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Abstract

In this paper, we propose a dominance-based selection scheme to incorporate con-
straints into the fitness function of a genetic algorithm used for global optimization.
The approach does not require the use of a penalty function and, unlike traditional
evolutionary multiobjective optimization techniques, it does not require niching (or any
other similar approach) to maintain diversity in the population. We validated the algo-
rithm using several test functions taken from the specialized literature on evolutionary
optimization. The results obtained indicate that the approach is a viable alternative to
the traditional penalty function, mainly in engineering optimization problems.

Keywords: genetic algorithms, constraint handling, multiobjective optimization, self-
adaptation, evolutionary optimization, numerical optimization.

1 Introduction

Genetic algorithms (GAs) have been very successful in a wide variety of optimization
problems, presenting several advantages with respect to traditional optimization tech-
niques such as the following [16, 23, 25]: (a) GAs do not require the objective function
to be continuous or even to be available in algebraic form, (b) GAs tend to escape more
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easily from local optima because of its population-based nature (the population is the
set of solutions of the problem to be solved and its size is normally a parameter defined
by the user), (c) GAs do not require specific domain information although they can ex-
ploit it if such information is available, (d) GAs are conceptually simple and relatively
easy to implement.

GAs have been successfully applied both to unconstrained and constrained prob-
lems [23]. However, despite the considerable number of constraint-handling methods
that have been developed GAs in the last few years (see for example [24, 8]), most of
them either require a large number of fitness function evaluations, complex encodings
or mappings, or are limited to problems with certain (specific) characteristics.

The aim of this work is to show that using concepts from multiobjective optimiza-
tion [6] it is possible to derive new constraint-handling techniques that are not only
easy to implement, but also computationally efficient (in terms of the number of fit-
ness function evaluations required by the algorithm), and competitive with traditional
approaches in terms of the quality of results that they produce.

The organization of this paper is the following: Section 2 contains the basic con-
cepts used throughout this paper. Section 3 presents the most relevant previously pub-
lished related work. Then, our approach is described in Section 4 and validated with
the examples of Section 5. Our results are briefly discussed in Section 7 and our con-
clusions and some paths of future research are provided in Section 8.

2 Basic concepts

The problem that is of particular interest to us in this paper is the general nonlinear
optimization problem in which we want to:

Find
�� which optimizes

��� ���� (1)

subject to:

�	� � �����

���������	����������� (2)
��� � �������� �"!#�$�%�������&�(' (3)

where
�� is the vector of solutions

����*) �,+-�.�0/%�������&�.�01�243 , � is the number of inequality
constraints and ' is the number of equality constraints (in both cases, constraints could
be linear or non-linear). Only inequality constraints will be considered in this work,
because equality constraints can be transformed into inequalities using:

5 � � � ��6� 587:9 
;� (4)

where
9

is the tolerance allowed (a very small value).
If we denote with < to the feasible region and with = to the whole search space,

then it should be clear that <?>@= .
For an inequality constaint, when it is the case that it satisfies �A� � ���� when �	� � �������� ,

then we say that is active at
�� . Active constraints are normally very difficult to satisfy
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because they are exactly in the boundary between the feasible and infeasible regions.
All equality constraints

���
(regardless of the value of

�� used) are considered active at
all points of < .

A point
������ < is Pareto optimal if for every

���� < and � ���%�	�	��������� �	
�� either,


 ����� � � � � ���� � � � � �� � �.� (5)

or, there is at least one ��� � such that

� � � ������ � � � �� � � (6)

In words, this definition says that
���� is Pareto optimal if there exists no feasible

vector
�� which would decrease some criterion without causing a simultaneous increase

in at least one other criterion. The phrase “Pareto optimal” is considered to mean with
respect to the entire decision variable space unless otherwise specified.

A vector
���� � �,+-�������������8� is said to dominate (in the Pareto sense)

��#� � � +8������������� �
(denoted by

���� �� ) if and only if u is partially less than v, i.e.,

 �����A�	�������&�	
��%��� � 


� ���! �"�#�A�	�������&�	
���$%� �'& � � .

3 Related Work

The idea of using evolutionary multiobjective optimization techniques [6] to handle
constraints is not entirely new. A few researchers have reported approaches that rely
on the use of multiobjective optimization techniques as we will see in this section.

The most common approach is to redefine the single-objective optimization of��� ��6� as a multiobjective optimization problem in which we will have (*) � objec-
tives, where ( is the number of constraints. Then, we can apply any multiobjective
optimization technique [14] to the new vector

��@� � ��� ���� � � + � ��6�&��������� �,+ � ��6�.� , where� + � ����&��������� � + � ���� are the original constraints of the problem. An ideal solution
�� would

thus have
� � � ���� =0 for � 
;��
 ( and

��� ��6�.- ��� �/�� for all feasible
�/ (assuming maxi-

mization).
Surry et al. [37, 36] proposed the use of Pareto ranking [13] and the Vector Eval-

uated Genetic Algorithm (VEGA) [33] to handle constraints. In their approach, called
COMOGA, the population was ranked based on constraint violations (counting the
number of individuals dominated by each solution). Then, one portion of the popula-
tion was selected based on constraint ranking, and the rest based on real cost (fitness) of
the individuals. COMOGA compared fairly with a penalty-based approach in a pipe-
sizing problem, since the resulting GA was less sensitive to changes in the parameters,
but the results achieved were not better than those found with a penalty function [37].
It should be added that COMOGA [37] required several extra parameters, although its
authors argue [37] that the technique is not particularly sensitive to the values of such
parameters.

Parmee and Purchase [26] implemented a version of VEGA [33] that handled the
constraints of a gas turbine problem as objectives to allow a GA to locate a feasible
region within the highly constrained search space of this application. However, VEGA
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was not used to further explore the feasible region, and instead they opted to use spe-
cialized operators that would create a variable-size hypercube around each feasible
point to help the GA to remain within the feasible region at all times [26]. Parmee and
Purchase’s approach was specially developed for a heavily constrained search space
and it proved to be appropriate to reach the feasible region. However, this application
of a multiobjective optimization technique does not aim at finding the global optimum
of the problem, and the use of special operators suggested by the authors certainly
limits the applicability of the approach.

Camponogara & Talukdar [4] proposed the use of a procedure based on an evolu-
tionary multiobjective optimization technique. Their proposal was to restate a single
objective optimization problem in such a way that two objectives would be considered:
the first would be to optimize the original objective function and the second would be
to minimize:

� � ������
��
��� + max ) �����	� � ��6� 2�� (7)

where � is normally 1 or 2.
Once the problem is redefined, nondominated solutions with respect to the two

new objectives are generated. The solutions found define a search direction � �� ��� 7 � � �
	 5 �0� 7 � ! 5 , where ��� ����� , � � ��� � , and ��� and � � are Pareto sets. The
direction search � is intended to simultaneously minimize all the objectives [4]. Line
search is performed in this direction so that a solution � can be found such that � dom-
inates � � and � � (i.e., � is a better compromise than the two previous solutions found).
Line search takes the place of crossover in this approach, and mutation is essentially
the same, where the direction � is projected onto the axis of one variable ! in the solu-
tion space [4]. Additionally, a process of eliminating half of the population is applied
at regular intervals (only the less fitted solutions are replaced by randomly generated
points).

Camponogara & Talukdar’s approach [4] has obvious problems to keep diversity
(a common problem when using evolutionary multiobjective optimization techniques
[6]), as it is indicated by the fact that the technique discards the worst individuals
at each generation. Also, the use of line search increases the cost (computationally
speaking) of the approach and it is not clear what is the impact of the segment chosen
to search in the overall performance of the algorithm.

Jiménez and Verdegay [20] proposed the use of a min-max approach [5] to handle
constraints. The main idea of this approach is to apply a set of simple rules to decide
the selection process:

1. If the two individuals being compared are both feasible, then select based on the
minimum value of the objective function.

2. If one of the two individuals being compared is feasible and the other one is
infeasible, then select the feasible individual.

3. If both individuals are infeasible, then select based on the maximum constraint
violation (max � � � ��6� � for ! � �	�������&� ( , and ( is the total number of con-
straints). The individual with the lowest maximum violation wins.
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A subtle problem with this approach is that the evolutionary process first concen-
trates only on the constraint satisfaction problem and therefore it samples points in the
feasible region essentially at random [37]. This means that in some cases (e.g., when
the feasible region is disjoint) we might land in an inappropriate part of the feasible re-
gion from which we will not be able to escape. However, this approach (as in the case
of Parmee and Purchase’s [26] technique) may be a good alternative to find a feasible
point in a heavily constrained search space.

Coello [7] proposed the use of a population-based multiobjective optimization tech-
nique similar to VEGA [33] to handle each of the constraints of a single-objective opti-
mization problem as an objective. At each generation, the population is split into ( ) �
sub-populations ( ( is the number of constraints), so that a fraction of the population is
selected using the (unconstrained) objective function as its fitness and another fraction
uses the first constraint as its fitness and so on.

For the sub-population guided by the objective function, the evaluation of such
objective function for a given vector

�� is used directly as the fitness function (multiplied
by (-1) if it is a minimization problem), with no penalties of any sort. For all the other
sub-populations, the algorithm used was the following [7]:

if � � � ���� & ��� � then fitness = � � � ����
else if ���� � then fitness =

7 �
else fitness =

��� ��6�

where � � � ���� refers to the constraint corresponding to sub-population ! ) � (this is
assuming that the first sub-population is assigned to the original objective function��� ��6� ), and � refers to the number of constraints that are violated ( 
 ( ).

The approach of Coello [7] provided good results in several optimization problems,
but required a relatively large number of fitness function evaluations to converge.

Ray et al. [30] proposed an approach in which solutions were ranked separately
based on the value of their objective functions and their constraints. Then, a set of
mating restrictions were applied based on the information that each individual had of
its own feasibility (this idea was inspired on an earlier approach by Hinterding and
Michalewicz [18]), so that the global optimum could be reached through cooperative
learning. Ray’s approach seems to be very efficient, but it has as a drawback the fact
that it requires a lot of extra knowledge about the problem at hand in order to be ef-
fective. Although this knowledge is extracted directly from the problem itself, the
approach is certainly far more complicated than using straightforward dominance rela-
tionships, and its implementation seems to be cumbersome.

The limitations of the previously reported multiobjective optimization techniques
used to handle constraints were the main motivation of this work.

4 The Proposed Approach

The concept of nondominated vector is used in multiobjective optimization to denote
solutions that represent the best possible compromise, given a set of objective func-
tions. None of the objective function values of these nondominated vectors can be
improved without worsening another one (see [6] for details). Our hypothesis is that
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this concept can be used to extend evolutionary multiobjective optimization techniques
to be used as single-objective optimization approaches in which the constraints are han-
dled as additional objectives. Although the use of an evolutionary multiobjective opti-
mization technique can be quite useful to reach the feasible region in highly constrained
search spaces, is not straightforward to extend it to solve single-objective optimization
problems. The main difficulty is that we could bias the search towards a certain specific
portion of the feasible region and, as a consequence, we could be unable to reach the
global optimum.

This paper presents a proposal based on a technique known as the Niched-Pareto
Genetic Algorithm (NPGA) [19] that uses tournament selection decided through non-
dominance. In the original proposal of the NPGA, the idea was to use a sample of
the population to determine who is the winner between two candidate solutions to be
selected, and to choose one of them based on nondominance with respect to the sample
taken. Checking for nondominance has a computational cost of � � 
�� / � per genera-
tion, where 
 refers to the number of objective functions and � refers to the population
size. Since our approach only uses a portion of the population (a value which is always
less than � ), then its computational complexity is (on average) lower than that of
traditional evolutionary multiobjective optimization techniques [6].

To adapt the NPGA to solve single-objective constrained optimization problems,
we performed the following changes:

� The tournament performed is not completely deterministic. We use a parameter
called selection ratio ( �,1 ), which indicates the minimum number of individuals
that will not be selected through tournament selection. These individuals will be
selected using a probabilistic procedure. This means that

� � 7 ��� � individuals in
the population are probabilistically selected.

� When comparing two individuals, we can have four possible situations:

1. Both are feasible. In this case, the individual with a better fitness value
wins.

2. One is infeasible, and the other is feasible. The feasible individual wins,
regardless of its fitness function value.

3. Both are infeasible. The nondominated individual is selected, only if the
other candidate is dominated.

4. Both are infeasible and both are either nondominated or dominated.
The individual with the lowest amount of constraint violation wins, regard-
less of its fitness function value.

� Our approach does not require niching [11] (a mechanism used to penalize indi-
viduals in the population who are too “similar”—measured over a certain metric—
with a reduction of their fitness; niching is used to avoid convergence to a single
solution in multiobjective and multimodal optimization) or any other similar ap-
proach to keep diversity, since the value of � 1 will control the diversity of the
population. For the experiments reported in this paper, a value close to one
( -;��� � ) was adopted for � 1 .
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The pseudocode of our approach is presented below. The following notation is
adopted: oldpop is the current population, �����

+
is the size of the comparison set and��� �4' ��� � is a function that returns TRUE with probability

�
, tournlist is the index of the

individuals in the current population. This ordering of the list is randomly perturbed
by the shuffle procedure:

function select
begin

shuffle(tournlist);
candidate 1 = tournlist[0];
candidate 2 = tournlist[1];
if (flip(Sr)) 	 * fitness-feasibility-nondominance based tournament * 	

begin
candidate 1 dominated = FALSE;
candidate 2 dominated = FALSE;
if (oldpop[candidate 1]==feasible AND oldpop[candidate 2]==feasible)	 * fitness checking * 	

if (oldpop[candidate 1].fitness - oldpop[candidate 2].fitness)
winner=candidate 1;

else
winner=candidate 2;

else 	 * feasibility checking * 	
if (oldpop[candidate 1]==feasible AND oldpop[candidate 2]==nonfeasible)

winner=candidate 1;
else

if (oldpop[candidate 1]==nonfeasible AND oldpop[candidate 2]==feasible)
winner=candidate 2;

else
begin 	 * nondominance checking * 	

for ( � � � to � �
	 ( ) � )
begin

comparison individual=tournlist[i];
if (oldpop[comparison individual] dominates oldpop[candidate 1])

candidate 1 dominated=TRUE;
if (oldpop[comparison individual] dominates oldpop[candidate 2])

candidate 2 dominated=TRUE;
end

if (candidate 1 dominated==TRUE AND candidate 2 dominated==FALSE)
winner=candidate 2;

else
if (candidate 1 dominated==FALSE AND candidate 2 dominated==TRUE)

winner=candidate 1;
else 	 * tie break with accumulated constraint violation * 	

if (oldpop[candidate 1].sumviol & oldpop[candidate 2].sumviol)
winner=candidate 1;

else
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winner=candidate 2;
end

end
else

if (flip(0.5))
winner=candidate 1;

else
winner=candidate 2;

return(winner);
end

The way in which our algorithm works is described next. First, our algorithm tries
to reach the feasible region of the search space in two ways: finding nondominated
solutions and choosing those with a lower accumulation of constraint violation. When
the number of feasible solutions in the population increases, those with a better fitness
value will be preferred, because the feasible region is sufficently sampled and the aim
then becomes to reach the global optimum.

During all this process, some individuals are probabilistically selected. These in-
dividuals can be either infeasible or dominated. The reason for this is to avoid that
our GA stagnates and prematurely converges to a local optimum. This mechanism is
thus responsible for keeping the diversity required in the population to ensure that the
search progresses.

A significant difference of our approach with respect to the NPGA is the way in
which dominance between vectors is checked. In order to move the search towards
the feasible region of the problem, we eliminate the value of the fitness function of the
dominance checking. In other words, we only check dominance between the values of
the constraints. Such elimination reduces the computational cost of the approach and
helps our GA to move efficiently towards the feasible region.

In the following experiments, we use a GA with binary representation, two-point
crossover, and uniform mutation. The parameters used for our GA are the following:
population size = 200 individuals, maximum number of generations = 400, crossover
rate = 0.6, mutation rate = 0.03, � 1 = 0.99 (i.e., one out of every one hunded selections
will be done probabilistically, rather than in a deterministic way), tournament size =
10.

5 Examples

Several examples taken from the optimization literature will be used to show the way
in which the proposed approach works. These examples have linear and nonlinear
constraints, and have been previously solved using a variety of other techniques (both
GA-based and traditional mathematical programming methods), which is useful to de-
termine the quality of the solutions produced by the proposed approach.
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5.1 Example 1 : Welded Beam Design

The following problem is taken from [29]. A welded beam is designed for minimum
cost (

��� ��6� ) is the cost in the equation below) subject to constraints on: ( ��+ ) shear stress
( � ), ( �	/ ) bending stress in the beam ( � ), ( ��� ) buckling load on the bar (

���
), ( ��� ) end

deflection of the beam (
�
), and ( �
	 � ���	����
 ) side constraints [29]. There are four design

variables as shown in Figure 1 :
�

( � + ), � ( � / ), � ( � 	 ) and � ( � � ).
The problem can be stated as follows:
Minimize:

��� ������$�%� � ����� ��� / + �0/ ) ��� ��� ���%����	 ��� � ��� � � ) ��/ � (8)

Subject to: � + � ���� � � � ��,� 7 � +���� 
 � (9)
� / � ������ � � ��6� 7 � +���� 
 � (10)
��	 � ��6�����6+ 7 ��� 

� (11)

��� � ������ ��� ������� ��� / + ) � � ��� ���%����	 ��� � ���0� � ) �0/-� 7�� � �#
;� (12)
��
 � ������ ��� � � � 7 �6+ 
;� (13)
��� � ������ � � ��6� 7 � +���� 
;� (14)
��� � ������ � 7 ��� � ��6� 
;� (15)

where � � ��,��� � � ��� � / ) � ��� ��� � �0/��! ) � ��� � � / (16)

� � � �" �-� + � / � � � � � �#!$ � � � �&%(' ) ��/
�*) (17)

! �,+ � //� ).- � + ) � 	
� / / (18)$ � �10 " �-�6+&�0/32 � //� � ) - � + ) � 	

� / /54�6
(19)

� � ���� �87 �9'
� � � /	 � � � ���� � � �9' 	: � 		 � � (20)

� � � ��6��� � � ���(; :=< �?>@A�?BC	D�' / E � 7 ��	
� ' � :��FHG (21)

� � 7 �	�%� � � � ' � �?� � � � : �I;	�KJ ��� � '�L�� �MF$��� �NJ � � � '�L�� (22)� +���� ���?;�� 7 �%��'�L�� � � +O�P� �Q;%���.�%�	��'RL�� � � +���� � ��� � � � � (23)
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5.2 Example 2 : Design of a Pressure Vessel

The following problem is taken from [21]. A cylindrical vessel is capped at both ends
by hemispherical heads as shown in Figure 2. The objective is to minimize the total cost
(
��� ���� ), including the cost of the material, forming and welding. There are four design

variables: ��� (thickness of the shell), ��� (thickness of the head), ! (inner radius) and'
(length of the cylindrical section of the vessel, not including the head). � � and � �

are integer multiples of 0.0625 inch, which are the available thicknesses of rolled steel
plates, and ! and

'
are continuous. Using the same notation given by Kannan and

Kramer [21], the problem can be stated as follows:
Minimize :

��� ���� ����� 7 � � �	��+ ��	���� ) �	� ��� �����0/ � /	 ) ; � � 7�7 ��� / + ��� ) ����� ���%� / + ��	 (24)

Subject to : � + � ������ 7 � + ) ��� �����
; � 	 

� (25)
�	/ � ������ 7 ��/ ) ��� �	��� � �%��	 
;� (26)

��	 � ������ 7	� � /	 ��� 7 � ; � � 		 ) �	�	�
� 7 �.�%�	� 
 � (27)

� � � ��6� �;� � 7 ���%�#

� (28)

5.3 Example 3: Minimization of the Weight
of a Tension/Compression String

This problem is described by Arora [1] and Belegundu [2], and it consists of mini-
mizing the weight (

��� ��6� ) of a tension/compression spring (see Figure 3) subject to
constraints on minimum deflection, shear stress, surge frequency, limits on outside di-
ameter and on design variables. The design variables are the mean coil diameter �
( �0/ ), the wire diameter � ( ��+ ) and the number of active coils � ( �R	 ).

Formally, the problem can be expressed as:

Minimize
� ��	 ) �%� ��/�� / + (29)

Subject to

�A+ � �������� 7 � 	/ ��	��� � � � � � + 
;� (30)

�	/ � ��6� � �	� // 7 ��+ ��/
� � � 7�7 � � / � 	 + 7 � � + � ) �� ��� � � / + 7 � 
;� (31)

��	 � ��6� � � 7 ���A��� � � � +
� // ��	 
 � (32)

��� � ��6��� �0/ ) �6+
�%� � 7 � 
;� (33)
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5.4 Example 4: Disjoint Feasible Region

The following problem is proposed by Michalewicz & Schoenauer [24], and its search
space consists of �

	
disjoint spheres. A point

� �,+ ���0/%����	�� is feasible if and only if there
exist ' ��� � � such that below inequality holds. The optimum is located at � � � � � � � � � �
where

��� � � ����� . The solution lies within the feasible region.

Maximize
��� ��6� � ���	� 7 � ��+ 7 � � / 7 � ��/ 7 � � / 7 � ��	 7 � � /

���%� (34)

Subject to

� � ���� � � �6+ 7 '6� / ) � ��/ 7 � � / ) � ��	 7 � � / 7 ��� � 7 � � 

� (35)

where �#
 ��� ���$�%� ���D;%� and ' ��� � � �$�	� ���������&� � .

5.5 Example 5 : Design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Figure 4 and taken from [2]. The problem is
to find the moment of inertia of each member of this truss, such that we minimize its
weight (

��� ��6� ), subject to stress and displacement constraints. The weight of the truss
is given by:

��� �6���
+���
� � +

��� � ' �
(36)

where � is the candidate solution, � � is the cross-sectional area of the ! th member
( � � = � � � , where � is the moment of inertia of member ! ),

' �
is the length of the ! th

member, and � is the weight density of the material.
The assumed data are: modulus of elasticity,

: � �	� �MJ � � �
ksi 68965.5 MPa),� � ��� ��� lb/ 	�
 	

(2768.096 kg/m
	
), and a load of ���	� kips (45351.47 Kg) in the neg-

ative y-direction is applied at nodes � and � . The maximum allowable stress of each
member is called � �

, and it is assumed to be � � � ksi (172.41 MPa). The maximum
allowable displacement of each node (horizontal and vertical) is represented by � �

, and
is assumed to be � inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints (we can really as-
sume only 8 displacement constraints because there are two nodes with zero displace-
ment, but they will nevertheless be considered as additional constraints by the new
approach). The moment of inertia of each element can be different, thus the problem
has 10 design variables.

6 Comparison of Results

6.1 Example 1

This problem has been solved by Deb [9] using a simple genetic algorithm with binary
representation, and a traditional penalty function as suggested by Goldberg [16]. It has
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also been solved by Ragsdell and Phillips [28] using geometric programming. Ragsdell
and Phillips also compared their results with those produced by the methods contained
in a software package called “Opti-Sep” [35], which includes the following numeri-
cal optimization techniques: ADRANS (Gall’s adaptive random search with a penalty
function), APPROX (Griffith and Stewart’s successive linear approximation), DAVID
(Davidon-Fletcher-Powell with a penalty function), MEMGRD (Miele’s memory gra-
dient with a penalty function), SEEK1 & SEEK2 (Hooke and Jeeves with 2 different
penalty functions), SIMPLX (Simplex method with a penalty function) and RANDOM
(Richardson’s random method).

Their results are compared against those produced by the approach proposed in
this paper, which are shown in Table 1 (note that

��� ��6� represents cost of the beam in
this case). In the case of Siddall’s techniques [35], only the best solution produced
by the techniques contained in “Opti-Sep” is displayed. The solution shown for the
technique proposed here is the best produced after 30 runs, and using the following
ranges for the design variables: ��� �#
��,+ 
 ��� � , ��� �#
��0/"
�� ��� � , ��� � 
 ��	#
*� ��� � ,��� � 
 � � 
 ��� � .

The mean from the 30 runs performed was
��� ���� � �	� � � � 7 � � , with a standard

deviation of � � � � � ���?; . The worst solution found was
��� ���� � �	� ���
;��A� � , which is

better than any of the solutions produced by any of the other techniques depicted in
Table 1. The number of fitness function evaluations of our approach was �	�	�%�	� .

6.2 Example 2

This problem has been solved by Deb [10] using GeneAS (Genetic Adaptive Search),
by Kannan and Kramer using an augmented Lagrangian Multiplier approach [21], and
by Sandgren [32] using a branch and bound technique. Their results were compared
against those produced by the approach proposed in this paper, and are shown in Table 2
(note that in this case

��� ���� represents total cost of the cylindrical vessel). The solution
shown for the technique proposed here is the best produced after 30 runs, and using the
following ranges for the design variables: � 
 � + 
 � � , � 
 � / 
 ��� , � ��� ��
 � 	 

� �%��� � , ����� � 
 � � 
 �	�	��� � . The values for � + and � / were considered as integer (i.e.,
real values were rounded up to their closest integer value) multiples of 0.0625, and the
values of � 	 and � � were considered as real numbers.

The mean from the 30 runs performed was
��� ��6� � 7 � �
� � � � ; � 7 � , with a standard

deviation of �?;	� � � �
� �8� � . The worst solution found was
��� ���� � 7 � 7 � � ; ��� � ��� . We can

see that in this case, our average solution was better than any of the solutions produced
by any of the other techniques depicted in Table 2. The total number of fitness func-
tion evaluations performed was �	�	�%�	� . Note also that Kannan and Kramer’s method
produces a solution with a significantly lower value of

'
. This solution is, however,

not feasible since the first constraint is slightly violated. The results produced by the
other methods (including ours) indicate that is more reasonable to variate the other de-
sign variables and allowing larger values of

'
since this produces designs which are

feasible and have a lower cost.
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6.3 Example 3

This problem has been solved by Belegundu [2] using eight numerical optimization
techniques: CONMIN (a feasible directions method developed by Vanderplaats [38]),
OPTDYN (a feasible directions method developed by Bhatti and Pollack [3],LINMR,
GRP-UI (a gradient projection technique developed by Haug and Arora [17]), SUMT
(an exterior penalty approach implemented by Belegundu [2]), M-3 (a Lagrange mul-
tipliers code based on Powell’s algorithm [27] which was implemented by Belegundu
[2]), M-4 (a variation of M-3 implemented by Belegundu [2]), and M-5 (a Lagrange
multipliers code based on Fletcher’s method [12] which was implemented by Bele-
gundu [2]). Additionally, Arora [1] also solved this problem using a numerical opti-
mization technique called Constraint Correction at constant Cost (CCC).

In Belegundu’s experiments, GRP-UI and CONMIN failed to solve this problem.
Therefore, these two techniques were not included in the results presented in Tables 3
(note that in this case

��� ���� represents in this case the weight of the spring) where the
best result of our approach is compared.

The mean value from this problem after 30 runs was
��� ���� � ��� ��� �
� � � . The worst

solution found was
��� ���� � � � � � ����� ; with a standard deviation of � � �%�	�	� � � . The

number of fitness function evaluations for each run was �%�	�	�%� . The mean value found
is even better than the best solutions reported by Arora [1] which is infeasible [2].

6.4 Example 4

This problem has been solved by Runarsson and Yao using an evolution strategy [34]
with Stochastic Ranking [31] and by Koziel and Michalewicz using a GA with a tech-
nique called Homomorphous Maps [22]. The values of the decision variables lie within
the following ranges: �"
@�6� 
 � � � ���	�	���D; .

After 30 runs performed, each one with �	�%�	�%� fitness function evaluations, the
mean was

��� ���� � �%� �%�	�	�%�	� , the worst solution also has a value of
��� ��6� �?�	� �	�%�	�	�%�

with a standard deviation of ��� �	�	�%�	�%� . We can observe a very robust behavior of the
proposed technique in this example. The best solution of our approach is compared
in Table 4. Note that the approach proposed by Koziel & Michalewicz [22] required
1,400,000 evaluations of the fitness function to produce the result shown in Table 4.
The approach of Runarsson & Yao [31] required 350,000 evaluations of the fitness
function. In contrast, our approach only required 80,000 evaluations of the fitness
function and it produced equivalent results.

6.5 Example 5

This problem was used by Belegundu [2] to evaluate the following numerical op-
timization techniques: Feasible directions (CONMIN and OPTDYN), Pshenichny’s
Recursive Quadratic Programming (LINRM), Gradient Projection (GRP-UI), Exterior
Penalty Function (SUMT), Multiplier Methods (M-3, M-4 and M-5).

The results reported by Belegundu [2] are compared to the current approach in
Tables 5 and 6 (all the solutions presented are feasible). Note that in this case

��� ���� rep-
resents the weight of the truss. To solve this problem, it was necessary to add a module
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responsible for the analysis of the plane truss. This module uses the matrix factorization
method included in Gere and Weaver [15] together with the stiffness method [15] to
analyze the structure, and returns the values of the stress and displacement constraints,
as well as the total weight of the structure.

The solution shown for the technique proposed here is the best produced after 30
runs. The range � � � 
$�;
 ����� � � was used for the 10 design variables (moments of
inertia were used as the design variables, and their square roots were found in order to
obtain the cross-sectional areas of each truss member).

The mean from the 30 runs performed was
��� ��6� � � ��� ��� � � � ��� � , with a standard

deviation of ����� � � 7 ��; � . The worst solution found was
��� ��6� � � ��� � � 7 �
;���;�� , which

is better than any of the solutions produced by any of the other techniques depicted in
Tables 5 and 6.

7 Discussion of Results

There are a few things about our approach that deserve to be mentioned. First, we have
empirically shown the feasibility of using a multiobjective optimization technique to
handle constraints. Our approach has as its main advantage its computational effi-
ciency, based on the number of evaluations of the fitness function. This metric is
normally adopted in evolutionary computation since the number of fitness function
evaluations is independent of the hardware used for the experiments. Furthermore, we
have shown that it is highly competitive and was even able to match (or even improve)
the results produced by other algorithms, some of which are more complex constraint-
handling techniques used with GAs.

The parameter � 1 plays a crucial role in our approach, since it is responsible for
providing the diversity needed. By diversity we refer to having enough individuals in
the population which encode different solutions. A diversity loss occurs when most
of the population contains copies of the same individual. A diversity loss eventually
occurs with an evolutionary algorithm because is a consequence of the stochastic noise
characteristic of this type of algorithm. However, it is desirable to maintain diversity for
as long as possible so that our evolutionary algorithm does not prematurely converges
to a local optimum. In order to evaluate the capability of our algorithm to preserve
diversity, we monitored the population of our GA as the search progressed, and we
found out that about 50% of the total population was feasible when reaching the last
generations in all the test functions adopted. If nonfeasible individuals are still in the
population at this point of the evolutionary process (i.e., in the last few generations),
this allows our algorithm to explore other regions of the search space and we avoid
getting trapped in a local optimum. It is worth mentioning that traditional evolution-
ary multiobjective optimization techniques normally cannot be used directly to handle
constraints because their emphasis is to drive the GA towards the feasible region, but
not necessarily to the global optimum [37].

The addition of a new parameter ( � 1 ) may be debatable. However, at least in the
test functions that we have used so far, the algorithm does not require a fine tuning of
this parameter. If a value closer to � is used for � 1 ( ��� � & ��1 & �	� � ), the selection
process allows the GA to reach and sample sufficiently well the feasible region of a
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problem. Moreover, it helps the search process to reach the vicinity of the global opti-
mum. However, if the problem turns out to be very difficult (i.e., a highly constrained
search space), we suggest to use a lower value for � 1 as those indicated before. This is
to avoid premature convergence of the GA.

8 Conclusions and Future Work

This paper has introduced a new constraint-handling approach that is based on a mul-
tiobjective optimization technique called NPGA [19]. The approach is intended to be
used with evolutionary algorithms as a way to reduce the burden normally associated
with the fine-tuning of a penalty function.

The proposed approach performed well in several test problems both in terms of the
number of fitness function evaluations required and in terms of the quality of the solu-
tions found. The results produced were compared against those generated with other
(evolutionary and mathematical programming) techniques reported in the literature.

As part of our future work, we are analyzing the elimination of the parameter � 1 .
Additionally, we are considering the extension of other multiobjective optimization
techniques to handle constraints in EAs (see [8]). Finally, we also have interest in
using techniques such as the one proposed in this paper coupled to an evolutionary
multiobjective optimization algorithm.
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Figure 1: The welded beam used for the first example. The decision variables are the
following:

�
( ��+ ), � ( �0/ ), � ( ��	 ) and � ( ��� ). In this case, the cost of the beam (

��� ��6� ) is
to be minimized.
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Figure 2: Center and end section of the pressure vessel used for the second example.
The design variables are the following: � � (thickness of the shell), ��� (thickness ofthe
head), ! (inner radius) and

'
(length of the cylindrical section of the vessel,not includ-

ing the head). The total cost of the cylindrical vessel (
��� ���� ) is to be minimized in this

case.
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Figure 3: Tension/compression string used for the third example. The design variables
are the following: mean coil diameter � ( � / ), the wire diameter � ( � + ) and the number
of active coils � ( � 	 ). The weight of the spring (

��� ���� ) is to be minimized in this case.
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Figure 4: 10-bar plane truss used for the fifth example. The moments of inertia of the
bars are the decision variables in this case and the total weight of the truss is to be
minimized.

25



Design Best solution found
Variables This paper Deb [9] Siddall [35] Ragsdell [28]� + � � � 0.205986 0.2489 0.2444 0.2455��/ � � � 3.471328 6.1730 6.2189 6.1960� 	 � � � 9.020224 8.1789 8.2915 8.2730��� � � � 0.206480 0.2533 0.2444 0.2455� + � ��6� -0.074092 -5758.603777 -5743.502027 -5743.826517�	/ � ��6� -0.266227 -255.576901 -4.015209 -4.715097��	 � ��6� -0.000495 -0.004400 0.000000 0.000000� � � ��6� -3.430043 -2.982866 -3.022561 -3.020289��
 � ��6� -0.080986 -0.123900 -0.119400 -0.120500� � � ��6� -0.235514 -0.234160 -0.234243 -0.234208��� � ��6� -58.666440 -4465.270928 -3490.469418 -3604.275002��� ��6� ��������������� �,� 	�
�
�������
�
 �,� 
�������	�
�
�� ����
�������
���
��

Table 1: Comparison of the results for the first example (optimal design of a welded
beam).

Design Best solution found
Variables This paper GeneAS [10] Kannan [21] Sandgren [32]��+ � ��� � 0.812500 0.9375 1.125 1.125� / � � � � 0.437500 0.5000 0.625 0.625��	 � ! � 42.097398 48.3290 58.291 47.700� � � ' � 176.654047 112.6790 43.690 117.701�A+ � ��6� -0.000020 -0.004750 0.000016 -0.204390�	/ � ��6� -0.035891 -0.038941 -0.068904 -0.169942� 	 � ��6� -27.886075 -3652.876838 -21.220104 54.226012��� � ��6� -63.345953 -127.321000 -196.310000 -122.299000��� ���� ��
����,����	���
�	�� ��	���
,��
������ ������� ��
�	���� �������,����
�
��

Table 2: Comparison of the results for the second example (optimization of a pressure
vessel).
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Design Best solution found
Variables This paper Arora � [1] M-5 [2] OPTDYN � [2]� + � � � 0.051989 0.053396 0.050000 0.0644��/ � � � 0.363965 0.399180 0.315900 0.7488� 	 � � � 10.890522 9.185400 14.25000 2.9597�A+ � ���� -0.000013 0.000019 -0.000014 -0.005134� / � ���� -0.000021 -0.000018 -0.003782 0.002609��	 � ���� -4.061338 -4.123832 -3.938302 -4.450398��� � ���� -0.722698 -0.698283 -0.756067 -0.457867��� ��6� 
 � 
���������� 
 ��
�������
�
���� 
,��
�������
�
�	�
 
 ��
�����	�
������

Table 3: Comparison of the results for the third problem (minimization of the weight
of a tension/compression spring). � Infeasible solution.
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Design Best solution found
Variables This paper RY [31] KM [22]� + � � � 5.000000 5.000000 N.A.��/ � � � 5.000000 5.000000 N.A.� 	 � � � 5.000000 5.000000 N.A.� � ���� 0.000000 0.000000 N.A.��� ���� ��� 
�
�
�
�
�
 ����
�
�
�
�
�
 
,�������������������

Table 4: Comparison of the results for the fourth problem (disjoint feasible region).
RY = Runarsson & Yao [31], KM = Koziel & Michalewicz [22]. N.A. = Not Available.
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Design Best solution found
Variables This paper CONMIN OPTDYN LINRM� + 985.808351 639.20 664.30 21.57�0/ 0.105877 3.60 0.01 10.98� 	 519.966658 618.40 630.70 22.08��� 188.576078 250.50 375.90 14.95� 
 0.102124 0.01 0.01 0.10��� 0.137725 3.05 0.01 10.98��� 690.171450 280.80 235.90 18.91��� 495.366009 389.20 413.00 18.42��� 467.438050 440.10 430.30 18.40� + � 0.135133 6.30 1.30 13.51��� ���� �������,������������� ������
 � 
�� ��	������ 	�� ��	����,�����

Table 5: Comparison of results for the fifth example (10-bar plane truss). The value of
all variables is given in in

�
. Part I.
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Design Best solution found
Variables GRP-UI SUMT M-3 M-4 M-5�6+ 614.30 942.00 667.90 1000.0 667.70�0/ 17.40 5.60 9.40 139.40 8.30� 	 614.40 1000.0 697.80 1000.0 699.40��� 208.80 135.90 163.10 306.40 162.60� 
 0.01 0.01 0.01 1000.0 0.01��� 17.40 13.80 11.80 105.00 14.20��� 304.80 471.20 373.90 1000.00 375.50��� 370.90 467.00 367.60 1000.00 368.00��� 371.30 195.30 351.90 1000.00 352.20� +�� 27.70 10.60 19.50 1000.00 19.20��� ���� �������,� 
�� ����
��,����� �������,����� ��������� ����� ������� � 
��

Table 6: Comparison of results for the fifth example (10-bar plane truss). The value of
all variables is given in in

�
. Part II.
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