In
Table 4(a), we can see that the proposed CoGDE-MOEA
was better than evoca GDE-MOEA in fifteen DTLZ test
problems.

Evoca GDE-MOEA and CoGDE-MOEA showed similar
behavior in eight problems, and Evoca GDE-MOEA out-
performs CoGDE-MOEA in five problems. Also, we can
observe that our CoGDE-MOEA is better than the origi-
nal GDE-MOEA in twelve DTLZ test problems. In eight

DTLZ test problems both MOEAs had similar behavior.
The original GDE-MOEA is better than our CoGDE-MOEA
in eight DTLZ test problems. Regarding the WFG test
problems (see Table 4(b)), CoGDE-MOEA is better than
Evoca GDE-MOEA in twenty-four problems, and they had
similar behavior in four problems. Concerning the original
GDE-MOEA, CoGDE-MOEA outperforms it in seventeen
problems, CoGDE-MOEA was outperformed by it in three
problems, and both MOEAs had similar behavior in eight
problems.

From all the above results, we can corroborate that the ε
values depend on several factors, and then, it is not viable
to employ a specialized technique to tune them considering
a set of different problems. In this experimental study, we
grouped the MOPs by the number of objective functions,
and the results are not good. In conclusion, it is necessary
to use a specialized technique per problem, and this has a
much higher computational cost. Moreover, we can see that
our co-evolutionary scheme to set the ε values was able to
outperform the scheme proposed in [5] in most of the test
problems. An essential difference between both schemes is
that the co-evolutionary scheme proposed here assumes that
the optimal ε values can be different per objective function.
Therefore, we can say that a different ε value for each
objective should be considered when ε-dominance is used to
solve MOPs.

In Table 5, we can see that GDE-MOEA required at most
two seconds to solve the adopted MOPs while CoGDE-
MOEA required up to seven seconds. Although GDE-MOEA
seems to be better regarding computational time, we must
consider that GDE-MOEA uses one ε value for all objectives
while CoGDE-MOEA finds a suitable ε value for each ob-
jective function. This is reflected in the quality of the PF
approximations achieved by our proposed CoGDE-MOEA.

C. COGDE-MOEA VS MOEAS NOT BASED ON
ε-DOMINANCE
In this section, we compare CoGDE-MOEA with respect to
two well-known MOEAs: MOEA/D and SMS-EMOA. We
chose MOEA/D because it is a viable alternative to deal
with many-objective optimization problems, e.g., its compu-
tational cost is very low. MOEA/D was proposed by Zhang et
al. in [6], and it decomposes the MOP intoN scalar optimiza-
tion subproblems which are then simultaneously solved using
an evolutionary algorithm. For our experiments, we use PBI
(Penalty Boundary Intersection) to decompose the MOP. To
generate the convex weights, we used the technique proposed
in [43] and after that, we applied clustering (k-means) to
obtain a specific number of weights.4 In our experiments,
we used a neighborhood size equal to 20. We also compared
results against SMS-EMOA [7] because it is the most popular
hypervolume-based MOEA. In this study, we used a version
of SMS-EMOA that approximates the contribution to the

4Note that we cannot directly use the convex weights generated by the
technique proposed in [43] because the number of weights grows very
quickly as we increase the number of objective functions.
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FIGURE 3: Results obtained in the DTLZ and WFG test problems with three, four, five and six objective functions.
Histograms show the number of times that each version of CoGDE-MOEA (depending on the size of ε-population that it uses)
came in certain place (first, second,..., ninth). We compare CoGDE-MOEA using an ε-population size equal to 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80% and 90% of the main population.

hypervolume using the technique proposed by Bader et al.
in [8] adopting 104 as the number of samples. We called
this version “hypeSMS-EMOA”. It is worth mentioning that
the original SMS-EMOA was not employed because it can
require up to five hours to solve a problem with five objec-
tives, and to solve a problem with six objective functions is
impractical.

Tables 4(c) and 4(d) show the results regarding IH . From
Table 4(c), we can see that in nineteen DTLZ test problems,
CoGDE-MOEA was better than MOEA/D. In seven cases,
both algorithms had similar behavior. MOEA/D was better
than CoGDE-MOEA in only two test problems. For the WFG
test problems (see Table 4d), we can observe that only in one
problem both algorithms obtained similar behavior. However,
in three problems MOEA/D was better than CoGDE-MOEA,
and in twenty-four test problems, CoGDE-MOEA was better
than MOEA/D. From these results, we can say that CoGDE-
MOEA outperformed MOEA/D.

On the other hand, we can see that hypeSMS-EMOA
outperformed CoGDE-MOEA in twenty-three DTLZ test
problems, they obtained similar behavior in four problems,
and only in one case, CoGDE-MOEA overcame hypeSMS-
EMOA. However, concerning the WFG test problems, the
proposed CoGDE-MOEA outperformed hypeSMS-EMOA
in nine test problems, they have similar behavior in eight
cases, and in eleven problems hypeSMS-EMOA was better
than CoGDE-MOEA. Therefore, we can say that in the
DTLZ test problems hypeSMS-EMOA outperformed our
CoGDE-MOEA, but in the WFG test problems, our pro-
posed approach was competitive. In Table 5 we can ob-
serve the maximum time required by the three MOEAs to
solve an MOP with a specific number of objective func-
tions. MOEA/D was the fastest algorithm, followed by
CoGDE-MOEA. Clearly, hypeSMS-EMOA was the slowest

algorithm. If we consider the worst case, MOEA/D was
approximately five times faster than CoGDE-MOEA and
CoGDE-MOEA was approximately eleven times faster than
hypeSMS-EMOA.

To corroborate the results obtained by IH , in Table 6, we
present the results obtained by the algorithms using ISC and
IS

5. We applied Wilcoxon’s rank sum in the same way as
in the previous sections but now using IS instead of IH . In
Table 6(a), we can observe that only in two cases (WFG1(3)
and WFG5(5)) CoGDE-MOEA was better than MOEA/D.
Moreover, CoGDE-MOEA was also better regarding IS in
these two problems. There are five problems (WFG2(3),
WFG4(3), WFG2(4), WFG2(5), and WFG2(6)) in which
CoGDE-MOEA covered almost one hundred percent of
the solutions found by MOEA/D, and MOEA/D covered
less than one percent of the solutions found by CoGDE-
MOEA. There was no problem where MOEA/D was better
than CoGDE-MOEA. We can also see that CoGDE-MOEA
achieved a better distribution than MOEA/D in nineteen
WFG test problems, while MOEA/D achieved a better dis-
tribution than CoGDE-MOEA in four WFG test problems.
From these results, we corroborate that CoGDE-MOEA out-
performed MOEA/D.

Concerning hypeSMS-EMOA, in two WFG test problems
(WFG5(4) and WFG5(5)), CoGDE-MOEA was better than
hypeSMS-EMOA and only in one problem (WFG1(3)) oc-
curred the opposite, see Table 6(b). Regarding IS , we can
see that in ten WFG test problems, CoGDE-MOEA achieved
a better distribution than hypeSMS-EMOA and in thirteen
WFG test problems, hypeSMS-EMOA achieved a better dis-
tribution.

To summarize this section, we can say that CoGDE-

5Note that we only present results for the WFG test problems, in the case
of the DTLZ test problems, the results were similar.
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FIGURE 4: Convergence graph (ε-population) obtained by CoGDE-MOEA. We use an ε-population sizes equal to 10 and
90 percent of the main population, in the median (concerning the hypervolume indicator) of its independent runs for the test
problems DTLZ4 and DTLZ7 with three and six objective functions.
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FIGURE 5: Convergence graph (ε-population) obtained by CoGDE-MOEA. We use an ε-population sizes equal to 10 and
90 percent of the main population, in the median (concerning the hypervolume indicator) of its independent runs for the test
problems WFG2 y WFG6 with three and six objective functions.
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TABLE 4: Results obtained by Evoca GDE-MOEA, the
original GDE-MOEA, MOEA/D, hype SMS-EMOA and
CoGDE-MOEA in the DTLZ and WFG test problems. We
group the test problems by the number of objective functions
(k). For the comparison, we used the hypervolume indicator
and Wilcoxon’s rank sum. The format is as follows: number
of times that the algorithm won / number of times that the
algorithm tied / number of times that the algorithm lost.

k
Co

GDE-MOEA
evoca

GDE-MOEA
3 2 / 2 / 3 3 / 2 / 2
4 3 / 4 / 0 0 / 4 / 3
5 5 / 2 / 0 0 / 2 / 5
6 5 / 0 / 2 2 / 0 / 5

k
Co

GDE-MOEA
original

GDE-MOEA
3 1 / 1 / 5 5 / 1 / 1
4 2 / 2 / 3 3 / 2 / 2
5 4 / 3 / 0 0 / 3 / 4
6 5 / 2 / 0 0 / 2 / 5

DTLZ test problems DTLZ test problems
(a)

k
Co

GDE-MOEA
evoca

GDE-MOEA
3 6 / 1 / 0 0 / 1 / 6
4 6 / 1 / 0 0 / 1 / 6
5 6 / 1 / 0 0 / 1 / 6
6 6 / 1 / 0 0 / 1 / 6

k
Co

GDE-MOEA
original

GDE-MOEA
3 2 / 2 / 3 3 / 2 / 2
4 3 / 4 / 0 0 / 4 / 3
5 5 / 2 / 0 0 / 2 / 5
6 7 / 0 / 0 0 / 0 / 7

WFG test problems WFG test problems
(b)

k
Co

GDE-MOEA MOEA / D
3 4 / 3 / 0 0 / 3 / 4
4 4 / 2 / 1 1 / 2 / 4
5 5 / 2 / 0 0 / 2 / 5
6 6 / 0 / 1 1 / 0 / 6

k
Co

GDE-MOEA
hype

SMS-EMOA
3 0 / 2 / 5 5 / 2 / 0
4 1 / 1 / 5 5 / 1 / 1
5 0 / 1 / 6 6 / 1 / 0
6 0 / 0 / 7 7 / 0 / 0

DTLZ test problems DTLZ test problems
(c)

k
Co

GDE-MOEA MOEA / D
3 6 / 0 / 1 1 / 0 / 6
4 6 / 0 / 1 1 / 0 / 6
5 6 / 0 / 1 1 / 0 / 6
6 6 / 1 / 0 0 / 1 / 6

k
Co

GDE-MOEA
hype

SMS-EMOA
3 3 / 3 / 1 1 / 3 / 3
4 3 / 1 / 3 3 / 1 / 3
5 1 / 2 / 4 4 / 2 / 1
6 2 / 2 / 3 3 / 2 / 2

WFG test problems WFG test problems
(d)

MOEA is an excellent alternative to solve MOPs with low
(three objective functions) and high (four, five, and six objec-
tive functions) dimensionality. As we showed, the proposed
CoGDE-MOEA was better than MOEA/D, and it was quite
competitive with respect to hypeSMS-EMOA but at a much
lower computational cost (CoGDE-MOEA is eleven times
faster than hypeSMS-EMOA).

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied MOEAs based on ε-
dominance, finding that in most cases, they select individuals
in the same way as ε-MOEA. The main disadvantage of
this selection is that setting the ε values is a hard task: it is
necessary to know the true Pareto front (PF) and to state the
number of nondominated solutions required. Since there are
several MOPs of which we do not know their PFs, the first
point is infeasible.

There are works in the literature that address this problem,
and all of them agree that the optimal value of ε depends
on the features of the MOP, e.g., geometrical characteristics
of the true PF , correlation between objective functions,
number of objective functions, and size of the search space.
For this reason, we adopted the following hypothesis: “The
optimal value of ε depends on the MOP that we want to solve.
Additionally, it is possible to have different ε values for each
objective function”.

The previous related works present some disadvantages.
The most important are the following: (i) none of the previous
proposals conducted a preliminary study to validate that the ε
values indeed depend on the MOP that we want to solve, (ii)
some of these assume that a single value of ε is sufficient
for all the objective functions of the MOP, and (iii) take
into consideration the spread of the Pareto front but not its
geometrical characteristics to set the ε value.

The main contributions of this work are two. First, we val-
idated the above hypothesis using a specialized algorithm to
set parameters, called “Evolutionary Calibrator (EVOCA)”.
For this task, we considered test problems with different
characteristics. The goal of EVOCA was to find the ε values
that maximized the hypervolume indicator of the approxi-
mate PFs found by a recent MOEA based on ε-dominance
called “Generational Distance and ε-dominance-based Multi-
Objective Evolutionary Algorithm (CoGDE-MOEA)”. Since
EVOCA found different values of ε for each objective func-
tion and there is no relation between the ε values for each
problem, we can assume that our hypothesis is correct.

Second, we proposed a new co-evolutionary scheme to
set the ε values in any MOEA based on ε-dominance. To
validate our co-evolutionary scheme, we incorporated it into
the GDE-MOEA. The resulting approach was called “Co-
evolutionary Generational Distance and ε-dominance - based
Multi-Objective Evolutionary Algorithm (CoGDE-MOEA)”.
CoGDE-MOEA coevolves a population of ε values which
let the algorithm look for the best setting of such values
along the search. We proposed specialized operators for
this special ε’s population. Therefore, our co-evolutionary
scheme is implicitly taking into account all the points men-
tioned before (geometrical features, number of objective
functions, etc.). Our results indicate that our CoGDE-MOEA
was able to outperform the original GDE-MOEA as well
as MOEA/D. Our proposed approach also showed to be
competitive concerning a version of SMS-EMOA that uses
a fitness assignment mechanism based on the approximation
of the hypervolume (hypeSMS-EMOA) but at a much lower
computational cost (CoGDE-MOEA is eleven times faster
than hypeSMS-EMOA).

As part of our future work, we want to incorporate our
co-evolutionary scheme into other MOEAs based on ε-
dominance with the aim of measuring the impact that our
scheme has on their performance. We also want to study other
ways to evolve the ε-population with the aim of improving
our (µ+ 1)-ES to find the optimal ε values.
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TABLE 5: Results obtained in the DTLZ and WFG test problems with up to six objective functions. We compare GDE-
MOEA, CoGDE-MOEA, MOEA/D and hypeSMS-EMOA concerning the running time required by each MOEA to obtain the
approximation of the Pareto optimal set. We group the test problems by the number of objective functions, and we show the
maximum time required for each group. The results are in seconds. We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations.

k GDE-MOEA
time

Co
GDE-MOEA

time
MOEA/D

time

hype
SMS-EMOA

time
3 0.73(0.44) 1.98(0.47) 0.58(0.00) 19.38(0.60)
4 0.86(0.34) 2.46(0.62) 0.65(0.00) 27.02(1.11)
5 0.70(0.46) 3.52(0.39) 0.69(0.00) 34.95(1.85)
6 0.76(0.43) 4.08(0.72) 0.74(0.00) 42.46(3.11)

GDE-MOEA
time

Co
GDE-MOEA

time
MOEA/D

time

hype
SMS-EMOA

time
1.33(0.47) 6.14(0.96) 1.31(0.21) 28.46(0.39)
1.30(0.46) 4.67(1.06) 1.60(0.01) 37.61(0.54)
1.53(0.50) 5.04(0.50) 1.94(0.05) 46.20(0.44)
1.93(0.44) 4.84(0.84) 1.82(0.00) 54.64(0.50)

DTLZ test problems WFG test problems

TABLE 6: Results in the WFG test problems using ISC and IS . In this case, A is the set composed by all solutions found
by CoGDE-MOEA considering all 30 independent runs. In (a), B is the set composed by all solutions found by MOEA/D
considering all 30 independent runs. In (b), B is the set composed by all solutions found by hypeSMS-EMOA considering all
30 independent runs. In the case of IS , we applied Wilcoxon’s rank sum, and the column indicates which MOEA won. When
we put “-”, it means that both MOEAs had similar behavior.

f ISC(A,B) ISC(B,A) IS

WFG1 (3) 0.0050 0.0000 A
WFG2 (3) 0.9740 0.0403 -
WFG3 (3) 0.5990 0.0153 A
WFG4 (3) 0.9787 0.0020 A
WFG5 (3) 0.0690 0.0047 A
WFG6 (3) 0.4127 0.0333 A
WFG7 (3) 0.2087 0.0450 A
WFG1 (4) 0.0000 0.0000 A
WFG2 (4) 0.9993 0.0010 -
WFG3 (4) 0.3317 0.0153 A
WFG4 (4) 0.6557 0.0013 A
WFG5 (4) 0.0160 0.0003 A
WFG6 (4) 0.3107 0.0143 A
WFG7 (4) 0.0053 0.0067 -
WFG1 (5) 0.0000 0.0000 -
WFG2 (5) 0.9483 0.0057 -
WFG3 (5) 0.1053 0.0180 A
WFG4 (5) 0.2950 0.0057 A
WFG5 (5) 0.0060 0.0000 A
WFG6 (5) 0.1857 0.0217 A
WFG7 (5) 0.0000 0.0000 B
WFG1 (6) 0.0000 0.0000 B
WFG2 (6) 0.8730 0.0130 B
WFG3 (6) 0.0330 0.0010 A
WFG4 (6) 0.0970 0.0047 A
WFG5 (6) 0.0000 0.0000 A
WFG6 (6) 0.1880 0.0040 A
WFG7 (6) 0.0000 0.0000 B

ISC(A,B) ISC(B,A) IS

0.0000 0.0007 A
0.1840 0.6477 B
0.2490 0.0657 A
0.5980 0.0670 A
0.0243 0.0027 A
0.0317 0.2460 B
0.3220 0.0307 A
0.0000 0.0000 A
0.3290 0.4150 B
0.0643 0.0567 B
0.1023 0.0703 A
0.0377 0.0000 -
0.0157 0.1810 B
0.0187 0.0103 -
0.0000 0.0000 A
0.1123 0.3740 B
0.0237 0.2657 B
0.0453 0.0387 A
0.0357 0.0000 -
0.0213 0.5290 -
0.0010 0.0023 B
0.0000 0.0000 -
0.1260 0.2160 B
0.0370 0.0940 B
0.0337 0.0300 A
0.0137 0.0050 B
0.0877 0.1870 B
0.0000 0.0000 B

(a) (b)
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