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Abstract
Research in multi-objective particle swarm optimizers (MOPSOs) pro-
gresses by proposing one new MOPSO at a time. In spite of the
commonalities among different MOPSOs, it is often unclear which algo-
rithmic components are crucial for explaining the performance of a
particular MOPSO design. Moreover, it is expected that different designs
may perform best on different problem families and identifying a best
overall MOPSO is a challenging task. We tackle this challenge here by:
(1) proposing AutoMOPSO, a flexible algorithmic template for designing
MOPSOs with a design space that can instantiate thousands of potential
MOPSOs; and (2) searching for good-performing MOPSO designs given
a family of training problems by means of an automatic configuration
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tool (irace). We apply this automatic design methodology to generate a
MOPSO that significantly outperforms two state-of-the-art MOPSOs on
four well-known bi-objective problem families. We also identify the key
design choices and parameters of the winning MOPSO by means of abla-
tion. AutoMOPSO is publicly available as part of the jMetal framework.

Keywords: Automatic algorithm design; multi-objective optimization;
particle swarm optimization; benchmarking

1 Introduction
The optimization of problems composed of two or more conflicting objectives or func-
tions using metaheuristics became a very active field of research since the early 2000s,
when popular algorithms such as NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler
et al., 2002) were introduced and the book of (Deb, 2001) and the first edition of the
book (Coello Coello et al., 2007) were published. Since then, a number of research
lines have been deeply studied, including many-objective optimization (Li et al.,
2015), dealing with expensive objective functions (Knowles, 2006; Chugh et al., 2018),
and dynamic problems (Jiang et al., 2022), just to mention a few. As a consequence,
a large number of multi-objective metaheuristics have been proposed.

The fact that the objectives are conflicting in multi-objective problems means
that improving one objective leads to a worsening of the others. As a consequence,
the optimum of these problems is usually not a single solution, but a set of trade-off
solutions collectively known as Pareto set, whose image in the objective space is called
Pareto front. Given a multi-objective problem, the main goal of using metaheuristics
is to find an accurate approximation of its Pareto front, where accuracy is measured
in terms of convergence, distribution and spread of the found solutions with respect
to the Pareto front.

The effectiveness of metaheuristics (both single and multi-objective) depends to
a large extent on the correct setting of their algorithmic parameters. The approach
usually adopted is to manually adjust the parameters by conducting pilot tests, which
is a tedious and not rigorous task. If the final user (i.e., the decision maker) is not an
expert in metaheuristics, such user will not have a minimum background to attempt
the trial-and-error strategy, so she/he will probably opt for using a widely known
technique, such as NSGA-II, configured with default settings taken from the paper
where the algorithm was originally presented.

In this context, a line that is gaining momentum is the automatic algorithm
configuration and, as an extension, the automatic design of metaheuristics. While
in the first case the goal is, given a set of problems used as training set, to find a
particular parameter setting that solve them in an efficient way, the second case is
a step forward in which not only the control parameters are considered, but also
the components of the algorithm that can be combined to design a new ad-hoc
algorithmic variant automatically.

In this paper, we are interested in the auto-design of multi-objective par-
ticle swarm optimizers (MOPSOs), which constitute a family of nature-inspired
metaheuristics that have shown to be very effective to solve multi-objective prob-
lems (Durillo et al., 2009). The inspiration of particle swarm optimization (PSO)
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algorithms, proposed by (Kennedy and Eberhart, 1995) is the choreography of bird
flocks when seeking for food. The implementation of the algorithm adopts a popula-
tion of particles, called swarm, which are initialized by default with random solutions
(i.e., random positions in the design space), and whose behavior is affected by either
their best local (i.e., within a certain neighborhood) or the best global particle (also
known as the leader). Over the generations, particles adapt their beliefs to the most
successful solutions found in their environment.

The approach we consider here is the automatic design of MOPSOs, follow-
ing a methodology already applied to the design of multi-objective ant colony
optimization (López-Ibáñez and Stützle, 2012) and multi-objective evolutionary algo-
rithms (Bezerra et al., 2016, 2020). The main ingredients of this methodology are:
(1) a flexible design space that allows instantiating MOPSO algorithms by configur-
ing the parameters of some software framework and (2) the application of automatic
configuration tools to search for designs given a set of (training) problem instances
and a unary quality metric, such as hypervolume (Zitzler and Thiele, 1998). There-
fore, one of our contributions is a flexible design space for MOPSOs implemented
in the jMetal framework (Durillo and Nebro, 2011). Our overall goal is to illustrate
the automatic design methodology in the case of MOPSOs for several well-known
problem families.

This paper is an extension of (Doblas et al., 2022), where we presented an
approach based on combining the jMetal framework with the irace package such that,
given a design space of MOPSO components, we could find the best configurations
for a set of test suites. The study carried out showed that the found AutoMOP-
SOs outperformed reference algorithms including SMPSO (Nebro et al., 2009) and
OMOPSO (Reyes Sierra and Coello Coello, 2005), when applied to the solution of
three problem families (for a total of 21 problems). Here, we increase the set of bench-
mark problems, reduce the budget of the evaluations to make them more challenging,
and conduct a more in-depth analysis.

Concretely, our aim is to answer the following research questions (RQs):

RQ1. Is it possible to find designs of MOPSO algorithms using automatic design
which are able to outperform state-of-the-art algorithms such as SMPSO and
OMOPSO?
RQ2. Is the auto-design process able to obtain a configuration that yields to
accurate results when a benchmark of realistic problems is added to the study?
RQ3. What are the design parameters that have the strongest effect on the
performance of MOPSO algorithms given the design space considered here?
RQ4. Can a configuration obtained for a given test suite lead the algorithm to
avoid overffiting and allow a generalization for many other problems?

These questions are addressed in the discussion section in the light of the results
obtained after performing a series of experiments. In this regard, a new set of
experiments have been conducted in the current study on an extended benchmark
containing different problem families, which indeed incorporate an enriched set of
algorithmic components and parameters. All this allows us to carry out an in-depth
analysis of the designs found using ablation analysis (Fawcett and Hoos, 2016) with
the goal of determining which parameters have more influence in the MOPSO variants
under consideration.

This paper is organized according to the following structure of contents. The next
section contains a review of previous related work in order to provide the proper
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context to our proposal. Section 3 describes the methods and tools employed, where
the design and development decisions taken to generate the AutoMOPSO approach
are explained. Extended experiments and comparisons are provided in Section 4. In
Section 5, a series of discussions are included with the aim of answering the research
questions previously indicated. Finally, our conclusions and some possible future
steps in this research line are described in Section 6.

2 Related Work
Automatic algorithm configuration (Birattari, 2009) is the idea of using optimization
methods for automatically setting the parameter values of an algorithm to maximize
a quality metric, such as expected solution cost, over a given set of problem instances.
To approach this idea, automatic configuration methods, such as irace (López-Ibáñez
et al., 2016), are emerging as black-box optimization methods able to handle integer,
real and categorical parameters, which may be also conditional on the values of other
parameters. In addition, such methods must handle the stochasticity of the algorithm
being tuned and intelligently use the computational budget given by selecting how
many and which problem instances are used for evaluating the performance of a
candidate configuration.

Automatic design extends this idea (López-Ibáñez and Stützle, 2012; Khud-
aBukhsh et al., 2016; Stützle and López-Ibáñez, 2019) by considering flexible
algorithmic frameworks from which different algorithmic designs can be instantiated
by appropriately setting parameter values. In automatic design the challenge is the
definition of such frameworks, which may be flexible enough to define a large space
of potentially useful algorithmic designs, while at the same time reducing as much as
possible redundancies between alternative designs (Stützle and López-Ibáñez, 2019).

If we focus on PSO, Frankestein’s PSO (Montes de Oca et al.,, 2009) is a proposal
to combine different components of single-objective PSOs, but without using an
automatic configuration approach. The PSO-X framework (Camacho-Villalón et al,
2021) applies automatic design to PSOs, but it is also focused on single-objective
optimization algorithms. Thus, many design decisions that are only relevant for multi-
objective problems (such as the role of archived particles in the velocity update) are
not taken into account in these proposals.

To the best of our knowledge, (de Lima and Pozo, 2017) is the only work that has
studied automatic design of MOPSO algorithms. In that work, the design space is
given as a context-free grammar which is tuned for the DTLZ (Deb-Thiele-Laumanns-
Zitzler) problem family (Deb et al., 2005) by using both grammatical evolution and
irace. The automatically-designed MOPSOs are compared with respect to SMPSO.
Although their methodology is similar to ours, we focus here on a larger design
space, 25 parameters, while 10 were taken in (de Lima and Pozo, 2017), and on the
analysis of the algorithmic components that contribute the most to the observed
performance. In addition, we consider a larger set of problem families. In our work
her, we focus on bi-objective problems and we have chosen four problem families
with the goal of understanding which problem families lead to more general MOPSO
designs when used as training sets. In particular, we focus on bi-objective problem
families: the Zitzler-Deb-Thiele (ZDT) (Zitzler et al., 2000), Deb-Thiele-Laumanns-
Zitzler (DTLZ) (Deb et al., 2005), Walking-Fish-Group (WFG) (Huband et al., 2006)
and the RE (Tanabe and Ishibuchi, 2020) problem families. We also compare the
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Fig. 1: Auto-design process scheme.

automatically-designed MOPSOs not only to SMPSO, but also to OMOPSO, since
the latter sometimes outperforms the former.

Finally, as an additional contribution, we make available the resulting framework
as part of jMetal, which will allow practitioners and researchers to apply automatic
design and the analysis shown here to other problem scenarios.

3 Methods and Tools
The proposed process to carry out the automatic design of a metaheuristic is depicted
in Fig. 1. The starting point is an algorithmic template defining the behavior of the
baseline algorithm to be designed and a parameter space which defines its param-
eters and components, including their relationships, that can be combined in the
template to produce a particular algorithm. Then, after selecting a number of opti-
mization problems as the training set, an automatic configuration tool is executed to
find a particular configuration that yields an instantiated algorithm able of optimize
efficiently the problems in the training set. Depending on the diversity of the train-
ing problems and their representativity of a larger family of problems, the resulting
algorithm may either be biased to them, leading to overfiting, or can be more generic
and perform well for other similar problems.

When the template is tailored to a specific algorithm and the parameter space
merely describes the usual (typically numerical) parameters of that algorithm, the
above process corresponds to automatic configuration. An example is the work pre-
sented by (Nebro et al., 2019), where the specific algorithm is NSGA-II and the goal
was to automatically configure its parameters, such as population size, mutation
rate, etc. The concept of automatic design goes one step beyond and implies build-
ing a new meta-algorithm or a generic algorithmic template where some (high-level)
parameters represent design choices that distinguish between different algorithms.
Setting those high-level parameters appropriately allows instantiating specific algo-
rithms. In addition, specific algorithms will have a number of low-level parameters
that are sometimes shared among different potential designs, but are often disabled
for specific high-level designs.

In this work, we start from a canonical MOPSO algorithm (described in
Section 3.1) and, from it, we propose an algorithmic template, called AutoMOPSO,
for the automatic design of multi-objective particle swarm optimizers, which is in
turn detailed in Section 3.2. Some elements of this template can be chosen from a
number of alternative options, including various numerical settings. Those config-
urable elements, together with their domains and various dependencies that exist
among them, give rise to a parameter space (Section 3.3). By assigning values to
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the parameters of the AutoMOPSO template, we can instantiate and run a specific
MOPSO.

We implemented AutoMOPSO in the jMetal framework, which is a library
for multi-objective optimization with metaheuristics available in Java (Durillo and
Nebro, 2011; Nebro et al., 2015). Given a string representing pairs of parameters
and values, our implementation of AutoMOPSO creates the corresponding MOPSO
algorithm. When running this MOPSO algorithm on a particular problem up to a
given termination criterion, the result is the value of a unary indicator measuring
the quality of the obtained Pareto front approximation.

To search in the parameter space of AutoMOPSO, the automatic configuration
method adopted was irace (López-Ibáñez et al., 2016), which is an R package imple-
menting an elitist iterated racing strategy for the automatic tuning of optimization
algorithms. Given the parameter space and a set of training problems, irace calls the
jMetal implementation of AutoMOPSO to generate specific MOPSO designs, then
evaluates them on problems selected from the training set and captures the returned
quality indicator values to compare alternative MOPSO designs.

3.1 Canonical MOPSO Algorithm
A generic PSO works by iteratively generating new particles’ positions located in
a given problem search space. The position xi represents a set of Cartesian coordi-
nates describing a point in solution space. Each of these new particles’ positions are
calculated at each iteration t as follows:

xt+1
i = xt

i + vt+1
i (1)

where vt+1
i is the velocity vector of particle i. This velocity is updated using the next

formula:

vt+1
i = ω · vt

i + U t[0, φ1] · (pt
i − xt

i) + U t[0, φ2] · (bt
i − xt

i) (2)
where pt

i is the personal best position that the particle i has ever stored, and bt
i is the

position found by the member of its neighborhood that has had the best performance
so far (also known as leader or global best). Acceleration coefficients φ1 and φ2

control the relative effect of the personal best, and U t is a diagonal matrix with
elements distributed uniformly at random in the interval [0, φi]. Finally, ω is called
the inertia weight and influences the trade-off between exploitation and exploration.

An alternative version of the velocity equation was proposed by Clerc and
Kennedy (2002), where the constriction coefficient χ (which arises from the observa-
tion that the velocity of some particles keeps growing unless restrained in some way)
is adopted instead of the inertia weight ω:

vt+1
i = χ ·

(
vt
i + U t[0, φ1] · (pt

i − xt
i) + U t[0, φ2] · (bt

i − xt
i)
)

(3)

where the constriction coefficient χ is calculated from the two acceleration coefficients
φ1 and φ2 as:

χ =
2

|2− φ−
√

φ2 − 4φ|
where φ = φ1 + φ2 and φ > 4 (4)

This constriction method results in convergence over time, and the amplitude of
particles’ oscillations decreases along the optimization process.
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In order to adapt the canonical PSO to the multi-objective domain, we consider
that the global best, instead of being a single particle, is implemented as a bounded
archive containing the non-dominated solutions found so far. This means that a
strategy for choosing the concrete global best particle must be adopted to apply
the velocity update formula. We also assume a perturbation method that can be
optionally applied, with the aim of improving some aspect of the search process (e.g.,
fostering diversification).

With these considerations, the pseudo-code defining the working of a generic
MOPSO is presented in Listing 1. The first steps are to create the initial swarm and
evaluating it (lines 1 and 2). Next, the velocity, local best and global best archive are
initialized (lines 3-5) and then the main loop of the algorithm starts and is executed
until a termination condition is met (line 6). In the body of the loop, the position
and velocity of the particles are updated and they can be possibly modified by a
perturbation function; after that, the swarm is re-evaluated and the local best and
global best archives are updated. When the loop ends, the algorithm returns the
global best archive as a result.

Listing 1: Pseudo-code of a generic MOPSO

1 c r ea t e i n i t i a l swarm
2 eva luate swam
3 i n i t i a l i z e v e l o c i t y
4 i n i t i a l i z e l o c a l best
5 i n i t i a l i z e g l oba l best a r ch ive
6 whi le te rminat ion cond i t i on i s not met
7 update v e l o c i t y
8 update po s i t i o n
9 per turbat i on

10 eva luate swarm
11 update l o c a l best
12 update g l oba l best a r ch ive
13 }
14
15 re turn g l oba l best a r ch ive

3.2 AutoMOPSO jMetal Algorithm Template
Our proposed AutoMOPSO template is presented in Listing 2. It depicts the actual
jMetal code and we can observe that it closely mimics the pseudo-code in Listing 1.
A key point in defining the template is that all the steps (e.g., create initial swarm,
velocity initialization, etc.) are components that can be set at configuration time,
thus leading to different MOPSO variants. jMetal includes a catalog of components,
providing one or more specific implementations of each one. For example, the creation
of the initial swarm assigns random values to the position of the particles by default,
but other strategies can be adopted, as shown in the next section.

Listing 2: AutoMOPSO template in jMetal

16 swarm = crea t e In i t i a lSwarm . c r ea t e ( swarmSize ) ;
17 swarm = eva lua t i on . eva luate ( swarm) ;
18 v e l o c i t y = v e l o c i t y I n i t i a l i z a t i o n . i n i t i a l i z e ( swarm) ;
19 l o c a lBe s t = l o c a l B e s t I n i t i a l i z a t i o n . i n i t i a l i z e ( swarm) ;
20 g loba lBestArch ive = g l o b a l B e s t I n i t i a l i z a t i o n . i n i t i a l i z e ( swarm) ;
21
22 whi le ( ! t e rminat ion . isMet ( ) ) {
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23 v e l o c i t y = ve loc i tyUpdate . update ( swarm , ve l o c i t y , l o ca lBes t ,
g loba lBestArchive , g l oba lBe s tSe l e c t i on ,
ine r t i aWe ightSt ra tegy ) ;

24 swarm = pos i t ionUpdate . update ( swarm , v e l o c i t y ) ;
25 swarm = per turbat i on . perturb ( swarm) ;
26 swarm = eva lua t i on . eva luate ( swarm) ;
27 g loba lBestArch ive = globalBestUpdate . update ( swarm ,

g loba lBestArch ive ) ;
28 l o c a lBe s t = loca lBestUpdate . update ( swarm , l o c a lBe s t ) ;
29 }
30
31 re turn g loba lBes t ;

It is worth commenting the velocity update component. This component updates
the velocity vt+1

i from vt
i by applying equations such as Eq. 2 or Eq. 3. In our

template, the strategies for selecting the global best and to adjust the inertia weight
are also parameters that can configured.

About the perturbation, in our template we assume that particles can be modified
by applying mutation operators (which are available in jMetal as variation operators
of genetic algorithms) with a given frequency.

3.3 Design Space of AutoMOPSO
The configurable components of the AutoMOPSO template and their available
choices define the design space of AutoMOPSO. These components may have their
own parameters that also need to be configured; examples are the aforementioned
velocity update or the probability of the mutations used as perturbations. All these
parameters lead to the design space shown in Table 1. The table shows the domain of
each parameter as a range of integers (N) or real values (R), in the case of numerical
parameters, or as a set of values in the case of categorical parameters. Some (con-
ditional) parameters only have an effect for certain values of other parameters; for
example, tournamentSize is only active if globalBestSelection is set to the value
tournament. In addition, we include at the end of the table a set of non-configurable
components that currently have only a single default value in jMetal, but could be
extended in the future. We briefly describe each component in the remainder of this
section.

We assume that the maximum size of the archive storing the global best par-
ticles (named leaderArchive in the table) is 100 while the swarm size can take a
value within the range [10, 200]. There are three possible types of leaderArchive
depending of the density estimator used to remove particles when it is full: crowding
distance (Deb et al., 2002), hypervolume contribution (Knowles and Corne, 2003;
Beume et al., 2007), and spatial spread deviation (Santiago et al., 2019).

The swarm can be initialized (swarmInitialization) using three possible strate-
gies, namely random, based on a latin hypercube sampling, and the scheme used
in scatter search algorithms (Nebro et al., 2008). The velocity of the particles can
be initialized (velocityInitialization) to 0.0 (default) or by selecting one of the
schemes defined in the standard PSO 2007 and the standard PSO 2011 (Clerc, 2012).

The concept of perturbation is implemented as a mutation operator that is applied
to the particles of the swarm with a frequency F between 1 an 10 (that is, the muta-
tion is applied to particles at positions F , 2F , . . . ). There are currently four mutation
operators that can be chosen, each of them having its own parameter that controls
its intensity, e.g., the distribution index for polynomial-based mutation. The proba-
bility of applying a mutation operator in evolutionary algorithms is typically set to



Automatic Design of Multi-Objective Particle Swarm Optimizers 9

1/n, where n is the number of decision variables of the problem. In AutoMOPSO, the
parameter mutationProbabilityFactor divided by n controls the effective mutation
probability. The last configurable parameter regarding mutation is the repair strat-
egy, which determines how to proceed when the result of mutating a variable leads
to an out-of-bounds value. Concretely, the mutation choices are:

• random: the variable takes a uniform random value within the bounds.
• bounds: if the value is lower/higher than the lower/upper bound, the variable

is assigned the upper/lower bound (this is called saturation in Caraffini et al.
(2019)).

• round : if the value is lower/higher than the lower/upper bound, the variable is
assigned the upper/lower bound (i.e., this could be named inverse-saturation or
reverse-saturation to follow the nomenclature of Caraffini et al. (2019)).

There are four strategies for computing the inertia weight ω in Eq. 2
(inertiaWeightStrategy): constant, random within the range [0.1, 1.0], and linearly
increasing and linearly decreasing with minimum and maximum weight values in the
ranges [0.1, 0.5] and [0.5, 1.0], respectively.

Table 1: Design space of AutoMOPSO. The leader archive has size 100. Non-
configurable parameters currently have a single (default) implementation. Parameters
and components in boldface are new additions with respect to (Doblas et al., 2022).

Parameter Domain

swarmSize [10, 200] ⊂ N
leaderArchive { crowdingDistance, hypervolume, spatialSpreadDeviation }

swarmInitialization { random, latinHypercubeSampling, scatterSearch }
velocityInitialization { default, SPSO2007, SPSO2011 }

mutation { uniform, nonUniform, polynomial, linkedPolynomial }
mutationProbabilityFactor [0.0, 2.0] ⊂ R

mutationRepairStrategy { random, round, bounds }
uniformMutationPerturbation [0.0, 1.0] ⊂ R if mutation=uniform

nonUniformMutationPerturbation [0.0, 1.0] ⊂ R if mutation=nonUniform
polynomialMutationDistIndex [5.0, 400.0] ⊂ R if mutation=polynomial

linkedPolynomialMutationDistIndex [5.0, 400.0] ⊂ R if mutation=linkedPolynomial
mutationFrequency [1, 10] ⊂ N

inertiaWeightStrategy { constant, random, linearIncreasing, linearDecreasing }
weight [0.1, 1.0] ⊂ R if inertiaWeightStrategy=constant

weightMin [0.1, 0.5] ⊂ R if inertiaWeightStrategy ̸=constant
weightMax [0.5, 1.0] ⊂ R if inertiaWeightStrategy ̸=constant

velocityUpdate { defaultVelocityUpdate, constrainedVelocityUpdate }
c1Min [1.0, 2.0] ⊂ R
c1Max [2.0, 3.0] ⊂ R
c2Min [1.0, 2.0] ⊂ R
c2Max [2.0, 3.0] ⊂ R

globalBestSelection { tournament, random }
tournamentSize [2, 10] ⊂ N if globalBestSelection=tournament

velocityChangeWhenLowerLimitIsReached [−1.0, 1.0] ⊂ R
velocityChangeWhenUpperLimitIsReached [−1.0, 1.0] ⊂ R

Non-configurable Parameter

localBestInitialization Default
localBestUpdate Default

globalBestInitialization Default
globalBestUpdate Default

positionUpdate Default
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As indicated in the previous section, there are two alternatives for updating
the particles’ velocity: defaultVelocityUpdate (Eq. 2) and constrainedVelocityUpdate
(Eq. 3). The φ1 and φ2 coefficients (named c1 and c2) take values within the
ranges [1.0, 2.0] and [2.0, 3.0], respectively. These ranges are set to consider most
of possible values used in the literature for setting these parameters (Clerc, 2012).
The globalBestSelection defines how the global best particle bt

i is selected from
the leader archive for updating the velocity; the two choices are random and N -
ary tournament, where N is a parameter (tournamentSize) between 2 (i.e., binary
tournament) and 10.

When the default non-configurable positionUpdate component applies Eq. 1,
the resulting position can be out-of-bounds. In this case, the position is set to the
bound value (in the same way as the bounds scheme in the mutationRepairStrategy
and the velocity is modified by multiplying it by a factor V in the range [−1.0, 1.0],
resulting in a velocity change. A negative V value implies a change in the veloc-
ity direction, 0.0 means that the particle stops, a positive value less than 1.0 is
equivalent to reduce the speed, and the velocity remains the same if the value
of V is 1.0. We allow different values of V depending on whether the lower or
upper bound is reached (parameters velocityChangeWhenLowerLimitIsReached and
velocityChangeWhenUpperLimitIsReached in Table 1 that are originally considered
in SMPSO (Nebro et al., 2009)).

About the rest of non-configurable components, the default policies for initial-
izing and updating the local best are that each particle is its local best at the
beginning and the local best is updated if the current particle dominates it. The
globalBestInitialization and globalBestUpdate just insert the particles of the
swarm into the leaders archive.

3.4 Finding AutoMOPSO Configurations with irace
In this section, we give some details about how irace is used to find AutoMOPSO
configurations. As shown by Fig. 1, irace require as inputs three elements: the param-
eter space, the algorithm template (i.e., AutoMOPSO), and the training problems.
jMetal automatically generates the parameter space description required by irace
that contains the same information included in Table 1. This description is stored in
a file which is already included in the jMetal project.

Irace starts by sampling uniformly at random a number of valid configurations
from the design space and calling an executable program (AutoMOPSO in our case)
with them on a small number of training problems. Each execution must return
a value that measures the quality of the configuration on that particular problem
instance. The main of goal of irace is to find the configuration minimizing that
expected value of that measure. Concretely, in this work we have used the hyper-
volume quality indicator (Zitzler and Thiele, 1998), which takes into account both
the convergence, distribution and spread of the Pareto front approximations found
by the algorithms. The higher hypervolume value, the better is the front in terms of
those properties; since irace assumes that the measure has to be minimized, we mul-
tiply the hypervolume by −1. In principle, irace may use any unary quality indicator,
such as, additive epsilon, inverted generational distance, etc., and previous studies
have investigated the combination of multiple indicators within irace (Bezerra et al.,
2020).
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Within irace, configurations are evaluated by means of statistical racing, which
is a classical method for lazy selection under uncertainty. Within each race, con-
figurations are evaluated on an increasing number of problem instances and poor
performing configurations are removed as soon as possible. The goal of racing is
to compare good configurations on a large number of (training) problem instances,
while avoiding wasting evaluations on poor performing ones. After a race, the sur-
viving configurations are used to update a probabilistic sampling model, which is
then used to sample new configurations. The number of configurations sampled at
each iteration is dynamically adjusted and depends on the number of parameters
and the remaining computational budget. Surviving and new configurations are used
together to start a new race. This process of sampling and racing is repeated until
a given computational budget is consumed, typically a maximum number of evalu-
ations. Full details about the internal algorithm used by irace are available in the
original publication (López-Ibáñez et al., 2016).

We give now some implementation details of AutoMOPSO. The main require-
ments we considered when designing it was that it had to be flexible enough to allow
to produce a particular MOPSO algorithm from any configuration generated by irace.
From our experiences with jMetal, we were aware that the architecture presented
in Nebro et al. (2015) lacked the desirable flexibility we needed, so we designed a
component-based architecture (Nebro et al., 2019) that has been adopted to imple-
ment a template for generic MOPSO algorithms.1 This architecture is complemented
with a catalog of MOPSO components that can be combined to produce particular
MOPSOs. Furthermore, jMetal has been extended with a package including support
for defining any kind of configurable parameter and parsing them in an easy way.
AutoMOPSO is the result of using this package in combination with the MOPSO
template.

More detailed information about AutoMOPSO and irace can be found in the
jMetal documentation.2

4 Experiments and Results
This section is devoted to explain the experiments conducted in this study, as well
as the results obtained from them. It starts with the experimental setup and the
different design options of AutoMOPSO. A comparative study and ablation analysis
are then carried out to support the discussions and the final conclusions.

4.1 Experimental Setup
Once we have the algorithm template and the parameter space, keeping in mind the
auto-design process in Fig. 1, the last required ingredient is to select the problems to
be used as the training set. As mentioned earlier, we focus on bi-objective problems
and, in particular, the four problem families, ZDT, DTLZ, WFG, and RE, which are
briefly described next.

The ZDT test suite (Zitzler et al., 2000) is composed of six bi-objective problems
(we do not consider the ZDT5 problem, as it is binary) that can scale in the number
of decision variables, keeping the Pareto optimal front in the same location. Both
the DTLZ (Deb et al., 2005) and WFG (Huband et al., 2006) test suites are scalable

1https://jmetal.readthedocs.io/en/latest/component.html
2https://jmetal.readthedocs.io/en/latest/autoconfiguration.html#automopso
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Table 2: Main features of the benchmark problems. The number of variables (n) of
the ZDT, DTLZ, and WFG problems are default values.

Problem n Main properties

ZDT1 30 Convex
ZDT2 30 Concave
ZDT3 30 Disconnected
ZDT4 10 Convex, multi-modal
ZDT5 10 Concave

DTLZ1 7 Linear, multi-modal
DTLZ2 12 Concave
DTLZ3 12 Concave, multi-modal
DTLZ4 12 Concave, biased
DTLZ5 12 Degenerate
DTLZ6 12 Degenerate
DTLZ7 22 Disconnected

WFG1 6 Mixed, biased
WFG2 6 Convex, disconnected, multi-modal, non-separable
WFG3 6 Linear, degenerate, non-separable
WFG4 6 Concave, multi-modal
WFG5 6 Concave, deceptive
WFG6 6 Concave, non-separable
WFG7 6 Concave, biased
WFG8 6 Concave, biased, non-separable
WFG9 6 Concave, biased, multi-modal, deceptive, non-separable

RE21 4 Convex
RE22 3 Mixed
RE23 4 Mixed, disconnected
RE24 3 Convex
RE25 2 Mixed, disconnected

in both decision and objective space, having seven and nine problems, respectively.
The RE problem family (Tanabe and Ishibuchi, 2020) is the result of collecting real-
worlds problems from the literature. RE contains 16 test instances, from which five
have two objectives. A summary of the main features of the problems is included in
Table 2.

The methodology applied consists in running irace once per problem family,
using such problem family as the training set. As a result, we obtain four different
MOPSO algorithms instantiated from AutoMOPSO (AutoMOPSO designs). Since
irace adjusts dynamically the population size and the number of runs performed
per problem instance, these values are not fixed a priori. We give to irace the
SMPSO and OMOPSO configurations, which can be instantiated from our Auto-
MOPSO template (as shown in Table 3) as two initial configurations, while irace
generates additional initial configurations by sampling uniformly from the parameter
space (as explained in Section 3.4). Each run of irace is given a maximum budget of
100,000 runs of MOPSO algorithms instantiated from AutoMOPSO. Each run of a
MOPSO algorithm stops after 10,000 solution evaluations, as recommended by Tan-
abe and Ishibuchi (2020),3 and returns up to 100 non-dominated solutions (due to
the bounded size of the leaderArchive). Within irace, the quality of a MOPSO run
is evaluated according to the hypervolume value of the returned leaderArchive.

3We reduced the number of solution evaluations from the 25,000 used by Doblas et al. (2022)
to keep all problems as challenging.
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Table 3: Settings of the MOPSO algorithms. (CD: crowding distance, HV: hypervol-
ume contribution, LHS: latin hypercube sampling, SS: scatter search). The subscripts
z, d, w and re in AutoMOPSO stand, respectively, for the designs generated from
the ZDT, DTLZ, WFG, and RE problems. A value of ‘–’ means that the parameter
is disabled.

Parameter SMPSO OMOPSO AutoMOPSOz AutoMOPSOd AutoMOPSOw AutoMOPSOre

swarmSize 100 100 39 194 53 111
leaderArchive CD CD HV HV HV HV

swarmInitialization random random random SS LHS random
velocityInitialization default default SPSO2007 SPSO2007 SPSO2011 SPSO2011

mutation polynomial uniform nonUniform linkedPolynomial polynomial linkedPolynomial
mutationProbabilityFactor 1.0 1.0 1.65 0.05 0.04 0.60

mutationRepairStrategy bounds bounds round random round random
uniformMutationPert. – 0.5 – – – –

nonUniformMutationPert. – – 0.1002 – – –
polynomialMut.Dist.Index 20.0 – – – 105.8681 –
linkedPol.Mut.Dist.Index – – – 151.3372 – 307.3590

mutationFrequency 6 3 10 6 9 6
inertiaWeightStrategy constant random constant linearDec. linearInc. constant

weight 0.1 – 0.12 – – 0.11
weightMin – 0.1 – 0.25 0.20 –
weightMax – 0.5 – 0.96 0.59 –

velocityUpdate constrained default default constrained default default
c1Min 1.5 1.5 1.89 1.75 1.29 1.29
c1Max 2.5 2.0 2.25 2.22 2.56 2.78
c2Min 1.5 1.5 1.50 1.46 1.33 1.12
c2Max 2.5 2.0 2.90 2.07 2.34 2.73

globalBestSelection tournament tournament tournament tournament tournament tournament
tournamentSize 2 2 9 5 8 2

velocityChangeLowerLimit -1.0 -1.0 0.02 0.86 -0.94 0.99
velocityChangeUpperLimit -1.0 -1.0 -0.90 0.06 -0.82 0.75

To run irace we have used 64 cores of computers provided by the Supercomputing
and Bioinnovation Center (SCBI) of the University of Malaga. The total computing of
each irace execution has been roughly 8 hours. Although this time may be considered
high, it should be borne in mind that this process only has to be done once, and
trying to fine-tune the algorithms manually usually takes considerably longer.

4.2 Finding AutoMOPSO Designs
Table 3 includes the settings of SMPSO, OMOPSO and the four AutoMOPSO
designs found by irace. We will use the term AutoMOPSOx, where the subscript
x can take the values z, d, w and re to refer to the variant corresponding to the
ZDT, DTLZ, WFG, and RE problem families, respectively. A first observation at a
glance shows that only two parameters are common in all the AutoMOPSO variants:
the hypervolume-based leader archive and the tournament global-best selection. The
hypervolume-based archive was also selected in the experiments reported by Doblas
et al. (2022), but all the other AutoMOPSO parameters have different values now.

Besides the inclusion of new parameter values, such as linked polynomial-based
mutation (Zille et al., 2016) or the SPSO2007 and SPSO2011 velocity initialization
strategies, the fact that the stopping condition has been reduced from 25,000 function
evaluations to 10,000 makes the two studies not directly comparable.

If we compare the AutoMOPSO designs with SMPSO, we see that only
AutoMOPSOd adopts the constrained velocity update, which is the main feature
of SMPSO, but differs in the rest of elements. Therefore, the velocity changes
when getting to the lower and upper boundaries are both -1.0 in SMPSO, while in
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AutoMOPSOd the values are 0.86 in the lower limit (the velocity remains almost
unchanged) and 0.06 in the upper limit (the velocity is close to 0.0).

4.3 Comparative Study
Once we have found four AutoMOPSO variants from different training sets, the
next step is to make a comparative study to assess their performances. We include
NSGA-II in this study to use it as a reference, and it is configured with commonly
used settings: population size of 100, simulated binary crossover SBX (probability
= 0.9, distribution index = 20) and polynomial-based mutation (probability = 1/n,
distribution index = 20).

For this comparison, we perform 25 independent runs with different random seeds
of each algorithm per problem. The quality of the obtained Pareto front approxima-
tions is evaluated using two indicators: unary additive epsilon (Iϵ+) (Zitzler et al.,
2003), which gives a measure of the approximation distance to a reference set, typi-
cally a best-known approximation to the Pareto front; and hypervolume (Ihv) (Zitzler
and Thiele, 1998), which measures convergence, distribution and spread.

We report the median and interquartile range of the indicator values, as well as
the results of applying the Wilcoxon rank sum test to check whether the differences
are significant (with a confidence level of 95%) with respect to a reference algorithm.

Table 4 includes the Iϵ+ results. We include the variant AutoMOPSOz in the
last column as the reference algorithm, as it is the best one according to Friedmans’
statistical ranking (see Table 6). Cells with dark and light gray background highlight
the best and second best values, respectively. The symbols +, − and ≈ in the cells
indicate that the differences with the reference algorithm are significantly better,
worse, or there is no difference according to the Pairwise Wilcoxon rank sum test.

At a glance, we observe in Table 4 that the representative SMPSO and OMOPSO
algorithms are outperformed by the AutoMOPSO variants, achieving the best result
in only one problem (OMOPSO on WFG5); NSGA-II, the only evolutionary algo-
rithm in the study, gets the lowest indicator values on instances WFG4 and RE23.
If we focus on the variants AutoMOPSOz, AutoMOPSOd, AutoMOPSOw, and
AutoMOPSOre and the values obtained by them on the ZDT, DTLZ, WFG, and
RE problems, we see that, in general, each of them performs best on the benchmark
used as training set when generating them, although they do not achieve the best
Iϵ+ values in all the problems. For example, AutoMOPSOz finds the Pareto front
approximations with best Iϵ+ values on instances ZDT1, ZDT2, ZDT3, and ZDT6,
but it is the worst performing algorithm on ZDT4. This indicates that irace was not
able to find a compromise design for the five ZDT problems. A similar behavior is
observed in the other AutoMOPSO variants.

The summary of the Wilcoxon rank sum test (last row of Table 4) confirms, as
the Friedman statistical ranking does, that AutoMOPSOz is the solver achieving the
best overall results. It gets the higher number of best results with significance in all
the pairwise comparisons with respect to the rest of algorithms, being AutoMOPSOre

the one having the highest number of ties (11 out of the total of 26 problems).
The findings with Iϵ+ are confirmed when analyzing the values of the Ihv qual-

ity indicator in Table 5 and Friedman’s ranking in Table 7. We observe that some
cells have a hypervolume value of 0.0, which means that the obtained Pareto front
approximations are dominated by the reference point obtained from the reference
Pareto fronts. Consequently, they do not contribute to the hypervolume. In this
sense, the three instances where OMOPSO, AutoMOPSOz, AutoMOPSOw, and
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AutoMOPSOre get a Ihv equal to 0.0 are ZDT4, DTLZ1, and DTLZ3, which are
multimodal problems (see Table 2).

Table 6: Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of the
compared algorithms. Symbol * indicates the control algorithm and the column at
the left contains the overall ranking of positions with regards to Iϵ+.

Algorithm Ranking p-value Holm Hypothesis

AutoMOPSOz* 3.231 - - -
AutoMOPSOd 3.538 1.093E-11 0.05 Rejected

AutoMOPSOre 3.731 2.458E-28 0.025 Rejected
OMOPSO 3.846 4.762E-42 0.017 Rejected

AutoMOPSOw 4.077 6.863E-78 0.013 Rejected
SMPSO 4.423 9.809E-153 0.01 Rejected
NSGAII 5.154 0E0 0.008 Rejected

Table 7: Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of the
compared algorithms. Symbol * indicates the control algorithm and the column at
the left contains the overall ranking of positions with regards to Ihv.

Algorithm Ranking p-value Holm Hypothesis

AutoMOPSOz* 3.019 - - -
AutoMOPSOre 3.481 2.187E-24 0.05 Rejected
AutoMOPSOd 3.769 1.366E-61 0.025 Rejected

OMOPSO 4.096 5.666E-125 0.017 Rejected
AutoMOPSOw 4.288 8.321E-173 0.013 Rejected

SMPSO 4.615 4.53E-272 0.01 Rejected
NSGAII 4.731 0E0 0.008 Rejected

Friedman’s test ranks the algorithms for each problem separately, so the lower
the ranking, the better the algorithm performs. Then, together with Friedman’s
ranking, a Holm’s post-hoc for multiple comparisons has been applied to check if
there are significant differences between the resulting distributions. In this case,
following the methodology proposed in (Derrac et al., 2011), Tables 6 and 7 show
the statistical results for Iϵ+ and Ihv respectively, where symbol * indicates the best
ranked technique according to Friedman (then used as the control algorithm) and
the fourth column contains the Holm’s p-value of each technique with regards to the
control one. It is worth noting that AutoMOPSOz is used as the control algorithm
for the two indicators, and all the remaining techniques reached ≤ 0.05 adjusted p-
value, hence rejecting the null hypotheses of similar distributions (with regards to
AutoMOPSOz).

We have included two figures in Appendix A, Fig. 5 and Fig. 6, containing the
boxplots of the Iϵ+ and IHV quality indicator values, respectively. This way, the dis-
persion of the data, including outliers, can be observed in a visual way. Additionally,
we report the tables resulting from applying the Kolmogorov-Smirnov test (Sheskin,
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Fig. 2: Pareto front approximations obtained by the MOPSO algorithms
corresponding to the median of the Ihv for problem ZDT3.
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corresponding to the median of the Ihv for problem DTLZ1.
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2011), a non-parametric test to determine whether two samples are derived from
different distributions, in Appendix B.

From a graphical viewpoint, Fig. 2 shows the fronts obtained by SMPSO,
OMOPSO and the four AutoMOPSO variants for problem ZDT3, to exemplify our
results. We observe that SMPSO, OMOPSO, and AutoMOPSOw are not able to
find a front converging to the reference Pareto front in 10,000 evaluations which
was the value set as our stopping condition. AutoMOPSOw has a lower Iϵ+ value
than AutoMOPSOdand AutoMOPSOre with statistical confidence, although the
differences are not significant when looking at the plots.

We include in Fig. 3 the fronts obtained by the six MOPSO algorithms for problem
DTLZ1, where we observe that only SMPSO and AutoMOPSOd are able to obtain
fronts converging to the reference Pareto front on this problem. As it was commented
above, SMPSO and AutoMOPSOd adopt a velocity update scheme based on velocity
constriction, so this feature appears necessary to effectively solve some multimodal
problems.

4.4 Ablation Analysis
We analyze AutoMOPSOz in more detail, which was the best overall configuration
in the comparison shown above. For this purpose, we perform an ablation analysis
(Fawcett and Hoos, 2016) as implemented by the irace package (López-Ibáñez et al.,
2016). The analysis starts from a source algorithmic configuration and generates all
possible configurations that change just one parameter to match the value in the tar-
get configuration. When the changed parameter is conditional on other parameters,
all the parameters required to fulfill the condition are changed simultaneously. All
these configurations are evaluated on a number of problem instances and the best one
is kept. The next step repeats the process but starting from the best configuration
selected in the previous step. The process stops when all parameters have the same
value as in the target configuration. The parameter changed at each step, and the
impact of its change on solution quality measures the contribution of each individual
parameter to the differences between the source and target algorithm designs.

We performed ablation analysis using SMPSO as our source and AutoMOPSOz

as our target (see Table 3) adopting two different sets of problem instances. The
analysis on the left side of Fig. 4 evaluates every configuration on all the ZDT prob-
lems (5 repetitions per instance). Hypervolume values are transformed into ranks
and lower rank values indicate better quality. Starting from the source (SMPSO),
the most significant changes occur in the first 6 steps, when changing parameters
leaderArchive, velocityChangeLowerLimit, swarmSize, selectionTournament-
Size, velocityChangeUpperLimit and velocityUpdate. From the analysis of other
AutoMOPSO configurations, the change in leaderArchive from crowding distance
to hypervolume seems to be a critical improvement to the design of MOPSOs, as well
as the use of a larger tournament size and a smaller swarm size than SMPSO.

The right plot of Fig. 4 repeats the analysis using all problem families (ZDT,
DTLZ, WFG and RE, with 5 repetitions per instance), which explains the higher
variance of the rank values. In this case, the most significant parameter changes
are leaderArchive, c1Max, selectionTournamentSize, velocityChangeLowerLimit,
and swarmSize. A further improvement occurs after setting mutation to nonUni-
form. Again, a hypervolume-based archive, a large tournament size and a smaller
swarm size are key design settings. Remarkably, some of the settings that
were clearly beneficial for the ZDT family, such as default velocityUpdate and
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velocityChangeUpperLimit equal to −0.8965, are actually harmful for other prob-
lem families. Our conclusion from this observation is that, although AutoMOPSOz is
the best-performing configuration on all problem families, the ZDT family is still not
representative of other problem families, which raises the question of how to select a
representative problem family for automatic design of MOPSOs. To further analyze
this issue, we have repeated our experimentation by using combinations of three of
the four benchmark families as training set and letting the last one for validation.
The results are included in Appendix C, and they show that AutoMOPSOz remains
as the best competitive variant.

5 Discussion
Once the initial experiments have been carried out, this section directly addresses
the research questions posed at the beginning of this study, which are answered as
follows:

RQ1. Is it possible to find designs of MOPSO algorithms by automatic design
that outperform state-of-the-art algorithms such as SMPSO and OMOPSO?
Although this question was already answered positively before (Doblas et al.,
2022), here we confirm it by considering additional problems and an extended
design space.
RQ2. Is the auto-design process able of obtaining a configuration yielding
accurate results when a family of realistic problems are added to the study?
The new problem family RE has been added to the experimental study, which
comprises real-world problems. For the sake of simplicity, we have restricted
ourselves to bi-objective problems, yet they show structural features of convex-
ity, disconnection and mixed versions. Similar observations are made for the
problems selected, which confirm our previous study.
RQ3. What are the design parameters that have the strongest effect on the
performance of MOPSO algorithms given the design space considered here?
An ablation analysis of AutoMOPSOz shows that the choice of leader archive,
swarm size and tournament size are the most crucial parameters.
RQ4. Can a configuration obtained for a given test suite lead the algorithm to
avoid overfitting and allow a generalization for many other problems?
The comparative study shows that when AutoMOPSO is specifically trained for
a given problem family, it obtains the best performance for this family. Although
in the scope of a general statistical comparison, it can be observed that Auto-
MOPSO trained with the ZDT test suite obtains a salient performance for all
the problem families, that is, it shows higher generalization capabilities than
the remaining models. Nevertheless, the ablation analysis also shows that some
design choices of AutoMOPSOz work well for the ZDT family but harm its per-
formance on other families, which indicates that (unsurprisingly) ZDT is not
representative of other problem families and that (surprisingly) even better
MOPSO designs are possible.

6 Conclusions
This paper proposes AutoMOPSO, an algorithmic template for the design of MOP-
SOs. State-of-the-art MOPSOs, such as SMPSO and OMOPSO, can be instantiated
from the proposed AutoMOPSO template. Besides key numerical parameters, such
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as the swarm size, the categorical design choices available in AutoMOPSO give rise
to thousands of potential MOPSO designs.

We use an automatic configuration tool (irace) to search the design space of Auto-
MOPSO given a problem family. In this way, we generate four different AutoMOPSO
designs. While each AutoMOPSO design performs best on the problem family that
it was designed for, not all of them perform well on the other problem families. When
considering all problem families together, the AutoMOPSO design obtained from
the ZDT family (AutoMOPSOz) significantly outperforms all other AutoMOPSOs
as well as SMPSO and OMOPSO.

The proposed AutoMOPSO was implemented in the jMetal framework and is
publicly available for further study and extension by researchers, as well as for its
application to other problem scenarios. Further extensions of AutoMOPSO with
components taken from other MOPSOs from the literature as well as novel ones
would likely improve the results reported here.

We believe that future MOPSO proposals should integrate their novel compo-
nents into AutoMOPSO, instead of analyzing just a single “novel” MOPSO design,
and let the automatic design approach decide how to combine and tune those com-
ponents for various problem scenarios (Stützle and López-Ibáñez, 2019). In this way,
the automatic design process can evaluate thousands of potential designs and an
ablation analysis can show the actual impact of any novel components, as illustrated
in this work. We argue that our proposed approach would lead to faster research
progress, less duplication of efforts and a clearer picture of the key algorithmic com-
ponents of MOPSOs. Applying AutoMOPSO to real-world problems and analyzing
its performance on many-objective problems are also lines of further research.
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Appendix A: Statistical Plots
We include in this appendix the boxplots of the values of the Iϵ+ and IHV quality
indicators in Figs. 5 and 6, respectively.
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Fig. 5: Boxplots of the Iϵ+ indicator values
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Fig. 6: Boxplots of the IHV indicator values
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Appendix B: Kolmogorov-Smirnov Test
This appendix includes the tables obtained when applying the Kolmogorov-Smirnov
statistal test to the results of the Iϵ+ (Table 8) and IHV (Table 9) quality indicators.
The approach we have followed is to apply the test to all the algorithms with regards
to the AutoMOPSOz variant, which is used as reference algorithm. The resulting
tables report the p-values, and those cells where these values are less than 0.05 have
been highlighted with a light gray background.

Table 8: Kolmogorov-Smirnov Test of the Iϵ+ quality indicator. The algorithm in
the last column is the reference algorithm and each cell contains the p-value obtained
when applying the test with the reference algorithm. Cells with gray background
highlight p-values less than 0.05 (i.e., the null hypothesis – the two distributions are
identical – is rejected).

NSGAII SMPSO OMOPSO AutoMOPSOd AutoMOPSOw AutoMOPSOre AutoMOPSOz
ZDT1 1.58e-14 1.58e-14 1.58e-14 2.51e-07 1.94e-11 1.94e-11 −
ZDT2 1.58e-14 1.94e-11 1.58e-14 1.63e-04 7.91e-13 3.96e-05 −
ZDT3 1.58e-14 1.58e-14 1.58e-14 1.94e-11 7.91e-13 1.58e-14 −
ZDT4 1.58e-14 1.58e-14 3.35e-08 1.58e-14 1.63e-04 5.91e-04 −
ZDT6 1.58e-14 1.58e-14 3.64e-09 3.35e-08 1.63e-04 2.85e-01 −
DTLZ1 1.58e-14 1.58e-14 1.63e-04 1.58e-14 1.63e-04 3.96e-05 −
DTLZ2 3.10e-10 3.96e-05 8.49e-06 1.58e-14 4.75e-01 1.92e-03 −
DTLZ3 1.58e-14 1.58e-14 3.64e-09 1.58e-14 3.35e-08 2.51e-07 −
DTLZ4 1.63e-04 1.58e-06 1.48e-02 1.58e-14 1.92e-03 4.75e-01 −
DTLZ5 1.94e-11 3.56e-02 1.48e-02 1.94e-11 5.61e-03 4.75e-01 −
DTLZ6 1.58e-14 1.58e-14 1.58e-14 3.56e-02 7.91e-13 2.85e-01 −
DTLZ7 1.58e-14 1.58e-14 1.58e-14 3.64e-09 1.94e-11 1.94e-11 −
WFG1 1.58e-14 7.91e-13 3.10e-10 1.94e-11 3.96e-05 5.91e-04 −
WFG2 1.94e-11 7.91e-13 3.96e-05 7.91e-13 5.61e-03 1.48e-02 −
WFG3 1.58e-14 1.58e-14 7.91e-13 1.58e-14 1.48e-02 3.56e-02 −
WFG4 3.35e-08 7.91e-13 5.61e-03 1.94e-11 3.96e-05 4.75e-01 −
WFG5 1.58e-14 3.56e-02 1.58e-06 2.85e-01 4.75e-01 1.56e-01 −
WFG6 1.58e-14 1.58e-14 7.91e-13 1.58e-14 4.75e-01 2.85e-01 −
WFG7 1.58e-14 1.58e-14 1.58e-14 1.58e-14 1.63e-04 2.85e-01 −
WFG8 7.10e-01 3.56e-02 7.79e-02 5.91e-04 9.15e-01 4.75e-01 −
WFG9 3.35e-08 1.58e-06 3.96e-05 3.96e-05 5.61e-03 4.75e-01 −
RE21 1.58e-14 1.94e-11 3.35e-08 3.35e-08 2.85e-01 2.85e-01 −
RE22 1.58e-14 3.64e-09 8.49e-06 3.35e-08 7.79e-02 7.79e-02 −
RE23 1.58e-14 1.58e-14 1.58e-14 1.63e-04 1.92e-03 3.56e-02 −
RE24 1.58e-14 1.58e-14 1.58e-14 5.61e-03 9.15e-01 7.10e-01 −
RE25 1.58e-14 1.58e-14 1.58e-14 1.58e-14 7.10e-01 1.58e-14 −

Focusing on the Iϵ+ indicator, from Table 8 we observe that the p-values allow-
ing to reject the null-hypothesis are most of the problems concerning algorithms
NSGA-II, SMPSO, OMOPSO, and AutoMOPSOd. For the AutoMOPSOw and
AutoMOPSOre variants, there are 8 and 13 of the 25 problems, respectively, where
the test indicates that the data distribution is the same. These results are consistent
with the boxplots of Figure 5, as the cells containing p-values < 0.05 correspond to
boxes that present a high degree of overlapping. For example, if we focus on problem
RE25, the p-values of AutoMOPSOw and AutoMOPSOre are, respectively, 7.10e01

and 1.58e14 and the boxplot corresponding to that problem in Figure 5 shows that
there is an overlapping between the boxes of AutoMOPSOz and AutoMOPSOre,
while this does not happen in the case of AutoMOPSOw.

The results of the test for the IHV indicator in Table 9 shows that number of
cases where the distributions are similar are reduced with respect to the Iϵ+ values,
and they are again consistent with the boxplots included in Figure 6.
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Table 9: Kolmogorov-Smirnov Test of the IHV quality indicator. The algorithm in
the last column is the reference algorithm and each cell contains the p-value obtained
when applying the test with the reference algorithm. Cells with gray background
highlight p-values less than 0.05 (i.e., the null hypothesis – the two distributions are
identical – is rejected).

NSGAII SMPSO OMOPSO AutoMOPSOd AutoMOPSOw AutoMOPSOre AutoMOPSOz
ZDT1 1.58e-14 1.58e-14 1.58e-14 3.64e-09 7.91e-13 7.91e-13 −
ZDT2 1.58e-14 1.58e-14 1.58e-14 1.58e-06 7.91e-13 2.51e-07 −
ZDT3 1.58e-14 1.58e-14 1.58e-14 1.58e-14 1.58e-14 1.58e-14 −
ZDT4 1.58e-06 1.58e-14 1.00e+00 1.58e-14 1.00e+00 1.00e+00 −
ZDT6 1.58e-14 1.58e-14 1.58e-14 1.58e-14 8.49e-06 7.79e-02 −
DTLZ1 7.79e-02 1.58e-14 1.00e+00 1.58e-14 1.00e+00 1.00e+00 −
DTLZ2 3.64e-09 1.94e-11 2.51e-07 1.58e-14 2.85e-01 5.91e-04 −
DTLZ3 1.00e+00 1.58e-14 1.00e+00 1.58e-14 1.00e+00 1.00e+00 −
DTLZ4 1.63e-04 3.64e-09 1.63e-04 1.58e-14 1.92e-03 7.10e-01 −
DTLZ5 5.91e-04 2.51e-07 1.63e-04 1.58e-14 1.48e-02 1.56e-01 −
DTLZ6 1.58e-14 1.58e-14 1.58e-14 3.10e-10 1.58e-14 5.61e-03 −
DTLZ7 1.58e-14 1.58e-14 1.58e-14 3.10e-10 1.58e-14 7.91e-13 −
WFG1 1.56e-01 1.58e-14 3.64e-09 1.58e-14 1.63e-04 3.56e-02 −
WFG2 8.49e-06 7.91e-13 8.49e-06 1.94e-11 1.63e-04 3.96e-05 −
WFG3 1.58e-14 1.58e-14 1.58e-14 1.58e-14 7.91e-13 5.91e-04 −
WFG4 1.58e-14 7.91e-13 3.96e-05 3.10e-10 1.48e-02 2.85e-01 −
WFG5 7.91e-13 7.91e-13 1.58e-14 1.48e-02 9.15e-01 2.85e-01 −
WFG6 1.58e-14 1.58e-14 1.58e-14 1.58e-14 3.96e-05 1.92e-03 −
WFG7 1.58e-14 1.58e-14 1.58e-14 1.58e-14 3.96e-05 3.35e-08 −
WFG8 1.94e-11 7.91e-13 7.91e-13 7.91e-13 5.61e-03 1.48e-02 −
WFG9 3.96e-05 3.64e-09 3.64e-09 3.64e-09 1.92e-03 7.79e-02 −
RE21 1.58e-14 1.58e-14 1.58e-14 7.91e-13 5.91e-04 1.94e-11 −
RE22 1.58e-14 1.58e-14 1.58e-14 7.91e-13 7.10e-01 7.91e-13 −
RE23 1.58e-14 1.58e-14 1.58e-14 2.51e-07 8.49e-06 1.48e-02 −
RE24 1.58e-14 1.58e-14 1.58e-14 3.96e-05 1.56e-01 1.58e-06 −
RE25 1.58e-14 1.58e-14 1.58e-14 1.58e-14 7.10e-01 1.58e-14 −
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Table 10: Settings of the AutoMOPSO algorithms when using three benchmark
families for training. (CD: crowding distance, HV: hypervolume contribution, LHS:
latin hypercube sampling, SS: scatter search). The characters in the subscripts zdw,
zdr, zwr and dwr in AutoMOPSO stand, respectively, for the designs generated
using combinations of the ZDT (z), DTLZ (d), WFG (w), and RE (r) problems. A
value of ‘–’ means that the parameter is disabled.

Parameter AutoMOPSOz AutoMOPSOzdw AutoMOPSOzdr AutoMOPSOzwr AutoMOPSOdwr

swarmSize 39 85 40 65 17
leaderArchive HV HV HV HV HV

swarmInitialization random LHS SS LHS SS
velocityInitialization SPSO2007 SPSO2007 default SPSO2007 SPSO2011

mutation nonUniform polynomial uniform uniform uniform
mutationProbabilityFactor 1.65 0.8 1.71 0.35 0.75

mutationRepairStrategy round random round round round
uniformMutationPert. – – 0.43 0.74 0.18

nonUniformMutationPert. 0.1002 – – – –
polynomialMut.Dist.Index – 103.57 – – –
linkedPol.Mut.Dist.Index – – – 151.3372 –

mutationFrequency 10 5 10 4 9
inertiaWeightStrategy constant random linearInc. constant random

weight 0.12 – – 0.28 –
weightMin – 0.18 0.36 – 0.20
weightMax – 0.76 0.63 – 0.59

velocityUpdate default constrained constrained default constrained
c1Min 1.89 1.33 1.04 1.55 1.26
c1Max 2.25 2.02 2.74 2.62 2.16
c2Min 1.50 1.38 1.64 1.15 1.01
c2Max 2.90 2.24 2.43 2.19 2.06

globalBestSelection tournament tournament tournament tournament tournament
tournamentSize 9 8 8 2 3

velocityChangeLowerLimit 0.02 0.67 -0.52 0.32 -0.21
velocityChangeUpperLimit -0.90 -0.95 -0.79 -0.08 0.94

Appendix C: Complementary Study
The question of the influence of the problems used as a training set is left open
from the experimentation carried out in the paper. To investigate this issue further,
we have conducted an additional experiment using a different approach to define
the training set. Concretely, we have divided the families of benchmarks into groups
of three, remaining the fourth group for validation; as a result, we have four new
AutoMOPSO variants:

• AutoMOPSOzdw (training set: ZDT, DTLZ, WFG)
• AutoMOPSOzdr (training set: ZDT, DTLZ, RE)
• AutoMOPSOzwr (training set: ZDT, WFG, RE)
• AutoMOPSOdwr (trainng set: DTLZ, WFG, RE)

We have run irace to find the configurations of these variants, which are reported
in Table 10. We include the components of AutoMOPSOz, the version that showed
the best performance, to facilitate comparison with it. We show the results of the
IHV quality indicator and Friedman’s ranking in Tables 11 and 12, respectively. From
the tables we observe that AutoMOPSOzwr reaches the first position of the ranking
together with AutoMOPSOz, thus confirming that the use of the ZDT for training
leads to a MOPSO that provides the best overall performance in the context of the
experimentation carried out.

From the configurations reported in Table 10, we see that all the variants use the
external archive with the hypervolume-based density estimator and the tournament
approach for global best selection. If we compare the parameters of AutoMOPSOz
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and AutoMOPSOzwr, they only share those components as well as the default scheme
for velocity update.

Table 11: Median and interquartile range (IQR) of the results of the Ihv quality
indicator in the coplementary study. Cells with dark and light gray background
highlights, respectively, the best and second best indicator values.

AutoMOPSOzdw AutoMOPSOzdr AutoMOPSOzwr AutoMOPSOdwr AutoMOPSOz
ZDT1 6.62e − 011.3e−05 6.62e − 011.5e−05 6.62e − 012.4e−03 6.62e − 015.0e−04 6.62e − 011.2e−05
ZDT2 3.29e − 011.7e−05 3.29e − 012.3e−05 3.29e − 012.4e−05 3.29e − 013.8e−04 3.29e − 018.3e−06
ZDT3 5.16e − 014.3e−05 5.16e − 011.5e−04 5.12e − 017.2e−03 5.15e − 016.3e−04 5.16e − 011.4e−05
ZDT4 0.00e + 000.0e+00 6.62e − 012.8e−04 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00
ZDT6 4.01e − 012.2e−05 4.01e − 011.0e−04 4.01e − 012.5e−05 4.01e − 019.9e−05 4.01e − 011.8e−05
DTLZ1 0.00e + 002.5e−01 4.94e − 011.2e−01 0.00e + 000.0e+00 0.00e + 001.8e−01 0.00e + 000.0e+00
DTLZ2 2.11e − 012.1e−04 2.11e − 019.6e−05 2.11e − 011.5e−04 2.11e − 019.9e−05 2.07e − 012.8e−03
DTLZ3 0.00e + 008.6e−02 2.10e − 011.2e−01 0.00e + 000.0e+00 0.00e + 004.1e−02 0.00e + 000.0e+00
DTLZ4 2.10e − 018.4e−04 2.11e − 012.0e−04 2.11e − 011.9e−04 2.11e − 011.2e−04 2.06e − 017.4e−03
DTLZ5 2.12e − 012.2e−04 2.12e − 018.0e−05 2.12e − 011.7e−04 2.12e − 019.2e−05 2.09e − 014.1e−03
DTLZ6 2.13e − 011.3e−05 0.00e + 001.7e−01 2.13e − 016.7e−06 2.13e − 011.2e−05 2.13e − 019.3e−06
DTLZ7 3.35e − 019.0e−06 3.35e − 012.0e−05 3.35e − 013.7e−04 3.34e − 015.8e−04 3.35e − 015.4e−06
WFG1 1.13e − 014.4e−03 1.05e − 016.5e−03 1.38e − 015.7e−02 1.16e − 011.6e−02 1.39e − 019.3e−02
WFG2 5.63e − 017.4e−04 5.60e − 011.9e−03 5.63e − 011.3e−03 5.63e − 014.5e−04 5.64e − 017.4e−04
WFG3 4.95e − 011.3e−04 4.93e − 014.4e−04 4.95e − 014.6e−05 4.95e − 018.5e−05 4.95e − 016.3e−05
WFG4 2.01e − 012.3e−03 1.96e − 013.1e−03 2.04e − 012.5e−03 2.03e − 011.8e−03 2.09e − 016.6e−03
WFG5 1.97e − 014.9e−05 1.97e − 014.5e−05 1.97e − 016.1e−05 1.97e − 013.5e−05 1.97e − 014.8e−05
WFG6 2.10e − 012.5e−04 2.09e − 018.6e−04 2.11e − 011.1e−04 2.11e − 019.4e−05 2.11e − 011.1e−04
WFG7 2.11e − 018.0e−05 2.10e − 013.9e−04 2.11e − 013.1e−05 2.11e − 015.6e−05 2.11e − 015.9e−05
WFG8 1.43e − 012.4e−03 1.36e − 013.0e−03 1.48e − 011.6e−03 1.45e − 011.8e−03 1.47e − 011.5e−03
WFG9 2.37e − 015.6e−04 2.35e − 011.2e−03 2.38e − 018.8e−04 2.37e − 017.9e−04 2.39e − 012.1e−03
RE21 6.74e − 012.8e−05 6.74e − 014.6e−05 6.75e − 011.1e−05 6.74e − 013.2e−05 6.75e − 011.8e−05
RE22 5.48e − 011.3e−04 5.48e − 011.7e−04 5.49e − 016.4e−05 5.49e − 014.7e−05 5.49e − 011.0e−04
RE23 9.51e − 011.6e−03 9.51e − 011.8e−03 9.43e − 015.6e−03 9.46e − 015.4e−03 9.50e − 012.5e−03
RE24 9.60e − 013.1e−06 9.60e − 014.6e−06 9.60e − 013.3e−06 9.60e − 015.9e−06 9.60e − 014.7e−06
RE25 8.71e − 011.1e−08 8.71e − 014.4e−10 8.71e − 015.1e−11 8.71e − 016.1e−11 8.71e − 011.3e−08

Table 12: Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of the
compared algorithms in the complementary study. Symbol * indicates the control
algorithm and the column at the left contains the overall ranking of positions with
regards to IHV .

Algorithm Ranking p-value Holm Hypothesis

AutoMOPSOzwr 2,577 0E0 0 -
AutoMOPSOz 2,577 1E0 0,05 Accepted

AutoMOPSOdwr 3,038 5,776E-32 0,025 Rejected
AutoMOPSOzdw 3,192 1,79E-55 0,017 Rejected
AutoMOPSOzdr 3,615 1,848E-154 0,013 Rejected
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