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Abstract The selection mechanisms that are most commonly adopted by
Multi-Objective Evolutionary Algorithms (MOEAs) are based on Pareto opti-
mality. However, recent studies have provided theoretical and experimental ev-
idence regarding the unsuitability of Pareto-based selection mechanisms when
dealing with problems having four or more objectives. In this paper, we propose
a novel MOEA designed for solving many-objective optimization problems.
The selection mechanism of our approach is based on the transformation of a
multi-objective optimization problem into a linear assignment problem (LAP),
which is solved by the Kuhn-Munkres’ (Hungarian) algorithm. Our proposed
approach is compared with respect to three state-of-the-art MOEAs, designed
for solving many-objective optimization problems (i.e., problems having four
or more objectives), adopting standard test problems and performance indi-
cators taken from the specialized literature. Since one of our main aims was
to analyze the scalability of our proposed approach, its validation was per-
formed adopting test problems having from two to nine objective functions.
Our preliminary experimental results indicate that our proposal is very com-
petitive with respect to all the other MOEAs compared, obtaining the best
results in several of the test problems adopted, but at a significantly lower
computational cost.
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1 Introduction


A large number of problems arise in academic and industrial areas, where
there is a need to optimize several conflicting objectives simultaneously [11].
They are known as multi-objective optimization problems (MOPs). In general,
MOPs do not have a single solution, but a set of them, representing the best
possible trade-offs among all the objective functions of the problem.


The notion of optimality normally adopted in multi-objective optimization
is Pareto optimality, which refers to the process of finding the best possible
trade-offs among the objective functions of an MOP. These solutions consti-
tute the Pareto Optimal Set. The hyper-surface formed by the Pareto optimal
solutions when plotted in objective function space, is called the Pareto Optimal
Front. Among the different techniques available to solve MOPs, multi-objective
evolutionary algorithms (MOEAs) have become very popular, mainly due to
their flexibility, their capability of approximating the Pareto Optimal Set in a
single run and their effectiveness in a wide variety of problems [11]. When solv-
ing an MOP, we normally aim to minimize the distance between the approxi-
mation found and the Pareto Optimal Front, while obtaining a distribution of
solutions as uniform as possible along the Pareto Optimal Front. It is impor-
tant to note, however, that although the distance between the approximation
set generated by a MOEA and the Pareto Optimal Front is normally avail-
able in benchmark problems, in real-world applications, this value is typically
unknown.


For several years, the selection mechanisms that were most commonly
adopted by MOEAs were those based on Pareto optimality. However, recent
studies have provided theoretical and experimental evidence regarding the
unsuitability of Pareto-based selection mechanisms when dealing with prob-
lems having four or more objectives (the so-called many-objective optimization
problems) [20,32]. In such cases, the number of nondominated solutions sig-
nificantly increases, which makes harder to generate selection pressure, giving
rise to a phenomenon known as dominance resistance [24,32]. Dominance resis-
tance can influence the performance of MOEAs in several ways. For example,
this phenomenon may limit the ability of the dominance relation to distinguish
between good-quality and poor-quality solutions.


A strategy to improve the scalability of MOEAs to deal with many-objective
problems is to increase the selection pressure towards the Pareto Optimal
Front. For this sake, many researchers have created alternative dominance re-
lations to provide more strict dominance criteria (e.g., preferability, preferred,
ε-preferred, k-optimality, and preference order ranking [20]). Nevertheless, us-
ing a different dominance relation for selection may guide the search towards
a specific subspace and it could consequently fail to produce well-spread solu-
tions along the entire Pareto Optimal Front [11]. Besides, as the proportion of
locally Pareto non-dominated solutions increases and the generated solutions
are likely to be also non-dominated, diversity operators become the primary
mechanism for determining survival. However, the constant application of di-
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versity maintenance mechanisms can cause deterioration of solutions and can
prevent the convergence of a MOEA [32].


In this work, we propose to use an alternative selection mechanism which
is not based on Pareto optimality or on any performance indicator and which
we argue that is part of a different family of selection mechanisms for MOEAs.
Our proposed approach performs a transformation of the original MOP into
a linear assignment problem which is then solved using the Kuhn-Munkres
(Hungarian) algorithm [26]. As will be seen below, this paper extends and
improves the proposal that we originally introduced in [4]. We will show how
our proposed approach represents a novel choice for solving many-objective
optimization problems in an effective and efficient manner.


The remainder of this paper is organized as follows. Section 2 states the
problem of our interest. Thereafter, in Section 3, we present a brief discussion
of the most relevant previous related work. In Section 4, we describe in detail
our proposed approach. The experiments performed and the results obtained
are described and discussed in Section 5. Finally, our conclusions and some
possible paths for future work are briefly discussed in Section 6.


2 The Multi-objective Optimization Problem


Without loss of generality, we will assume only minimization problems. We
are interested in solving problems of the type:


minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)


subject to:


gi(x) ≤ 0 i = 1, 2, . . . ,m (2)


hi(x) = 0 i = 1, 2, . . . , p (3)


where x = [x1, x2, . . . , xn]
T


is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.


To describe the concept of optimality in which we are interested, we will
introduce next a few definitions [11].


Definition 1. Given two vectors u,v ∈ IRk, we say that u ≤ v if ui ≤ vi for
i = 1, ..., k, and that u < v if u ≤ v and u 6= v.


Definition 2. Given two vectors u,v ∈ IRk, we say that u dominates v
(denoted by u ≺ v) iff u < v.


Definition 3. We say that a vector of decision variables x∗ ∈ F (F is the
feasible region) is Pareto optimum if there does not exist another x ∈ F
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such that f(x) ≺ f(x∗).


Definition 4. The Pareto Optimal Set P∗ is defined by:


P∗ = {x ∈ F|x is Pareto optimum}


Thus, the Pareto Optimal Set contains solutions in which it is not pos-
sible to improve one objective without worsening another. The vectors x∗


corresponding to the solutions included in the Pareto Optimal Set are called
nondominated.


Definition 5. The Pareto Optimal Front PF∗ is defined by:


PF∗ = {f(x) ∈ IRn|x ∈ P∗}


When plotted in objective function space, the nondominated vectors con-
tained in the Pareto Optimal Set are collectivelly known as the Pareto Optimal
Front.


Evidently, our aim is to determine the Pareto Optimal Set from the set F
of all the decision variable vectors that satisfy (2) and (3).


3 Previous Related work


In this section, we present a brief review of the main strategies that have been
proposed in the specialized literature to deal with many-objective optimization
problems using MOEAs. For a comprehensive and more detailed review on
many-objective optimization, the interested reader is referred to other papers
(see for example [29,37,27,21]).


The Nondominated Sorting Genetic Algorithm-III (NSGA-III) [13] is one of
the most popular MOEAs adopted for many-objective optimization. NSGA-III
modifies the selection mechanism of NSGA-II by a clustering operator (aided
by a set of well-distributed reference points). NSGA-III performs an analysis of
the distances of the individuals in the population with respect to the supplied
reference points, preferring population members that are non-dominated and
close to such reference points.


An approach called θ-Dominance-based Evolutionary Algorithm (θ-DEA)
was proposed in [40] with the aim of improving the convergence of NSGA-III
while preserving its good diversity properties. θ-DEA performs the computa-
tion of reference vectors proposed by Das and Dennis [12] combined with a
non-dominated sorting procedure, based on the θ-dominance relation, for the
selection of new individuals. θ-dominance produces solutions that are asso-
ciated to particular (well-distributed) reference points and, therefore, favors
both convergence and diversity.


Decomposition is another well-established technique for dealing with MOPs,
which has been found to be efficient and effective when coupled to evolution-
ary algorithms even when dealing with many objectives. MOEA/D [41] is
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Fig. 1: Behavior of MOEA/D when solutions are replaced. For each weight vec-
tor wi, i = 1, 2, 3, 4, 5, the solution x6 has the highest utility value. Therefore,
x6 is the best solution of the four subproblems.


perhaps the most popular MOEA based on decomposition. This algorithm
decomposes the MOP into a set of single-objective subproblems (by means
of well-defined scalarizing functions) and solves these subproblems simultane-
ously using an evolutionary algorithm. It adopts a set of weights each of which
corresponds to a single subproblem. Each weight vector is adopted as a search
direction to define a scalar function. MOEA/D has shown to be a very good
alternative to solve MOPs with low or high dimensionality (regarding obje-
tive function space). However, MOEA/D has some important drawbacks. For
instance, it creates a new solution from a fixed neighborhood and, therefore,
the new solution cannot be created from solutions which belong to different
neighborhoods. Also, a new solution with a high fitness value replaces several
solutions and, therefore, the population can lose diversity, as depicted in Fig-
ure 1. A variant of MOEA/D proposed by Li and Zhang in [28], which is called
“MOEA/D-DE”, allows a new solution to be generated from solutions from
different neighborhoods. This approach limits the number of solutions that can
be replaced by the same new solution. However, both MOEAs assign the best
individual to each subproblem in an independent way, without considering the
best assignment in a global way. This is shown in Figure 2, where we depict
the assignment made by MOEA/D and MOEA/D-DE.


Since Pareto-based MOEAs are unable to provide appropriate selection
pressure when dealing with many-objective optimization problems [29,22,20]
(because as the number of objectives increases, all solutions quickly become
non-dominated), the use of performance indicators as selection mechanisms has
become relatively popular. From the different performance indicators available
in the literature, the hypervolume [42] has become the most popular choice
for implementing indicator-based MOEAs. This is due to its nice theoretical
properties [10]. In fact, the hypervolume is the only unary indicator that is
known to be Pareto compliant and it has been proved that its maximization
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Fig. 2: Behavior of MOEA/D when solutions are selected for each subproblem.
Solution x3 is assigned to the subproblem w2 and then solution x2 is replaced
by x3. It is relevant to notice that solution x2 is better than solution x1 for the
subproblem w1. Nevertheless, both algorithms (MOEA/D and MOEA/D-DE)
eliminate it.


is equivalent to finding the Pareto optimal set [16]. This has also been em-
pirically corroborated by some researchers (see for example [5]). Additionally,
maximizing the hypervolume also leads to sets of solutions whose spread along
the Pareto Optimal Front is maximized (although this does not necessarily
guarantee a uniform distribution along the Pareto Optimal Front).


An algorithm based on the Covariance Matrix Adaptation Pareto Archived
Evolution Strategy (CMA-PAES) which makes use of the hypervolume indi-
cator is presented in [33]. The so-called Covariance Matrix Adaptation Pareto
Archived Evolution Strategy with Hypervolume-sorted Adaptive Grid Algo-
rithm (CMA-PAES-HAGA) makes use of an adaptive grid and the archive of
the Pareto Archived Evolution Strategy (PAES) [23] to perform a local ap-
proximation of the hypervolume indicator, which is then used as a selection
criterion. However, the main disadvantage of adopting the hypervolume to se-
lect solutions is that the best algorithms known to compute it have a compu-
tational cost which grows exponentially on the number of objective functions
of the MOP [8]. Hypervolume computation has been proven to be #P -hard
(analogous to NP -hard for counting problems) in the number of objective
functions [7]. Although some proposals have attempted to approximate the
hypervolume contributions required for using it in the selection mechanism
of a MOEA (see for example [3,9]), the currently available MOEAs that ap-
proximate the hypervolume contributions quickly degrade their performance
as the number of objectives increases whereas those using exact hypervolume
contributions normally become unaffordable for problems having more than
five objectives.


To the best of the authors’ knowledge, the only preliminary work in which
some sort of transformation of an MOP is adopted is the one proposed in [39],
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which formulates the fitness assignment of a MOEA as a Portfolio selection
problem, which takes solutions as assets whose returns are random variables.
In that proposal, fitness is the investment in such assets (solutions). This gives
rise to a bi-objective problem in which the aim is to maximize the expected
return while minimizing the return variance (related to risk). It is worth indi-
cating, however, that the approach proposed in [39] was validated only with
0/1 knapsack problems having up to four objectives. In contrast, our proposed
approach is validated here using continuous problems with up to 9 objectives.


4 Our proposed approach


As indicated before, our proposed approach transforms the selection process
of a MOEA into a linear assignment problem (LAP) and then such LAP is
solved using the Munkres assignment algorithm [26]. As we will see later on,
the intriguing aspect about our proposal is that the solution of this LAP
makes a MOEA to produce a set of solutions that converge to the Pareto
Optimal Front and, have, at the same time, a good distribution along it. Our
proposed approach does not fall into any of the classes of MOEAs that have
been traditionally used (i.e., Pareto-based, decomposition-based or indicator-
based) and is, therefore, a novel mechanism to solve MOPs which we show here
to be effective, particularly when dealing with many-objective optimization
problems.


4.1 Linear assignment problem transformation


The assignment problem is an elementary type of combinatorial optimization
problem [17,30]. In its most general form, an assignment problem can be de-
fined as the problem of creating an optimal assignment of n agents to m tasks,
taking for granted that some numerical assortment are incurred for each agent
performing each of the tasks [26]. The optimal solution to this kind of problem
is an assigment which makes the sum of the agents’ ratings for their tasks a
maximum (or minimum, according to the problem). The Linear Assignment
Problem (LAP) is the most basic type of assignment problem. In the canoni-
cal LAP, we have the same number of agents and tasks, and any agent can be
assigned to perform any task. An LAP can be defined as follows:


Let A = {a1, ..., an} and T = {t1, ..., tm} be a set of agents and tasks
with the same cardinality, given a cost function C : A × T → R and having
Φ : A→ T as the set of all possible bijections between A and T , the LAP can
be stated as follows:


minimize
φ∈Φ


n∑
i=1


C(ai, φ(ai)) (4)


In most cases, the cost function can also be represented by a squared real-
valued matrix C with elements Cij = C(ai, tj), and the set Φ of all possible







8 L. Miguel Antonio, J.A. Molinet Berenguer and C. A. Coello Coello


bijections between A and T as a set of assignment matrices X . Therefore, the
LAP can be also expressed as an integer linear program as follows:


minimize
x∈X


n∑
i,j=1


Cijxij


subject to:


n∑
i=1


xij = 1, ∀j ∈ {1, .., n},


n∑
j=1


xij ≤ 1, ∀i ∈ {1, ..., n},


xij ∈ {0, 1}, ∀i, j ∈ {1, ..., n}


(5)


Harold W. Kuhn [26] proposed an algorithm for computing a maximum
weight perfect assignment in a bipartite graph. This approach is able to solve
the assignment problem in polynomial time. After this work, James Munkres [30]
improved Kuhn’s approach and provided several important contributions to
the theoretical aspects of the algorithm. Munkres showed that Kuhn’s ap-
proach has a polynomial complexity and proposed an improved version which
has a complexity of O(n3). The contribution of Munkres made posible the
creation of the Hungarian algorithm also referred to as the Kuhn-Munkres or
Munkres assignment algorithm. Later on, Bourgeois and Lassalle [6] developed
an extension for rectangular matrices which allows the algorithm to operate
in assignment problems where the number of agents and the number of tasks
are unequal. Such extension can be stated as follows:


Given an n ×m matrix (cij) of real numbers, we want to find a set of k
independent elements [k = min(n,m)] such that the sum of these elements is
minimized.


A compact description of the steps of the algorithm proposed by Bourgeois
and Lassalle [6] is given next (a manual execution of the algorithm is presented
in Figure 3):


1. For each row of the matrix, find the smallest element and subtract it from
each element in its row.


2. Find a zero in the resulting matrix. If there is no starred zero in its row
nor its column, mark that zero with a star (*). Repeat for each zero in the
matrix.


3. Cover each column containing a starred zero. If n columns are covered, the
starred zeros describe a complete set of unique assignments. In this case,
stop; otherwise, continue with step 4.


4. Find an uncovered zero and prime it. If there is no starred zero in the row
containing this primed zero, go to Step 5. Otherwise, cover this row and
uncover the column containing the starred zero. Repeat this process until
there are no uncovered zeros left. After saving the smallest uncovered value
go to Step 6.


5. Construct a path of alternating primed and starred zeros as follows. Let
Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote the
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starred zero in the column of Z0 (if any). Let Z2 denote the primed zero
in the row of Z1 (there will always be one). Continue until the sequence
terminates at a primed zero that has no starred zero in its column. Un-star
each starred zero of the sequence; star each primed zero of the sequence.
Erase all primes and uncover every line in the matrix; return to Step 3.


6. Add the value found in Step 4 to every element of each covered row, and
subtract it from every element of each uncovered column. Return to Step
4 without altering any stars, primes, or covered lines.


t1 t2 t3
a1 1 2 3
a2 2 4 6
a3 3 6 9


Cost matrix


t1 t2 t3
a1 0 1 2
a2 0 2 4
a3 0 3 6


Step 1


t1 t2 t3
a1 0∗ 1 2
a2 0 2 4
a3 0 3 6


Step 2


t1 t2 t3
a1 0∗ 1 2
a2 0 2 4
a3 0 3 6


Step 3


t1 t2 t3


a1 0∗ 1 2


a2 0 2 4
a3 0 3 6


Step 4


t1 t2 t3
a1 0∗ 0 1
a2 0 1 3
a3 0 2 5


Step 6


t1 t2 t3
a1 0∗ 0′ 1
a2 0′ 1 3
a3 0 2 5


Step 4


t1 t2 t3
a1 0 0∗ 1
a2 0∗ 1 3
a3 0 2 5


Step 5


t1 t2 t3
a1 0 0∗ 1
a2 0∗ 1 3
a3 0 2 5


Step 3


t1 t2 t3


a1 0 0∗ 1


a2 0∗ 1 3
a3 0 2 5


Step 4


t1 t2 t3
a1 0 0∗ 0
a2 0∗ 1 2
a3 0 2 4


Step 6


t1 t2 t3
a1 0 0∗ 0′


a2 0∗ 1 2


a3 0 2 4
Step 4


t1 t2 t3
a1 1 0∗ 0′


a2 0∗ 0 1
a3 0 1 3


Step 6


t1 t2 t3
a1 1 0∗ 0′


a2 0∗ 0′ 1
a3 0′ 1 3


Step 4


t1 t2 t3
a1 1 0 0∗


a2 0 0∗ 1
a3 0∗ 1 3


Step 5


t1 t2 t3
a1 1 0 0∗


a2 0 0∗ 1
a3 0∗ 1 3


Step 3


Fig. 3: A manual execution of the Kuhn-Munkres’ algorithm.


Here, we explain how an MOP can be transformed into an LAP using the
k-dimensional objective vectors from the individuals (solutions) in a MOEA.
Since we can compute uniformly spread weight vectors in objective function
space, one can reformulate an MOP in the following manner: having n indi-
viduals and m vectors well-distributed in a (k − 1)-dimensional unit simplex
of the objective functions space, a cost can be incurred for each individual
representing some vector in the Pareto Optimal Front approximation. There-
fore, the task is to describe all regions covered by the n vectors using only m
individuals in such a way that the total cost of the assignment needs to be
minimized. A cost matrix can then be created so that it minimizes the total
cost implied in retaining the solutions which are a good approximation of the
Pareto Optimal Front. This procedure is described next.


First, the n vectors of objective function values are normalized so that the
current objective function space is reduced to a unit hypercube. This allows
us to deal with non-commensurable objective functions. The maximum zmax
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and minimal zmin vectors are computed to perform the normalization in the
following way.


zmax = [zmax1 , ..., zmaxk ]T , zmaxi = max
j=1,...,n


fi(xj), i = 1, ..., k,


zmin = [zmin1 , ..., zmink ]T , zmini = min
j=1,...,n


fi(xj), i = 1, ..., k,
(6)


where fi(xj) is the ith function value of the jth solution, and its normalized


value f̃i(xj) is computed as:


f̃i(xj) =
fi(xj)− zmini


zmaxi − zmini


, j = 1, ..., n, i = 1, ..., k. (7)


Thereafter, let W be a set of m weight vectors uniformly scattered in
objective function space.


W ⊂W = {w | w ∈ [0, 1]k,
k∑
i=1


wi = 1}, |W | = m, (8)


The cost Crj of assigning the solution xj to the weight vector wr is given by:


Crj = max
i=1,...,k


wri × f̃i(xj), r = 1, ...,m, j = 1, ..., n. (9)


So, the matrix C indicates how each solution is suitable to represent each
region of the Pareto Optimal Front approximation. The solution to our assign-
ment problem adequation is obtained by finding the combination of values in
C which produces the smallest sum, subject to the following conditions:


– Exactly one value must be chosen in each row, so that only one solution is
assigned to each position on the Pareto Optimal Front.


– At most, one value can be selected in each column. This ensures that no
solution is assigned to more than one position.


The matrix C and the above conditions are formally represented by (5) as
an LAP. The solution to this problem is then computed by means of the version
of the Kuhn-Munkres algorithm for rectangular matrices [6]. This approach
was adopted for being able to work with LAPs where the number of agents
and the number of tasks are unequal, which is the case of our problems. The
matrix that solves (5) represents the solutions assigned to each weight vector
such that it minimizes the total cost of the assignment, allowing to retain the
best solutions to approximate the Pareto Optimal Front.
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4.2 Generation of weight vectors using Uniform Design


In this section, we describe an alternative way to generate weight vectors in a
more flexible and efficient manner. In the state of the art, there exist several
MOEAs [41,31,13] that require a set of weight vectors uniformly scattered
on a (k − 1)-unit simplex to perform the search of solutions along the entire
Pareto Optimal Front in a k-objectives MOP.


In the specialized literature we can find several methods to obtain an
evenly distributed subset of weights in a simplex [15]. Among the existing ap-
proaches, the simplex-lattice design method [34] has been the most commonly
used within MOEAs. Nevertheless, this approach has some drawbacks which
can be easily identified [15]. One of them is that the weight vectors are not
very uniformly distributed. Also, this method generates too many vectors at
the boundaries of the domain. Another problem is that the number of vectors
generated by this method increases nonlinearly with respect to the number
of objective functions of an MOP. Hence, if H divisions are considered along
each objective, the total number of weight vectors in a k-objectives problem is
given by:


(
H+k−1
k−1


)
, which is also the population size. Therefore, when adopting


this method, the size of the population is defined by this restriction and not
according to the user’s needs.


Some MOEAs have adopted other techniques to compute a certain (de-
sired) number of scattered weight vectors, such as the approach reported
in [31], where a hypervolume-based weight vector generator is proposed. This
approach creates well-distributed vectors by maximizing the hypervolume cov-
ered by them in objective function space. Another approach of this sort can be
found in [36], where the uniform design (UD) [15] and the good lattice point
(glp) [25] methods were combined to set the weight vectors. However, both
the hypervolume and the glp method have a high computational cost when
the number of objectives grows, which makes them unaffordable when dealing
with MOPs having many objectives.


Uniform design is a space-filling design method that seeks experimental
points to be uniformly distributed in the domain [15]. In this method, a set of
points is considered uniformly spread throughout the entire domain if it has
a small discrepancy, where discrepancy is a numerical measure of scattering.
Fang and Wang [15] proposed several methods to generate points that can be
applied to the computation of a set of space-filling design points. The good
lattice point (glp) method and Hammersley’s method [18] excel among the
different proposals, both of which are efficient quasi Monte Carlo methods.


Here, we generate weight vectors using uniform design combined with Ham-
mersley’s method. This approach allows a more uniform distribution of the
weight vectors over the objective space of an MOP (in fact, it is even bet-
ter distributed than when using the simplex-lattice method). Additionally, in
this case the population size does not increase nonlinearly with the number
of objectives and no special considerations need to be taken into account.
Furthermore, Hammersley’s method computes a set of design points with low
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discrepancy, very similar to the glp method, but at a much lower computational
cost [15].


Algorithm 1 Generation of weight vectors


Require: number of objectives (k), number of weights (n)
Ensure: W (set of weight vectors with low-discrepancy)
1: p← array with the first k − 2 prime numbers
2: U ← ∅
3: for i = 1 to n do
4: ui1 ← (2i− 1)/2n
5: for j = 2 to k − 1 do
6: uij ← 0
7: f ← 1/pj−1


8: d← i
9: while d > 0 do


10: uij ← uij + f × (d mod pj−1)
11: d← bd/pj−1c
12: f ← f/pj−1


13: end while
14: end for
15: U ← U ∪ {u}
16: end for
17: W ← Apply the transformation of (13) to U


Hammersley’s method is based on the p-adic representation of natural num-
bers. Any positive integer m can be uniquely expressed using a prime base
p ≥ 2 as:


m =


r∑
i=0


bi × pi, 0 ≤ bi ≤ p− 1, i = 0, . . . , r, (10)


where pr ≤ m < pr+1. Then, for any integer m ≥ 1 with a representation
given by (10), let


yp(m) =


r∑
i=0


bi × p−(i+1), (11)


where yp(m) ∈ (0, 1) and is known as the radical inverse of m base p. Let k ≥ 2
and p1, . . . , pk−1 be k − 1 distinct prime numbers. Then, the Hammersley set
consisting of n points uniformly scattered on [0, 1]k is given by


xi =


[
2i− 1


2n
, yp1(i), . . . , ypk−1


(i)


]T
, i = 1, . . . , n. (12)


Previous work presented in [38], uses uniform design for experiments with
mixture that compute points which are uniformly scattered in the domain
W, as defined by (8). They adopted the transformation method for the com-
putation of such uniform design. This approach requires a set of vectors
U = {ui = [ui1, ..., ui(k−1)]


T , i = 1, ..., n} ⊂ [0, 1]k−1 with small discrepancy.
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figures/allGraphb-eps-converted-to.pdf


Fig. 4: Computed weight vectors by three different methods, for three and
four dimensions. On the left hand side, a set computed by the simplex-lattice
method is shown. In the middle, we show the set generated by the combination
of Hammersley’s method and uniform design. Finally, on the right hand side,
we show a set of weight vectors obtained by Monte Carlo sampling.


Here, we propose to make use of Hammersley’s method to obtain U and then
we apply the following transformation:


wti = (1− u
1


k−i


ti )


i−1∏
j=1


u
1


k−j


tj , i = 1, ..., k − 1,


wtk =


k−1∏
j=1


u
1


k−j


tj , t = 1, ..., n.


(13)


Then, {wt = [wti, . . . , wtk]T , t = 1, . . . , n} is a uniform design on W. The
pseudocode of the approach used to generate weight vectors is presented in
Algorithm 1.


In Figure 4, we show different sets of weight vectors generated by three
different methods: simplex-lattice, our pproposed approach based on Uniform
Design (described in Algorithm 1) and Monte Carlo sampling. As can be seen
from the figure, the method based on uniform design produces less points at
the boundary of the domain than the simplex-lattice method while maintaining
a good distribution. Also, the repetition rate of each component of the weight
vectors is much lower. When using Monte Carlo sampling method (we adopted
the approach described in [35]), the generated vectors tend to concentrate in
the center of the domain and show a bad distribution. From these figures, it
should be clear that our proposed approach allows to compute a very well
distributed set of weight vectors and at the same time avoids the problems
(described before) of the simplex-lattice method.


4.3 Description of our proposed approach


Making use of the transformation of an MOP into an LAP, we propose a new
kind of MOEA that uses an evolutionary model to select solutions based on
an LAP selection method. The description of our proposed MOEA based on
linear assignment problem selection (MOEA-LAPS) is given next.


MOEA-LAPS starts with an initial population P0 of n individuals and
performs a random initialization of each solution within the allowable ranges
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of their decision variables and then evaluates all individuals on each of the
objective functions of the MOP. Thereafter, at each generation g, we create a
new offspring population P ′g of n individuals from the actual population Pg.
Having the parents and offspring populations, we form a set Qg = Pg∪P ′g of 2n
posible solutions to the MOP. Then, an LAP is created from the MOP using
the k-dimensional objective vectors from Qg (as explained in Section 4.1) and
n weight vectors uniformly spread in objective function space are computed as
described in Algorithm 1. With this, a cost can be incurred for each individ-
ual representing some vector in the Pareto Optimal Front approximation. As
shown in Section 4.1, the solution to an LAP can be seen as a square matrix.
In our case, rows are the weight vectors and columns represent the individuals
in our population, such that a selection i, j means individual j is assigned to
the weight vector i.


Therefore, a selection procedure based on the LAP, obtained from the
MOP transformation, can be performed in order to select n individuals from
Qg which are closer to the weight vectors and with this, we can obtain a
solution to the created LAP. These individuals will then form the population
Pg+1 that constitute the next generation. In other words, the goal will be to
describe all regions covered by the 2n vectors using only n individuals in such a
way that the total cost of the assignment is minimized. This process is repeated
until a stopping criterion is fulfilled. The whole procedure is summarized in
Algorithm 2.1


Algorithm 2 MOEA-LAPS


Require: MOP, population size (n), maximum number of generations (gmax), parameters
Cr and F for DE/rand/1/bin


Ensure: Pgmax (approximation of the P∗ and PF∗)
1: Generate initial population P1 randomly
2: Evaluate each individual in P1


3: W ← Generate n weight vectors using Algorithm 1
4: for g = 1 to gmax do
5: P ∗g ← Generate offspring P ′g from Pg using the operators of the MOEA
6: Evaluate each individual in P ′g
7: Qg ← Pg ∪ P ′g
8: Calculate zmax and zmin by (6)
9: Normalize objectives of each individual in Qg by (7)


10: Generate the cost matrix C by (9) using Qg and W
11: I ← Obtain the best assignment in C using the Hungarian Method
12: Pg+1 ← {xi | i ∈ I , xi ∈ Qg}
13: end for


For the construction of the cost matrix C, described in (9), we use here
a modified version of the Tchebycheff decomposition approach introduced in
[13]. This approach is different from the one adopted in the preliminary version
of this approach, which was presented in [4], in which the original Tchebycheff


1 The source code of our proposed approach is available for download at:
https://www.cs.cinvestav.mx/~EVOCINV/software/LAP/LAP.html







Evolutionary Many-objective Optimization based on LAP Transformations 15


decomposition approach [41] was adopted. The reason for this change is that we
realized that the weight vectors of a subproblem and the direction of its optimal
solution coincide with this modified version, whereas in the case in which the
original Tchebycheff decomposition approach is adopted this relation is non-
linear. Therefore, when adopting the modified Tchebycheff decomposition it is
posible to control in a direct manner the distribution of solutions in objective
function space. Next, we present the re-formulation for the computation of the
cost matrix, used for the LAP transformation applied in this work:


The modified cost Crj of assigning the individual xj to the weight vector
wr is given by:


Crj = max
i=1,...,k


f̃i(xj)


wri
, r = 1, ...,m, j = 1, ..., n. (14)


The values of the cost matrix C then denote how suitable a solution is for
representing each region of the Pareto Optimal Front.


5 Experimental Results


We validated our proposed MOEA-LAPS using the two versions of the Tcheby-
cheff decomposition: the original version (this version is called HDE, and it
was previously introduced in [4]) and the modified version introduced in [13].
Additionally, we compare the performance of our proposed approach with re-
spect to that of three MOEAs that are representative of the state-of-the-art in
many-objective optimization: the CMA-PAES-HAGA,2 the θ-DEA3 [40] and
the NSGA-III4 [13].


5.1 Parameterization


In our experiments, we adopted 16 MOPs: seven problems having from two to
nine objective functions taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [14] and nine problems taken from the Walking-Fish-Group (WFG)
test suite [19]. In the DTLZ test problems, the total number of variables is
equal to n = m+k, where m = 2, ..., 9 is the number of objectives and k was set
to 10 for DTLZ1-6 and 20 for DTLZ7. For the case of the WFG test problems
the total number of variables is given by n = k + l, where k = 2(m − 1) (for
m = 3, ..., 9) and l = 20. In instances of 2 objective functions k was set to 4.


In order to assess the performance of each MOEA, we adopted the hyper-
volume indicator. The hypervolume is defined as the volume of the hypercube


2 The source code of CMA-PAES-HAGA was provided to us by Shahin Rostamin in
Python, but it is also available at: https://github.com/shahinrostami/CMA-HAGA-release


3 The source code of θ-DEA was provided to us by Yuan Yuan in Java and is available
at: http://www.cs.bham.ac.uk/~xin/papers/TEVC2016FebManyEAs.zip


4 We used the version of NSGA-III that was included in the source
code provided to us by Yuan Yuan, and which is also available at:
http://www.cs.bham.ac.uk/~xin/papers/TEVC2016FebManyEAs.zip
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formed by the space covered by a set of possible solutions, capturing both con-
vergence and maximum spread in a single unary value [42]. In order to com-
pute the hypervolume indicator, we used the following set of reference points:
yref = [y1, · · · , ym] such that: yi = 1.1 for DTLZ1, DTLZ2 and DTLZ4; yi = 3
for DTLZ3, DTLZ5 and DTLZ6; and yi = 7 for DTLZ7. Finally, for WFG1-9
yi = (i+ 1) ∗ 2 + 0.1. In our experiments, each MOEA was executed 30 times
for each problem instance and we measured the average hypervolume values
over these independent runs.


Both of our proposed algorithms (HDE and MOEA-LAPS) were tested
using differential evolution as their search engine. The parameters adopted in
our experiments were: F = 1.0 and Cr = 0.4, for both cases. The recombina-
tion operators for θ-DEA and NSGA-III were simulated binary crossover and
polynomial-based mutation as proposed by their authors. Their corresponding
parameters were also set as indicated by their authors: the crossover probabil-
ity was set to pc = 1, and for the mutation probability we adopted a value of
pm = 1. The distribution indexes for all cases were set in the following manner:
ηc = 30 and ηm = 20. CMA-PAES-HAGA was run with an archive capacity
equal to the population size and the number of grid divisions was set to 2, as
suggested by its author. The algorithms MOEA-LAPS, HDE and CMA-PAES-
HAGA can use an arbitrary population size, but in NSGA-III and θ-DEA the
population size increases nonlinearly with the number of objectives. Hence, we
used different population sizes for each number of objectives. For the DTLZ
problems with 2, 3, 4 and 8 objectives, the population size was set to 120. For
the DTLZ problems with 5 and 6 objectives, the population size was set to
126. Finally, for problems having 7 and 9 objectives, the population size was
set to 210 and 165, respectively.5 The maximum number of generations used
for each MOEA when solving each of the adopted test problems was set to
300.


5.2 Discussion of Results


In Tables 1, 2 and 3, we show the average hypervolume values over the DTLZ
and WFG test problems, as well as the results of the statistical analysis of
results that we performed (we adopted Wilcoxon’s rank sum). The cells con-
taining the best hypervolume value for each problem have the darkest grey
colored background and the second best values have a lighter grey color.


In the case of the DTLZ test problems, the two versions of our proposed
approach had the best overall results in most cases. For the case of DTLZ1,
MOEA-LAPS outperformed the other MOEAs in the 5 problem instances
with more objectives (i.e., those having 5, 6, 7, 8 and 9 objectives), HDE out-
performed the other MOEAs in the 4 objectives instance, while θ-DEA and


5 This apparent inconsistency in the population sizes for 7 and 9 objectives arises due to
the procedure adopted to compute the number of weight vectors when using the simplex-
lattice method.
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MOEA-LAPS CMA- MOEA-LAPS MOEA-LAPS MOEA-LAPS


MOP MOEA-LAPS HDE VS PAES- VS θ-DEA VS NSGA-III VS


HDE HAGA CMA-P-H θ-DEA NSGA-III


HV HV P(H) HV P(H) HV P(H) HV P(H)


DTLZ1 (2) 1.01159 1.04502 0.882464 (0) 0.00000 0.000000 (1) 1.03486 0.673495 (0) 1.06305 0.157976 (0)


DTLZ1 (3) 1.26674 1.21314 0.662735 (0) 0.00000 0.000000 (1) 1.27909 0.673495 (0) 1.19283 0.641424 (0)


DTLZ1 (4) 1.41894 1.44326 0.853382 (0) 0.00000 0.000000 (1) 1.39996 0.491783 (0) 1.06033 0.559231 (0)


DTLZ1 (5) 1.59060 1.58800 0.529782 (0) 0.00000 0.000000 (1) 1.58838 0.043584 (1) 0.94777 0.176128 (0)


DTLZ1 (6) 1.75922 1.74372 0.318304 (0) 0.00000 0.000000 (1) 1.70507 0.057460 (0) 0.96371 0.067869 (0)


DTLZ1 (7) 1.94859 1.94858 0.428886 (0) 0.00000 0.000000 (1) 1.94711 0.717185 (0) 1.64819 0.761825 (0)


DTLZ1 (8) 2.09028 1.98784 0.876628 (0) 0.00000 0.000000 (1) 1.98406 0.549321 (0) 0.77253 0.946955 (0)


DTLZ1 (9) 2.35607 2.33828 0.609953 (0) 0.00000 0.000000 (1) 2.32767 0.958730 (0) 1.33927 0.589441 (0)


DTLZ2 (2) 0.42079 0.42058 0.180887 (0) 0.40461 0.784457 (0) 0.42087 0.569209 (0) 0.42069 0.496440 (0)


DTLZ2 (3) 0.74769 0.73614 0.455297 (0) 0.68579 0.610008 (0) 0.75275 0.387100 (0) 0.75216 0.641424 (0)


DTLZ2 (4) 1.01577 0.98404 0.569220 (0) 0.75131 0.057460 (0) 1.03056 0.652044 (0) 1.02880 0.888303 (0)


DTLZ2 (5) 1.25739 1.22274 0.899995 (0) 0.63271 0.630876 (0) 1.27706 0.510598 (0) 1.27139 0.982307 (0)


DTLZ2 (6) 1.47814 1.44551 0.510598 (0) 0.33952 0.958731 (0) 1.50921 0.549327 (0) 1.49983 0.935192 (0)


DTLZ2 (7) 1.74685 1.72095 0.428963 (0) 0.41808 0.589451 (0) 1.76975 0.379036 (0) 1.75740 0.222573 (0)


DTLZ2 (8) 1.92810 1.90181 0.599689 (0) 0.03981 0.055546 (0) 1.96316 0.876635 (0) 1.94581 0.911709 (0)


DTLZ2 (9) 2.19753 2.17122 0.739399 (0) 0.03519 0.970516 (0) 2.23017 0.673495 (0) 2.21346 0.728265 (0)


DTLZ3 (2) 8.03130 7.52212 0.673495 (0) 0.00000 0.000000 (1) 8.00869 0.559231 (0) 7.78823 0.403538 (0)


DTLZ3 (3) 24.72025 24.49285 0.923442 (0) 0.00000 0.000000 (1) 25.88856 0.297272 (0) 21.34563 0.673495 (0)


DTLZ3 (4) 78.70207 77.85389 0.970516 (0) 0.00000 0.000000 (1) 77.48017 0.982307 (0) 28.91196 0.579289 (0)


DTLZ3 (5) 239.97094 237.13918 0.641424 (0) 0.00000 0.000000 (1) 231.89920 0.784460 (0) 92.54490 0.970516 (0)


DTLZ3 (6) 721.63279 715.44073 0.673495 (0) 0.00000 0.000000 (1) 671.48191 0.149449 (0) 248.90446 0.807275 (0)


DTLZ3 (7) 2186.78203 2185.52393 0.589436 (0) 0.00000 0.000000 (1) 2185.65366 0.689749 (0) 1645.51603 0.579284 (0)


DTLZ3 (8) 6211.65972 6041.12319 0.206205 (0) 0.00000 0.000000 (1) 4635.91566 0.673495 (0) 2270.41537 0.473347 (0)


DTLZ3 (9) 19682.81309 19666.14228 0.684310 (0) 0.00000 0.000000 (1) 19015.89337 0.899992 (0) 10593.79222 0.958730 (0)


DTLZ4 (2) 0.40652 0.41606 0.830255 (0) 0.37113 0.318304 (0) 0.30690 0.347828 (0) 0.37938 0.750587 (0)


DTLZ4 (3) 0.73952 0.73301 0.491783 (0) 0.63423 0.549327 (0) 0.75271 0.876635 (0) 0.74252 0.982307 (0)


DTLZ4 (4) 1.01649 0.98559 0.420386 (0) 0.84323 0.589451 (0) 1.03137 0.157970 (0) 1.02976 0.297272 (0)


DTLZ4 (5) 1.26512 1.22955 0.610008 (0) 1.02312 0.539510 (0) 1.27876 0.437641 (0) 1.27588 0.549327 (0)


DTLZ4 (6) 1.49039 1.45193 0.283778 (0) 1.16056 0.157976 (0) 1.50728 0.304177 (0) 1.50734 0.200949 (0)


DTLZ4 (7) 1.76265 1.72997 0.166866 (0) 1.32700 0.652044 (0) 1.77273 0.311188 (0) 1.76794 0.028129 (1)


DTLZ4 (8) 1.94583 1.90657 0.318304 (0) 1.41296 0.818746 (0) 1.96768 0.520145 (0) 1.96198 0.876635 (0)


DTLZ4 (9) 2.21702 2.17928 0.773120 (0) 1.59093 0.970516 (0) 2.23470 0.387100 (0) 2.23101 0.784460 (0)


DTLZ5 (2) 8.21079 8.21058 0.818746 (0) 8.19477 0.037782 (1) 8.21088 0.347828 (0) 8.21076 0.946956 (0)


DTLZ5 (3) 23.90173 23.97910 0.630872 (0) 23.89903 0.482517 (0) 23.89727 0.200949 (0) 23.95619 0.970516 (0)


DTLZ5 (4) 71.59319 71.52693 0.264326 (0) 71.06347 0.599689 (0) 70.88288 0.033874 (1) 71.29680 0.717189 (0)


DTLZ5 (5) 214.17456 213.83002 0.807275 (0) 211.20073 0.750587 (0) 208.34231 0.529782 (0) 207.05607 0.411911 (0)


DTLZ5 (6) 640.55372 640.30482 0.923442 (0) 622.40414 0.841801 (0) 627.32861 0.706171 (0) 606.17420 0.684323 (0)


DTLZ5 (7) 1927.24180 1926.74890 0.411911 (0) 1876.05123 0.549327 (0) 1890.75305 0.501144 (0) 1816.64305 0.684323 (0)


DTLZ5 (8) 5733.34679 5700.48482 0.728265 (0) 5337.63782 0.070127 (0) 5560.72154 0.347828 (0) 5338.03114 0.355472 (0)


DTLZ5 (9) 17234.49677 17197.45493 0.994102 (0) 16261.37885 0.935192 (0) 16714.46090 0.935192 (0) 16003.08973 0.233989 (0)


Table 1: Average of the hypervolume indicator (HV) values over 30 indepen-
dent runs of the results obtained for DTLZ1, DTLZ2, DTLZ3, DTLZ4 and
DTLZ5. The cells containing the best hypervolume value for each problem
have the darkest grey colored background and those having the second best
values have a lighter grey colored background. The P(H) columns show the re-
sults of the Wilcoxon’s rank sum test. H = 0 indicates that the null hypothesis
(“medians are equal”) cannot be rejected at the 5% level.
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MOEA-LAPS CMA- MOEA-LAPS MOEA-LAPS MOEA-LAPS


MOP MOEA-LAPS HDE VS PAES- VS θ-DEA VS NSGA-III VS


HDE HAGA CMA-P-H θ-DEA NSGA-III


HV HV P(H) HV P(H) HV P(H) HV P(H)


DTLZ6 (2) 8.21084 8.21084 0.795834 (0) 8.15458 0.347814 (0) 8.19875 0.491765 (0) 8.19954 0.684314 (0)


DTLZ6 (3) 23.89275 23.98192 0.067861 (0) 23.71328 0.641419 (0) 23.00868 0.157970 (0) 22.60842 0.387093 (0)


DTLZ6 (4) 71.39857 71.42395 0.935192 (0) 69.73852 0.529782 (0) 61.84732 0.428963 (0) 37.71466 0.620404 (0)


DTLZ6 (5) 213.22287 213.57169 0.233989 (0) 202.51484 0.739399 (0) 164.01720 0.630876 (0) 0.74634 0.395267 (0)


DTLZ6 (6) 636.84244 638.55173 0.211561 (0) 587.52549 0.717189 (0) 396.11959 0.673495 (0) 0.00455 0.000018 (1)


DTLZ6 (7) 1920.93461 1919.85744 0.750587 (0) 1784.30300 0.379036 (0) 1227.34390 0.290472 (0) 0.00000 0.000000 (1)


DTLZ6 (8) 5704.01827 5653.68394 0.464273 (0) 4876.59477 0.129670 (0) 2451.64389 0.569220 (0) 0.00000 0.000000 (1)


DTLZ6 (9) 17176.14316 17082.02787 0.728265 (0) 15123.65205 0.190730 (0) 8040.41026 0.630876 (0) 0.00000 0.000000 (1)


DTLZ7 (2) 31.87442 31.88078 0.122353 (0) 31.75919 0.001680 (1) 31.88310 0.029205 (1) 31.61827 0.015014 (1)


DTLZ7 (3) 199.98791 200.51900 0.662735 (0) 198.47767 0.105470 (0) 197.97888 0.706171 (0) 198.00384 0.876635 (0)


DTLZ7 (4) 1227.60858 1226.52659 0.620404 (0) 1162.67003 0.684323 (0) 1106.33134 0.501144 (0) 1127.26332 0.355472 (0)


DTLZ7 (5) 7295.27013 7249.32546 0.176128 (0) 5203.58768 0.589451 (0) 5698.00680 0.970516 (0) 5737.81358 0.784460 (0)


DTLZ7 (6) 38082.13494 39329.46289 0.641424 (0) 5130.42842 0.491783 (0) 31505.32971 0.830255 (0) 30452.35714 0.491783 (0)


DTLZ7 (7) 222059.90560 202192.03310 0.211561 (0) 4215.22368 0.076927 (0) 112393.14100 0.750587 (0) 56780.82658 0.283778 (0)


DTLZ7 (8) 838454.34270 698779.80150 0.520145 (0) 0.00000 0.000000 (1) 84226.46624 0.023083 (1) 12345.94719 0.000108 (1)


DTLZ7 (9) 3668251.79400 2936863.31200 0.520145 (0) 0.00000 0.000000 (1) 43577.00192 0.000000 (1) 0.00000 0.000000 (1)


WFG1 (2) 18.35 18.38 0.332855 (0) 13.29 0.695215 (0) 14.80 0.899995 (0) 14.92 0.773120 (0)


WFG1 (3) 125.97 127.17 0.153667 (0) 111.24 0.728265 (0) 129.57 0.023243 (1) 122.18 0.006972 (1)


WFG1 (4) 1132.14 1156.80 0.491783 (0) 1055.56 0.428963 (0) 1162.23 0.946956 (0) 1021.10 0.437641 (0)


WFG1 (5) 12625.66 12761.71 0.133454 (0) 11843.69 0.185767 (0) 14217.05 0.970516 (0) 11888.60 0.067869 (0)


WFG1 (6) 183039.47 174176.50 0.464273 (0) 155910.28 0.195791 (0) 205992.10 0.946956 (0) 174684.03 0.589451 (0)


WFG1 (7) 2821385.05 2688076.15 0.379036 (0) 2371710.22 0.876635 (0) 3744642.17 0.970516 (0) 3044182.67 0.325527 (0)


WFG1 (8) 61733524.77 49607048.07 0.673495 (0) 40518423.49 0.970516 (0) 66168464.63 0.728265 (0) 56516803.75 0.888303 (0)


WFG1 (9) 1220027849.00 1037691188.00 0.206205 (0) 776637900.80 0.853382 (0) 1457182486.00 0.864994 (0) 1208287911.00 0.630876 (0)


WFG2 (2) 19.55 19.52 0.185767 (0) 20.00 0.510598 (0) 19.66 0.072446 (0) 19.65 0.180900 (0)


WFG2 (3) 185.84 189.10 0.008684 (1) 185.00 0.133454 (0) 187.60 0.096263 (0) 185.75 0.102326 (0)


WFG2 (4) 1915.92 1932.30 0.841801 (0) 1869.82 0.864994 (0) 1874.56 0.311188 (0) 1885.36 0.520145 (0)


WFG2 (5) 23345.59 23255.50 0.040595 (1) 22482.43 0.437641 (0) 23012.51 0.491783 (0) 22605.44 0.200949 (0)


WFG2 (6) 324548.64 327186.99 0.807275 (0) 312713.45 0.994102 (0) 315086.23 0.818746 (0) 315826.02 0.864994 (0)


WFG2 (7) 5355656.85 5469402.79 0.795846 (0) 5054351.83 0.251881 (0) 5261422.97 0.371077 (0) 5282287.91 0.750587 (0)


WFG2 (8) 84927905.18 82238217.15 0.379036 (0) 87635827.07 0.129670 (0) 85802943.32 0.125970 (0) 91515158.83 0.245814 (0)


WFG2 (9) 1852591909.00 1752196504.00 0.935192 (0) 1774375047.00 0.589451 (0) 1750335798.00 0.428963 (0) 1798756609.00 0.501144 (0)


WFG3 (2) 20.71 20.67 0.569220 (0) 19.68 0.033874 (1) 20.80 0.347828 (0) 20.80 0.063533 (0)


WFG3 (3) 162.31 162.48 0.016955 (1) 154.73 0.029205 (1) 158.96 0.264326 (0) 158.86 0.035137 (1)


WFG3 (4) 1587.41 1582.30 0.641424 (0) 1475.04 0.446419 (0) 1509.33 0.673495 (0) 1495.88 0.510598 (0)


WFG3 (5) 18486.29 18401.63 0.673495 (0) 16775.29 0.137323 (0) 17531.89 0.501144 (0) 17392.56 0.420386 (0)


WFG3 (6) 251343.64 246296.73 0.190730 (0) 221388.02 0.807275 (0) 177089.94 0.118817 (0) 206066.22 0.761828 (0)


WFG3 (7) 4044693.78 3961521.01 0.994102 (0) 3530282.23 0.340288 (0) 3153200.44 0.166866 (0) 3635567.49 0.750587 (0)


WFG3 (8) 69476315.15 68491749.65 0.180900 (0) 55628293.12 0.153667 (0) 59317666.90 0.162375 (0) 63845403.50 0.057460 (0)


WFG3 (9) 1410422276.00 1361401462.00 0.270705 (0) 1136577695.00 0.549327 (0) 1253569462.00 0.145319 (0) 1288134959.00 0.108690 (0)


Table 2: Average of the hypervolume indicator (HV) values over 30 indepen-
dent runs of the results obtained for DTLZ6 and DTLZ7 as well as for WFG1,
WFG2 and WFG3. The cells containing the best hypervolume value for each
problem have the darkest grey colored background and those having the sec-
ond best values have a lighter grey colored background. The P(H) columns
show the results of the Wilcoxon’s rank sum test. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
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MOEA-LAPS CMA- MOEA-LAPS MOEA-LAPS MOEA-LAPS


MOP MOEA-LAPS HDE VS PAES- VS θ-DEA VS NSGA-III VS


HDE HAGA CMA-P-H θ-DEA NSGA-III


HV HV P(H) HV P(H) HV P(H) HV P(H)


WFG4 (2) 18.61 18.61 0.270705 (0) 17.53 0.079782 (0) 18.50 0.026077 (1) 18.46 0.036439 (1)


WFG4 (3) 172.15 171.56 0.008684 (1) 162.71 0.024157 (1) 171.48 0.501144 (0) 171.16 0.096263 (0)


WFG4 (4) 1812.55 1810.88 0.277189 (0) 1663.82 0.332855 (0) 1798.54 0.739399 (0) 1792.84 0.082357 (0)


WFG4 (5) 22304.32 22372.22 0.251881 (0) 19678.19 0.180900 (0) 22002.72 0.157976 (0) 21845.96 0.070127 (0)


WFG4 (6) 311409.89 312114.64 0.818746 (0) 261298.79 0.539510 (0) 310682.55 0.379036 (0) 307753.47 0.853382 (0)


WFG4 (7) 4849220.06 5036595.10 0.332855 (0) 4176822.05 0.122353 (0) 5028716.36 0.539510 (0) 4989699.04 0.070127 (0)


WFG4 (8) 67827861.03 74571614.52 0.970516 (0) 57269619.97 0.899995 (0) 89365610.42 0.641424 (0) 88070487.89 0.728265 (0)


WFG4 (9) 1490059240.00 1460381516.00 0.017649 (1) 888274329.00 0.030317 (1) 1789454139.00 0.051877 (0) 1772121350.00 0.093341 (0)


WFG5 (2) 17.81 17.83 0.411911 (0) 16.32 0.761828 (0) 17.82 0.559231 (0) 17.82 0.630876 (0)


WFG5 (3) 165.63 165.85 0.129670 (0) 149.25 0.641424 (0) 165.98 0.082357 (0) 165.91 0.200949 (0)


WFG5 (4) 1744.10 1746.86 0.363222 (0) 1434.47 0.970516 (0) 1760.49 0.387100 (0) 1754.52 0.529782 (0)


WFG5 (5) 21364.47 21629.60 0.420386 (0) 15968.99 0.899995 (0) 21701.04 0.395267 (0) 21607.39 0.340288 (0)


WFG5 (6) 300926.78 306229.31 0.024157 (1) 200851.04 0.297272 (0) 307390.08 0.304177 (0) 305457.90 0.245814 (0)


WFG5 (7) 4957029.76 4992761.00 0.795846 (0) 3180936.39 0.706171 (0) 4980823.10 0.739399 (0) 4951696.05 0.297272 (0)


WFG5 (8) 76330933.17 77062841.19 0.099258 (0) 38848297.14 0.228230 (0) 89036040.54 0.166866 (0) 88425576.77 0.059428 (0)


WFG5 (9) 1354197018.00 1360070224.00 0.099258 (0) 707338447.30 0.036439 (1) 1792180683.00 0.118817 (0) 1780032315.00 0.042067 (1)


WFG6 (2) 18.21 18.20 0.923442 (0) 17.13 0.706171 (0) 18.09 0.233989 (0) 18.04 0.217017 (0)


WFG6 (3) 168.37 167.95 0.325527 (0) 156.84 0.630876 (0) 167.55 0.579294 (0) 167.27 0.411911 (0)


WFG6 (4) 1778.51 1775.42 0.784460 (0) 1546.16 0.599689 (0) 1772.91 0.579294 (0) 1767.64 0.569220 (0)


WFG6 (5) 21894.75 21976.52 0.006377 (1) 17899.58 0.016285 (1) 21825.03 0.008684 (1) 21779.96 0.004427 (1)


WFG6 (6) 310912.63 312374.76 0.888303 (0) 230278.01 0.662735 (0) 311338.18 0.923442 (0) 309092.44 0.923442 (0)


WFG6 (7) 5058122.27 5108677.48 0.473347 (0) 3599779.16 0.982307 (0) 5048177.76 0.739399 (0) 5028125.40 0.245814 (0)


WFG6 (8) 88978531.59 89975711.95 0.171450 (0) 48481852.57 0.118817 (0) 90948339.61 0.437641 (0) 90372629.74 0.133454 (0)


WFG6 (9) 1778639482.00 1752029738.00 0.180900 (0) 787399964.00 0.325527 (0) 1827359690.00 0.446419 (0) 1822150812.00 0.395267 (0)


WFG7 (2) 18.65 18.64 0.053685 (0) 17.61 0.958731 (0) 18.58 0.017649 (1) 18.57 0.911709 (0)


WFG7 (3) 173.59 172.55 0.176128 (0) 161.73 0.684323 (0) 172.79 0.403538 (0) 172.49 0.245814 (0)


WFG7 (4) 1840.78 1830.46 0.283778 (0) 1608.45 0.222573 (0) 1828.92 0.290472 (0) 1817.15 0.311188 (0)


WFG7 (5) 22729.68 22774.11 0.039167 (1) 18689.33 0.264326 (0) 22480.21 0.251881 (0) 22299.21 0.195791 (0)


WFG7 (6) 321894.84 325114.62 0.784460 (0) 239774.30 0.750587 (0) 320401.61 0.347828 (0) 317866.83 0.464273 (0)


WFG7 (7) 5306175.67 5341618.32 0.830255 (0) 3779872.91 0.761828 (0) 5225332.72 0.559231 (0) 5171966.65 0.371077 (0)


WFG7 (8) 81306355.78 85253409.17 0.807275 (0) 49687980.12 0.728265 (0) 92655657.14 0.630876 (0) 91432208.31 0.133454 (0)


WFG7 (9) 1507705098.00 1666071515.00 0.087710 (0) 759688927.80 0.589451 (0) 1863429164.00 0.048413 (1) 1843212523.00 0.030317 (1)


WFG8 (2) 17.08 17.07 0.923442 (0) 16.15 0.185767 (0) 16.80 0.027086 (1) 16.84 0.355472 (0)


WFG8 (3) 163.22 162.27 0.133454 (0) 151.15 0.251881 (0) 162.07 0.318304 (0) 161.50 0.662735 (0)


WFG8 (4) 1692.88 1685.99 0.420386 (0) 1467.87 0.072446 (0) 1683.09 0.411911 (0) 1676.51 0.510598 (0)


WFG8 (5) 20508.18 20489.23 0.200949 (0) 16437.22 0.055546 (0) 20331.70 0.096263 (0) 20173.57 0.021506 (1)


WFG8 (6) 278331.25 276675.08 0.935192 (0) 206235.47 0.994102 (0) 283047.07 0.773120 (0) 278837.63 0.559231 (0)


WFG8 (7) 4624457.40 4609669.43 0.958731 (0) 3250013.38 0.599689 (0) 4541494.21 0.347828 (0) 4497319.16 0.784460 (0)


WFG8 (8) 76545545.83 76950487.02 0.077272 (0) 37290332.18 0.853382 (0) 79383636.13 0.529782 (0) 77823587.80 0.141278 (0)


WFG8 (9) 1577098100.00 1542265099.00 0.437641 (0) 485458368.40 0.162375 (0) 1607435528.00 0.190730 (0) 1573161821.00 0.085000 (0)


WFG9 (2) 17.55 17.43 0.082357 (0) 17.20 0.028129 (1) 17.54 0.005322 (1) 17.61 0.001302 (1)


WFG9 (3) 159.17 158.67 0.501144 (0) 158.28 0.529782 (0) 160.05 0.464273 (0) 161.93 0.864994 (0)


WFG9 (4) 1650.34 1648.98 0.818746 (0) 1596.56 0.153667 (0) 1666.62 0.239850 (0) 1650.02 0.074827 (0)


WFG9 (5) 20081.14 20205.60 0.695215 (0) 18425.93 0.180900 (0) 20078.75 0.129670 (0) 19827.45 0.129670 (0)


WFG9 (6) 280269.94 282510.61 0.264326 (0) 239065.13 0.145319 (0) 281380.33 0.222573 (0) 277758.49 0.129670 (0)


WFG9 (7) 4560024.58 4565898.74 0.630876 (0) 3795296.27 0.355472 (0) 4549093.29 0.795846 (0) 4525723.68 0.864994 (0)


WFG9 (8) 77402706.19 75445058.55 0.970516 (0) 51441271.88 0.970516 (0) 78901918.77 0.695215 (0) 77825756.11 0.684323 (0)


WFG9 (9) 1502995280.00 1515904110.00 0.096263 (0) 833958409.70 0.007617 (1) 1603598908.00 0.340288 (0) 1570044489.00 0.318304 (0)


Table 3: Average of the hypervolume indicator (HV) values over 30 indepen-
dent runs of the results obtained for WFG4, WFG5, WFG6, WFG7, WFG8
and WFG9. The cells containing the best hypervolume value for each prob-
lem have the darkest grey colored background and those having the second
best values have a lighter grey colored background. The P(H) columns show
the results of the Wilcoxon’s rank sum test. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level.
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NSGA-III outperformed the others in the 3 and 2 objectives instances, respec-
tively. CMA-PAES-HAGA could not obtain any solution which dominated the
reference point adopted for the hypervolume in this problem. When dealing
with DTLZ2, θ-DEA had the best results in all instances. The second place was
for NSGA-III, which obtained the second best place for all instances, except
for the one with 2 objectives, where MEA-LAPS obtained the second place.
HDE obtained very competitive results, but not better than those produced
by MOEA-LAPS. Conversely, CMA-PAES-HAGA produced poor values for
the hypervolume indicator in all the problem instances that had more than 3
objectives. For the case of DTLZ3, MOEA-LAPS outperformed all the other
MOEAs, except for the one with 3 objectives, where θ-DEA outperformed the
others. In this case, HDE was the second best approach in almost all instances
and θ-DEA obtained very competitive results, but not better than those pro-
duced by MOEA-LAPS. NSGA-III did not produce any outstanding results
but had a better performance than CMA-PAES-HAGA, which was unable to
produce any solution that dominated the reference points that we adopted for
computing the hypervolume. Very similar results to those obtained for DTLZ2
were produced in DTLZ4. In this case, θ-DEA outperformed again to all the
other MOEAs in most of the problem instances, and obtained the second place
in the 6 objectives instance as well as the last place in the 2 objectives instance.
It was followed by NSGA-III, which obtained the second place in almost all in-
stances of this problem, with the exception of the 6 objectives instance, where
it obtained the fist place and in the 2 objectives instance where this approach
obtained the third best results. In the case of DTLZ5, MOEA-LAPS was again
able to outperform all the other MOEAs in the instances having more than
3 objectives, followed by HDE, which obtained the second best results in this
case. All the other approaches obtained very competitive results in this prob-
lem, being θ-DEA one of the most outstanding approaches. For DTLZ6, both
MOEA-LAPS and HDE obtained the best results. In this case, HDE was able
to outperform MOEA-LAPS in the instances from 2 up to 6 objectives and
MOEA-LAPS obtained the best overall results in the instances of more than 6
objectives. NSGA-III was not able to produce any solution which dominated
the reference points that we adopted for computing the hypervolume in this
problem, in instances of more than 6 objectives. Finally, for DTLZ7, MOEA-
LAPS obtained the best overall results, outperforming all the other MOEAs in
most of the instances (from 4 to 9 objectives), followed by HDE, which was the
second best performer in all the instances, except for the one with 3 objectives
where it obtained the first place. θ-DEA was able to outperform all the other
MOEAs only in the instance having 2 objectives. CMA-PAES-HAGA was not
able to obtain solutions which dominated the reference points that we adopted
for instances of more than 7 objectives and NSGA-III had this same behavior
in the 9 objectives instance.


For the case of the WFG test suite, when dealing with WFG1, θ-DEA out-
performed the other approaches in all the instances of more than 2 objectives.
It was followed by HDE in the instances from 3 to 5 objectives and by MOEA-
LAPS in the instances of more than 5 objectives. For WFG2, HDE obtained the
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best results in the instances of 3, 4, 6 and 7 objectives, MOEA-LAPS obtained
the best results in the instances of 5 and 9 objectives, NSGA-III obtained the
best results in the instance with 8 objectives and CMA-PAES-HAGA obtained
the best results in the instance with 2 objectives. In general, all the algorithms
showed a very competitive performance in this problem. When dealing with
WFG3, MOEA-LAPS had the best performance in instances of more than 3
objectives, followed by HDE, which obtained the second best results, outper-
forming MOEA-LAPS only in the 3 objectives instances. The best results for
the instance of 2 objectives were obtained by θ-DEA, and NSGA-III obtained
the second best results in this case. However, in WFG4, MOEA-LAPS had the
best performance in the smaller instances (from 2 to 4 objectives), and HDE
outperformed the other approaches in the instances with 5, 6 and 7 objectives.
θ-DEA obtained the best results for the instances with more objectives (8 and
9), followed by NSGA-III which had very competitive results compared to θ-
DEA. In WFG5, θ-DEA was the best performer in almost all the instances,
being outperformed by HDE only in the instances with 2 and 7 objectives.
NSGA-III obtained very competitive results being the second best in most
of the instances of this problem. In WFG6, MOEA-LAPS obtained the best
results for the first three instances of the problem, i.e., for 3,4 and 5 objec-
tives. HDE outperformed the others in the instances of 5, 6 and 7 objectives,
while θ-DEA obtained the best results in the instances of 8 and 9 objectives.
In WFG7, the results were the same as in WFG6. In WFG8, MOEA-LAPS
obtained the best results for the instances of 2, 3, 4, 5 and 7 objectives and
θ-DEA obtained the best results for the rest of the instances. HDE was the
third best performer, obtaining the second best results for all the cases in
which MOEA-LAPS won, followed by NSGA-III which obtained competitive
results being the second best in the instances of 6 and 8 objectives. Finally, for
WFG9, the best performer was θ-DEA, obtaining the best results for instances
of 4, 8 and 9 objectives, and it obtained the second place in the 3 objectives
instances. The second best results were obtained by HDE, which obtained the
best results for the instances of 5, 6 and 7 objectives, followed by NSGA-III,
which obtained the first place in the instances of 2 and 3 objectives and the
second place in the instances of 8 and 9 objectives.


In general, MOEA-LAPS was the approach that produced the best overall
results, obtaining the first place in 49 of the instances, followed by θ-DEA,
which obtained the first place in 44 instances. HDE obtained the first place in
29 instances, NSGA-III was the best in 5 instances and CMA-PAES-HAGA
was the best in only one instance. Based on the results obtained with the
Wilcoxon’s rank sum we can say that MOEA-LAPS and HDE had a simi-
lar performance, although MOEA-LAPS outperformed HDE. The same can
be said when comparing θ-DEA and NSGA-III, since, even though θ-DEA
clearly outperformed NSGA-III, they had similar results and both were better
than the others in almost all the same instances. For the case of CMA-PAES-
HAGA, it could produce acceptable results in most cases, but when dealing
with problems of more than 3 objectives it provided the poorest performance
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Fig. 5: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for DTLZ1 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.


from all the approaches used in our comparative study. Also, it could not
produce any results for DTLZ1 and DTLZ3.


To illustrate the results obtained by all the algorithms adopted in our com-
parative study, in Figures 5, 6, 7, 8, 9, 10, 11 and 12, we plotted the results
obtained for DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1, WFG2, WFG3 and
WFG5, respectively. These results correspond to the median of the hypervol-
ume value of the 30 independent runs performed for the 3 objectives instances.


As can be seen in the figures, our proposed approach based on uniform
design, allowed us to compute a very well-distributed set of weight vectors,
which led to a well-spread set of final solutions to the problems. Also, we
can observe how the change in the cost matrix computation improves the
distribution of the solutions, since in all cases, results from MOEA-LAPS
are more evenly distributed than those obtained by HDE. Here, we also can
appreciate the tendency of CMA-PAES-HAGA to concentrate the solutions
in the central part of the Pareto Optimal Front. Also, it can be observed
from the results produced by both θ-DEA and NSGA-III how when adopting
the simplex-lattice approach, algorithms tend to generate more solutions at
the boundary of the domain, or in the case of DTLZ5 and WFG3 (which
are problems with degenerate Pareto Optimal Fronts with a linear shape),
the distribution of the solutions is not as uniform and complete as the one
obtained by our approach.
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Fig. 6: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for DTLZ3 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.
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Fig. 7: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for DTLZ5 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.
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Fig. 8: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for DTLZ7 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.
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Fig. 9: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for WFG1 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.
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Fig. 10: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for WFG2 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.
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Fig. 11: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for WFG3 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.







26 L. Miguel Antonio, J.A. Molinet Berenguer and C. A. Coello Coello


 0
 0.2


 0.4
 0.6


 0.8
 1


 1.2
 1.4


 1.6
 1.8


 2
 2.2


 0
 0.5


 1
 1.5


 2
 2.5


 3
 3.5


 4
 4.5


 0


 1


 2


 3


 4


 5


 6


 7


MOEA-LAPS


(a)


 0
 0.2


 0.4
 0.6


 0.8
 1


 1.2
 1.4


 1.6
 1.8


 2
 2.2


 0
 0.5


 1
 1.5


 2
 2.5


 3
 3.5


 4
 4.5


 0


 1


 2


 3


 4


 5


 6


 7


HDE


(b)


 0
 0.2


 0.4
 0.6


 0.8
 1


 1.2
 1.4


 1.6
 1.8


 2
 2.2


 0
 0.5


 1
 1.5


 2
 2.5


 3
 3.5


 4
 4.5


 0


 1


 2


 3


 4


 5


 6


 7


THETA-DEA


(c)


 0
 0.2


 0.4
 0.6


 0.8
 1


 1.2
 1.4


 1.6
 1.8


 2
 2.2


 0
 0.5


 1
 1.5


 2
 2.5


 3
 3.5


 4
 4.5


 0


 1


 2


 3


 4


 5


 6


 7


NSGA-III


(d)


 0


 0.5


 1


 1.5


 2


 2.5


 0
 0.5


 1
 1.5


 2
 2.5


 3
 3.5


 4
 4.5


 0


 1


 2


 3


 4


 5


 6


 7


CMA-PAES-HAGA


(e)


Fig. 12: Plots of the approximations obtained by (a) MOEA-LAPS, (b) HDE,
(c) θ-DEA, (d) NSGA-III and (e) CMA-PAES-HAGA for WFG5 with 3 ob-
jectives. These plots correspond to the median hypervolume value from the 30
independent runs performed.


6 Conclusions and Future Work


This paper has proposed a novel selection mechanism for MOEAs which does
not belong to any of the selection techniques that have been used so far in
evolutionary multi-objective optimization. Our proposed approach performs a
transformation of a multi-objective problem into an LAP using a set of well-
distributed points. The resulting LAP is then solved using the Kuhn-Munkres
algorithm. Additionally, we have also proposed an algorithm based on the
uniform design method to generate a set of weight vectors more uniformly
scattered than those obtained by the simplex-lattice method.


Our proposed approach was validated with respect to state-of-the-art MOEAs,
being able to outperform them in 49 out of 128 problem instances. In fact, our
results showed that our proposed approach was able to provide good results
in terms of convergence and distribution of solutions both in problems with
a few (two or three) objectives as well as in problems with more than four
objectives.


Another important contribution of this work is that we were able to show
that the way in which the Tchebycheff decomposition is applied to create a
cost matrix for the LAP that we need to solve, is a very relevant factor that
contributed to improve the performance of our proposed approach in some
problems. When adopting the modified version of the Tchebycheff decompo-
sition, our proposed approach showed the best overall results, which indicates
that with this approach it is possible to control in a direct manner, the distri-
bution of solutions in objective function space.
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As part of our future work, we intend to study other methods to generate
sets of points that are uniformly distributed and which are computationally
inexpensive. We also plan to analyze other methods for solving LAPs at a lower
computational cost, since the Kuhn-Munkres algorithm has a cubic algorithmic
complexity. Furthermore, we would like to improve the performance that our
approach has on unimodal problems with concave geometry (e.g., DTLZ4),
as well as in those problems with a highly deceptive behavior (e.g., WFG5).
Additionally, we would like to apply our approach to domains such as feature
selection [1,2].


7 Compliance with Ethical Standards


We hereby submit the paper entitled “Evolutionary Many-objective Optimiza-
tion based on Linear Assignment Problem Transformations”, which is submit-
ted for possible publication in this journal. This is an original contribution
and is not being considered for possible publication in any other journal.
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