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Abstract

Design of experiments is a branch of statistics that has been employed in dif-
ferent areas of knowledge. A particular case of experimental designs is uniform
mixture design. A uniform mixture design method aims to spread points (mix-
tures) uniformly distributed in the experimental region. Each mixture should
meet the constraint that the sum of its components must be equal to one. In
this paper, we propose a new method to approximate uniform mixture designs
via evolutionary multi-objective optimization. For this task, we formulate three
M-objective optimization problems whose Pareto optimal fronts correspond to
a mixture design of M components (or dimensions). In order to obtain a uni-
form mixture design, we consider six well-known algorithms used in the area
of evolutionary multi-objective optimization to solve M-objective optimization
problems. Thus, a set of solutions approximates the entire Pareto front of each
M-objective problem, while it implicitly approximates a uniform mixture design.
We evaluate our proposed methodology by generating mixture designs in two,
three, and up to eight dimensions, and we compare the results obtained concern-
ing those produced by different methods available in the specialized literature.

Our results indicate that the proposed strategy is a promising alternative to
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approximate uniform mixture designs. Unlike most of the existing approaches,
it obtains mixture designs for an arbitrary number of points. Moreover, the
generated design points are properly distributed in the experimental region.
Keywords: Uniform mixture design, evolutionary multi-objective

optimization.

1. Introduction

Design of experiments is a well-established methodology widely applied to
experimental processes in the industry, process design, and science in general [I]
2, [3, [ 5 [6L [7]. This approach has been found to be a powerful method to
identify active and unimportant effects in an experimental process. However,
many challenges arise from a practical standpoint, which have encouraged the
development of different designs to meet practical needs. Mixture designs are
a particular case of experimental designs subject to certain constraints. In a
mixture, the independent components are proportions of different ingredients
of a blend, and therefore, the sum of its components must be one. When
the mixture design is only subject to the constraint that the components’ sum
must be one, it is called standard mixture design. Examples of these methods
are the Simplex-Lattice design [8] and the Simplex-Centroid design [9]. When
the mixture design is subject to additional constraints, such as a maximum
and/or minimum value for each component, it is referred to as Extreme-Vertices
design (or constrained mixture design) [10].

The main goal of the uniform mixture design methods is to scatter the design
points in the experimental region as uniformly as possible. Some authors have
focused their studies on mixture designs from the viewpoint of classical optimal
design [8, @) [TT], [3l T2]. This type of approaches aims to find an optimal distri-
bution of points through an (M - 1)-dimensional simplex. However, as pointed

out by some authors [I3] 14} [15], 6], optimal design has several disadvantages:

1. An optimal design tends to distribute most of the design points on or near

the experimental area’s boundary, leaving the interior mostly devoid of
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design points;
2. An optimal design is not a robust design to the assumed model; in most
cases, the experimenter does not know the form of the model beforehand;
3. The high dimensionality of the mixtures makes it difficult for the existing

methodologies to obtain an optimal design.

In order to address these drawbacks, researchers have developed diverse mix-
ture designs from different nature [6] [16] 17, [I8]. In this paper, we propose a
new methodology for uniform mixture designs based on multi-objective evo-
lutionary optimization. To this end, we must answer two questions: i) what
multi-objective optimization problem should we solve? and ii) what evolution-
ary multi-objective algorithm should we use? In this research work, we formulate
three M-objective problems whose Pareto optimal fronts correspond to a mix-
ture design of M components, i.e., the Pareto front shapes describe a regular
(M - 1)-dimensional simplex. Each M-objective optimization problem is solved
using a multi-objective evolutionary algorithm. This way, a set of solutions ap-
proximates the entire Pareto front of each M-objective problem while a uniform
mixture design is implicitly reached. In our experimental study, we identify the
M-objective problem formulation for which the evolutionary algorithm searches
for the best approximation to the entire Pareto front, i.e., the best approxi-
mation of a uniform mixture design. To validate our proposed approach, we
generate uniform mixture designs in two, three, and up to eight dimensions,
and we compare our results with respect to those produced by different uniform
design methods available in the specialized literature. As we will see later on,
our proposed approach is a promising alternative to approximate uniform mix-
ture designs because it can create mixture designs for an arbitrary number of
points distributed adequately in the (M - 1)-dimensional simplex.

The rest of the paper is organized as follows. Section [2] presents a review
of different methods for mixture design. In Section |3, we introduce some basic
concepts that will help to understand the rest of the paper. Section [4]introduces

our proposed methodology. An experimental study of our proposed approach
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is presented in Section Finally, our conclusion and some possible paths for

future research are drawn in Section [6]

2. Related Work

Uniform mixture design methods play an essential role in diverse areas of
knowledge [1I, 2, [3, [6]. According to their conceptual basis, we classify uniform

mixture design approaches as follows.

Methods employing geometric concepts. Scheffé [8] proposed the simplex-lattice
design (SLD) technique in 1958 H Let M be the dimension of the mixture

and H the number of subdivisions for each dimension. SLD generates N =

(M+H—1

= ) points uniformly distributed on a hyperplane ({ M -1} unity simplex-

lattice). This means that N increases quickly with respect to the number of
dimensions. Years later, Scheffé [9] proposed another method called simplex-
centroid design (SCD) which generates 2™ — 1 distinct uniform points using
as centroid point (1/M,1/M,...,1/M). SLD and SCD are not good options
for some applications, e.g., in chemical experiments, a component cannot be
zero. Since both techniques generate several points at the simplex boundary, it
is necessary to use another distribution type. To overcome this disadvantage,
Cornell [20] proposed axial design (AD), which generates points on the simplex’s
inner region. For this, Cornell defines an axis as a line segment that joins a vertex
of the simplex with its centroid. Then, AD generates ¢ points on the ¢ axes.
Fang and Yang [21] proposed to keep the pattern of SLD and SCD and contract
the boundary points towards the centroid of the simplex. Many works have
proposed different adaptations to the methods proposed by Scheffé to obtain
different distributions, such as D-optimal distribution, A-optimal distribution,

and [-optimal distribution. In [3], Chan described some of them. For example,

'In the Evolutionary Multi-objective Optimization (EMO) field, it is common to use the
method proposed by Das & Deniss [19] to generate a set of convex weights. This method and
Scheffe’s method are the same. The main difference is that Das & Deniss gave a tree-based
algorithm to compute the weighting coefficients.
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Kiefer [22] studied D-optimal designs for regression problems using SCD.
Another disadvantage of SLD and SCD is the number of points that they
generate. For example, in the area of evolutionary multi-objective algorithms
(EMOAs), algorithms based on decomposition require a set of well-distributed
convex weights (i.e., a uniform mixture design). EMOAs work with populations,
and regularly the number of weights is equal to the population size. Since using
a large population size requires a high computational cost, there are proposals to
decrease the number of points that are generated by the methods of Scheffé. For
example, Deb et al. [23] proposed the two-layered SLD in many-objective opti-
mization problems. Given H; and Hs (H; > Hs), which are two relatively small
numbers of subdivisions for the so-called outside and inside layers, two-layered
SLD generates two subsets of uniform mixtures. The inside layer associated
with Hs is scaled in the interior of the hyperplane. On the other hand, Jiang
and Yang [I6] introduced the k-layer reference direction. This method parti-
tions the unit simplex into k& sub-simplexes. The number of sub-simplexes is
equal to the number of dimensions in a multi-objective optimization problem,

ie, k=M.

Methods employing the minimization of discrepancy functions. In the special-
ized literature, it is possible to find several discrepancy indicators (or low dis-
crepancy functions) that have been employed to generate uniform designs in
different domains. Example of such discrepancy indicators are the centered Lo-
discrepancy (CD) [24], the wrap-around Ls-discrepancy (WD) [25], and Mix-
ture Discrepancy (MD) [26]. Such indicators are optimized, and consequently,
a uniform design is approximated. Regarding the uniform mixture design, Fang
and Wang [27] proposed the contract uniform design method, which contracts
the boundary points towards the centroid of the simplex. Prescott [28], com-
plemented this idea, employing the above method on a region of the simplex.
In particular, a uniform design can be projected into the (M - 1)-dimensional
simplex for obtaining a mixture design [13]. In this regard, several uniform

design approaches can be found in the specialized literature. Based on the
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good lattice point [29] method (a method introduced to approximate multi-
ple integrals), several methods to construct uniform designs have been pro-
posed [30, B3I, 32, 13} B3]. The main disadvantage of optimizing discrepancy
functions is the computational cost to compute them, which increases as the
number of design points increases. In this regard, Ma and Fang [34] suggested
the cutting method to generate a larger uniform design via partitions of a region.
An important issue in this approach is that the cutting method’s performance
does not depend on a specific measure of uniformity. Based on Lee’s discrep-
ancy [35], Ning et al. [15] proposed an algorithm that can be applied to any
experimental design. Zapotecas et al. [36] employed transcendental numbers
instead of prime numbers in a low-discrepancy sequence to obtain mixture de-
signs. On the other hand, the effect of different low-discrepancy sequences in

the construction of mixture designs was studied in [6].

Methods employing evolutionary computation. In the last few years, uniform
mixture designs have been addressed by evolutionary computation. These ap-
proaches employ stochastic optimization algorithms, such as genetic algorithms
or particle swarm optimization, to optimize a measure of uniformity and gen-
erate uniform designs. Although this type of algorithms does not guarantee
an optimal solution (i.e., design), the practicality of these approaches makes
it possible to obtain an arbitrary number of points with a reasonable approx-
imation to the optimal design. In this regard, several authors have proposed
different strategies based on evolutionary computation to construct near-optimal
experimental designs. For example, Borkowski [37] uses D—, A—, G- and IV -
optimality criteria, Heredia-Langner et al. [38, 89] work with D- and Q- opti-
mality criteria, and Park et al. [40] use G- optimality criteria. All of them use a
genetic algorithm. However, the mixture designs, in their original formulation,
have been much less studied. Goldfarb et al. [41] used a genetic algorithm to
generate mixture-process experimental designs involving control and noise vari-
ables. The goal is to minimize the maximum scaled prediction variance over

the design space, i.e., they work with the G- optimality criteria. Limmun et
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al. [42] used a genetic algorithm to generate D-optimal designs for mixture ex-
periments. D-optimality minimizes the generalized variance of the parameter
estimates for a pre-specified model. In [43], a genetic algorithm to generate
D-optimal designs for mixture experiments in a simplex region was proposed.
Ds-optimality is an extension of D— optimality, which focuses on a subset of
model parameters. Wong et at. [44] introduced a particle swarm optimization
technique to find optimal mixture designs. They consider A—, D— and [- opti-
mal designs. Meneghini et al. [I7] proposed a method based on a steady-state
evolutionary algorithm to evolve a set of weight vectors (i.e., a set of mixtures)
towards the desired distribution. The aim is to maximize the shortest distance
between vectors. Rodriguez et al. [I8] employed a parallel tabu search to obtain
a uniform set of weight vectors minimizing the Lo-discrepancy. Recently, Blank
et al. [45] introduced a metric for defining well-spaced set of points on a unit
simplex (a uniform mixture design) and propose a number of viable methods for
generating such a set. The above approaches use an indicator of dispersion to
approximate uniform mixture designs. However, a multi-objective approach to
approximate mixture designs has not been studied, and it is the motivation and
the focus of the work reported herein. In the following section, we introduce

some basic concepts to understand the rest of the work.

3. Basic Concepts

3.1. Mixture Design

Experiments with mixtures have been very useful in different engineering
and scientific areas. In experiments with mixtures, a response is assumed to
depend on the proportions of the mixture components, not on the total amount
of the mixture. Commonly, there are some additional constraints imposed on
the components.

Formally, the constraints of the proportions (z;,4=1,2..., M) in a mixture
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design with M components (or M dimensions) are stated as:

M
inzl, x; 20, fori=1,2,..., M. (1)
i=1
Therefore, the corresponding experimental region of M components forms a
regular (M — 1)-dimensional simplex.
Sometimes, besides the constraints stated in Equation , there are some
other additional constraints, such as the single component constraints (SCCs):
0<a;<x;<b;<1 fori=1,...,M

and multiple component constraints (MCCs):

M=

<
I
=

L, Cyiz; < Uy, v=1,...,V

where V' is the number of MCCs and C,; denotes the v-th constraint for the
i-th component in the mixture..

It should be noted that the unconstrained mixture experiment can be seen
as a special type of SCCs experiment, by setting a;’s to all zeros and b;’s to all
ones. And SCCs experiment can be seen as MCCs by setting Cy;s to special
values. Here, we focus our investigation on generating uniform mixture designs

satisfying the constraints of Equation [15].

8.2. Multi-Objective Optimization

A multi-objective optimization problem (MOP) can be statecﬂ as follows:

minimize: F(x) = (f1(x),..., fu(x))T (2)

s.t. x e

2Without loss of generality; we assume continuous minimization problems.
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where 2 c R™ defines the decision variable space and F is defined as the vector
of the objective functions where f; : R™ - R is the function to be optimized. In
this work, we consider the box-constrained case, i.e., Q = [1;-; [a;, b;]. Therefore,
each vector x = (z1,...,xy,) € Q is such that a; <x; <b; for all i € {1,...,n}.

In multi-objective optimization, it is desirable to obtain a set of trade-off
solutions representing the best possible compromises among the objectives (i.e.,
solutions such that no objective can be improved without worsening another).
To understand the concept of optimality referred to in this paper, the following

definitions are provided [46].

Definition 1. Let x,y € Q. We say that x dominates y (denoted by x <y) if
and only if f;(x) < fi(y), fori=1,2,..., M, and F(x) # F(y).

Definition 2. Let x* € Q). We say that x* is a Pareto optimal solution, if there

is no other solution y € Q such that y <x*.

Definition 3. The Pareto set (PS) is defined by:

PS ={xeQ]|xis a Pareto optimal solution}

Definition 4. The Pareto front (PF) is defined by:

PF = {F(x)|x ¢ PS}

In multi-objective optimization, it is desirable to obtain as many (but dif-
ferent) elements of the Pareto optimal set as possible, while maintaining a dis-

tribution of solutions as uniform as possible along the Pareto front.

8.3. Evolutionary Multi-objective Algorithms

The development of optimization techniques is the result of the need to
solve a specific real-world problem. Because of their flexibility and ease of use,
evolutionary multi-objective algorithms (EMOAs) have become an alternative

to solve an MOP in its most general case. Several EMOAs of different nature
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have been developed over the years (see the comprehensive reviews reported

in [47, 48] 49]). EMOAs are normally classified into three main groups:

Pareto-based Approaches. Early evolutionary algorithms to solve MOPs straight-
forwardly integrate the Pareto dominance relation to rank the population and
assess closeness to the Pareto optimal front. A suitable approximation of the
Pareto front has to fulfill convergence and diversity simultaneously. Therefore,
to distribute the solutions along the entire trade-off curve, Pareto dominance
must be used in cooperation with a second criterion. Some methods that have
been proposed to distribute solutions along the Pareto front include: fitness
sharing and niching [B0], clustering [51], crowding distance [52], among many
others. In the early 2000s, Pareto-based MOEAs became one of the most com-
monly used strategies. However, their use has decreased because of the difficulty
of properly spreading solutions and losing their discriminant property in high-

dimensional objective spaces.

Decomposition-based Approaches. In the last decade, several evolutionary ap-
proaches have employed scalarizing functions, giving rise to the so-called EMOAs
based on decomposition. Decomposition-based approaches rely on solving a
number of scalarizing functions formulated by the same number of weight vec-
tors. This strategy to solve MOPs has been useful to deal with complicated
test problems (see, for instance, [63, 54, G5, (6]). Although the use of this
principle has become a viable alternative to deal with multi-objective problems,
its performance depends on the weight vectors which have to be appropriately

distributed “a priori.”

Indicator-based Approaches. Indicator-based EMOAs (IBEAs) employ perfor-
mance indicators in their environmental selection procedures. There exist sev-
eral indicators to assess the performance of EMOAs (see the comprehensive
review of performance indicators presented in [57, 58, 59]), which, in different
ways, evaluate convergence or diversity, or both of them at the same time. In

particular, a relatively good PF representation of an MOP can be achieved

10
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by adopting the hypervolume indicator [60] or by using performance indicators
based on reference sets such as R2 [61], IGD [62], or A, [63].

IBEAs based on reference sets depend on a proper definition of the reference
set, which in most cases, is challenging to state before the search. In con-
trast, IBEAs based on the hypervolume only require a single reference vector to
compute the hypervolume indicator. However, these approaches are limited by
the high computational cost required for calculating the hypervolume indicator
values, which increases exponentially with the number of objectives. Nonethe-
less, the advantage of using IBEAs based on hypervolume is that they can deal
with different Pareto front geometries, including convex, concave, mixed, dis-
connected, and degenerated shapes. In particular, hypervolume-based EMOAs
can obtain a uniform set of points in linear Pareto fronts [64], motivating its

use to generate uniform mixture designs.

4. Our Proposed Approach

In this work, we formulated three M-objective optimization problems (MOPs).
These MOPs have linear Pareto fronts, and their shapes describe a regular
(M - 1)-dimensional simplex. Each solution in the Pareto front is a mixture,
i.e., all components are nonnegative, and their sum is equal to one. Therefore,
to produce a uniform mixture design, we need to solve any of the formulated
MOPs.

Our methodology to approximate uniform mixture designs is called “Mix-
tures via Evolutionary Multi-objective Optimization (MEM(E[).”

To solve these MOPs, we use two EMOAs based on Pareto dominance, one
based on decomposition and two based on performance indicators. As we men-

tion before, the EMOASs have two aims: i) To obtain as many solutions of the

3The source code of this proposal, using the versions of iISMS-EMOA, is available at
https://drive.google.com/file/d/1LD7g2jWtLqAGWXdH1MiL3vFumGmEFa53/view?usp=sharing.
In the case of NSGA-II, SPEA2, VaEA, and 1bylEA, we use the Evolutionary Multi-
objective Optimization platform (PlatEMO) available at https://github.com/BIMK/PlatEMO,
and we incorporate the three MOPs defined in this work which are available at
https://drive.google.com/file/d/1J1g3JvEpZZMzMAXR1Gh8dPmw7kOymVPj/view?usp=sharing

11
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Pareto optimal set as possible and ii) to get a distribution of solutions as uni-
form as possible along the Pareto front. For the three MOPs proposed here,
any decision space solution is indeed on the Pareto front. Therefore, we are
evaluating the second aim.

It is well-known that EMOAs based on Pareto dominance have difficulties
when the number of objective functions increases because the number of non-
dominated solutions increases quickly. Additionally, they lose their discriminant
property to converge to the Pareto front. However, in this case, we are only
interested in evaluating the distribution technique of each EMOA.

Regarding EMOAs based on decomposition, we know that they need a set
of well-distributed convex weights, which is the same to generate a uniform
mixture design. However, the chosen EMOA adaptatively adjusts the weight

vectors. Below, we list the EMOAs that were selected for our study:

1. NSGA-II [52] which is based on Pareto dominance and a concept of crowd-
ing distance;

2. SPEA2 [65] which is based on Pareto dominance and a clustering technique
that preserves solutions in the extremes of the Pareto front;

3. VaEA [66], which is similar to decomposition algorithms, but in this case,
the weight vectors are adaptively adjusted with respect to the distribution
of the current population.

4. 1bylEA [67], which selects solutions one by one: first, only one solution
with the best value on the convergence indicator is selected, and after
that, solutions close to the one selected in the first step are de-emphasized
according to the distribution indicator;

5. iISMS-EMOA [68], which is based on the hypervolume indicator (If,).
The main difference concerning other EMOAs based on Iy, is that iSMS-
EMOA only computes three contributions to I, per iteration. The orig-
inal SMS-EMOA needs to compute N contributions to Iy, per iteration,
where N is the population size.

6. Finally, we use a new version of iSMS-EMOA. The difference is in the

crossover and mutation operators. The original version uses SBX and

12
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PBM. The new version uses the Differential Evolution operators (called

in this paper iSMS-EMOA-DE).

The authors of VaEA, 1bylEA, and iSMS-EMOA mention that these EMOAs
are designed to solve many-objective optimization problems, i.e., MOPs with
more than three objective functions. We chose two hypervolume-based EMOAs
because it has been shown that if the reference point is setting properly, the
optimal distribution of the hypervolume indicator is uniform [69] [70]. Another
interesting indicator is IGD+ because it is similar to the hypervolume indicator
from the viewpoint of optimal distributions of solutions [71]. One advantage
of IGD+ is its low computational cost. However, in our work, we can not use
IGD+ because it needs a reference set and, in this case, is the set we are looking

for (the uniform mixture design).

4.1. Multi-objective optimization problems
In this section, we present the multi-objective problems formulated to gen-

erate uniform mixture designs.

MOP1. The first MOP formulated in this paper consists in minimizing F(x) =
(f1(%),..., far(x))T such that:

M-1
fix) = Hmj
j=1

M—i
ficenr1(x) = (I-zpr-i41) % IjIl T (3)

fa(x)

1—.’£1

where x € [0,1]M-1L,

The objective vector F(x) is a mixture for any decision variable x € [0,1]¥ 1
(see the proof in Appendix A from the Supplementary Material). Furthermore,
any decision vector x is a Pareto optimal solution of MOP1 (see the proof in
Appendix D from the Supplementary Material).

Fig. [1] shows the Pareto fronts generated with 100, 210, and 300 random

solutions for the MOP1 with three objective functions. It is worth noticing

13



that by generating random solutions, i.e., z; = rand[0,1] for j =1,...,M -1,
and evaluating them in MOP1, most of the objective vectors are biased towards
the top of the Pareto front. This bias causes that an EMOA requires more
a0 iterations to obtain well-distributed points along the Pareto front. To deal
with this bias and considering the formulation of the objective functions, we
generate the initial random population in the following way: z; € [0.5,1.0] with
a probability of 0.7 and z; € [0,0.5] with a probability of 0.3. Fig. 2| shows that
considering this change, it is possible to generate more solutions on the bottom

ais  of the Pareto front.
As can be seen, the dimensionality of the decision variable space is M — 1;
this reduces the search space to find scatter points along the Pareto front of

MOP1.

(a)

Figure 1: MOP1 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

Figure 22 MOP1 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.
To generate random solutions, we use x; € [0.5,1.0] with a probability of 0.7 and x; € [0,0.5]
with a probability of 0.3.

14
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MOP2. The second MOP formulated in this paper consists in minimizing
F(x) = (fi(x),..., fu(x))T such that:

filx) = =
ficzm-1(x) = @ - (4)
fu(x) = l1-zy

where x € [0,1]M 71 such that xy <29 < -~ < a3 1.

The objective vector F(x) is a mixture for any decision variable x € [0,1]M 1
(see the proof in Appendix B from the Supplementary Material). Furthermore,
any decision vector x is a Pareto optimal solution of MOP2 (see the proof in
Appendix D from the Supplementary Material).

Fig. [3] shows the Pareto fronts generated with 100, 210, and 300 random
solutions for this MOP with three objective functions. Using this formulation,
random points are not biased to some regions of the Pareto front. Analogous
to the previous problem, the dimensionality of the decision variable space is
M - 1. However, this formulation considers that the components of the decision

variables are sorted.

Figure 3: MOP2 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

MOP3. The last MOP formulated in this paper consists in minimizing F(x) =
(f1(x),..., far(x))T such that:
|

fictm(x) = (5)

[1xllx

15
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where x € [0,1]™ such that x # 0.

The objective vector F(x) is a mixture for any decision variable x € [0,1]M
(see the proof in Appendix C from the Supplementary Material). On the other
hand, any decision vector x is a Pareto optimal solution of MOP3 (see the proof
in Appendix D from the supplementary material).

Fig. [4] shows the Pareto fronts generated with 100, 210, and 300 random
solutions for MOP3 with three objective functions. It is worth noticing that by
generating random solutions, i.e., z; = rand[0,1] for j =1,..., M, and evaluat-
ing them in MOP3, most of the objective vectors are biased towards the center
of the Pareto front. Since the solutions cover the entire center, we hypothesize
that the EMOASs can generate solutions in all the Pareto front extremes. Also,
note that the dimensionality of the decision variable space is M; this increases

the search space to find spread points along the Pareto front of MOP3.
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..:';...' o 'i,a""o.‘l_{..-v..
LI A% '} LI
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Figure 4: MOP3 with three objective functions. We map the Pareto fronts into the two-
dimensional space. In (a), (b) and (c), we use 100, 210 and 300 random solutions, respectively.

5. Experimental Results

5.1. Performance assessment

The purpose of our proposed approach is to obtain a mixture design with de-
sign points as uniform as possible. In the above section, we saw that the Pareto
front of the formulated MOPs is a set of nondominated points that describe a
mixture design, i.e., each point in the Pareto front is a mixture. Therefore, uni-
formity in the Pareto front implies uniformity in the mixture design. Thus, we

can use a performance indicator from the evolutionary optimization community

16
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to assess the distribution of points in a mixture design, such as inverted genera-
tional distance (IGD) [72], A,-indicator [63], hypervolume indicator (Ig,,) [60],
Schott’s spacing (Is) [73] and Deb’s spread indicator [74].

The first three performance indicators do not guarantee a correct assessment
of the distribution [75], [76]. For example, the IGD and A,-indicator need a ref-
erence Pareto front that has to be previously defined. Therefore, if the reference
Pareto front does not have well-distributed points, the measure of distribution
becomes wrong. Paradoxically, IGD and A, can not be used in this work as
they need a reference Pareto front, i.e., the set that defines the mixture design,
which is precisely the set that we are looking for. On the other hand, Iy, bene-
fits some regions depending on the geometry of the approximated Pareto front.
In a convex Pareto front, Iy, benefits sets with more solutions on inner regions.
Conversely, in a concave Pareto front, I, benefits sets with more solutions close
to the extreme portions of the Pareto curve. However, in linear Pareto fronts
(such as the Pareto fronts of the problems formulated in Section [4.1), this does
not happen. In [69] [70], the authors study the reference point we should use
to obtain a fair comparison when employing the hypervolume indicator. Their
experiments show that in linear Pareto fronts, the optimal distribution regard-
ing hypervolume is uniform. Ig and spread indicators only assess distribution,
and it is commonly used with another indicator that assesses convergence to
the Pareto front. In the proposed MOPs, all solutions are in the Pareto front.
Therefore, we only need to measure the distribution. In this work, we assess the
mixture design distribution by using Ir, and Is. We do not use Deb’s spacing
indicator because its definition contemplates “two consecutive points,” and it is

not clear in the case of more than two dimensions.

5.1.1. Hypervolume indicator
It was proposed by Zitzler and Thiele [60]. Iz, is defined as the size of the

space covered by each solution z in the PF approximation A. If £ denotes the
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Lebesgue measure, Iy, is defined as:

IHv(AaYTef):‘C(LIJL‘{Y|Z<y<yref}) (6)

where y,.r € RM denotes a reference point that should be dominated by all
solutions in A. Bigger values for Iy, are better.

Ishibuchi et al. [69] [70] studied how to specify a reference point for a fair
in

comparison. They proposed to set the reference point with » > 1 + ﬁ

normalized linear Pareto fronts with two objective functions, where n is the

1

number of solutions. They proposed setting the reference point with 7 =1+ 5

in normalized linear Pareto fronts with three or more objective functions. In the
previous equation, H is the number of divisions in each dimension. With these
reference points, the maximum hypervolume corresponds to a uniform distribu-
tion that includes extreme of the Pareto front. For this work, we calculate the
above equations. We consider n as the number of weights and H = H, for the

two-layered SLD. See Table

5.1.2. Spacing indicator
Schott proposed Is [73] and it is defined as follows:

1A 2
IS(A)z |A|—1 ;(d_d’)

. __— = A
where d; = min; j.; Y |f7 — fi| and d = ﬁ ZL

ld;, k=1,..., M (where M is the
number of objective functions), and ¢,j = 1,--/|A|. When Ig = 0 all the solutions
in A are uniformly spread. It is important to note that Ig does not measure
if there are points along the entire Pareto front. If all points are uniformly

distributed in a zone of the Pareto front, the value of this indicator will be zero.

5.2. Parameter settings

The chosen EMOASs need the following parameters: population size, number

of generations, and genetic operators’ parameters. We state the number of
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Table 1: Configurations for the simplex-lattice design and the two-layered simplex-lattice
design. We consider the inside layer (Hz) for six or more objective functions to calculate the
reference point.

Dimension || Number of | Configuration | Number of | Reference point
layers weights (value of each
component)
2 1 200 1+ 155 = 1.005
3 1 H=19 210 1+ 15 = 1.052
4 1 H=9 220 1+4=1.111
5 1 H=6 210 1+2:1.166
6 2 Hy=4,Hy,=3 182 1+§:1.333
7 2 Hy=4, Hy=2 238 1+1=15
8 2 Hy=3, Hy=2 156 1+§:1.5

points in the mixture design (population size in the EMOA) according to the
simplex-lattice design (SLD) and the two-layered SLD. It is worth mentioning
that our proposal can generate an arbitrary number of mixtures. However, for
a fair comparison between two mixture designs, the number of points in each
one must be equal. As we mentioned in Section [2] the two-layered SLD uses
the SLD to generate an outside layer and an inside layer. See Figure[5l Table
shows the configurations used in this work for SLD and two-layered SLD.

L
Hy=1
Hi=2

Figure 5: Two-layered simplex-lattice design for three dimensions. The outside layer
is stated by H; = 2 (generating six points in the uniform mixture design), while the inside
layer is setting by Ha =1 (generating three points in the uniform mixture design).

SPEA2, VaEA, 1bylEA, and the original iSMS-EMOA use the genetic op-
erators of NSGA-II to create new individuals (SBX and PBM), and we use the
values suggested in [52]. Only iISMS-EMOA-DE uses the genetic operators of
DE. The number of generations and the parameters for DE were set experimen-

tally. Concerning versions of iSMS-EMOA, we calculate the exact contribution
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Table 2: Used parameters. M is the number of objective functions, w is the number of points
in the uniform mixture design (population size), Gmaqe is the number of generations, p. and
ne are parameters required by the crossover operator of NSGA-II, p,, and 7, are parameters
required by the mutation operator of NSGA-II, n is the number of decision variables, and F'
and p. are parameters for the mutation and crossover operators of DE.

SBX and PBM DE
M | w | Gmas | samples || pc | ne | pm | nm || F | pe
200 500 - 09 |15 | 1/n | 20 1.5 1] 0.5
210 500 - 09 |15 | 1/n | 20 1.5 | 0.5
220 500 - 09 |15 | 1/n | 20 1.5 | 0.5

210 500 - 09 |15 | 1/n | 20 1.5 1] 0.5
182 500 10000 09 |15 | 1/n | 20 1.5 | 0.5
238 500 10000 09 |15 | 1/n | 20 1.5 | 0.5
156 500 10000 09 |15 | 1/n | 20 1.5 | 0.5

0 O Ut i W N

to Iy, for MOPs with up to five objective functions, and we approximate the
contribution for MOPs with six or more objective functions. For the hypervol-
ume contribution approximation, we employ the technique proposed by Bring-
mann and Friedrich in [77], which needs a set of sampling solutions. Therefore,
we need to set the number of samples used for the hypervolume contribution
approximation. Table [2] summarizes all parameters used in this work. The ex-
periments were conducted on a personal computer with a 3.2GHZ CPU and

32GB in RAM.

5.8. Performance comparison of different Evolutionary Multi-Objective Algo-

rithms

5.8.1. MOP1

Table [3] shows the results obtained by the adopted EMOAs in MOP1 re-
garding Irr,,. We elaborated a statistical analysis using Wilcoxon’s rank-sum to
determine if an EMOA is statistically better than another one (the null hypoth-
esis “medians are equal” can be rejected at the 5% level, H = 1). Regarding
results, the best algorithms are iISMS-EMOA, iSMS-EMOA-DE, and SPEA2.
iISMS-EMOA occupies the sixth place in 6 dimensions; the second in 5 and 7 di-
mensions; the first in 3, 4, and 8 dimensions; and in 2 dimensions, iISMS-EMOA
and iISMS-EMOA-DE have the same behavior. iISMS-EMOA-DE occupies the

fifth place in 7 dimensions; the fourth in 8 dimensions; the second in 3 and 4
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dimensions; and the first place 5, and 6 dimensions. Finally, SPEA2 occupies
the fifth place in 8 dimensions; the third in 2, 3, 4, and 5 dimensions; the sec-
ond in 6 dimensions; and the first in 7 dimensions. VaEA is competitive in 6, 7
(third place), and 8 (second place) dimensions. And, 1bylEA is competitive in
8 dimensions (third place).

Table [d]shows the results obtained by the adopted EMOAs in MOP1 regard-
ing Ig. Also, with this indicator, the best algorithms are SPEA2, iSMS-EMOA-
DE, and iSMS-EMOA. In 2 and 4 dimensions, iSMS-EMOA and iSMS-EMOA-
DE have similar behavior (first place). While in 5 dimensions, SPEA2 and
iSMS-EMOA-DE have similar behavior (first place). SPEA2 is third place in 2,
3, and 4 dimensions; and first in 5, 6, 7, and 8 dimensions. iISMS-EMOA-DE is
second place in 3, 6, 7, and 8 dimensions; and first in 2, 4, and 5 dimensions.
Finally, iSMS-EMOA is fourth place in 7 dimensions; third place in 5, 6, and
8 dimensions; and first in 2, 3, and 4 dimensions. VaEA is competitive in 7

dimensions (third place).

5.8.2. MOP2

Table [5] shows the results obtained by the adopted EMOAs in MOP2 re-
garding Ig,. We elaborated a statistical analysis using Wilcoxon’s rank-sum
to determine if an EMOA is statistically better than another one (the null
hypothesis “medians are equal” can be rejected at the 5% level, H = 1). Ac-
cording to the results, the best algorithms are iSMS-EMOA, iSMS-EMOA-DE;,
and SPEA2. In 2 dimensions, iSMS-EMOA and iSMS-EMOA-DE have similar
behavior. iISMS-EMOA occupies the fifth place in 6 dimensions; the second in
7 dimensions; and the first in 2, 3, 4, 5, and 8 dimensions. iISMS-EMOA-DE
occupies the sixth place in 7 and 8 dimensions; the third in 5 dimensions; the
second in 3 and 4 dimensions; and the first in 2 and 6 dimensions. Finally,
SPEA2 occupies the third place in 2, 3, 4, 6, and 8 dimensions; the second in
5 dimensions; and the first in 7 dimensions. VaEA is competitive in 6 and 8
dimensions (second place). And, 1bylEA is competitive in 7 dimensions (third

place).
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Table [6] shows the results obtained by the adopted EMOAs in the MOP2
regarding Ig. SPEA2, iISMS-EMOA-DE, and iSMS-EMOA are the best algo-
rithms. iISMS-EMOA and iSMS-EMOA-DE have similar behavior in 2, 3, 4 and
5 dimensions. SPEA2 occupies the third place in 2 and 3 dimensions; and the
first in 4, 5, 6, 7, and 8 dimensions. iISMS-EMOA-DE occupies the second place
in 4, 5, 6, 7 and 8 dimensions; and the first in 2 and 3 dimensions. Finally,
iSMS-EMOA occupies the fourth place in 7 and 8 dimensions; the third in 6 di-
mensions; the second in 4 and 5 dimensions; and the first in 2 and 3 dimensions.

VaEA is competitive in 7 dimensions (third place).

5.3.8. MOP3

Table [7] shows the results obtained by the adopted EMOAs in MOP3 re-
garding Irr,,. We elaborated a statistical analysis using Wilcoxon’s rank-sum to
determine if an EMOA is statistically better than another one (the null hypoth-
esis “medians are equal” can be rejected at the 5% level, H = 1). Regarding
results, NSGA-IT and VaEA have similar behavior in 7 dimensions, and iSMS-
EMOA and VaEA in 8 dimensions. The three best algorithms are iSMS-EMOA,
iISMS-EMOA-DE, and SPEA2. iSMS-EMOA occupies the fifth place in 6 di-
mensions; the third in 7 dimensions; and the first place in 2, 3, 4, 5, and 8
dimensions. iISMS-EMOA-DE occupies the sixth place in 7 and 8 dimensions;
and the second in 2, 3, 4, 5, and 6 dimensions. Finally, SPEA2 occupies the
fifth place in 7 and 8 dimensions; the third in 2, 3, 4, and 5 dimensions; and
the first in 6 dimensions. VaEA is competitive in 6 (third place), 7 (first place),
and 8 (first place) dimensions.

Table [§] shows the results obtained by the adopted EMOAs in MOP3 re-
garding Ig. iISMS-EMOA and iSMS-EMOA-DE have similar behavior in 4 di-
mensions, and iISMS-EMOA-DE and SPEA2 in 5 dimensions, Again, SPEA2,
iISMS-EMOA-DE, and iSMS-EMOA are the three best algorithms. SPEA2 oc-
cupies the third place in 2, 3, and 4; and the first in 5, 6, 7, and 8 dimensions.
iSMS-EMOA-DE occupies the second place in 2, 6, 7, and 8 dimensions; and
the first in 3, 4 and 5 dimensions. Finally, iSMS-EMOA occupies the fourth
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place in 7 dimensions; the third in 6, and 8 dimensions; the second in 3 and
5 dimensions; and the first in 2 and 4 dimensions. VaEA is competitive in 7
dimensions (third place).

In conclusion, for the three proposed MOPs, the best EMOAs are SPEA2,
iSMS-EMOA-DE, and iSMS-EMOA. Therefore, we can say that the distribu-
tions techniques based on Iy, or clustering are a good option to obtain a set of
Pareto points uniformly distributed in linear Pareto fronts. If we consider Iy,
iISMS-EMOA and iSMS-EMOA-DE are better than SPEA2. If we consider Ig,
SPEA2 is better than the versions of iSMS-EMOA. Since Ig does not measure
spread, we can consider that, in general, I, is a fairer indicator. It is interest-
ing to observe that VaEA tends to be a good option when increasing the number
of objective functions. In the following comparisons, we only use iSMS-EMOA,

iSMS-EMOA-DE, and SPEA2.

5.8.4. Difficulties in solving the formulated MOPs

This section aims to identify the MOP that is easiest to solve by iSMS-
EMOA, iSMS-EMOA-DE, and SPEA2. In our comparative study, we used I,
and elaborated a statistical analysis using Wilcoxon’s rank-sum to determine
if an MOP is statistically easier to solve than another one (the null hypothesis
“medians are equal” can be rejected at the 5% level, H = 1). This same analysis
was also used to determine if a problem has a similar difficulty when solved
by different EMOAs (the null hypothesis cannot be rejected at the 5% level,
H = 0). This statistical test was applied to compare the performance of the
EMOA, solving two different MOPs. Table [9] shows the results obtained.

For SPEA2, the degree of difficulty (from low to high) is MOP3, MOPI,
and MOP2 because it obtained the best results for 2, 3, 4, 6, and 8 dimensions
when solving MOP3, it obtained the best result for 5 and 7 dimensions when
solving MOP1, and it obtained the best result for two dimensions when solving
MOP2. Similarly, with iISMS-EMOA, it obtained the best result with MOP3
in 3, 4, 6, 7, and 8 dimensions, it obtained the best result with MOP1 in 3,
4, and 8 dimensions, and it obtained the best result with MOP2 in 2 and 5
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dimensions. Finally, iSMS-EMOA-DE obtained the best results with MOP1 in
all dimensions, with MOP3 in 4, 5, 6, 7, and 8 dimensions. When dealing with

MOP2, it only obtained the best results for two dimensions. For this reason,
in the following sections, we use SPEA2 and iSMS-EMOA with MOP3 and
iSMS-EMOA-DE with MOP1.

5.4. Performance comparison of different uniform mizture design techniques

Now, we compare the results obtained by iSMS-EMOA, iSMS-EMOA-DE,

and SPEA2 regarding four techniques for uniform mixture design:

1.

RANDOM: We generate a set of uniform random points in the range [0,1],
and we evaluate them in the MOP1. We use MOP1 because in Section [4.1]
we saw that it generates solutions better distributed than those generated

by MOP3.

. Simplex-lattice design [8]: We use this technique for two, three, four, and

five dimensions. For more than five dimensions, this technique generates
a huge number of design points being a disadvantage from a practical
viewpoint in some real-life applications.

Two-layered SLD [23]: This technique addresses the disadvantage of SLD.
Therefore, it is possible to generate a small number of mixtures. We use
this technique for six, seven, and eight dimensions.
Low-discrepancy-sequence-based mixture design [6]: This method is based
on the Sobol sequence, which is able to generate an arbitrary number of

design points in arbitrary dimensionality.

The motivation to choose these methods is that we identify two main disad-

vantages in the current methods to generate uniform mixture designs:

1.

Methods employing geometric concepts, like simplex-lattice design and
two-layered SLD, achieve a set of well-distributed mixtures. Even, they
can obtain the optimal distribution. However, they cannot generate an

arbitrary number of points, and
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Table 9: Obtained results with the three proposed MOPs regarding If7,,. M is the dimen-
sionality of the uniform mixture design (number of objective functions), and C' is the pair of
MOPs considered for the statistical analysis. We show average values over 30 independent
runs. The values in parentheses correspond to the standard deviations. P(H) shows the
statistical analysis results applied to our experiments using Wilcoxon’s rank-sum. P is the
probability of observing that the null hypothesis “medians are equal” is true. H =1 indicates
that the null hypothesis can be rejected at the 5% level. We used three different shades of blue
to highlight the results. The strongest tone corresponds to the best result, the intermediate
tone is used for the second-best result, and the light tone is used for the third-best result.

[M[MOP]] SPEA2 [CT P(H) |[iSMS-EMOA [ P(H) |[iSMS-EMOA-DE[ P(H) |
0507387 0507495 0.507496
o 1 (0000012 1,2 (0.000006 (0.000005) |°-229(0)
) 507391 |, 50749 0.507497 |
(0.000011) [> (0.000005) (0.000003) |0-000(1)
, || 0507396 | 0.507492 0.507484 |\ 00
(0.000009) |1 (0.000007) (0.000007) |0-000(1)
0.069081 0.970900 0.970856
| | s | Cisgeet T Gtmen
2 (0000265 2,30.000(1 (0000051 0.000(1 (00003 0.000(1)
3 || (0.000133) |1:3]0-000(1)|| (9.000041) |°-214(0)||  (0.000027) |0-003(1)
L7016 [, 1.449710 1.449591 | o
A (0.000253) |1 (0.000026) (0.000023) |0-000(1)
o || 1445380 |, 1.449629 1449434 | o
(0.000489)) [ (0.000026 0.000029 |0-000(1)
5 || 1447499 | . 1.44971 449508 | oo
(0.000202) |1 (0.000026) (0.000026) |0-383(0)
T 2Iz2aed 9124067 2124381 |0
5 (0.000281) |1+ (0.003345 (0.001088) |-
o || 21186277, 12454 2117120 |1 s00(1
O O v Siks
311 (0.004677) |1:3]0-000()]| (0.000025) >-702(0)|| (0.000254) |°-299(0)
5.592334 5.556215 5.594364
o] 5 | GO | G oo ez |
2 || (0.065711) [23|0-000(1 (0078838 0.000(1){| (0.040869) |0-000(1)
, || 5594390 | . 58388 5502879 | ..
(0.000132) |1 (0.047038) (0.008800) |-
i IT.o7e234 | T7.076830 17.072856 |00
. (0.003480) |1+ (0.000280 (0.019952) |-
o || 17.067971 |, 17.05134 16.883273" | (000
(0.040876) | (0.069815 (0.515820) |0-000(1)
o || 17045241 | 17.05515 17.044591 | .
(0.150904) |1 (0.118186) (0.180409) |0-137(0)
270268 15 25.613044 25.585636 | 0
g (0.225698) |' (0.043696) (0.141989) |-
) 5573655 |, . 25.618364 25.419374° |
(0.159507) |% (0.000545) (0.484984) |0-007(1)
, || 25.606387 | 25.621220 25428812 | o
(0.092610) |1+ (0.000487) (0.560060) |°-873(0)
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2. Methods based on discrepancy functions can generate an arbitrary number

of points. However, they cannot achieve the optimal distribution.

Therefore, our proposal aims to obtain a mixture design with an arbitrary
number of points well-distributed. For this reason, it is important to compare

our proposal against these two approaches. Our aims are:

i) The distribution obtained in the mixture designs should be competitive
regarding SLD and two-layered SLD, and
ii) The distribution obtained in the mixture designs should outperform the

distribution obtained by methods based on discrepancy functions.

Regarding Iy, Table shows that our proposal using iISMS-EMOA and
MOP3 outperformed the other approaches in four (of seven) cases (3, 4, 5, and
8 dimensions). For six dimensions, SPEA2 outperformed the other approaches.
Only, in 2 and 7 dimensions, SLD was able to overcome our proposal. Moreover,
if we consider the best run, iISMS-EMOA using MOP3 and iSMS-EMOA-DE

using MOP1 outperformed the other techniques in six (of seven) cases.

5.5. Parallel-Coordinates graphs of the best distributions

In Fig. [6] and Fig. [, we plot the best distributions of the uniform mix-
ture designs obtained by SLD, SPEA2, iSMS-EMOA, and iSMS-EMOA-DE.
Fig.[6a) shows that in the two-dimensional case, these four techniques obtained
well-distributed mixture designs. We corroborate this with their corresponding
Parallel-Coordinates graphs. In the three-dimensional case, see Fig. @(b), we can
see that the distribution accomplished by the versions of iSMS-EMOA is simi-
lar to that obtained by SLD. This can show that maximizing the hypervolume
indicator in linear Pareto fronts (at least for two and three dimensions) implies
obtaining a uniform distribution of Pareto points. The Parallel-Coordinates
graphs show that SPEA2, iSMS-EMOA, and iSMS-EMOA-DE cover a more
significant part of the design space for four dimensions or more. This is prob-
ably because the design space grows quickly, and thus, SLD leaves huge gaps

between solutions.
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Table 10:

Results obtained by the six different techniques for generating uniform mixture

designs regarding Ig,. M is the dimensionality of the uniform mixture design (number of
objective functions), and w is the number of points in the uniform mixture design (population
size). For the random technique and our proposals (iISMS-EMOA and iSMS-EMOA-DE), we
show average values over 30 independent runs. The values in parentheses correspond to the
standard deviations. Also, we show the worst and the best value found in the 30 independent
runs. SLD and SOBOL are deterministic techniques. Therefore, they found a unique uniform
mixture design.

M| w |[RANDOM|  SLD [ gopor, | STEAZ ISME BIOAISMS BMOA-DE
0.505064 0.507396 0.507492 0.507496
(0.000304) (0.000010) | (0.000007) (0.000005)

worst worst worst worst

2 [200 0.504484 DeAD T B 0.507202 0.507380 0.507480 0.507486

best best best best
0.505594 0.507417 0.507503 0.507506
0.948537 0.969313 0.970919 0.970856
(0.003994) (0.000136) | (0.000042) (0.000034)

worst worst worst worst

3 [210 0.940189 0970347 B 0968598 0.968978 0.970848 0.970800

best best best best
0.957068 0.969550 0.971028 0.970948
1.404639 1.447499 1.449714 1.449591
(0.004164) (0.000205) | (0.000026) (0.000023)

worst worst worst worst

4 (220 1.396886 1.448103 B 1.447059 1.447082 1.449662 1.449536

best best best best
1.412313 1.447841 1.449750 1.449630
2.057323 2.121960 2.124715 2.124353
(0.005559) (0.004757)| (0.000026) (0.001120)

worst worst worst worst

o [210 2.047057 2.122047 B 2.120376 2.096785 2.124647 2.118607

best best best best
2.067987 2.123132| 2.124763 2.124649
5.444818 5.594390| 5.583881 5.594364
(0.014505) (0.000134)| (0.047842) (0.002559)

worst worst worst worst

6 1182 5 410405 | >091748 | - 5591659 5 593911| 5.330578 5.585057

best best best best
5.483957 5.594561| 5.593212 5.595389
16.789542 17.045241 | 17.055157 17.072856
(0.032717) (0.153484) | (0.120207) (0.020293)

worst worst worst worst

7238 16.704197 AU E ) B 17.076222 16.258828 | 16.418705 16.995924

best best best best
16.842936 17.079795| 17.077465 17.080050
25.061462 25.606387 | 25.621229 25.585636
(0.047741) (0.094194)| (0.000495) (0.144416)

worst worst worst worst

8 156 24.976547 Bl B 25.620158 25.107710 | 25.618980 24.832231

best best best best
25.190708 25.624353| 25.621770 25.624534
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SLD

iSMS-EMOA SPEA2

iSMS-EMOA-DE

Figure 6: We show the distributions of uniform mixture designs obtained by SLD, SPEA2,
iSMS-EMOA, and iSMS-EMOA-DE for two dimensions in (a) and three dimensions in (b).
We also plot their corresponding Parallel-Coordinates graph.
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Figure 7: Distributions of the uniform mixture designs, for four, five, six, seven, and eight
dimensions, obtained by SLD, SPEA2, iSMS-EMOA, and iSMS-EMOA-DE. We use Parallel-
Coordinates graphs.
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We conclude that our proposal is a good option if we need to generate uni-
form mixture designs. Moreover, different from most of the existing mixture
design methods, our proposal allows generating an arbitrary number of mix-

tures.

6. Conclusions

In this paper, we studied different methods to generate uniform mixture
designs from the most classical approaches, such as the simplex-lattice design
(SLD) and the simplex-centroid design (SCD), to the most recent approaches,
such as the two-layered SLD, k-layer reference direction, and an approach based
on low-discrepancy sequences. Perhaps, the most frequently used method for
uniform mixture designs is the SLD. However, when the dimensionality of the
mixture increases, the number of design points quickly increases. In some ap-
plications, it is not desirable to have many design points because their use be-
comes impractical. Two-layered SLD, k-layer reference direction, and the low-
discrepancy-sequence-based methods address this problem. Two-layered SLD
and k-layer reference direction generate a smaller number of design points than
SLD, but they cannot generate an arbitrary number of points. On the other
hand, the low-discrepancy-sequence-based method can generate an arbitrary
number of mixtures. However, the distribution obtained by this method does
not outperform SLD or two-layered SLD.

In this paper, we have introduced a new methodology for generating uniform
mixture designs via multi-objective optimization. This methodology is called
“Mixtures via Evolutionary Multi-objective Optimization (MEMO).” For this
task, we formulated three M-objective optimization problems (MOPs) whose
Pareto fronts describe a regular (M - 1)-dimensional simplex. Such problems
are solved by using six Evolutionary Multi-Objective Algorithms: NSGA-II,
SPEA2, VaEA, 1bylEA, iSMS-EMOA, and iSMS-EMOA-DE. This way, the
concerned multi-objective optimization problems are solved while a uniform de-

sign mixture is obtained. SPEA2, iSMS-EMOA, and iSMS-EMOA-DE obtained
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the best results. Particularly, the versions of iSMS-EMOA are an excellent op-
tion.

Our results indicate that our proposed method is a promising alternative for
generating uniform mixture designs because it can create an arbitrary number
of points, which are adequately distributed in the (M - 1)-dimensional simplex
(it outperforms a low-discrepancy-sequence-based method based on the Sobol
sequence).

As part of our future work, we would like to study in-depth the parameters
of SPEA2, iSMS-EMOA, and iSMS-EMOA-DE when solving the formulated
MOPs. Notably, we consider investigating the reference point’s impact on com-
puting the hypervolume in iISMS-EMOA and iSMS-EMOA-DE. Additionally,
we want to solve the formulated MOPs with an indicator-based EMOA using
the s-energy quality indicator. This idea arises from the results reported in [78],
which mention that the hypervolume and s-energy indicators converge to uni-
formly distributed Pareto fronts. On the other hand, we focus on studying the
formulation of alternative multi-objective optimization problems for construct-
ing mixture designs. The goal is that the new MOPs have two main features:
(i) its Pareto front must be a M - 1-dimensional simplex, and (ii) it should be
easy to solve for EMOAs.Particularly, we are interested in constrained mixtures
design by restricting the search space of EMOAs defining specific constraint
functions. Finally, we also aim to investigate the use of preferences in EMOAs
to generate extreme-vertice mixtures. Nonetheless, the above ideas remain as

possible paths for future research.
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