

 
 


 


  


 


  


Abstract— Spread spectrum audio watermarking (SSW) is one of the most powerful techniques for secure audio 


watermarking. SSW hides information by spreading the spectrum. The hidden information is called the 


‘watermark’ and is added to a host signal, making the latter a watermarked signal. The spreading of the spectrum is 


carried out by using a pseudo-noise (PN) sequence. In conventional SSW approaches, the receiver must know both 


the PN sequence used at the transmitter and the location of the watermark in the watermarked signal for detecting 


the hidden information. This method has contributed much to secure audio watermarking in that any user, who is 


not able to access this secrete information, cannot detect the hidden information. Detection of the PN sequence is 


the key issue of hidden information detection in SSW. Although the PN sequence can be reliably detected by 


means of heuristic approaches, due to the high computational cost of this task, such approaches tend to be too 


computationally expensive to be practical. Evolutionary Algorithms (EAs) belong to a class of such approaches. 


Most of the computational complexity involved in the use of EAs arises from fitness function evaluation that may 


be either very difficult to define or computationally very expensive to evaluate. This paper proposes an 


approximate model, called Adaptive Fuzzy Fitness Granulation with Fuzzy Supervisor (AFFG-FS), to replace the 


expensive fitness function evaluation. First, an intelligent guided technique via an adaptive fuzzy similarity 


analysis for fitness granulation is used for deciding on the use of exact fitness function and dynamically adapting 


the predicted model. Next, in order to avoid manually tuning parameters, a fuzzy supervisor as auto-tuning 


algorithm is employed. Its effectiveness is investigated with three traditional optimization benchmarks of four 


different choices for the dimensionality of the search space. The effect of the number of granules on the rate of 


convergence is also studied. The proposed method is then extended to the hidden information detection problem to 


recover a PN sequence with a chip period equal to 63, 127 and 255 bits. In comparison with the standard 


application of EAs, experimental analysis confirms that the proposed approach has an ability to considerably 
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reduce the computational complexity of the detection problem without compromising performance. Furthermore, 


the auto-tuning of the fuzzy supervisor removes the need of exact parameter determination. 
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1. INTRODUCTION 


In recent years, digital watermarking has received due attention from the security and cryptography 


research communities. Digital watermarking is a technique to hide information into an innocuous-looking 


media object, which is called ‘host,’ so that no one can suspect the existence of hidden information. It is 


intended to provide a degree of copyright protection as use of digital media mushrooms [1]. Depending on 


the type of the host signal to cover hidden information, watermarking is classified into image watermarking 


and audio watermarking. In this paper, we focus our attention on audio watermarking but the approach can 


be applied to image watermarking as well.  


Numerous audio watermarking techniques have been proposed and the most important ones being Least 


Significant Bits (LSB) [2], Phase coding [3], Echo hiding [4] and spread spectrum watermarking (SSW) 


[5]. The latter, SSW, is known as the most promising watermarking method due to its high robustness 


against noise and high perceptual transparency. The main idea of SSW is to add the spread spectrum of 


hidden information to the spectrum of the host signal. Spreading the spectrum of the hidden information is 


performed by means of a pseudo-random noise (PN) sequence.  


Detection of hidden information from the received watermark signal is performed using the exact PN 


sequence adopted for spreading the spectrum of hidden information. Therefore, the receiver should have 


access to the PN sequence for detection. This essential, private knowledge results in a highly secure 


transmission of information against any unauthorized user who does not have access to the PN sequence 


and the location of the watermark. Hence, the PN sequence can be regarded as a secret key which is shared 


between the transmitter and the receiver. 


In [6], genetic algorithms (GAs) have been presented for detecting hidden information, even though the 


receiver has no prior knowledge on the transmitter’s spreading sequence. However, iterative fitness 


function evaluation for such a complex problem is often the most prohibitive and limiting segment of this 


approach. For the problem of recovering the PN sequence, sequences with different periods have different 


converging times. In the study reported in [6], it has been shown that converging time increases 


exponentially as the period of the PN sequence increases. So, the approach fails by losing the validity of 


information. The greater the PN sequence is, the more difficult is the situation for recovering the PN 


sequence and the more secure SSW will result. Note hereby that a greater period of the PN sequence 


decreases the capacity of the SSW algorithm for embedding hidden information. To alleviate the problem 


of exponentially increasing converging times, a variety of techniques for constructing approximation 


models – often referred to as metamodels – have been proposed [7]-[14]. For computationally expensive 







 
 


 


optimization problems such as the detection of hidden information, it may be necessary to strike a balance 


between exact fitness evaluation and approximate fitness evaluation. A popular subclass of fitness function 


approximation methods is fitness inheritance where fitness is simply transmitted (or “inherited”) [7, 8]. A 


similar approach named “Fast Evolutionary Strategy” (FES) has also been suggested in [9], in which the 


fitness of a child individual is the weighted sum of its parents. In that approach, fitness and associated 


reliability values are assigned to each new individual, and then the actual fitness function is only evaluated 


when the reliability value is below a certain threshold. Further, Reyes Sierra and Coello Coello [17] 


incorporated the concept of fitness inheritance into a multi-objective particle swarm optimizer to reduce 


the number of fitness evaluations [17]. In [18], they tested their approach on a well-known test suite of 


multi-objective optimization problems. They generally reported lower computation cost, while the quality 


of their results improved in higher dimensional spaces. However, as also shown in [19] as well as in this 


paper, the performance of parents may not be a good predictor of their children for sufficiently complex 


and multiobjective problems in rendering fitness inheritance inappropriate under such circumstances. 


Other common approaches based on learning and interpolation from known fitness values of a small 


population, (e.g. low-order polynomials and least square estimations [10], artificial neural networks 


(ANN), including multi-layer perceptrons [11] and radial basis function networks [12], support vector 


machines (SVM) [13], regression models [14],  etc.) can also be employed. 


In 1979, Zadeh [28] developed fuzzy information granulation as a technique by which a class of points 


(objects) is partitioned into granules, with a granule being a clump of objects drawn together by 


indistinguishability, similarity, and/or functionality. The fuzziness of granules and their attributes is 


characteristic of the ways by which human concepts and reasoning are formed, organized and manipulated. 


The concept of a granule is more general than that of a cluster, potentially giving rise to various conceptual 


structures in various fields of science as well as in mathematics.  


In this paper, with a view to reducing computational cost, we employ the concept of fuzzy granulation to 


effectively approximate the fitness function in evolutionary algorithms (EAs). In other words, the concept 


of fitness granulation is applied to exploit the natural tolerance of EAs in fitness function computations. 


Nature’s “survival of the fittest” does not necessarily mean exact measures of fitness; rather it is about 


rankings among competing peers [29]. By exploiting this natural tolerance for imprecision, optimization 


performance can be preserved through computing fitness only selectively based on the ranking among 


individuals in a given population. Unlike existing approaches, the fitness values are not interpolated or 


estimated; rather the similarity and indistinguishability among real solutions is exploited.  


In the proposed algorithm as explained in details in [15, 16] and called adaptive fuzzy fitness granulation 


(AFFG), an adaptive pool of solutions (fuzzy granules) with an exactly computed fitness function is 







 
 


 


maintained. If a new individual is sufficiently similar to a known fuzzy granule, then that granule’s fitness 


is used instead as a crude estimate. Otherwise, the individual is added to the pool as a new fuzzy granule. In 


this fashion, regardless of the competition’s outcome, fitness of the new individual is always a physically 


realizable one, even if it is a “crude” estimate and not an exact measurement. The pool size as well as each 


granule’s radius of influence self-adaptively grow or shrink depending on the utility of each granule and the 


overall population fitness. To encourage fewer function evaluations, each granule’s radius of influence is 


initially large and then gradually shrunks in the course of evolution. This encourages more exact fitness 


evaluations when competition is fierce among more similar and converging solutions. Furthermore, to 


prevent the pool from growing too large, granules that are not used are gradually eliminated. This fuzzy 


granulation scheme is applied here as a type of fuzzy approximation model to efficiently detect hidden 


information from spread spectrum watermarked signals. Finally, a fuzzy supervisor is developed for 


adaptively, automatically adjusting system parameters. 


The paper is organized as follows: Section 2 presents the framework of adaptive fuzzy fitness 


granulation (AFFG). An auto-tuning strategy for determining width of membership functions (MFs) is also 


presented in the section; by which the need of exact parameter setting is eliminated, without affecting the 


rate of convergence. This approach is called adaptive fuzzy fitness granulation with fuzzy supervisory 


(AFFG-FS). In section 3, the proposed algorithm is tested on three traditional optimization benchmarks 


with four different dimensions. In Section 4, the recovery of the PN sequence from a received watermarked 


signal using the proposed approach is illuminated. Some supporting simulation results and discussion 


thereof are also presented in the section. Finally, conclusions are drawn in Section 5. 







 
 


 


2. The AFFG Framework [15] 


Adaptive fuzzy fitness granulation (AFFG) was first proposed in [15]. It includes a global model of a 


genetic algorithm (GA) which is hybridized with a fuzzy granulation (FG) tool (see Figure 1). The 


expensive fitness evaluation of individuals required in traditional GA, can be partially replaced by an 


approximation model. Explicit control strategies are used for evolution control, leading to a considerable 


speedup without compromising heavily on the solution accuracy. While the approximation techniques 


themselves are widely known for accelerating the iterative optimization process, the focus of AFFG lies in 


promoting controlled speedup in view of avoiding detrimental effects of the approximation. The following 


section presents the main elements of the AFFG framework. 


A. Basic Idea 
The proposed adaptive fuzzy fitness granulation aims to minimize the number of exact fitness function 


(FF) evaluations by maintaining a pool of solutions (fuzzy granules) by which can be used to approximate 


solutions in further stages of the evolutionary process. The algorithm uses Fuzzy Similarity Analysis (FSA) 


to produce and update an adaptive competitive pool of dissimilar solutions (granules). When a new solution 


is introduced to this pool, granules compete by a measure of similarity to win the new solution and thereby 


to prolong their lives in the pool. In turn, the new individual simply assumes fitness of the winning (most 


similar) individual in this pool. If none of the granules are sufficiently similar to the new individual (i.e., if 


their similarity is below a certain threshold), the new individual is instead added to the pool after its exact 


fitness is evaluated by the actual fitness function. Finally, granules that cannot win new individuals are 


gradually eliminated in order to avoid consistent growth of the pool. The basic idea of the proposed 


Figure 1.   The architecture of the proposed algorithm 
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algorithm is graphically shown in Figure 1 and is discussed in more detail in the next section. For even 


more details, we refer to [15, 16]. 


B. Basic Algorithm Structure 


Step 1: Create a random parent population }...,,...,,,{ 111
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j xxxxX =  is the j-th individual in the i-th generation, i


rjx ,  the r-th parameter 


of i
jX , m the number of design variables and t the population size.  


Step 2: Define a multi-set G of fuzzy granules ),,( kkk LC σ  according to 
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the first granule ( 1
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Step 4: Define the membership function kr ,µ  by a Gaussian similarity neighborhood function for each 


parameter k according to  
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where l is the number of fuzzy granules. 


Remark: kσ  is the distance measurement parameter that controls the degree of similarity between two 


individuals. Like in [12], kσ  is defined based on equation (2). According this definition, the granules 


shrink or enlarge in reverse proportion to their fitness:  
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where 0>β  is an emphasis operator and γ a constant of proportion. The problem arising here is how to 


determine β  and γ as design parameters. The fact is that these two parameters are problem dependent and 


in practical, number of trials is needed to adjust these parameters. This trial is based on a simple rule with 


respect the acceleration of the parameter optimization procedure: high speed needs to have enlargement in 


the granule spread and, as a consequence of this, less accuracy in fitness approximation, vice versa. To deal 


with this rule, a fuzzy controller with three inputs is adopted (see Section 2.D). 







 
 


 


Step 5: Compute the average similarity of a new solution } , ... ,  , ... ,  , { ,,2,1,
i


mj
i


rj
i
j


i
j


i
j xxxxX =  to each 


granule kG  using ∑
=


=
m


r


i
rjrk


kj m


x


1


,,
,


)(µ
µ .   


Step 6: Either calculate the exact fitness function (FF) of i
jX  or estimate the FF by associating it to one 


of the granules in the pool in case there is a granule in the pool with higher similarity to ijX  than a 


predefined threshold, i.e.:  
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constant of proportionality that is usually set at 0.9 unless otherwise indicated. The threshold iθ  increases 


as the best individual’s fitness in generation i  increases. As the population matures and reaches higher 


fitness values (i.e., while converging more), the algorithm becomes more selective and uses exact fitness 


calculations more often. Therefore, with this technique we can utilize the previous computational efforts 


during previous generations. Alternatively, if i
kj


lk
Max θµ <


∈
}{ ,


},...,2,1{
, i


jX  is chosen as a newly created 


granule.  


Step 7: If the population size is not completed, repeat Step 5 to Step 7. 


Step 8: Select parents using suitable selection operator and apply genetic operators namely 


recombination and mutation to create new generation. 


Step 9: When termination/evolution control criteria are not met, then update kσ  using eqn. (2) and 


repeat Step 5 to Step 9.  


C. How to Control the Length of the Granule Pool? 
As the evolutionary procedures proceed, it is inevitable that new granules are generated and added to the 


pool. Depending on complexity of the problem, the size of this pool can become excessive and become a 


computational burden itself. To prevent such unnecessary computational effort, a “forgetting factor” is 


introduced in order to appropriately decrease the size of the pool. In other words, it is better to remove 


granules that do not win new individuals, thereby producing a bias against individuals that have low fitness 







 
 


 


and were likely produced by a failed mutation attempt. Hence, kL  is initially set to N and subsequently 


updated as below, 
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where M is the life reward of the granule and K is the index of the winning granule for each individual in 


generation i. At each table update, only GN  granules with highest kL  index are kept, and others are 


discarded. In [16], an example has been provided to illustrate the competitive granule pool update law.  


While adding a new granule to the granule pool and assigning a life index to it is a simple way of 


controlling the size of the granule pool, since the granules with the lowest life index will be removed from 


the pool, it may happen that the new granule is removed, even though it was just inserted into the pool. In 


order to prevent this, the pool is split into two parts with sizes GNε  and GN)1( ε− . The first part is a FIFO 


(First In, First Out) queue and new granules are added to this part. If it grows above GNε , then the top of 


the queue is moved to the other part. Removal from the pool takes place only in the GN)1( ε−  part. In this 


way, new granules have a good chance to survive a number of steps. In all of the simulations that are 


conducted here, ε  is set at 0.1.  


The distance measurement parameter is completely influenced by granule enlargement/shrinkage in 


widths of the produced MFs. As in [34], the combined effect of granule enlargement/shrinkage is in 


accordance with the granule fitness and it requires the fine-tuning of two parameters, namely β  and γ . 


These parameters are problem dependent and it seems critical to set up a procedure in order to deal with this 


difficulty. The next section presents an auto-tuning strategy for determining the width of MFs which 


removes the need of exact parameter determination, without negative influence on the convergence speed. 


D. How to Determine the Width of the Membership Functions? 
It is crucial to have accurate estimation of the fitness function of the individuals in the finishing 


generations. In the proposed method, it can be accomplished by controlling the width of the produced MFs. 


At early steps of evolution, by choosing relatively large WMFs, the algorithm accepts individuals with less 


degree of similarity as similar individual. Therefore, the fitness should be computed by more often by 


estimation/association to the granules. As the individuals mature and reach higher fitness values, the width 


TABLE I  
Fuzzy Rules of the First Controller 


  NDV 
  Zero Small   Big 


 Zero 0 0.125 0.25 
MRDV Small 0.375 0.5 0.625 


 Big 0.75 0.875 1 
 







 
 


 


decreases and the similarity between individuals should increase in order to be accepted as similar 


individuals. This prompts higher selectivity for granule associability and higher threshold for estimation. In 


short, in later generations, the degree of similarity between two individuals must be larger than that in the 


early generations, to be accepted as similar individuals. This procedure ensures a fast convergence rate due 


to rapid computation at the early phase and accurate fitness estimation at the later stage.  


 


 


To achieve these desiderata, a fuzzy supervisor with three inputs is employed. During the AFFG search, 


the fuzzy logic controller observes the Number of Design Variables (NDV), the Maximum Range of 


Design Variables (MRDV) and the percentage of completed trials, and specifies the WMFs. The first input 


is the NDV and the Range of the input variables (RIV) is the second one. Large values of the NDV and 


MRDV need big width in the MFs, vice versa. The Percent Completed Generations (PCG) is the third input, 


which takes a number in the range [0, 1], where ‘1’ signifies exhaustion of all allowed trials. This concerns 
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Figure. 3   Flow-diagram of Proposed Fuzzy Controller 
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the maturity level of search, given a fixed amount of resources. The combined effect of granule 


enlargement/shrinkage in accordance to PCG is to realize both rapid computation and accurate fitness 


estimation.  


The architecture for adaptive fuzzy control of the WMFs is visualized in Figure 2. Gaussian MFs are 


used for specification of the knowledge base of the fuzzy logic controller. The knowledge base for 


controlling the WMFs based on the above architecture has a large number of rules and the extraction of 


these rules is very difficult. Consequently, a new architecture (as shown in Figure 3) is proposed, in which 


the controller is separated in two controllers to diminish the complexity of the system and to reduce the 


number of rules. The first controller has two inputs (with three MFs in each, Zero(0, 0.3), Small(0.5, 0.3), 


Big(1.0, 0.3), the first number is the center and the second one is the spread), and the second controller has 


only one input. As shown in Figure 3, the spread of the granules is provided by the multiple output of the 


controllers. The knowledge base for the first controller is shown in Table 1. The Gaussian MFs with equal 


width in each (0.3) are used for output. The second controller has just one Gaussian MF in which 0 and 1.25 


are its center and spread, respectively. The fuzzy system (that employs singleton fuzzifier, products 


inference engine, and center average defuzzifier) adjusts 
kσ  after each generation.  


3. BENCHMARK PROBLEMS AND NUMERICAL RESULTS 


To illustrate the efficacy of the proposed granulation techniques, a set of 3 traditional optimization 


TABLE II 
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TABLE III 
Parameters used for AFFG 


Function β γ 


Griewangk 0.00012 190 
Rastrigin 0.004 0.15 
Ackley 0.02 0.25 


 







 
 


 


benchmarks (shown in Table 2) are chosen namely: Griewangk, Rastrigin and Ackley. These benchmark 


functions are scalable and are commonly used to assess optimization algorithms. They have some 


intriguing features which most optimization algorithms find hard to deal with.  


The Ackley function [31], [32] has an exponential term by which numerous local minima are produced. 


Analyzing a wider region helps to cross the valley along local optima, thereby achieving better solutions. 


The global optimum is always 0)( =xf , which is obtained at 1=ix , i∀ . 


The Rastrigin function [30] is created by adding a cosine modulation term to Sphere function. It consists 


of a large number of local minima whose values increase in receding from the global minimum. The global 


optimum is always 0)( =xf  which occurs at 0=ix , i∀ . 


The Griewangk function [33] is also highly multimodal. Unlike Ackley and Rastrigin functions, it has a 


product term that introduces interdependence among variables. It is hard to find the optimal solution 


without some information on the variables’ dependences. Regardless of its dimensionality, the global 


optimum is 0)( =xf  where 0=ix , i∀ . 


The aim of the empirical study consists of investigating the search capability, as a function optimizer, of 


the proposed granulation technique (AFFG-FS), compared to the conventional GA, FES and AFFG 


techniques. The parameters are summarized in Table III.  


The GA routine utilizes random initial populations, binary-coded chromosomes, single-point crossover, 


bit-wise mutation, fitness scaling, and an elitist stochastic universal sampling selection strategy. Moreover, 


crossover and mutation probabilities are PXOVER = 1 and PMUTATION = 0.01 respectively, the population size is 


20, and the maximum number of generations is 100. Finally chromosome length varies depending on the 


number of variables in a given problem, but each variable’s length is set to 8 bits. The total number of 


generations as well as the termination criterion is determined during several trial runs to ensure the 


convergence of the algorithm on the three benchmark problems.  


AFFG and AFFG-FS uses all of the above evolutionary parameters as in a GA to establish analysis only 


from the perspective of granulation and in order to keep track of the best solution found. Ten independent 


runs of each experiment were executed.  


As to FES, a fitness and an associated reliability values are assigned to each new individual. The fitness 


is actually evaluated if the reliability value is below a certain threshold. The reliability value varies 


between 0 and 1 and depends on two factors: the first one is the reliability of parents, and the second one is 


the closeness of parents and children in the solution space. Three different levels for T , i.e., 0.5, 0.7 and 0.9, 


have been used here which equal to ones proposed in [24].  


In this experiment, four sets of dimensions are considered for each test function; namely n = 5, 10, 20 and 


30. As for AFFG and AFFG-FS, the number of individuals in the granule pool is varied between 20, 20, 40 







 
 


 


and 80 respectively. The reported results were obtained by achieving the same level of fitness evaluations 


for both the proposed method (AFFG-FS) and the comparative references (GA, FES and AFFG), namely 


500 for 5-D (dimension), 1000 for 10-D, 2000 for 20-D and 3000 for 3-D. 


The average convergence trends of the standard GA, FES, AFFG and AFFG-FG are summarized in 


Figures 4-15. All the results presented were averaged over 10 runs. In figure 4-18, the y-axis denotes the 


(average) fitness value in common logarithmic scale, and the x-axis denotes the number of exact function 


evaluation.  
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Figure 4: Convergence Trend of GA, FES, AFFG and AFFG-FS on 5-D Griewangk function. 
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Figure 5: Convergence Trend of GA, FES, AFFG and AFFG-FS on 10-D Griewangk function. 
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Figure 6: Convergence Trend of GA, FES, AFFG and AFFG-FS on 20-D Griewangk function. 
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Figure 7: Convergence Trend of GA, FES, AFFG and AFFG-FS on 30-D Griewangk function. 
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Figure 8: Convergence Trend of GA, FES, AFFG and AFFG-FS as applied to 5-D Rastrigin function. 
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Figure 9: Convergence Trend of GA, FES, AFFG and AFFG-FS as applied 10-D Rastrigin function. 
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Figure 10: Convergence Trend of GA, FES, AFFG and AFFG-FS as applied to 20-D Rastrigin function. 
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Figure 11: Convergence Trend of GA, FES, AFFG and AFFG-FS as applied to 30-D Rastrigin function. 
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Figure 12: Convergence Trend of GA, FES, AFFG and AFFG-FS with regard to 5-D Ackley function. 
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Figure 13: Convergence Trend of GA, FES, AFFG and AFFG-FS with regard to 10-D Ackley function. 
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Figure 14: Convergence Trend of GA, FES, AFFG and AFFG-FS with regard to 20-D Ackley function. 
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Figure 15: Convergence Trend of GA, FES, AFFG and AFFG-FS with regard to 30-D Ackley function. 


 


As shown in Figures 4-15, the search performance of AFFG and AFFG-FS are superior to GA and FES, 


even with a small number of individuals in the granule pool. The results also illustrate that fitness 


inheritance method (i.e., FES), albeit being comparable in smaller dimensions, deteriorates as the problem 


size increases.  


We also studied the effect of varying the number of granules GN  on the convergence behavior of AFFG 


and AFFG-FS. The comparison can be made by the results obtained in Figures 16-18. The good news from 


the results is that AFFG and AFFG-FS are not so sensitive to GN . However, further increase of GN  slows 


down the rate of convergence due to the imposed computational complexity.   
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Figure 16: Effect of Varying }100,50,20{∈GN  on Convergence Trend for Griewangk function. 
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Figure 17: Effect of Varying }100,50,20{∈GN  on Convergence Trend for Rastrigin function. 
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Figure 18: Effect of Varying of }100,50,20{∈GN  on Convergence Trend for Ackley function. 


4. SPREAD SPECTRUM WATERMARKING 


This section bears out the effectiveness of the proposed granulation technique in real world applications. 


To this end, we consider a hidden information detection problem such that the correct PN sequence must be 


recovered from a spread spectrum watermarked signal. Spread spectrum watermarking (SSW) has been 


perceived to be a powerful watermarking scheme that offers high robustness (surviving hidden information 


after noise addition), high transparency (high quality of watermarked signal after addition of hidden 


information) and high security (against unauthorized users) to hide the bits of information. SSW uses the 


idea of spread spectrum communication to embed bits of information into a host signal. Spreading the 


spectrum of the hidden information is carried out by a pseudorandom noise (PN) sequence. A PN sequence 


is a zero mean, periodic binary sequence with a noise-like waveform whose bits are equal to +1 or –1 [25]. 


To embed each bit of hidden information m(i), i = 1, 2…, into a host signal, the embedder conducts the 


following steps.  


Step. 1: Generates one period of the PN sequence by a PN sequence generator. 


Step. 2: Multiplies m(i) by all the bits of the generated PN sequence to generate a watermark signal as 


follows: 
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where p(n) is the n-th bit of the PN sequence and w(i) is the i-th block of the watermark signal.  


Step. 3: Produces a watermarked signal s(w,x) as follows:  


)()(),( nxnwxwS += λ (6) 


Then the watermarked signal S(w,x) is sent to the receiver.   


Extraction of hidden information from a received watermarked signal at the detector can be done using the 


correlation property of the PN sequence. Cross correlation C(.,.) between two PN sequences pa and pb is 


given as (7) [26]: 
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Hence, cross correlation between a watermarked signal and a PN sequence can be written as: 
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Equation (8) expresses that the bit of hidden information can be determined by calculating the correlations 


between the received watermarked signal and the PN sequence employed at the transmitter, and comparing 


the result with a threshold. 


A. RECOVERING THE PN SEQUENCE 
In general, it is very hard to recover the PN sequence from a spread spectrum watermarked signal where 


no information about the PN sequence or its location is known. The reason is that there are vast regions for 


the solution sets of possible PN sequences. For instance, to recover a PN sequence with a period equal to 63 


bits, 263 PN sequences must be generated.  


To make the problem of recovering the PN sequence more tractable, we assume that the exact location of 


the watermark in the watermarked signal is known. In this section, a novel algorithm for detecting the 


location of the watermarked signal will be explained. In [20], an approach for detecting hidden information 


from an image spread spectrum signal has been proposed. This approach detects abrupt jumps in the 


statistics of the watermarked signal to recover the PN sequence. However, the algorithm which is based on 


hypothesis tests for detection of abrupt jump in the statistics is very complicated and its performance 


suffers from low frequency embedding. 


Our approach to recover the PN sequence is based on unconstrained optimization. We have a set of 


feasible solutions available in order to find the global minimum of a cost function. The feasible solutions 


are sequences with the period length of the PN sequence and elements of +1 and –1. A cost function for this 







 
 


 


problem can be defined by a exploring a very useful property of SSW (in detection), namely the correlation 


property of the PN sequence. Thus, the proper cost (fitness) function is the cross correlation between the 


generated sequence and the watermarked signal as is defined in Equation (8).  


In [21], an interesting method for recovering the PN sequence of the spread spectrum signal with a 


predefined SNR has been proposed. The approach uses a GA approach with a fitness function based on the 


cross correlation between the estimated PN sequence and the spread spectrum. However, spread spectrum 


watermarking is more complicated than a single spread spectrum signal since, in SSW, the spread spectrum 


hidden information is like a white Gaussian noise for the host signal. 


We observe here that the computation of the cross correlation between the sequences of possible 


solutions’ set and the watermarked signal for only one block of the SSW signal would not converge to the 


PN sequence used at the transmitter. This is because the energy of host signal is at least 12 dB more than the 


energy of the watermark, and that has a strong effect on maximizing the cross correlation (i.e., the 


optimization algorithm converges to a sequence that maximizes the correlation with the host). As a solution 


to this problem, several consequence blocks of the watermark (i.e. several bits of hidden information) 


should be considered in the computation of the cross correlation. In this case, the watermark signal has a 


stronger effect than the host signal on maximizing the cross correlation function. 


Carrying out the global optimization by searching over the entire solution set, as mentioned above, is the 


subject of deterministic methods such as covering methods, tunneling methods, zooming methods, etc. 


Such methods discover the global minimum by an exhaustive search over the entire solution set. For 


instance, the basic idea is to cover all the feasible solutions by evaluating the objective function at all points 


[22]. Although these schemes have high reliability and accuracy is always guaranteed, they are not 


practical due to their poor convergence [23].  


Since the solution set is vast, we need an efficient optimization algorithm with high reliability and fast 


converging rate. Many stochastic optimization algorithms have been proposed such as GA, simulated 


annealing, ant colony, etc. However, the GA approach has been perceived to be promising in a wide range 


of applications. Moreover, it is apt to strike an attractive balance between reliability and converging rate. In 


this regard, we have chosen the GA framework for the global optimization task. In order to further enhance 


the search capability, we employ the proposed AFFG-FS (of Section II) with a view to reduce the number 


of expensive fitness evaluations by incorporating an approximate model. 


B. Empirical Results for Recovering PN Sequence 
This empirical study focuses on performance improvement of the proposed granulation technique 


(AFFG-FS) in comparison with conventional GA approaches [35]. In Section 3, it has been exhibited that 


the fuzzy supervisory part of AFFG-FS gets rid of the need of exact parameter determination of AFFG, and 







 
 


 


their performances are comparable to each other. Moreover, it has also been shown that FES is much worse 


than the granulation techniques. As such, we did not take into account the original AFFG and FES as 


comparative references in this experiment.  


In order to reasonably keep track of the best solution found, the GA uses roulette-wheel selection with 


elitism. Moreover, one-point crossover and bit-wise mutation are implemented. Crossover and mutation 


probabilities used are 1.0 and 0.01, respectively. The population size is set to 20 with the elite size of 2.  


For AFFG-FS, the number of individuals in the granule pool varies between 10, 20 and 50. The reported 


results were obtained by achieving the same level of fitness evaluations for both a canonical GA and the 


proposed AFFG-FS. In this experiment, all results were averaged over 10 runs. 


Average convergence performance of GA and AFFG-FG is depicted in Figures 19-21 and is summarized 


in Table IV. It is seen that cross correlation values returned by AFFG with NG ={10,20,50} are much better 


than that of GA. It is also observed that the cross correlation increases, albeit insensitive, with the number 


of granules. However, the increase of NG slows down the rate of convergence due to its imposed 


computational complexity. Moreover, Table IV exhibits that the rate of convergence of AFFG-FS is, on 


average, 3.5 times faster than that of GA.  It is noted that the performance gain is not so dependent on the 


chip length of the PN sequence (i.e., problem size). From the results, it can be concluded that the search 


performance of AFFG-FS is superior to that of the GA, even with the small number of individuals in the 


granule pool.   
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Figure 19: Cross correlation between the estimated PN sequence with the period of 255  
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Figure 20: Cross correlation between the estimated PN sequence with the period of 127  
chips and the watermarked signal 
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Figure 21: Cross correlation between the estimated PN sequence with the period of 63  
chips and the watermarked signal 







 
 


 


 
 


Table IV: Performance comparison of GA and AFFG-FS with NG={10, 20, 50} 


Chip Length  Criteria-I Criteria-II Criteria-III 


255 


GA 4.51 4.16 9934 


AFFG-FS, 10 5.90 5.58 3817 


AFFG-FS, 20 6.10 5.72 2969 


AFFG-FS, 50 6.19 5.86 2156 


127 


GA 6.54 6.16 9994 


AFFG-FS, 10 8.39 7.88 3211 


AFFG-FS, 20 8.00 7.60 2952 


AFFG-FS, 50 8.45 8.14 2194 


63 


GA 10.17 9.57 9965 


AFFG-FS, 10 10.29 10.18 2978 


AFFG-FS, 20 10.36 10.29 2547 


AFFG-FS, 50 10.39 10.28 1904 


Criteria-I: The best cross correlation of population at the last generation. 


Criteria-II: The average cross correlation of population at the last generation. 


Criteria-III: The average number of fitness evaluations until the same cross correlation value is reached 


(the values are equal to the average cross correlation of population achieved by GA at the last generation); 


4.16 for 255 chips, 6.16 for 127 chips, 9.57 for 63 chips. 


5. Concluding Remarks 


An intelligent guided technique via an adaptive fuzzy similarity analysis for fitness granulation, called 


adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS), has been presented. The aim was to 


decide on use of expensive function evaluation and adapt the predicted model in a dynamic manner. A 


fuzzy supervisor as an auto-tuning strategy has also been proposed in order to avoid the tuning of 


parameters. Empirical evidence on its effectiveness over existing approaches (i.e., GA and FES) was 


adduced with widely-known benchmark functions. In detail, numerical results showed that the proposed 


technique is capable of optimizing functions of varied complexity efficiently. It was seen that AFFG and 


AFFG-FS are not much sensitive to the number of granules ( GN ), and smaller values of GN  still lead to 


good results. Moreover, the auto-tuning of fuzzy supervisor eliminated the need for exact parameter 


determination without compromising convergence performance.  


The proposed AFFG-FS has been further extended into detecting hidden information from a spread 







 
 


 


spectrum watermarked signal. Under the assumption of knowing the location of hidden information, the 


knowledge necessary for detecting hidden information at the receiver (that is the PN sequence used at the 


transmitter) could be detected. Experimental studies demonstrated that AFFG-FS is capable of rapidly 


detecting hidden information.  
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