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Abstract—In this paper, we study the influence of the number1

of objectives of a continuous multiobjective optimization problem2

on its hardness for evolution strategies which is of particular3

interest for many-objective optimization problems. To be more4

precise, we measure the hardness in terms of the evolution (or5

convergence) of the population toward the set of interest, the6

Pareto set. Previous related studies consider mainly the number7

of nondominated individuals within a population which greatly8

improved the understanding of the problem and has led to9

possible remedies. However, in certain cases this ansatz is not10

sophisticated enough to understand all phenomena, and can even11

be misleading. In this paper, we suggest alternatively to consider12

the probability to improve the situation of the population which13

can, to a certain extent, be measured by the sizes of the descent14

cones. As an example, we make some qualitative considerations15

on a general class of uni-modal test problems and conjecture16

that these problems get harder by adding an objective, but that17

this difference is practically not significant, and we support this18

by some empirical studies. Further, we address the scalability in19

the number of objectives observed in the literature. That is, we20

try to extract the challenges for the treatment of many-objective21

problems for evolution strategies based on our observations and22

use them to explain recent advances in this field.23

Index Terms—XXX, XXX, XXX.AQ:1 24

I. Introduction25

EVOLUTIONARY algorithms for the numerical treatment26

of multiobjective optimization problems (MOPs) have27

been studied intensively during the last few years (see [11], [8]28

and references therein). Typically, few objectives (i.e., mainly29

two or three) are being investigated resulting in a variety30

of very efficient algorithms. The consideration of many (i.e.,31

more than three) objectives, however, is a relatively young field32

and is yet not studied thoroughly enough. With this paper, we33

want to contribute to this field by looking at the influence of34

the number k of objectives in a continuous MOP on the hard-35

ness of the problem. To be more precise, we try to understand36

the behavior of the evolution with respect to k by looking at37
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the descent cones of the individuals of the populations. The 38

resulting analysis is of qualitative nature; however, it can for 39

instance be used to disprove a common belief, namely that 40

the addition of an objective makes a problem per se harder. 41

Further, the new ansatz can be used to explain recent advances 42

in the field of evolutionary many-objective optimization, and is 43

thus hopefully helpful for designers of evolutionary algorithms 44

aimed to deal with such problems. 45

When investigating continuous MOPs with respect to k, two 46

facts have to be considered: 1) the solution set, the so-called 47

Pareto set, forms typically a (k − 1)-dimensional set [22], 48

and 2) the problem gets harder the more local solutions it 49

contains and the smaller the basin of attraction for the global 50

solutions are since then the chance increases that a population 51

can get stuck in locally optimal regions. The choice of k has 52

thus, by 1), a direct influence on the dimension of the Pareto 53

set, and hence, also on the hardness of the problem. If, for 54

instance, N2 = 100 points are chosen to obtain a “sufficient” 55

representation of a solution set for k = 2 in the Hausdorff 56

sense (which is a typical value in the literature), in principle 57

the practically intractable amount of N15 = 10014 = 1028
58

elements is required to obtain the same approximation quality 59

for k = 15. Even if the lower bound of N2 = 2 elements is 60

used to “represent” the Pareto set for k = 2, still N15 = 16 384 61

elements are needed to obtain the same (low) approximation 62

quality for k = 15 (see also [51] for a related discussion on 63

the required number of comparisons with respect to k). As a 64

possible remedy, one can in certain cases try to reduce the 65

number of objectives (e.g., [6], [15], [27]) since in practice it 66

may happen that several objectives are correlated. Since we 67

are interested in the influence of k we will not follow that 68

approach. Another more practical remedy researchers dealing 69

with evolutionary many-objective optimization have chosen is 70

to bound the population/archive size to a moderate (and hence 71

tractable) number for all values of k (say, N = 100). We will, in 72

the following, consider that scenario and will restrict ourselves 73

to investigate the evolution of these N individuals toward the 74

Pareto set. That is, we will only consider the convergence of 75

the individuals and will leave out the (very important) question 76

of the distribution of the limit population since this is still an 77

open problem. It has to be noted that by using the descent 78

cones only the convergence (in terms of the semi-distance dist) 79

of the population toward the set of interest can be understood. 80

Further important aspects are not treated here. As discussed 81
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above, an approximation in the Hausdorff sense has strong82

limitations with respect to the value of k; however, there are83

further interesting metrics for the treatment of many-objective84

problems such as the set coverage metric or the hypervolume85

metric [55], as considered in [29] and [3], respectively. To86

understand the evolution of the populations with respect to87

these metrics, a (sole) consideration of the descent cones does88

not seem to be adequate.89

While the choice of k has a direct influence on the dimen-90

sion of the solution set the relation to 2) is rather indirect. On91

the one hand, an additional objective certainly increases the92

chance that more locally optimal solutions exist since every93

local solution of each objective is also a local solution of the94

MOP (see the Appendix). Hence, every multi-modal objective95

makes the problem harder as it is the case for the DTLZ96

test problems [16] which are often considered in the context97

of the evaluation of many-objective evolutionary algorithms.98

On the other hand, this increase of hardness comes rather99

from the multi-modality of the model than from the additional100

objective and can be “substituted” by increasing the multi-101

modality of the already existing objectives. However, it is a102

common belief that more objectives make a MOP harder (e.g.,103

[11], [18], [20], [23]) which has an impact on the design in104

particular of evolution strategies for the treatment of many-105

objective optimization problems. As reason for this behavior106

it is sometimes argued that the number of incomparable107

solutions increases if further objectives are added to a problem108

(empirically studied, e.g., in [26], [29], [35], and [42], and109

proven in [54]), and thus, that the evolution of the populations110

toward the Pareto sets is slowed down.111

The aim of this paper is to investigate the influence of the112

hardness of a problem for an evolutionary search procedure113

with respect to k. Instead of looking at the number of nondom-114

inated solutions within a population, we will focus on the abil-115

ity of the populations to evolve toward the Pareto sets. Since116

there is a certain relation between the probability to (locally)117

improve an individual x by the generational operators and the118

size of the descent cone at x, we will use and adapt some119

considerations from [7] of the sizes of the cones in order to try120

to explain the behavior of the evolution. To handle 1), we will121

restrict the population size to a fixed value as discussed above,122

and to avoid the problem described in 2), we will concentrate123

on uni-modal models. We will argue that a MOP (theoretically)124

indeed gets harder when adding an objective, but that this125

difference is—at least for uni-modal models and under an126

additional assumption on the evolutionary algorithm—not sig-127

nificant, and demonstrate this empirically on three examples.128

Further on, we will address the treatment of general models129

where such a scalability has been observed by many re-130

searchers so far. Based on our considerations we try to extract131

the challenges for many-objective evolutionary algorithms and132

give an attempt to explain recent advances in this field in light133

of the new insight. A critical discussion on the influence of k134

for discrete MOPs can be found in [5], but the study presented135

in this paper seems to be the first one for continuous models.136

Since our ansatz is using descent cones, the conclusions we137

draw are restricted to continuous models. Similar explanations138

for combinatorial problems do not seem to exist.139

The remainder of this paper is organized as follows. 140

Section II gives the required background for the understanding 141

of the sequel. In Section III, we investigate a class of uni- 142

modal test functions analytically and empirically with respect 143

to the influence of the number of objectives to the hardness 144

of the problem. In Section IV, we discuss our results and 145

give an attempt to explain recent advances in the field of 146

evolutionary many-objective optimization. Finally, we draw 147

some conclusions in Section V. 148

II. Background 149

In the following, we consider continuous MOPs which are 150

of the following form: 151

min
x∈Q

{F (x)} (MOP)

where Q ⊂ Rn is the domain and the function F is defined 152

as the vector of the objective functions 153

F : Q → R
k F (x) = (f1(x), . . . , fk(x))

and where each objective fi : Q → R is continuous. The 154

optimality of a MOP is defined by the concept of dominance 155

[40]. 156

Definition 2.1: 157

1) Let v, w ∈ Rk. Then the vector v is less than w (v <p 158

w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is 159

defined analogously. 160

2) A vector y ∈ Rn is dominated by a vector x ∈ Rn
161

(x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and 162

F (x) �= F (y), else y is called non-dominated by x. 163

3) A point x ∈ Q is called (Pareto) optimal or a Pareto 164

point if there is no y ∈ Q which dominates x. 165

The set of all Pareto optimal solutions is called the Pareto 166

set, and is denoted by PQ. The image F (PQ) of the Pareto set 167

is called the Pareto front. If required, we will denote the Pareto 168

set of a particular MOP by PQ(MOP) to avoid confusion. 169

In case all the objectives of the MOP are differentiable, the 170

following famous theorem of Kuhn and Tucker [36] states a 171

necessary condition for Pareto optimality for unconstrained 172

MOPs. 173

Theorem 2.2: Let x∗ be a Pareto point of (MOP), then there 174

exists a vector α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 175

1 such that 176

k∑

i=1

αi∇fi(x
∗) = 0. (1)

The theorem claims that the vector of zeros can be written 177

as a convex combination of the gradients of the objectives at 178

every Pareto point. Obviously, (1) does not state a sufficient 179

condition for Pareto optimality. On the other hand, points 180

satisfying (1) are certainly “Pareto candidates.” 181

Definition 2.3: A point x ∈ Rn is called a Karush–Kuhn– 182

Tucker point1 (KKT–point) if there exist scalars α1, . . . , αk ≥ 183

0 such that
∑k

i=1 αi = 1 and that (1) is satisfied. 184

1Named after the works of Karush [28], and Kuhn and Tucker [36].
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Next, we define some distances between points as well as185

between different sets.186

Definition 2.4: Let u, v ∈ Rn and A, B ⊂ Rn. The max-187

imum norm distance d∞, the semi-distance dist(·, ·) and the188

Hausdorff distance dH (·, ·) are defined as follows:189

1) d∞(u, v) := max
i=1,... ,n

|ui − vi|;190

191

2) dist(u, A) := inf
v∈A

d∞(u, v);192

193

3) dist(B, A) := sup
u∈B

dist(u, A);194

195

4) dH (A, B) := max {dist(A, B), dist(B, A)} .196

As discussed above, we are in particular interested in the197

convergence of the archive entries toward the set of interest.198

In case of the Pareto front, it is199

dist(F (Al), F (PQ)) (2)

where Al = {a1, . . . , am} is the archive in generation l. Since200

dist (and thus also dH ) is sensitive to outliers which is a201

potential drawback when measuring the solution of stochastic202

algorithms one can use instead the generational distance (GD,203

see [52]) which measures the average distance of the elements204

of Al to the Pareto front205

GD(Al) :=
1

m

√
√
√
√

l∑

i=1

dist(F (ai), F (PQ))2. (3)

The Pareto sets of the test functions considered in the206

following are given by simplexes which are defined as follows.207

Definition 2.5: Let v1, . . . , vk ⊂ Rn, n ≥ k, be given. The208

set209

S(v1, . . . , vk) :=

{
k∑

i=1

λivi : λ ∈ [0, 1]k, and
k∑

i=1

λi = 1

}

(4)

is called the (k − 1)-simplex of v1, . . . , vk.210

A hyperplane H = H(x̃, η) in n-dimensional space is defined211

by a point x̃ ∈ H and a normal vector η ∈ R\{0}, that is212

H(x̃, η) = {x ∈ Rn : 〈x − x̃, η〉 = 0} (5)

where 〈·, ·〉 defines the standard scalar product. The point p(x)213

which is closest to H is given by214

p(x) = x − 〈x − x̃, η〉
〈η, η〉 η. (6)

III. Investigation of a Class of Uni-Modal Models215

A. A Class of Test Problems with Simplicial Pareto Sets216

Here, we construct a set of quadratic (and hence uni-modal)217

test functions where the Pareto sets are given by simplexes218

which eases the computation of the distance of a point to the219

Pareto set and front. The resulting models we consider are 220

slight variants of the P∗ problems introduced in [34] tailored 221

to our needs. 222

1) Construction: First we construct the base problem. 223

Given points a1, . . . , ak ∈ Rn, we define the MOP as follows: 224

min F : Rn → R
k

fi(x) = ‖x − ai‖2
2 =

n∑

j=1

(xj − ai,j)2 (7)

where ai,j denotes the jth entry of a given vector ai. The 225

Pareto set of the problem defined by (7) [in short MOP(7)] is 226

given by the simplex spanned by the k minimizers ai. 227

Proposition 3.1: PQ(MOP (7)) = S(a1, . . . , ak). 228

Proof: It is ∇fi(x) = 2(x − ai). Let x ∈ S(a1, . . . , ak), 229

i.e., there exist scalars λ1, . . . , λk ≥ 0 with
∑k

i=1 λi = 1 such 230

that x =
∑k

i=1 λiai. Then 231

k∑

i=1

λi∇fi(x) =
k∑

i=1

λi2(x − ai) = 2(x
k∑

i=1

λi

︸ ︷︷ ︸
=1

−
k∑

i=1

λiai)

= 2

(

x −
k∑

i=1

λiai

)

= 0.

(8)

The claim follows since MOP (7) is strictly convex, and thus, 232

the Pareto set is equal to the set of Karush–Kuhn–Tucker 233

(KKT) points. 234

The problem is quadratic and unconstrained. Note that for 235

the special case n = 1, k = 2, a1 = 0, and a2 = 1 the MOP 236

(7) coincides with the well-known problem of Schaffer [45]. 237

The authors of [34] propose to locate all the minima ai on an 238

Euclidean plane which results in a 2-D Pareto set. In order, 239

e.g., to obtain a (k − 1)-dimensional object, the volume of 240

S(a1, . . . , ak) has to be positive, i.e., the k − 1 difference 241

vectors a2 − a1, . . . , ak − a1 have to be linearly independent. 242

In the following, we use Proposition 1 to construct con- 243

strained problems with variable dimension of the solution set. 244

For this, we will use hyperplanes. Given a hyperplane H = 245

H(x̃, η), there exists for every point x ∈ Rn a λ = λ(x) ∈ R 246

such that 247

x − p(x) = λη (9)

which can be used to divide the space Rn as follows. Let 248

j ∈ {1, . . . , n} such that ηj �= 0, then we define 249

gH : Rn → R

gH (x) =
xj − p(x)j

ηj

(10)

and the constrained MOP is 250

min F (x)

s.t. gH (x) ≤ 0
(11)

where F is as defined in (7). Thus, the domain is given by 251

Q = {x ∈ R : gH (x) ≤ 0}. Constrained problems can now 252
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be constructed by using MOP (7) and placing the ai’s at253

the boundary of Q. The following result shows how further254

constrained MOPs can be generated with different dimensions255

of the Pareto set (see also Fig. 1). Further on, we give one256

such example.257

Proposition 3.2: Let H = H(x̃, η) be a hyperplane and258

a1, . . . , ak ∈ Rn such that259

a1, . . . , al ∈ H l ≤ k (12)

and260

gH (ai) > 0 i = l + 1, . . . , k

p(ai) ∈ S(a1, . . . , al) i = l + 1, . . . , k.
(13)

Then, the Pareto set of MOP (11) is given by261

PQ(MOP (11)) = S(a1, . . . , al). (14)

Proof: By Proposition 1, it is clear that:262

1) S(a1, . . . , al) ⊂ PQ, and 2) none of the points x ∈ R with263

gH (x) < 0, i.e., the points where gH is inactive, is Pareto264

optimal [else 0 can be expressed as a convex combination of265

the objectives’ gradients, but this was prevented by the first266

assumption in (13)]. It remains to show that H\S(a1, . . . , al)267

is not contained in PQ. For x ∈ H\S(a1, . . . , al) choose268

z ∈ S(a1, . . . , al) such that269

z ∈ argmins∈S(a1,... ,al)‖x − s‖2. (15)

Since S(a1, . . . , al) is a convex set and x �∈ S(a1, . . . , al) it270

follows that271

‖s − z‖2 < ‖s − x‖2 ∀s ∈ S(a1, . . . , al). (16)

Since (16) holds for ai, i = 1, . . . , l, it follows that272

fi(z) < fi(x), i = 1, . . . , l. Further, by the same argument273

on p(ai), i = l + 1, . . . , k, and Pythagoras274

x ∈ H ⇒ ‖ai − x‖2
2 = ‖ai − p(ai)‖2

2 + ‖p(ai) − x‖2
2

i = l + 1, . . . , k (17)

it follows that also fi(z) < fi(x), i = l + 1, . . . , k, and thus,275

that F (z) < F (x), which implies that x �∈ PQ which concludes276

the proof.277

If for instance H = H(e1, η) is chosen as278

η = (−1, . . . , −1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

)T (18)

and ai = ei, i = 1, . . . , k, then ai ∈ H, i = 1, . . . , k279

(p(ai) = ai) and thus, PQ = S(ei, . . . , ek). The dimension280

of the solution set can be reduced by one if choosing, e.g.,281

ai = ei, i = 1, . . . , k − 1, ak = 0, and H = H(e1, η) with282

η = (−1, . . . , −1
︸ ︷︷ ︸

k−1

, 0, . . . , 0
︸ ︷︷ ︸

n−k+1

)T . (19)

Fig. 1. Two examples where the facet of a 3-simplex is included in the
hyperplane. Left: the Pareto set of MOP (11) is given by S(a1, a2) since
p(a3) ∈ S(a1, a2). Right: p(a3) �∈ S(a1, a2), and thus, the Pareto set is not
equal to the facet S(a1, a2).

It is p(ak) = −1
k−1η ∈ S(a1, . . . , ak−1) [using the weights αi = 283

1/(k − 1)] and gH (ak) = 1/(k − 1) > 0, and thus, it follows 284

by Proposition 2 that PQ = S(a1, . . . , ak−1). 285

Continuing in a similar manner, the dimension of the Pareto 286

set can be reduced. The extreme situation—i.e., that PQ 287

consists of one single solution—can, e.g., be obtained as 288

follows: set a1 = e1, and ai = λiei, λi < 1, for i = 2, . . . , k, and 289

H = H(e1, η) with η = (−1, 0, . . . , 0)T . Then, it is p(ai) = e1 290

and g(ai) = 1 − λi > 0 for i = 2, . . . , k, and thus, PQ = {e1}. 291

2) Test Problems: Based on the above observations, we 292

propose two test functions which are used to investigate the 293

hardness of a MOP with respect to the number of objectives. 294

a) PS1: Given vectors a1, . . . , ak ∈ Rn, n ≥ k, we 295

define the first test problem PS1 as in (7). For the ai’s we 296

suggest choosing ai = ei, and as domain Q = [−10, 10]. By 297

Proposition 1 it follows that 298

PQ(PS1) = S(e1, . . . , ek). (20)

b) PS2: Here we define a constrained model where the 299

dimension of the Pareto set can be chosen between 0 and 300

k − 1, where k is the number of objectives: given a number 301

1 ≤ l ≤ k, we define PS2(l) as follows. Let H = H(e1, η) with 302

η = (−1, . . . , −1
︸ ︷︷ ︸

l

, 0, . . . , 0
︸ ︷︷ ︸

n−l

) (21)

let gH as in (10), and F as in (7), where ai = ei, i = 1, . . . , l, 303

and aj = − 1
l
η + j−l

l
η, j = l + 1, . . . , k. Then PS2(l) reads as 304

follows: 305

min F (x)

s.t. xi ∈ [−10, 10]n i = 1, . . . , n

gH (x) ≤ 0.

(22)

Due to the discussion in the previous subsection it is 306

PQ(PS2(l)) = S(e1, . . . , el) (23)

i.e., a l-simplex which is located within the boundary of the 307

domain. The characteristic of this model is that the Pareto set 308

of PS2(l) for k1 objectives [denoted by PS2k1 (l)] is equal to 309

the Pareto set of PS2k2 (l), where k1 and k2 are any numbers 310

larger than or equal to l. 311
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SCHÜTZE et al.: ON THE INFLUENCE OF THE NUMBER OF OBJECTIVES ON THE HARDNESS OF A MULTIOBJECTIVE OPTIMIZATION PROBLEM 5

B. Hardness of the PS Problems with Respect to k312

In the following, we investigate the hardness of the PS test313

problems by some (non-rigorous) theoretical considerations314

and by empirical studies.315

1) Qualitative Considerations: In the following, we con-316

sider the PS test problems for general locations of the minima317

ai. If further assumptions are required, we will mention them.318

For our considerations, we use the descent cones to investi-319

gate the hardness of a problem. Given a MOP with s objectives320

the descent cone at a point x ∈ Q is given by (e.g., [4])321

D(f1, . . . , fs, x) = {ν ∈ Rn\{0} : 〈∇fi(x), ν〉 < 0

∀ i = 1, . . . , s.} (24)

D(f1, . . . , fs, x) is the set of all directions in which dominat-322

ing points can be found, i.e., for each v ∈ D(f1, . . . , fs, x)323

there exists a (possibly small) t ∈ R+ such that F (x + tv) <p324

F (x). There exists a certain relation of the size of the descent325

cone to the probability to (locally) improve the value of x326

by the generational operators of a MOEA. For the mutationAQ:2327

operator, the relation is proportional when assuming the exis-328

tence of a suitable or small step size control (i.e., the value329

of t for the offspring o := x + tν). For the most common330

crossover strategies (e.g., SBX [12]) such a relation still holds;331

however, the success rate is here in addition depending on332

the location of the parents. Hence, one can say that a small333

descent cone results in a small probability of finding a better,334

i.e., dominating, solution near to x, and large descent cones in335

turn lead to a larger improvement possibility.336

Assume we are given l + 1 objectives of the form defined337

in (7), which are entirely determined by the choice of the338

ai’s and assume further that al+1 �∈ S(a1, . . . , al). Clearly,339

D(f1, . . . , fl+1, x), i.e., the descent cone for the (l + 1)-340

objective problem is a subset of D(f1, . . . , fl, x), i.e., the341

according descent cone for the MOP consisting of the first342

l objectives. The equality of both cones holds if −∇fl+1(x) is343

“between” the vectors −∇fi(x), i = 1, . . . , l. Since for the344

PS problems it is ∇fi(x) = 2(x − ai) (i.e., the steepest descent345

−∇fi(x) points to the minimizer of fi at every point x ∈ Q)346

we have347

D(f1, . . . , fl+1, x) = D(f1, . . . , fl, x) ⇔ ∃λ1, . . . , λl ≥ 0 :

al+1 − x =
l∑

i=1

λi(ai − x). (25)

Thus, a necessary condition for the equality of the cones is348

that al+1 − x ∈ span{a1 − x, . . . , al − x} by which it follows349

that the set of points x ∈ Q which satisfies (25) is maximal350

l-dimensional (and thus a zero set in Q). To be more precise,351

for every point x which is not included in the affine subspace352

A := span{a1, . . . , al} +

{
−al+1

∑l
i=1 αi − 1

}

(26)

where α ∈ Rl such that al+1 − x =
∑l

i=1 αi(ai − x) [note that353

since al+1 �∈ S(a1, . . . , al) it is
∑l

i=1 αi �= 1, and hence, (26) is354

well defined], the equality of the cones does not hold. Hence,355

picking a randomly chosen point x0 ∈ Q the probability is356

one that D(f1, . . . , fl+1, x0) of the (l + 1)-objective problem 357

is a proper subset of the cone D(f1, . . . , fl, x0) of the related 358

“reduced” l-objective problem. This result is in accord with 359

the observation made in [54] that the number of incomparable 360

solutions generally increases with an increasing number of 361

objectives. 362

Thus, it can be said that—from a theoretical point of view— 363

the PS problems get harder with increasing number of objec- 364

tives. Since (25) can in principle be applied to any set of 365

gradients, the statement holds for general MOPs. On the other 366

hand, this (point-wise) observation is of qualitative nature 367

and gives no statement about the quantity of the difference 368

which is needed to judge the hardness of a problem for a 369

given evolutionary search procedure with respect to k. The 370

following qualitative considerations,2 however, question the 371

common belief that the addition of further objectives makes a 372

given MOP per se harder. 373

Assume we are given MOP1 which consists of the 374

objectives f1, . . . , fk of the form defined in (7) and MOP2 375

which contains the same k objectives as in MOP1 plus the l 376

objectives fk+1, . . . , fk+l. If the initial population P0 is chosen 377

at random from the domain Q, it can be assumed that most 378

of its individuals p ∈ P0 are “far away” from both Pareto sets 379

(note that under the reasonable assumption n > k + l both sets 380

S(e1, . . . , ek) and S(e1, . . . , ek+l) are zero sets in Q). Thus, 381

the vectors {p − ai}i=1,... ,s for such an individual p point 382

nearly in the same direction, and this holds for s = k as well 383

as for s = k + l. One way to see this is that if a sequence of 384

points is chosen with unbounded increasing distance to all the 385

minima ai, both simplexes S(a1, . . . , ak) and S(a1, . . . , ak+l) 386

shrink in the limit down to a point, and hence, both descent 387

cones D(f1, . . . , fk, p) and D(f1, . . . , fk+l, p) form the 388

same half space as the cones D(fi, p), i ∈ 1, . . . , k + l, 389

for single-objective optimization. This implies that it can 390

be expected that also for finite distances the descent cones 391

D(f1, . . . , fk, p) and D(f1, . . . , fk+l, p) are nearly equal 392

(and large), and thus, that the evolution of the populations 393

should be nearly equal for both problems MOP1 and MOP2. 394

The situation will change after a small number of generations: 395

due to the sizes of the descent cones there is a high chance for 396

improvement, and thus, it can be expected that the sequence 397

of populations performs a certain evolution toward the Pareto 398

set. If so, it cannot be expected any more that the cones have 399

similar sizes. Since MOP2 contains more objectives it is more 400

likely that D(f1, . . . , fk+l, p) is smaller than D(f1, . . . , fk, p) 401

for an element p of the current population. [Compare to the 402

theorem of Kuhn and Tucker: if, for instance, two gradients 403

point in opposite directions then the associated cone defined 404

by (24) is empty. By continuity of F , the descent cones near 405

to KKT points are hence small.] However, this is mainly 406

due to the geometry of multiobjective optimization since the 407

Pareto set of MOP2 is indeed larger [PQ(MOP2) is (k+ l−1)- 408

dimensional while PQ(MOP1) is (k − 1)-dimensional]. Thus, 409

the evolution has to terminate earlier for MOP2 resulting in 410

smaller cones compared to MOP1. Another point—and this 411

one cannot be explained by looking at the descent cones—is 412

2Here we adapt some observations made in [7] to the present context.
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one population-based aspect of MOEAs, namely that single413

“good” solutions—i.e., solutions which are “near” to the414

Pareto set—can pull the entire population to the set of interest.415

Using the dimensionality of the different Pareto sets, it can416

be argued that the chance to find a “good” solution is higher417

for MOP2 than for MOP1. Hence, using the dimensionality,418

the argumentation of the influence of k can be turned: under419

the above assumption (which we will refer to as the pulling420

assumption in the sequel and which will be discussed in more421

detail in Section IV) and the additional assumption that the422

population/archive size is fixed and equal for both MOPs it423

is rather likely that MOP2 is the easiest model in terms of424

convergence [i.e., when considering dist(Al, PQ)].425

Concluding, it can be said that by adding an objective426

in a PS model (or other models), the resulting MOP gets427

indeed “harder” from a theoretical point of view, but it is ad428

hoc unclear if the amount is indeed significant since some429

considerations argue against it. However, the above analysis430

covers only the extreme situations (points which are either431

far away or near to PQ) and is only of qualitative nature. To432

elucidate this problem sufficiently, empirical studies seem to433

be required which we will do in the following.434

2) Empirical Studies: As mentioned before, we are in435

particular interested in the evolution (or convergence) of the436

populations toward the set of interest. For this, we use the437

generational distance defined in (3) and a variant of this438

indicator which we propose in the following.439

Given a population A = {a1, . . . , al}, GD measures the440

average distance of the elements of A to the Pareto front. Since441

the dimension of the vectors F (ai) varies with the number442

of objectives, one may argue that for a comparison which443

includes different number of objectives GD is not well suited.444

Thus, we propose here a variant of GD, namely445

GDx(A) :=
1

l

√
√
√
√

l∑

i=1

dist(ai, PQ)2 (27)

which is analog to GD but measures the averaged distance446

of A to the Pareto set, i.e., in parameter space. Hereby, the447

distance of a point a ∈ A to the Pareto set and its image to448

the Pareto front are given by449

dist(a, PQ) = min
p∈PQ

‖a − p‖2

dist(F (a), F (PQ)) = min
p∈PQ

‖F (a) − F (p)‖2.
(28)

These are single-objective optimization problems (SOPs)450

with n-dimensional parameter space. In case PQ = S :=451

S(a1, . . . , ak) as for our test problems, (28) can be written as452

dist(a, S) = min
α∈S

∥
∥
∥
∥
∥
a −

k∑

i=1

αiai

∥
∥
∥
∥
∥

2

dist(F (a), F (S)) = min
α∈S

∥
∥
∥
∥
∥
F (a) − F (

k∑

i=1

αiai)

∥
∥
∥
∥
∥

2

.

(29)

Since the SOPs in (29) are convex problems (domain and453

objective are convex) with k free parameters, it can easily454

be solved with standard mathematical techniques (note that 455

in the context of scalar optimization, a problem is noted as 456

small if the dimension of the parameter space is less than 457

10 000, which is definitely beyond the scope of many-objective 458

optimization). 459

We have chosen to take NSGA-II [14] for our empirical 460

studies since this algorithm was shown to scale badly with 461

increasing number of objectives for certain models (e.g., 462

[53]). Additionally, we have made (but do not display) analog 463

computations with SPEA2 [56] which confirmed the results 464

shown below. 465

Figs. 2–5 show some numerical results obtained by NSGA- 466

II for PS1 and PS2 [using l = k, denoted here by PS2k(k) 467

to avoid confusion] and for different numbers k of objectives. 468

In all examples, we have used parameter dimension n = 30, 469

population size Np = 100, and the probabilities pc = 0.85 and 470

pm = 0.05 for crossover and mutation, respectively. The initial 471

population P0 has been chosen randomly from I := [9, 10]30, 472

since by the above discussion for every point x ∈ I the descent 473

cone D(f1, . . . , fk+l, x) of the (k + l)-objective problem is a 474

proper subset of the cone D(f1, . . . , fk, x) of the reduced 475

problem (analog empirical studies where P0 has been cho- 476

sen randomly from Qi, i = 1, 2, however, have led to the 477

same results). For both the unconstrained and the constrained 478

case as well as for a measurement in parameter and image 479

space (GDx and GD, respectively) the same behavior can 480

be observed: in the large scale, i.e., when considering all 481

500 generations, the evolution of the populations is basically 482

the same (note that there is a difference of 12 objectives). 483

When zooming into the figures, little differences appear, 484

and as anticipated, the values of GDx and GD get (little) 485

larger with increasing number of objectives (note the differ- 486

ence of the values with the initial values of GD and GDx, 487

respectively). 488

Whereas the results can be explained to a certain extent by 489

the above considerations, a sole consideration of the number of 490

nondominated solutions in a population may be misleading in 491

this example. Fig. 6 shows the (averaged) number of nondom- 492

inated solutions for the PS1 problems within the populations 493

found by NSGA-II, and here, the differences are significant. 494

For instance, for k = 3 there are about 90% of dominated 495

solutions after 100 generations (and about 50% of dominated 496

solutions after 200 generations) while for k ≥ 10 practically 497

all members of a population are mutually nondominating after 498

about 100 generations. Hence, by only looking at these values 499

one could have come to the conclusion that the problem gets 500

clearly harder with increasing k which cannot be confirmed 501

by our studies. 502

Since it may be argued that for different values of k a 503

comparison for the above models is not completely fair (in 504

addition to the difference of F (a) described above there is the 505

difference in the dimension of the Pareto sets), we consider 506

PS2k(l) for a fixed value of l but with different values of k. 507

To be more precise, we consider PS2k(k) and PS2k+1(k). The 508

reason is that in both cases, i.e., for the k-objective model 509

PS2k(k) as well as for the (k + 1)-objective model PS2k+1(k), 510

the Pareto set is given by S(e1, . . . , ek). That is, in this case 511

at least GDx can be assumed to be completely fair for a 512
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Fig. 2. Numerical results of NSGA-II for PS1 for k = 2, 3, 4, 6, 8, 10, 12, 15
objectives. The results are in parameter space [log(GDx)] and averaged over
50 independent runs. Compare to Table 1.

Fig. 3. Numerical results of NSGA-II for PS1 for k = 2, 3, 4, 6, 8, 10, 12, 15
objectives. The results are in objective space [log(GD)] and averaged over 50
independent runs. Compare to Table 2.

comparison. Figs. 7 and 8 show such comparisons for values513

of k between 3 and 14, where we have chosen the same setting514

as in the previous study. Also here, small differences in the515

performances can be observed, but it is certainly not justified516

to talk about different orders of magnitude.517

IV. Discussion and an Attempt to Explain518

Recent Advances519

In the previous section, we have investigated a particular520

class of uni-modal MOPs with respect to the influence of521

the number of objectives on the hardness of the problem.522

Putting theoretical and empirical observations together we can523

conclude that by adding an objective to a given MOP the524

problem does per se not get harder by a significant amount, at525

least not on the (easy) class of models under consideration.526

However, such a scalability has been observed by many527

researchers on other, more complex, models. The question528

which now naturally arises is how this can be put together,529

i.e., if the observations made above can also be helpful for530

the design of algorithms for general many-objective models.531

In the following, we hazard to guess the sources of difficulties532

when dealing with many-objective problems, and try to explain533

Fig. 4. Numerical results of NSGA-II for PS2k(k) for k = 2, 3, 4, 6, 8, 10,

12, 15 objectives. The results are in parameter space [log(GDx)] and averaged
over 50 independent runs.

Fig. 5. Numerical results of NSGA-II for PS2k(k) for k = 2, 3, 4, 6, 8, 10,

12, 15 objectives. The results are in objective space [log(GD)] and averaged
over 50 independent runs.

recent advances in the field of evolutionary many-objective 534

optimization in light of our discussion. 535

Based on the above considerations, three influential factors 536

for the efficient numerical treatment of many-objective opti- 537

mization problems with evolutionary algorithms regardless of 538

the particular choice of the algorithm seem to be: 539

1) the pulling assumption as described in Section III-B1; 540

2) the probability to improve an individual; 541

3) the multi-modality of the MOP. 542

Problems 1) and 2) are to a certain extent in the hands of the 543

algorithm designer, whereas problem 3) is given to him/her 544

(or is possibly a modeling problem). 545

Much research has been done so far to improve the pulling 546

property [i.e., problem 1)]. In case a population consists 547

only of nondominated solutions and the generational operators 548

produce further nondominated candidates the question arises 549

which point to keep and which one to discard in order to 550

converge toward the Pareto set. Since not all these nondom- 551

inated solutions have the same distance to the solution set 552

one can laxly say that “some nondominated points are better 553

than others” [9]. The quest for those points has led so far 554

to a variety of substitute distance assignments in NSGA-II 555
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TABLE I

Numerical Results of NSGA-II for PS1 for k = 3, 4, 6, 8, 10, 12, 15 Objectives

Number of Generations
k 50 100 200 300 400 500
2 8.57E−001 2.07E−001 9.54E−002 6.48E−002 5.10E−002 4.24E−002
3 8.74E−001 2.13E−001 1.02E−001 7.62E−002 6.28E−002 5.53E−002
4 8.85E−001 2.19E−001 1.12E−001 8.83E−002 7.67E−002 6.98E−002
6 8.79E−001 2.22E−001 1.33E−001 1.13E−001 1.03E−001 9.84E−002
8 8.78E−001 2.38E−001 1.52E−001 1.37E−001 1.28E−001 1.24E−001
10 8.94E−001 2.43E−001 1.72E−001 1.55E−001 1.46E−001 1.39E−001
12 9.18E−001 2.60E−001 1.87E−001 1.72E−001 1.60E−001 1.58E−001
15 9.27E−001 2.72E−001 2.06E−001 1.88E−001 1.79E−001 1.76E−001

The results are in parameter space (GDx) and averaged over 50 independent runs (compare to Fig. 2).

TABLE II

Numerical Results of NSGA-II for PS1 for k = 3, 4, 6, 8, 10, 12, 15 Objectives

Number of Generations
k 50 100 200 300 400 500
2 1.06E+001 5.86E−001 1.24E−001 5.65E−002 3.53E−002 2.48E−002
3 1.36E+001 7.24E−001 1.71E−001 9.96E−002 6.94E−002 5.61E−002
4 1.63E+001 8.56E−001 2.44E−001 1.62E−001 1.34E−001 1.17E−001
6 1.97E+001 1.06E+000 4.33E−001 3.49E−001 3.11E−001 2.93E−001
8 2.27E+001 1.41E+000 6.71E−001 6.22E−001 5.76E−001 5.75E−001
10 2.67E+001 1.69E+000 9.84E−001 8.64E−001 8.30E−001 7.82E−001
12 3.07E+001 2.20E+000 1.30E+000 1.22E+000 1.10E+000 1.14E+000
15 3.52E+001 5.38E+000 1.78E+000 1.61E+000 1.56E+000 1.58E+000

The results are in objective space (GD) and averaged over 50 independent runs (compare to Fig. 3).

Fig. 6. Number of nondominated points (|ND|) during the run of NSGA-
II for different values of k for the PS1 problems with population size 100
(averaged over 20 test runs).

(e.g., [2], [9], [35], [41], [50]). All these methods were able556

to outperform its base MOEA on scalable benchmark models557

(such as the DTLZ models). Though these results are all558

satisfying from the practical point of view, however, none559

of them ensures convergence toward the set of interest. It is560

known that in NSGA-II cycling (see [21]) or deterioration561

can occur which prevents that a predescribed “limit set” is562

reached resulting in a certain lack of efficiency, at least from563

the theoretical point of view [38]. Due to the dimensionality,564

the problem of defining a suitable limit set is getting more565

important with increasing value of k which would ease the566

evaluation of the newly developed strategies.567

In multiobjective particle swarm optimization (MOPSO) 568

algorithms, the pulling property is closely related to the choice 569

of the guidance mechanism which has been addressed in [34] 570

and [39] for many-objective problems. 571

To downsize problem 2), several remedies have been pro- 572

posed so far which all lead to an augmentation of the descent 573

cones of the related auxiliary models. One way to increase the 574

improvement probability (while reducing the multi-modality of 575

the problem) is to consider instead of the given k-objective 576

problem a sequence of lower objective problems. For in- 577

stance, the methods MSOPS [24] and RSO [25] are based 578

on aggregation functions to find Pareto optimal solutions. 579

Another approach is to use “space partitioning” [1], [2], i.e., 580

partitioning the objective space into subspaces and performing 581

one or several generations of the evolutionary search in each 582

subspace. In both cases, the descent cone of the auxiliary 583

model at a point x is typically larger than the original problem, 584

and in the case of space partitioning the number of local 585

minima is typically fewer (see the Appendix). The latter is 586

not always true when using an aggregation function fa since 587

this depends on the choice of fa as well as on the original 588

model (see [31] for a counterexample). 589

For these approaches it holds that the speed of convergence 590

gets improved, but, in turn, problems arise concerning the di- 591

versity maintenance. In particular, it may happen that not every 592

Pareto point can be reached by the auxiliary problems which 593

leads to a bias of the approaches. The potential drawbacks of 594

aggregation functions are known (e.g., [11]), the reason for 595

a potential bias when using space partitioning is because the 596

union of the Pareto sets of all subproblems does typically not 597
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Fig. 7. Numerical results of NSGA-II for PS2k(k) and PS2k+1(k) for k = 2
and 4. The plots show the number of generations vs. log(GDx). The results
are averaged over 50 independent runs. (a) PS22(2) and PS23(2). (b) PS24(4)
and PS25(4).

form the Pareto set of the “full” MOP. For instance, when598

choosing the PS1 problem with minimizers a1, a2, and a3 (for599

the objectives f1 to f3, respectively) such that the volume of600

S(a1, a2, a3) is positive, then the union of the Pareto sets of601

all bi-objective subproblems (f1, f2), (f1, f3), and (f2, f3) is602

S(a1, a2) ∪ S(a1, a3) ∪ S(a2, a3), i.e., is equal to the boundary603

of the “complete” Pareto set S(a1, a2, a3), but no interior point604

is included.605

Another way to increase the improvement probability is606

to modify the Pareto dominance relation. Clearly, a larger607

dominance cone (defined in objective space) is related to a608

larger descent cone [defined in parameter space, see (24)]609

which in turn increases the probability to find a “better”610

solution as discussed above. The usage of such modified611

dominance cones within MOEAs can be found in [44], and in612

[17], [32], [33] fuzzifications of the Pareto dominance relation613

can be found which by its relaxation similarly influences the614

size of the dominance cones. Also for these methods, problems615

in diversity maintenance have been reported.616

One aspect so far disregarded by researchers—but probably617

worth exploring—is the ability of memetic strategies to im-618

prove the performance of many-objective optimization prob-619

lems. On the one hand, mathematical programming techniques620

Fig. 8. Numerical results of NSGA-II for PS2k(k) and PS2k+1(k) for k = 9
and 14. The plots show the number of generations vs. log(GDx). The
results are averaged over 50 independent runs. (a) PS29(9) and PS210(9).
(b) PS214(14) and PS215(14).

(e.g., [4], [19]) allow—if gradient information is at hand— 621

to compute a descent direction at every given non optimal 622

point regardless of the size of the descent cone nor of the 623

value of k, and hence it can be argued that the probability for 624

improvement is one. On the other hand, the use of gradient 625

information within a memetic strategy results in a certain 626

additional cost [37] and in case the model is highly multi- 627

modal [i.e., problem 3)] the effect of the local search on the 628

overall performance is questionable. 629

In [53], it has been reported that ε-MOEA [13] copes 630

well with many-objective optimization problems, even on 631

highly multi-modal models. ε-MOEA is a steady state MOEA 632

equipped with an archiving strategy which is based on the con- 633

cept of ε-dominance and guarantees under certain assumptions 634

convergence toward a finite size representation of the Pareto 635

set [43], [38]. The good behavior of ε-MOEA with respect to k 636

can partly be explained by our considerations: elements of the 637

archive are only replaced by dominated solutions, i.e., a good 638

solution will not be discarded due to any distance assignment, 639

but only due to the existence of a better one. Hence, such 640

solutions cannot be discarded by mistake which certainly helps 641

to pull the population toward the Pareto set. Further, by the 642

use of the archiving strategy proposed in [38] the descent cone 643
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is enlarged: the objective space gets divided into a grid of644

boxes, whose size can be adjusted by the size of ε. Every645

solution of the archive has to be located in a different box (i.e.,646

every archive entry is associated with a box of the grid). The647

dominance relation is now enlarged since only nondominated648

boxes are allowed. Hence, ε-MOEA has mechanisms to cope649

with problems 1) and 2). Further good results can hence in650

principle be expected with related algorithms such as PAES651

[10] or PESA [30], or with any MOEA which is equipped with652

an archive which converges toward a finite size representation653

of the set of interest (e.g., [46]–[49]). The problem—at least654

when using archivers based on ε-dominance—is certainly the655

proper choice of ε: as discussed in [9], if the value of ε is656

too small, the archive sizes become intractable, and for large657

values of ε the limit archive set basically consists of a set of658

randomly selected (but not close by) points from the Pareto659

set.660

In summary, it can be said that yet a variety of promising661

approaches exist in terms of their ability to converge toward662

the Pareto set PQ. The distribution, however, is still an open663

problem. For this, a clear definition of the optimal distribution664

of the (few) individuals a ∈ A is still missing but required to665

evaluate the finite size approximation of PQ beyond conver-666

gence in the sense of dist(A, PQ) or dist(F (A), F (PQ)).667

V. Conclusion668

In this paper, we have investigated the influence of669

the number k of objectives in a MOP on the hardness of the670

problem when solving it by evolution strategies. For this, we671

have utilized the descent cones which can be used to measure672

the probability to improve a solution by the generational op-673

erators. Though these considerations are of qualitative nature674

and can hardly be quantified, they help to a certain extent675

to understand the behavior of the population’s evolution with676

respect to k. As an example, we have considered a class of uni-677

modal test functions and have investigated the resulting models678

qualitatively and empirically. Qualitative studies based on the679

descent cones led to the conclusion that, on the one hand, the680

addition of an objective makes the problem indeed harder, but,681

on the other hand, it can be argued that the difference is not682

significant, which is, later on, empirically validated. That is,683

it can be argued that the addition of an objective to a MOP684

does not make the problem per se harder.685

In contrast to this, many researchers have so far observed686

a certain scalability in the hardness of the problem with687

respect to k, albeit for more complex models. Based on688

our considerations on the uni-modal models we have tried689

to identify the challenges which have to be mastered by690

evolution strategies for general models: the ability to keep691

“good” solutions in order to pull the population toward the set692

of interest, the probability to improve an individual, and the693

multi-modality of the MOP. This together with the qualitative694

discussions in Section III-B can be used to a certain extent695

to explain recent advances in the field of evolutionary many-696

objective optimization.697

We hope that this new insight into the geometry of mul-698

tiobjective optimization may help researchers in the field of699

evolutionary computation for further developments of efficient 700

specialized algorithms, particularly when dealing with many- 701

objective problems. 702

APPENDIX 703

The following little discussion shows that by adding ob- 704

jectives to a given MOP the set of local minima cannot get 705

smaller but rather gets bigger which we argue by the set of 706

KKT points (note that every local minimizer is a KKT point). 707

Let a MOP be given consisting of the k objectives (f1, . . . , fk) 708

(denote by MOP1). Further, let an extended model be given 709

by the objectives (f1, . . . , fk, fk+1) [denote by (MOP2)] where 710

the first k objectives are identical in MOP1 and MOP2. For 711

simplicity, we assume that all objectives are defined on the 712

same domain Q ⊂ Rn. Define 713

KKT (i) := {x ∈ Q : x is KKT point of MOPi} i = 1, 2.

(30)

The following consideration shows that KKT (1) is a subset of 714

KKT (2): let x ∈ KKT (1), i.e., there exists a convex weight 715

α ∈ Rk (i.e., αi ≥ 0 for all i = 1, . . . , k and
∑k

i=1 αi = 1) 716

such that
∑k

i=1 αi∇fi(x) = 0. Since α̃ = (α, 0) ∈ Rk+1 is also a 717

convex weight and
∑k+1

i=1 α̃i∇fi(x) = 0 it follows that x is also 718

included in KKT (2). 719

Further, it is for instance every substationary point of fk+1 720

(i.e., a point x ∈ Q which satisfies ∇fk+1(x) = 0) also included 721

in KKT (2) [for this, choose α = (0, . . . , 0, 1)], and hence, 722

KKT (2) is typically a strict superset of KKT (1). Furthermore, 723

it can be shown that under certain additional assumptions the 724

set KKT (2) forms a k-dimensional object while KKT (1) is 725

(k − 1)-dimensional [22]. 726
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[23] J. Horn, “Multicriterion decision making,” in Handbook of Evolutionary794

Computation. Oxford, U.K.: Oxford University Press, 1997, pp. 1–9.795

[24] E. J. Hughes, “Multiple single objective Pareto sampling,” in Proc. IEEE796

CEC, 2003, pp. 2678–2684.797

[25] E. J. Hughes, “Evolutionary many-objective optimization: Many ones or798

one many?” in Proc. IEEE CEC, 2005, pp. 222–227.799

[26] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-800

objective optimization: A short review,” in Proc. IEEE CEC, 2008,801

pp. 2419–2426.802
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[34] M. Köppen and K. Yoshida, “Many-objective particle swarm optimiza-824

tion by gradual leader selection,” in Proc. 8th ICANNGA, 2007, pp.825

323–331.826
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On the Influence of the Number of Objectives
on the Hardness of a Multiobjective

Optimization Problem
Oliver Schütze, Adriana Lara, and Carlos A. Coello Coello, Senior Member, IEEE

Abstract—In this paper, we study the influence of the number1

of objectives of a continuous multiobjective optimization problem2

on its hardness for evolution strategies which is of particular3

interest for many-objective optimization problems. To be more4

precise, we measure the hardness in terms of the evolution (or5

convergence) of the population toward the set of interest, the6

Pareto set. Previous related studies consider mainly the number7

of nondominated individuals within a population which greatly8

improved the understanding of the problem and has led to9

possible remedies. However, in certain cases this ansatz is not10

sophisticated enough to understand all phenomena, and can even11

be misleading. In this paper, we suggest alternatively to consider12

the probability to improve the situation of the population which13

can, to a certain extent, be measured by the sizes of the descent14

cones. As an example, we make some qualitative considerations15

on a general class of uni-modal test problems and conjecture16

that these problems get harder by adding an objective, but that17

this difference is practically not significant, and we support this18

by some empirical studies. Further, we address the scalability in19

the number of objectives observed in the literature. That is, we20

try to extract the challenges for the treatment of many-objective21

problems for evolution strategies based on our observations and22

use them to explain recent advances in this field.23

Index Terms—XXX, XXX, XXX.AQ:1 24

I. Introduction25

EVOLUTIONARY algorithms for the numerical treatment26

of multiobjective optimization problems (MOPs) have27

been studied intensively during the last few years (see [11], [8]28

and references therein). Typically, few objectives (i.e., mainly29

two or three) are being investigated resulting in a variety30

of very efficient algorithms. The consideration of many (i.e.,31

more than three) objectives, however, is a relatively young field32

and is yet not studied thoroughly enough. With this paper, we33

want to contribute to this field by looking at the influence of34

the number k of objectives in a continuous MOP on the hard-35

ness of the problem. To be more precise, we try to understand36

the behavior of the evolution with respect to k by looking at37

Received July 6, 2009; revised December 29, 2009, March 31, 2010, and
June 10, 2010; accepted July 6, 2010. The work of A. Lara was supported by
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the descent cones of the individuals of the populations. The 38

resulting analysis is of qualitative nature; however, it can for 39

instance be used to disprove a common belief, namely that 40

the addition of an objective makes a problem per se harder. 41

Further, the new ansatz can be used to explain recent advances 42

in the field of evolutionary many-objective optimization, and is 43

thus hopefully helpful for designers of evolutionary algorithms 44

aimed to deal with such problems. 45

When investigating continuous MOPs with respect to k, two 46

facts have to be considered: 1) the solution set, the so-called 47

Pareto set, forms typically a (k − 1)-dimensional set [22], 48

and 2) the problem gets harder the more local solutions it 49

contains and the smaller the basin of attraction for the global 50

solutions are since then the chance increases that a population 51

can get stuck in locally optimal regions. The choice of k has 52

thus, by 1), a direct influence on the dimension of the Pareto 53

set, and hence, also on the hardness of the problem. If, for 54

instance, N2 = 100 points are chosen to obtain a “sufficient” 55

representation of a solution set for k = 2 in the Hausdorff 56

sense (which is a typical value in the literature), in principle 57

the practically intractable amount of N15 = 10014 = 1028
58

elements is required to obtain the same approximation quality 59

for k = 15. Even if the lower bound of N2 = 2 elements is 60

used to “represent” the Pareto set for k = 2, still N15 = 16 384 61

elements are needed to obtain the same (low) approximation 62

quality for k = 15 (see also [51] for a related discussion on 63

the required number of comparisons with respect to k). As a 64

possible remedy, one can in certain cases try to reduce the 65

number of objectives (e.g., [6], [15], [27]) since in practice it 66

may happen that several objectives are correlated. Since we 67

are interested in the influence of k we will not follow that 68

approach. Another more practical remedy researchers dealing 69

with evolutionary many-objective optimization have chosen is 70

to bound the population/archive size to a moderate (and hence 71

tractable) number for all values of k (say, N = 100). We will, in 72

the following, consider that scenario and will restrict ourselves 73

to investigate the evolution of these N individuals toward the 74

Pareto set. That is, we will only consider the convergence of 75

the individuals and will leave out the (very important) question 76

of the distribution of the limit population since this is still an 77

open problem. It has to be noted that by using the descent 78

cones only the convergence (in terms of the semi-distance dist) 79

of the population toward the set of interest can be understood. 80

Further important aspects are not treated here. As discussed 81

1089-778X/$26.00 c© 2010 IEEE
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above, an approximation in the Hausdorff sense has strong82

limitations with respect to the value of k; however, there are83

further interesting metrics for the treatment of many-objective84

problems such as the set coverage metric or the hypervolume85

metric [55], as considered in [29] and [3], respectively. To86

understand the evolution of the populations with respect to87

these metrics, a (sole) consideration of the descent cones does88

not seem to be adequate.89

While the choice of k has a direct influence on the dimen-90

sion of the solution set the relation to 2) is rather indirect. On91

the one hand, an additional objective certainly increases the92

chance that more locally optimal solutions exist since every93

local solution of each objective is also a local solution of the94

MOP (see the Appendix). Hence, every multi-modal objective95

makes the problem harder as it is the case for the DTLZ96

test problems [16] which are often considered in the context97

of the evaluation of many-objective evolutionary algorithms.98

On the other hand, this increase of hardness comes rather99

from the multi-modality of the model than from the additional100

objective and can be “substituted” by increasing the multi-101

modality of the already existing objectives. However, it is a102

common belief that more objectives make a MOP harder (e.g.,103

[11], [18], [20], [23]) which has an impact on the design in104

particular of evolution strategies for the treatment of many-105

objective optimization problems. As reason for this behavior106

it is sometimes argued that the number of incomparable107

solutions increases if further objectives are added to a problem108

(empirically studied, e.g., in [26], [29], [35], and [42], and109

proven in [54]), and thus, that the evolution of the populations110

toward the Pareto sets is slowed down.111

The aim of this paper is to investigate the influence of the112

hardness of a problem for an evolutionary search procedure113

with respect to k. Instead of looking at the number of nondom-114

inated solutions within a population, we will focus on the abil-115

ity of the populations to evolve toward the Pareto sets. Since116

there is a certain relation between the probability to (locally)117

improve an individual x by the generational operators and the118

size of the descent cone at x, we will use and adapt some119

considerations from [7] of the sizes of the cones in order to try120

to explain the behavior of the evolution. To handle 1), we will121

restrict the population size to a fixed value as discussed above,122

and to avoid the problem described in 2), we will concentrate123

on uni-modal models. We will argue that a MOP (theoretically)124

indeed gets harder when adding an objective, but that this125

difference is—at least for uni-modal models and under an126

additional assumption on the evolutionary algorithm—not sig-127

nificant, and demonstrate this empirically on three examples.128

Further on, we will address the treatment of general models129

where such a scalability has been observed by many re-130

searchers so far. Based on our considerations we try to extract131

the challenges for many-objective evolutionary algorithms and132

give an attempt to explain recent advances in this field in light133

of the new insight. A critical discussion on the influence of k134

for discrete MOPs can be found in [5], but the study presented135

in this paper seems to be the first one for continuous models.136

Since our ansatz is using descent cones, the conclusions we137

draw are restricted to continuous models. Similar explanations138

for combinatorial problems do not seem to exist.139

The remainder of this paper is organized as follows. 140

Section II gives the required background for the understanding 141

of the sequel. In Section III, we investigate a class of uni- 142

modal test functions analytically and empirically with respect 143

to the influence of the number of objectives to the hardness 144

of the problem. In Section IV, we discuss our results and 145

give an attempt to explain recent advances in the field of 146

evolutionary many-objective optimization. Finally, we draw 147

some conclusions in Section V. 148

II. Background 149

In the following, we consider continuous MOPs which are 150

of the following form: 151

min
x∈Q

{F (x)} (MOP)

where Q ⊂ Rn is the domain and the function F is defined 152

as the vector of the objective functions 153

F : Q → R
k F (x) = (f1(x), . . . , fk(x))

and where each objective fi : Q → R is continuous. The 154

optimality of a MOP is defined by the concept of dominance 155

[40]. 156

Definition 2.1: 157

1) Let v, w ∈ Rk. Then the vector v is less than w (v <p 158

w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is 159

defined analogously. 160

2) A vector y ∈ Rn is dominated by a vector x ∈ Rn
161

(x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and 162

F (x) �= F (y), else y is called non-dominated by x. 163

3) A point x ∈ Q is called (Pareto) optimal or a Pareto 164

point if there is no y ∈ Q which dominates x. 165

The set of all Pareto optimal solutions is called the Pareto 166

set, and is denoted by PQ. The image F (PQ) of the Pareto set 167

is called the Pareto front. If required, we will denote the Pareto 168

set of a particular MOP by PQ(MOP) to avoid confusion. 169

In case all the objectives of the MOP are differentiable, the 170

following famous theorem of Kuhn and Tucker [36] states a 171

necessary condition for Pareto optimality for unconstrained 172

MOPs. 173

Theorem 2.2: Let x∗ be a Pareto point of (MOP), then there 174

exists a vector α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 175

1 such that 176

k∑

i=1

αi∇fi(x
∗) = 0. (1)

The theorem claims that the vector of zeros can be written 177

as a convex combination of the gradients of the objectives at 178

every Pareto point. Obviously, (1) does not state a sufficient 179

condition for Pareto optimality. On the other hand, points 180

satisfying (1) are certainly “Pareto candidates.” 181

Definition 2.3: A point x ∈ Rn is called a Karush–Kuhn– 182

Tucker point1 (KKT–point) if there exist scalars α1, . . . , αk ≥ 183

0 such that
∑k

i=1 αi = 1 and that (1) is satisfied. 184

1Named after the works of Karush [28], and Kuhn and Tucker [36].
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Next, we define some distances between points as well as185

between different sets.186

Definition 2.4: Let u, v ∈ Rn and A, B ⊂ Rn. The max-187

imum norm distance d∞, the semi-distance dist(·, ·) and the188

Hausdorff distance dH (·, ·) are defined as follows:189

1) d∞(u, v) := max
i=1,... ,n

|ui − vi|;190

191

2) dist(u, A) := inf
v∈A

d∞(u, v);192

193

3) dist(B, A) := sup
u∈B

dist(u, A);194

195

4) dH (A, B) := max {dist(A, B), dist(B, A)} .196

As discussed above, we are in particular interested in the197

convergence of the archive entries toward the set of interest.198

In case of the Pareto front, it is199

dist(F (Al), F (PQ)) (2)

where Al = {a1, . . . , am} is the archive in generation l. Since200

dist (and thus also dH ) is sensitive to outliers which is a201

potential drawback when measuring the solution of stochastic202

algorithms one can use instead the generational distance (GD,203

see [52]) which measures the average distance of the elements204

of Al to the Pareto front205

GD(Al) :=
1

m

√
√
√
√

l∑

i=1

dist(F (ai), F (PQ))2. (3)

The Pareto sets of the test functions considered in the206

following are given by simplexes which are defined as follows.207

Definition 2.5: Let v1, . . . , vk ⊂ Rn, n ≥ k, be given. The208

set209

S(v1, . . . , vk) :=

{
k∑

i=1

λivi : λ ∈ [0, 1]k, and
k∑

i=1

λi = 1

}

(4)

is called the (k − 1)-simplex of v1, . . . , vk.210

A hyperplane H = H(x̃, η) in n-dimensional space is defined211

by a point x̃ ∈ H and a normal vector η ∈ R\{0}, that is212

H(x̃, η) = {x ∈ Rn : 〈x − x̃, η〉 = 0} (5)

where 〈·, ·〉 defines the standard scalar product. The point p(x)213

which is closest to H is given by214

p(x) = x − 〈x − x̃, η〉
〈η, η〉 η. (6)

III. Investigation of a Class of Uni-Modal Models215

A. A Class of Test Problems with Simplicial Pareto Sets216

Here, we construct a set of quadratic (and hence uni-modal)217

test functions where the Pareto sets are given by simplexes218

which eases the computation of the distance of a point to the219

Pareto set and front. The resulting models we consider are 220

slight variants of the P∗ problems introduced in [34] tailored 221

to our needs. 222

1) Construction: First we construct the base problem. 223

Given points a1, . . . , ak ∈ Rn, we define the MOP as follows: 224

min F : Rn → R
k

fi(x) = ‖x − ai‖2
2 =

n∑

j=1

(xj − ai,j)2 (7)

where ai,j denotes the jth entry of a given vector ai. The 225

Pareto set of the problem defined by (7) [in short MOP(7)] is 226

given by the simplex spanned by the k minimizers ai. 227

Proposition 3.1: PQ(MOP (7)) = S(a1, . . . , ak). 228

Proof: It is ∇fi(x) = 2(x − ai). Let x ∈ S(a1, . . . , ak), 229

i.e., there exist scalars λ1, . . . , λk ≥ 0 with
∑k

i=1 λi = 1 such 230

that x =
∑k

i=1 λiai. Then 231

k∑

i=1

λi∇fi(x) =
k∑

i=1

λi2(x − ai) = 2(x
k∑

i=1

λi

︸ ︷︷ ︸
=1

−
k∑

i=1

λiai)

= 2

(

x −
k∑

i=1

λiai

)

= 0.

(8)

The claim follows since MOP (7) is strictly convex, and thus, 232

the Pareto set is equal to the set of Karush–Kuhn–Tucker 233

(KKT) points. 234

The problem is quadratic and unconstrained. Note that for 235

the special case n = 1, k = 2, a1 = 0, and a2 = 1 the MOP 236

(7) coincides with the well-known problem of Schaffer [45]. 237

The authors of [34] propose to locate all the minima ai on an 238

Euclidean plane which results in a 2-D Pareto set. In order, 239

e.g., to obtain a (k − 1)-dimensional object, the volume of 240

S(a1, . . . , ak) has to be positive, i.e., the k − 1 difference 241

vectors a2 − a1, . . . , ak − a1 have to be linearly independent. 242

In the following, we use Proposition 1 to construct con- 243

strained problems with variable dimension of the solution set. 244

For this, we will use hyperplanes. Given a hyperplane H = 245

H(x̃, η), there exists for every point x ∈ Rn a λ = λ(x) ∈ R 246

such that 247

x − p(x) = λη (9)

which can be used to divide the space Rn as follows. Let 248

j ∈ {1, . . . , n} such that ηj �= 0, then we define 249

gH : Rn → R

gH (x) =
xj − p(x)j

ηj

(10)

and the constrained MOP is 250

min F (x)

s.t. gH (x) ≤ 0
(11)

where F is as defined in (7). Thus, the domain is given by 251

Q = {x ∈ R : gH (x) ≤ 0}. Constrained problems can now 252
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be constructed by using MOP (7) and placing the ai’s at253

the boundary of Q. The following result shows how further254

constrained MOPs can be generated with different dimensions255

of the Pareto set (see also Fig. 1). Further on, we give one256

such example.257

Proposition 3.2: Let H = H(x̃, η) be a hyperplane and258

a1, . . . , ak ∈ Rn such that259

a1, . . . , al ∈ H l ≤ k (12)

and260

gH (ai) > 0 i = l + 1, . . . , k

p(ai) ∈ S(a1, . . . , al) i = l + 1, . . . , k.
(13)

Then, the Pareto set of MOP (11) is given by261

PQ(MOP (11)) = S(a1, . . . , al). (14)

Proof: By Proposition 1, it is clear that:262

1) S(a1, . . . , al) ⊂ PQ, and 2) none of the points x ∈ R with263

gH (x) < 0, i.e., the points where gH is inactive, is Pareto264

optimal [else 0 can be expressed as a convex combination of265

the objectives’ gradients, but this was prevented by the first266

assumption in (13)]. It remains to show that H\S(a1, . . . , al)267

is not contained in PQ. For x ∈ H\S(a1, . . . , al) choose268

z ∈ S(a1, . . . , al) such that269

z ∈ argmins∈S(a1,... ,al)‖x − s‖2. (15)

Since S(a1, . . . , al) is a convex set and x �∈ S(a1, . . . , al) it270

follows that271

‖s − z‖2 < ‖s − x‖2 ∀s ∈ S(a1, . . . , al). (16)

Since (16) holds for ai, i = 1, . . . , l, it follows that272

fi(z) < fi(x), i = 1, . . . , l. Further, by the same argument273

on p(ai), i = l + 1, . . . , k, and Pythagoras274

x ∈ H ⇒ ‖ai − x‖2
2 = ‖ai − p(ai)‖2

2 + ‖p(ai) − x‖2
2

i = l + 1, . . . , k (17)

it follows that also fi(z) < fi(x), i = l + 1, . . . , k, and thus,275

that F (z) < F (x), which implies that x �∈ PQ which concludes276

the proof.277

If for instance H = H(e1, η) is chosen as278

η = (−1, . . . , −1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

)T (18)

and ai = ei, i = 1, . . . , k, then ai ∈ H, i = 1, . . . , k279

(p(ai) = ai) and thus, PQ = S(ei, . . . , ek). The dimension280

of the solution set can be reduced by one if choosing, e.g.,281

ai = ei, i = 1, . . . , k − 1, ak = 0, and H = H(e1, η) with282

η = (−1, . . . , −1
︸ ︷︷ ︸

k−1

, 0, . . . , 0
︸ ︷︷ ︸

n−k+1

)T . (19)
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H
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Fig. 1. Two examples where the facet of a 3-simplex is included in the
hyperplane. Left: the Pareto set of MOP (11) is given by S(a1, a2) since
p(a3) ∈ S(a1, a2). Right: p(a3) �∈ S(a1, a2), and thus, the Pareto set is not
equal to the facet S(a1, a2).

It is p(ak) = −1
k−1η ∈ S(a1, . . . , ak−1) [using the weights αi = 283

1/(k − 1)] and gH (ak) = 1/(k − 1) > 0, and thus, it follows 284

by Proposition 2 that PQ = S(a1, . . . , ak−1). 285

Continuing in a similar manner, the dimension of the Pareto 286

set can be reduced. The extreme situation—i.e., that PQ 287

consists of one single solution—can, e.g., be obtained as 288

follows: set a1 = e1, and ai = λiei, λi < 1, for i = 2, . . . , k, and 289

H = H(e1, η) with η = (−1, 0, . . . , 0)T . Then, it is p(ai) = e1 290

and g(ai) = 1 − λi > 0 for i = 2, . . . , k, and thus, PQ = {e1}. 291

2) Test Problems: Based on the above observations, we 292

propose two test functions which are used to investigate the 293

hardness of a MOP with respect to the number of objectives. 294

a) PS1: Given vectors a1, . . . , ak ∈ Rn, n ≥ k, we 295

define the first test problem PS1 as in (7). For the ai’s we 296

suggest choosing ai = ei, and as domain Q = [−10, 10]. By 297

Proposition 1 it follows that 298

PQ(PS1) = S(e1, . . . , ek). (20)

b) PS2: Here we define a constrained model where the 299

dimension of the Pareto set can be chosen between 0 and 300

k − 1, where k is the number of objectives: given a number 301

1 ≤ l ≤ k, we define PS2(l) as follows. Let H = H(e1, η) with 302

η = (−1, . . . , −1
︸ ︷︷ ︸

l

, 0, . . . , 0
︸ ︷︷ ︸

n−l

) (21)

let gH as in (10), and F as in (7), where ai = ei, i = 1, . . . , l, 303

and aj = − 1
l
η + j−l

l
η, j = l + 1, . . . , k. Then PS2(l) reads as 304

follows: 305

min F (x)

s.t. xi ∈ [−10, 10]n i = 1, . . . , n

gH (x) ≤ 0.

(22)

Due to the discussion in the previous subsection it is 306

PQ(PS2(l)) = S(e1, . . . , el) (23)

i.e., a l-simplex which is located within the boundary of the 307

domain. The characteristic of this model is that the Pareto set 308

of PS2(l) for k1 objectives [denoted by PS2k1 (l)] is equal to 309

the Pareto set of PS2k2 (l), where k1 and k2 are any numbers 310

larger than or equal to l. 311
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B. Hardness of the PS Problems with Respect to k312

In the following, we investigate the hardness of the PS test313

problems by some (non-rigorous) theoretical considerations314

and by empirical studies.315

1) Qualitative Considerations: In the following, we con-316

sider the PS test problems for general locations of the minima317

ai. If further assumptions are required, we will mention them.318

For our considerations, we use the descent cones to investi-319

gate the hardness of a problem. Given a MOP with s objectives320

the descent cone at a point x ∈ Q is given by (e.g., [4])321

D(f1, . . . , fs, x) = {ν ∈ Rn\{0} : 〈∇fi(x), ν〉 < 0

∀ i = 1, . . . , s.} (24)

D(f1, . . . , fs, x) is the set of all directions in which dominat-322

ing points can be found, i.e., for each v ∈ D(f1, . . . , fs, x)323

there exists a (possibly small) t ∈ R+ such that F (x + tv) <p324

F (x). There exists a certain relation of the size of the descent325

cone to the probability to (locally) improve the value of x326

by the generational operators of a MOEA. For the mutationAQ:2327

operator, the relation is proportional when assuming the exis-328

tence of a suitable or small step size control (i.e., the value329

of t for the offspring o := x + tν). For the most common330

crossover strategies (e.g., SBX [12]) such a relation still holds;331

however, the success rate is here in addition depending on332

the location of the parents. Hence, one can say that a small333

descent cone results in a small probability of finding a better,334

i.e., dominating, solution near to x, and large descent cones in335

turn lead to a larger improvement possibility.336

Assume we are given l + 1 objectives of the form defined337

in (7), which are entirely determined by the choice of the338

ai’s and assume further that al+1 �∈ S(a1, . . . , al). Clearly,339

D(f1, . . . , fl+1, x), i.e., the descent cone for the (l + 1)-340

objective problem is a subset of D(f1, . . . , fl, x), i.e., the341

according descent cone for the MOP consisting of the first342

l objectives. The equality of both cones holds if −∇fl+1(x) is343

“between” the vectors −∇fi(x), i = 1, . . . , l. Since for the344

PS problems it is ∇fi(x) = 2(x − ai) (i.e., the steepest descent345

−∇fi(x) points to the minimizer of fi at every point x ∈ Q)346

we have347

D(f1, . . . , fl+1, x) = D(f1, . . . , fl, x) ⇔ ∃λ1, . . . , λl ≥ 0 :

al+1 − x =
l∑

i=1

λi(ai − x). (25)

Thus, a necessary condition for the equality of the cones is348

that al+1 − x ∈ span{a1 − x, . . . , al − x} by which it follows349

that the set of points x ∈ Q which satisfies (25) is maximal350

l-dimensional (and thus a zero set in Q). To be more precise,351

for every point x which is not included in the affine subspace352

A := span{a1, . . . , al} +

{
−al+1

∑l
i=1 αi − 1

}

(26)

where α ∈ Rl such that al+1 − x =
∑l

i=1 αi(ai − x) [note that353

since al+1 �∈ S(a1, . . . , al) it is
∑l

i=1 αi �= 1, and hence, (26) is354

well defined], the equality of the cones does not hold. Hence,355

picking a randomly chosen point x0 ∈ Q the probability is356

one that D(f1, . . . , fl+1, x0) of the (l + 1)-objective problem 357

is a proper subset of the cone D(f1, . . . , fl, x0) of the related 358

“reduced” l-objective problem. This result is in accord with 359

the observation made in [54] that the number of incomparable 360

solutions generally increases with an increasing number of 361

objectives. 362

Thus, it can be said that—from a theoretical point of view— 363

the PS problems get harder with increasing number of objec- 364

tives. Since (25) can in principle be applied to any set of 365

gradients, the statement holds for general MOPs. On the other 366

hand, this (point-wise) observation is of qualitative nature 367

and gives no statement about the quantity of the difference 368

which is needed to judge the hardness of a problem for a 369

given evolutionary search procedure with respect to k. The 370

following qualitative considerations,2 however, question the 371

common belief that the addition of further objectives makes a 372

given MOP per se harder. 373

Assume we are given MOP1 which consists of the 374

objectives f1, . . . , fk of the form defined in (7) and MOP2 375

which contains the same k objectives as in MOP1 plus the l 376

objectives fk+1, . . . , fk+l. If the initial population P0 is chosen 377

at random from the domain Q, it can be assumed that most 378

of its individuals p ∈ P0 are “far away” from both Pareto sets 379

(note that under the reasonable assumption n > k + l both sets 380

S(e1, . . . , ek) and S(e1, . . . , ek+l) are zero sets in Q). Thus, 381

the vectors {p − ai}i=1,... ,s for such an individual p point 382

nearly in the same direction, and this holds for s = k as well 383

as for s = k + l. One way to see this is that if a sequence of 384

points is chosen with unbounded increasing distance to all the 385

minima ai, both simplexes S(a1, . . . , ak) and S(a1, . . . , ak+l) 386

shrink in the limit down to a point, and hence, both descent 387

cones D(f1, . . . , fk, p) and D(f1, . . . , fk+l, p) form the 388

same half space as the cones D(fi, p), i ∈ 1, . . . , k + l, 389

for single-objective optimization. This implies that it can 390

be expected that also for finite distances the descent cones 391

D(f1, . . . , fk, p) and D(f1, . . . , fk+l, p) are nearly equal 392

(and large), and thus, that the evolution of the populations 393

should be nearly equal for both problems MOP1 and MOP2. 394

The situation will change after a small number of generations: 395

due to the sizes of the descent cones there is a high chance for 396

improvement, and thus, it can be expected that the sequence 397

of populations performs a certain evolution toward the Pareto 398

set. If so, it cannot be expected any more that the cones have 399

similar sizes. Since MOP2 contains more objectives it is more 400

likely that D(f1, . . . , fk+l, p) is smaller than D(f1, . . . , fk, p) 401

for an element p of the current population. [Compare to the 402

theorem of Kuhn and Tucker: if, for instance, two gradients 403

point in opposite directions then the associated cone defined 404

by (24) is empty. By continuity of F , the descent cones near 405

to KKT points are hence small.] However, this is mainly 406

due to the geometry of multiobjective optimization since the 407

Pareto set of MOP2 is indeed larger [PQ(MOP2) is (k+ l−1)- 408

dimensional while PQ(MOP1) is (k − 1)-dimensional]. Thus, 409

the evolution has to terminate earlier for MOP2 resulting in 410

smaller cones compared to MOP1. Another point—and this 411

one cannot be explained by looking at the descent cones—is 412

2Here we adapt some observations made in [7] to the present context.
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one population-based aspect of MOEAs, namely that single413

“good” solutions—i.e., solutions which are “near” to the414

Pareto set—can pull the entire population to the set of interest.415

Using the dimensionality of the different Pareto sets, it can416

be argued that the chance to find a “good” solution is higher417

for MOP2 than for MOP1. Hence, using the dimensionality,418

the argumentation of the influence of k can be turned: under419

the above assumption (which we will refer to as the pulling420

assumption in the sequel and which will be discussed in more421

detail in Section IV) and the additional assumption that the422

population/archive size is fixed and equal for both MOPs it423

is rather likely that MOP2 is the easiest model in terms of424

convergence [i.e., when considering dist(Al, PQ)].425

Concluding, it can be said that by adding an objective426

in a PS model (or other models), the resulting MOP gets427

indeed “harder” from a theoretical point of view, but it is ad428

hoc unclear if the amount is indeed significant since some429

considerations argue against it. However, the above analysis430

covers only the extreme situations (points which are either431

far away or near to PQ) and is only of qualitative nature. To432

elucidate this problem sufficiently, empirical studies seem to433

be required which we will do in the following.434

2) Empirical Studies: As mentioned before, we are in435

particular interested in the evolution (or convergence) of the436

populations toward the set of interest. For this, we use the437

generational distance defined in (3) and a variant of this438

indicator which we propose in the following.439

Given a population A = {a1, . . . , al}, GD measures the440

average distance of the elements of A to the Pareto front. Since441

the dimension of the vectors F (ai) varies with the number442

of objectives, one may argue that for a comparison which443

includes different number of objectives GD is not well suited.444

Thus, we propose here a variant of GD, namely445

GDx(A) :=
1

l

√
√
√
√

l∑

i=1

dist(ai, PQ)2 (27)

which is analog to GD but measures the averaged distance446

of A to the Pareto set, i.e., in parameter space. Hereby, the447

distance of a point a ∈ A to the Pareto set and its image to448

the Pareto front are given by449

dist(a, PQ) = min
p∈PQ

‖a − p‖2

dist(F (a), F (PQ)) = min
p∈PQ

‖F (a) − F (p)‖2.
(28)

These are single-objective optimization problems (SOPs)450

with n-dimensional parameter space. In case PQ = S :=451

S(a1, . . . , ak) as for our test problems, (28) can be written as452

dist(a, S) = min
α∈S

∥
∥
∥
∥
∥
a −

k∑

i=1

αiai

∥
∥
∥
∥
∥

2

dist(F (a), F (S)) = min
α∈S

∥
∥
∥
∥
∥
F (a) − F (

k∑

i=1

αiai)

∥
∥
∥
∥
∥

2

.

(29)

Since the SOPs in (29) are convex problems (domain and453

objective are convex) with k free parameters, it can easily454

be solved with standard mathematical techniques (note that 455

in the context of scalar optimization, a problem is noted as 456

small if the dimension of the parameter space is less than 457

10 000, which is definitely beyond the scope of many-objective 458

optimization). 459

We have chosen to take NSGA-II [14] for our empirical 460

studies since this algorithm was shown to scale badly with 461

increasing number of objectives for certain models (e.g., 462

[53]). Additionally, we have made (but do not display) analog 463

computations with SPEA2 [56] which confirmed the results 464

shown below. 465

Figs. 2–5 show some numerical results obtained by NSGA- 466

II for PS1 and PS2 [using l = k, denoted here by PS2k(k) 467

to avoid confusion] and for different numbers k of objectives. 468

In all examples, we have used parameter dimension n = 30, 469

population size Np = 100, and the probabilities pc = 0.85 and 470

pm = 0.05 for crossover and mutation, respectively. The initial 471

population P0 has been chosen randomly from I := [9, 10]30, 472

since by the above discussion for every point x ∈ I the descent 473

cone D(f1, . . . , fk+l, x) of the (k + l)-objective problem is a 474

proper subset of the cone D(f1, . . . , fk, x) of the reduced 475

problem (analog empirical studies where P0 has been cho- 476

sen randomly from Qi, i = 1, 2, however, have led to the 477

same results). For both the unconstrained and the constrained 478

case as well as for a measurement in parameter and image 479

space (GDx and GD, respectively) the same behavior can 480

be observed: in the large scale, i.e., when considering all 481

500 generations, the evolution of the populations is basically 482

the same (note that there is a difference of 12 objectives). 483

When zooming into the figures, little differences appear, 484

and as anticipated, the values of GDx and GD get (little) 485

larger with increasing number of objectives (note the differ- 486

ence of the values with the initial values of GD and GDx, 487

respectively). 488

Whereas the results can be explained to a certain extent by 489

the above considerations, a sole consideration of the number of 490

nondominated solutions in a population may be misleading in 491

this example. Fig. 6 shows the (averaged) number of nondom- 492

inated solutions for the PS1 problems within the populations 493

found by NSGA-II, and here, the differences are significant. 494

For instance, for k = 3 there are about 90% of dominated 495

solutions after 100 generations (and about 50% of dominated 496

solutions after 200 generations) while for k ≥ 10 practically 497

all members of a population are mutually nondominating after 498

about 100 generations. Hence, by only looking at these values 499

one could have come to the conclusion that the problem gets 500

clearly harder with increasing k which cannot be confirmed 501

by our studies. 502

Since it may be argued that for different values of k a 503

comparison for the above models is not completely fair (in 504

addition to the difference of F (a) described above there is the 505

difference in the dimension of the Pareto sets), we consider 506

PS2k(l) for a fixed value of l but with different values of k. 507

To be more precise, we consider PS2k(k) and PS2k+1(k). The 508

reason is that in both cases, i.e., for the k-objective model 509

PS2k(k) as well as for the (k + 1)-objective model PS2k+1(k), 510

the Pareto set is given by S(e1, . . . , ek). That is, in this case 511

at least GDx can be assumed to be completely fair for a 512
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Fig. 2. Numerical results of NSGA-II for PS1 for k = 2, 3, 4, 6, 8, 10, 12, 15
objectives. The results are in parameter space [log(GDx)] and averaged over
50 independent runs. Compare to Table 1.
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Fig. 3. Numerical results of NSGA-II for PS1 for k = 2, 3, 4, 6, 8, 10, 12, 15
objectives. The results are in objective space [log(GD)] and averaged over 50
independent runs. Compare to Table 2.

comparison. Figs. 7 and 8 show such comparisons for values513

of k between 3 and 14, where we have chosen the same setting514

as in the previous study. Also here, small differences in the515

performances can be observed, but it is certainly not justified516

to talk about different orders of magnitude.517

IV. Discussion and an Attempt to Explain518

Recent Advances519

In the previous section, we have investigated a particular520

class of uni-modal MOPs with respect to the influence of521

the number of objectives on the hardness of the problem.522

Putting theoretical and empirical observations together we can523

conclude that by adding an objective to a given MOP the524

problem does per se not get harder by a significant amount, at525

least not on the (easy) class of models under consideration.526

However, such a scalability has been observed by many527

researchers on other, more complex, models. The question528

which now naturally arises is how this can be put together,529

i.e., if the observations made above can also be helpful for530

the design of algorithms for general many-objective models.531

In the following, we hazard to guess the sources of difficulties532

when dealing with many-objective problems, and try to explain533
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Fig. 4. Numerical results of NSGA-II for PS2k(k) for k = 2, 3, 4, 6, 8, 10,

12, 15 objectives. The results are in parameter space [log(GDx)] and averaged
over 50 independent runs.
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Fig. 5. Numerical results of NSGA-II for PS2k(k) for k = 2, 3, 4, 6, 8, 10,

12, 15 objectives. The results are in objective space [log(GD)] and averaged
over 50 independent runs.

recent advances in the field of evolutionary many-objective 534

optimization in light of our discussion. 535

Based on the above considerations, three influential factors 536

for the efficient numerical treatment of many-objective opti- 537

mization problems with evolutionary algorithms regardless of 538

the particular choice of the algorithm seem to be: 539

1) the pulling assumption as described in Section III-B1; 540

2) the probability to improve an individual; 541

3) the multi-modality of the MOP. 542

Problems 1) and 2) are to a certain extent in the hands of the 543

algorithm designer, whereas problem 3) is given to him/her 544

(or is possibly a modeling problem). 545

Much research has been done so far to improve the pulling 546

property [i.e., problem 1)]. In case a population consists 547

only of nondominated solutions and the generational operators 548

produce further nondominated candidates the question arises 549

which point to keep and which one to discard in order to 550

converge toward the Pareto set. Since not all these nondom- 551

inated solutions have the same distance to the solution set 552

one can laxly say that “some nondominated points are better 553

than others” [9]. The quest for those points has led so far 554

to a variety of substitute distance assignments in NSGA-II 555
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TABLE I

Numerical Results of NSGA-II for PS1 for k = 3, 4, 6, 8, 10, 12, 15 Objectives

Number of Generations
k 50 100 200 300 400 500
2 8.57E−001 2.07E−001 9.54E−002 6.48E−002 5.10E−002 4.24E−002
3 8.74E−001 2.13E−001 1.02E−001 7.62E−002 6.28E−002 5.53E−002
4 8.85E−001 2.19E−001 1.12E−001 8.83E−002 7.67E−002 6.98E−002
6 8.79E−001 2.22E−001 1.33E−001 1.13E−001 1.03E−001 9.84E−002
8 8.78E−001 2.38E−001 1.52E−001 1.37E−001 1.28E−001 1.24E−001
10 8.94E−001 2.43E−001 1.72E−001 1.55E−001 1.46E−001 1.39E−001
12 9.18E−001 2.60E−001 1.87E−001 1.72E−001 1.60E−001 1.58E−001
15 9.27E−001 2.72E−001 2.06E−001 1.88E−001 1.79E−001 1.76E−001

The results are in parameter space (GDx) and averaged over 50 independent runs (compare to Fig. 2).

TABLE II

Numerical Results of NSGA-II for PS1 for k = 3, 4, 6, 8, 10, 12, 15 Objectives

Number of Generations
k 50 100 200 300 400 500
2 1.06E+001 5.86E−001 1.24E−001 5.65E−002 3.53E−002 2.48E−002
3 1.36E+001 7.24E−001 1.71E−001 9.96E−002 6.94E−002 5.61E−002
4 1.63E+001 8.56E−001 2.44E−001 1.62E−001 1.34E−001 1.17E−001
6 1.97E+001 1.06E+000 4.33E−001 3.49E−001 3.11E−001 2.93E−001
8 2.27E+001 1.41E+000 6.71E−001 6.22E−001 5.76E−001 5.75E−001
10 2.67E+001 1.69E+000 9.84E−001 8.64E−001 8.30E−001 7.82E−001
12 3.07E+001 2.20E+000 1.30E+000 1.22E+000 1.10E+000 1.14E+000
15 3.52E+001 5.38E+000 1.78E+000 1.61E+000 1.56E+000 1.58E+000

The results are in objective space (GD) and averaged over 50 independent runs (compare to Fig. 3).
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Fig. 6. Number of nondominated points (|ND|) during the run of NSGA-
II for different values of k for the PS1 problems with population size 100
(averaged over 20 test runs).

(e.g., [2], [9], [35], [41], [50]). All these methods were able556

to outperform its base MOEA on scalable benchmark models557

(such as the DTLZ models). Though these results are all558

satisfying from the practical point of view, however, none559

of them ensures convergence toward the set of interest. It is560

known that in NSGA-II cycling (see [21]) or deterioration561

can occur which prevents that a predescribed “limit set” is562

reached resulting in a certain lack of efficiency, at least from563

the theoretical point of view [38]. Due to the dimensionality,564

the problem of defining a suitable limit set is getting more565

important with increasing value of k which would ease the566

evaluation of the newly developed strategies.567

In multiobjective particle swarm optimization (MOPSO) 568

algorithms, the pulling property is closely related to the choice 569

of the guidance mechanism which has been addressed in [34] 570

and [39] for many-objective problems. 571

To downsize problem 2), several remedies have been pro- 572

posed so far which all lead to an augmentation of the descent 573

cones of the related auxiliary models. One way to increase the 574

improvement probability (while reducing the multi-modality of 575

the problem) is to consider instead of the given k-objective 576

problem a sequence of lower objective problems. For in- 577

stance, the methods MSOPS [24] and RSO [25] are based 578

on aggregation functions to find Pareto optimal solutions. 579

Another approach is to use “space partitioning” [1], [2], i.e., 580

partitioning the objective space into subspaces and performing 581

one or several generations of the evolutionary search in each 582

subspace. In both cases, the descent cone of the auxiliary 583

model at a point x is typically larger than the original problem, 584

and in the case of space partitioning the number of local 585

minima is typically fewer (see the Appendix). The latter is 586

not always true when using an aggregation function fa since 587

this depends on the choice of fa as well as on the original 588

model (see [31] for a counterexample). 589

For these approaches it holds that the speed of convergence 590

gets improved, but, in turn, problems arise concerning the di- 591

versity maintenance. In particular, it may happen that not every 592

Pareto point can be reached by the auxiliary problems which 593

leads to a bias of the approaches. The potential drawbacks of 594

aggregation functions are known (e.g., [11]), the reason for 595

a potential bias when using space partitioning is because the 596

union of the Pareto sets of all subproblems does typically not 597
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Fig. 7. Numerical results of NSGA-II for PS2k(k) and PS2k+1(k) for k = 2
and 4. The plots show the number of generations vs. log(GDx). The results
are averaged over 50 independent runs. (a) PS22(2) and PS23(2). (b) PS24(4)
and PS25(4).

form the Pareto set of the “full” MOP. For instance, when598

choosing the PS1 problem with minimizers a1, a2, and a3 (for599

the objectives f1 to f3, respectively) such that the volume of600

S(a1, a2, a3) is positive, then the union of the Pareto sets of601

all bi-objective subproblems (f1, f2), (f1, f3), and (f2, f3) is602

S(a1, a2) ∪ S(a1, a3) ∪ S(a2, a3), i.e., is equal to the boundary603

of the “complete” Pareto set S(a1, a2, a3), but no interior point604

is included.605

Another way to increase the improvement probability is606

to modify the Pareto dominance relation. Clearly, a larger607

dominance cone (defined in objective space) is related to a608

larger descent cone [defined in parameter space, see (24)]609

which in turn increases the probability to find a “better”610

solution as discussed above. The usage of such modified611

dominance cones within MOEAs can be found in [44], and in612

[17], [32], [33] fuzzifications of the Pareto dominance relation613

can be found which by its relaxation similarly influences the614

size of the dominance cones. Also for these methods, problems615

in diversity maintenance have been reported.616

One aspect so far disregarded by researchers—but probably617

worth exploring—is the ability of memetic strategies to im-618

prove the performance of many-objective optimization prob-619

lems. On the one hand, mathematical programming techniques620
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Fig. 8. Numerical results of NSGA-II for PS2k(k) and PS2k+1(k) for k = 9
and 14. The plots show the number of generations vs. log(GDx). The
results are averaged over 50 independent runs. (a) PS29(9) and PS210(9).
(b) PS214(14) and PS215(14).

(e.g., [4], [19]) allow—if gradient information is at hand— 621

to compute a descent direction at every given non optimal 622

point regardless of the size of the descent cone nor of the 623

value of k, and hence it can be argued that the probability for 624

improvement is one. On the other hand, the use of gradient 625

information within a memetic strategy results in a certain 626

additional cost [37] and in case the model is highly multi- 627

modal [i.e., problem 3)] the effect of the local search on the 628

overall performance is questionable. 629

In [53], it has been reported that ε-MOEA [13] copes 630

well with many-objective optimization problems, even on 631

highly multi-modal models. ε-MOEA is a steady state MOEA 632

equipped with an archiving strategy which is based on the con- 633

cept of ε-dominance and guarantees under certain assumptions 634

convergence toward a finite size representation of the Pareto 635

set [43], [38]. The good behavior of ε-MOEA with respect to k 636

can partly be explained by our considerations: elements of the 637

archive are only replaced by dominated solutions, i.e., a good 638

solution will not be discarded due to any distance assignment, 639

but only due to the existence of a better one. Hence, such 640

solutions cannot be discarded by mistake which certainly helps 641

to pull the population toward the Pareto set. Further, by the 642

use of the archiving strategy proposed in [38] the descent cone 643
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is enlarged: the objective space gets divided into a grid of644

boxes, whose size can be adjusted by the size of ε. Every645

solution of the archive has to be located in a different box (i.e.,646

every archive entry is associated with a box of the grid). The647

dominance relation is now enlarged since only nondominated648

boxes are allowed. Hence, ε-MOEA has mechanisms to cope649

with problems 1) and 2). Further good results can hence in650

principle be expected with related algorithms such as PAES651

[10] or PESA [30], or with any MOEA which is equipped with652

an archive which converges toward a finite size representation653

of the set of interest (e.g., [46]–[49]). The problem—at least654

when using archivers based on ε-dominance—is certainly the655

proper choice of ε: as discussed in [9], if the value of ε is656

too small, the archive sizes become intractable, and for large657

values of ε the limit archive set basically consists of a set of658

randomly selected (but not close by) points from the Pareto659

set.660

In summary, it can be said that yet a variety of promising661

approaches exist in terms of their ability to converge toward662

the Pareto set PQ. The distribution, however, is still an open663

problem. For this, a clear definition of the optimal distribution664

of the (few) individuals a ∈ A is still missing but required to665

evaluate the finite size approximation of PQ beyond conver-666

gence in the sense of dist(A, PQ) or dist(F (A), F (PQ)).667

V. Conclusion668

In this paper, we have investigated the influence of669

the number k of objectives in a MOP on the hardness of the670

problem when solving it by evolution strategies. For this, we671

have utilized the descent cones which can be used to measure672

the probability to improve a solution by the generational op-673

erators. Though these considerations are of qualitative nature674

and can hardly be quantified, they help to a certain extent675

to understand the behavior of the population’s evolution with676

respect to k. As an example, we have considered a class of uni-677

modal test functions and have investigated the resulting models678

qualitatively and empirically. Qualitative studies based on the679

descent cones led to the conclusion that, on the one hand, the680

addition of an objective makes the problem indeed harder, but,681

on the other hand, it can be argued that the difference is not682

significant, which is, later on, empirically validated. That is,683

it can be argued that the addition of an objective to a MOP684

does not make the problem per se harder.685

In contrast to this, many researchers have so far observed686

a certain scalability in the hardness of the problem with687

respect to k, albeit for more complex models. Based on688

our considerations on the uni-modal models we have tried689

to identify the challenges which have to be mastered by690

evolution strategies for general models: the ability to keep691

“good” solutions in order to pull the population toward the set692

of interest, the probability to improve an individual, and the693

multi-modality of the MOP. This together with the qualitative694

discussions in Section III-B can be used to a certain extent695

to explain recent advances in the field of evolutionary many-696

objective optimization.697

We hope that this new insight into the geometry of mul-698

tiobjective optimization may help researchers in the field of699

evolutionary computation for further developments of efficient 700

specialized algorithms, particularly when dealing with many- 701

objective problems. 702

APPENDIX 703

The following little discussion shows that by adding ob- 704

jectives to a given MOP the set of local minima cannot get 705

smaller but rather gets bigger which we argue by the set of 706

KKT points (note that every local minimizer is a KKT point). 707

Let a MOP be given consisting of the k objectives (f1, . . . , fk) 708

(denote by MOP1). Further, let an extended model be given 709

by the objectives (f1, . . . , fk, fk+1) [denote by (MOP2)] where 710

the first k objectives are identical in MOP1 and MOP2. For 711

simplicity, we assume that all objectives are defined on the 712

same domain Q ⊂ Rn. Define 713

KKT (i) := {x ∈ Q : x is KKT point of MOPi} i = 1, 2.

(30)

The following consideration shows that KKT (1) is a subset of 714

KKT (2): let x ∈ KKT (1), i.e., there exists a convex weight 715

α ∈ Rk (i.e., αi ≥ 0 for all i = 1, . . . , k and
∑k

i=1 αi = 1) 716

such that
∑k

i=1 αi∇fi(x) = 0. Since α̃ = (α, 0) ∈ Rk+1 is also a 717

convex weight and
∑k+1

i=1 α̃i∇fi(x) = 0 it follows that x is also 718

included in KKT (2). 719

Further, it is for instance every substationary point of fk+1 720

(i.e., a point x ∈ Q which satisfies ∇fk+1(x) = 0) also included 721

in KKT (2) [for this, choose α = (0, . . . , 0, 1)], and hence, 722

KKT (2) is typically a strict superset of KKT (1). Furthermore, 723

it can be shown that under certain additional assumptions the 724

set KKT (2) forms a k-dimensional object while KKT (1) is 725

(k − 1)-dimensional [22]. 726
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