
Neuro-PSO Algorithm for Large-scale Dynamic
Optimization

Mohamed Radwana, Saber Elsayedb,a, Ruhul Sarkera, Daryl Essama, Carlos
Coello Coelloc,d

aSchool of Engineering and Information Technology, University of New South Wales at
Canberra, ACT, 2612, Australia

bDepartment of Computer Science, University of Sharjah, United Arab Emirates
cDepartamento de Computación, CINVESTAV-IPN, Mexico City, 07360, Mexico
dFaculty of Excellence with School of Engineering and Sciences, Tecnologico de

Monterrey, Monterrey, Mexico

Abstract

Over the last few decades, dynamic optimization and large-scale optimiza-
tion have been two challenging research topics. In this context, dynamic opti-
mization with high dimensionality is undoubtedly another important research
topic. For such a combined problem, this paper develops: (1) an algorithm
that incorporates problem decomposition to deal with high dimensionality,
(2) a search algorithm for optimization, and (3) a prediction strategy to deal
with dynamic changes. Firstly, a decomposition method is introduced to
divide the problem into multiple subproblems based on the level of inter-
actions among the decision variables. For optimization, a multi-population
search algorithm is proposed, where each subpopulation evolves individually.
Finally, a machine learning-based prediction strategy is developed to learn
information from historical solutions and predict some solutions that may be
useful for the new environment. The proposed algorithm is tested using the
generalised moving peaks benchmark problems. The results show that the
proposed algorithm can find better solutions than existing approaches.

Keywords: Evolutionary dynamic optimization, Large-scale dynamic
optimization problems, Tracking moving optimum, Generalized moving
peaks benchmark

Preprint submitted to Swarm and Evolutionary Computation January 22, 2025

1. Introduction

In many real-world decision-making processes, such as transportation,
production planning and scheduling, a decision is made by solving their rep-
resentative optimization models repeatedly at regular intervals [1, 2]. The
interval length varies depending on the nature of the problems and their pro-
cessing needs. If the interval is too short, the problem may be considered as
continuous. In these problems, some changes may occur in one or more of
the objective function(s), constraint function(s), constraint right-hand side(s)
and/or variable bounds as time passes in some or all the selected intervals
[3, 4, 5]. These are known as dynamic optimization problems (DOPs). Un-
like stationary optimization, which aims to find a unique optimum solution,
the optimum solutions in dynamic problems change over time. Thus, in this
case, the aim is to identify and track the changing optima over time.

As of the literature, evolutionary algorithms (EAs) are well-accepted ap-
proaches for solving complex static optimization problems. However, the
population of solutions usually lose their diversity after they converge to an
optimum (i.e., their exploration capability). In this case, specialized mecha-
nisms are needed to let them adapt to any change that occurs in the environ-
ment [6, 7]. The most straightforward but ineffective method is to reset the
optimizer when a change in the environment is detected. This method’s lim-
itation is that it does not transfer helpful information from one environment
to the next.

Detecting the changes in a series of environments over time and locating
the new optimum in each environment are two main tasks in solving DOPs.
This has motivated researchers to propose different approaches for solving dy-
namic problems, such as diversity-based [8, 9, 10, 11], memory-based [12, 13],
prediction-based [14, 15, 16] and multi-population approaches [4, 17]. It is
worth mentioning that several dynamic optimization approaches are suitable
for problems with a variety of changes [6, 18, 1]. Interestingly, most of these
DOP approaches mainly deal with low-dimensional problems, whereas most
real-world DOPs [19, 20, 21] are high-dimensional.

The computational cost of solving high-dimensional static problems is
often high [22], and the performance of EAs deteriorates with an increasing
number of decision variables. In some cases, the cost increase is exponential
with respect to the dimensionality of the problem. Furthermore, EAs may
get trapped in local optima [23]. To deal with the curse of dimensionality,
researchers have applied cooperative co-evolution, which divides a large-scale

2

optimization problem into a number of smaller subproblems that can be
optimized cooperatively [24]. More details about problem decomposition for
high-dimensional problems can be found in [25, 26, 27].

When solving high-dimensional problems with dynamic changes, the chal-
lenge is to design efficient algorithms capable of finding and tracking moving
optima in a large search space within a limited time [28]. However, there is
no well-accepted methodology that can efficiently solve dynamic large-scale
optimization problems [25, 2]. Also, a problem’s different environments may
be correlated to each other, which means the solutions obtained from the
current and past environments might be beneficial in optimizing future ones
quickly. It is generally accepted that learning from previous solutions can
play a pivotal role in speeding up the convergence of a new environment
[29, 15].

Some attempts have been made to reuse previous observations for solving
DOPs by either adopting previously found solutions in the new environment
[12] or predicting the solution in new environments based on learning cor-
relations among consecutive environments using machine learning and other
statistical techniques [15]. For example, in [30], a Kalman filter has been
integrated to determine the locations of new optima. Simões and Costa
[31] used two prediction models: a linear regression one to estimate when
a change would occur and Markov chains to predict changes. Hamza et
al. [5] proposed a sensitive constraint detection mechanism to determine
the appropriate movement of solutions (direction and amount of movement)
for constrained problems under changing environments. However, learning a
change from previous solutions is challenging, especially for large-scale prob-
lems [29].

Considering the above-mentioned needs, this paper introduces a novel ap-
proach for solving single-objective large-scale dynamic optimization problems
(LSDOPs) using a three-phase algorithm consisting of problem decomposi-
tion, optimization, and machine learning-based prediction. The first phase
focuses on dividing the LSDOP into smaller subproblems that are assigned to
separate subpopulations for independent evolution in the second phase. The
solutions from these subpopulations are then combined to find the overall
solution to the problem. In the second phase, a search technique is proposed
based on the concept of multi-population optimizer. In the final phase, a
reaction-based method addresses the loss of diversity during environmental
changes. Additionally, a neural network approach is developed to learn the
movement of optima through environmental changes and predict solutions

3

for future environments. This predicted information is then used as input
to the search process in the second stage, thereby supporting the optimizer
in adjusting to the new environment. Our key contribution lies on an effec-
tive integration and adaptation of these techniques to address the challenges
in solving large-scale dynamic optimization problems. To the best of our
knowledge, no existing methodologies for large-scale dynamic optimization
integrated these techniques in the manner we proposed in this paper. Eval-
uation of the proposed algorithm through the solution of LSDOP test prob-
lems demonstrates its superior performance compared to existing approaches,
making it a novel and promising solution approach for tackling LSDOPs.

The rest of this paper is organized as follows. In Section 2, the background
and related literature is reviewed. In Section 3, the proposed approach is
explained in detail. In Section 4, the experimental results are discussed and
the performance of the proposed method is analyzed. Finally, our conclusions
and some future research directions are provided in Section 5.

2. Previous Related Work

This paper deals with LSDOPs. In this section, the most representative
studies on DOPs will be reviewed, followed by an overview of the CC strategy
that has been used for large-scale problems. Then, a brief introduction to
Neural Networks will be given.

2.1. Dynamic Optimization Algorithms
Under certain assumptions, a DOP can be defined as a series (or col-

lection) of stationary problem instances that need to be optimized. The
dynamism is expressed by the change frequency and magnitude of the envi-
ronmental changes that may occur in the objective function(s), constraints,
variable bounds and variables.

The definition of optima in DOPs and their search approaches are differ-
ent from those used in static optimization problems. In the literature, EAs
and swarm intelligence techniques that are applied to DOPs mainly deal with
environmental changes through diversity-driven mechanisms and information
obtained from past environments. Some of the DOP approaches are briefly
discussed in the following subsections.

4

2.1.1. Diversity-based approaches
If a change in an environment is detected, in population-based methods,

this approach introduces more diversity into the population through either
adding random individuals [32], increasing the mutation rate [33], changing
the mutation step-size [34] or transferring individuals between subpopula-
tions [32]. However, by increasing diversity using the above methods, knowl-
edge gained from previous environments may be lost and that may slow down
the convergence of the current environment. Also, it is hard to determine
the necessary level of diversity [7].

Some approaches introduce random immigrants into the population [35],
when the diversity drops below a predefined threshold [36], or to avoid indi-
viduals from getting too close to each other [11]. Although these algorithms
have been found effective in slow and large changes, they may be slow in
convergence and can be less effective for small changes [37].

2.1.2. Memory-based approaches
In dynamic optimization, as there are some similarities with the past envi-

ronment(s), it may be useful to share knowledge from previous environments,
specifically for the problems that follow periodical or recurrent changes. By
incorporating a memory component into the optimizer, computational time
could be saved, and diversity can be maintained. The memory can be either
implicitly integrated (as a redundant representation) or explicitly maintained
(by archiving good solutions and information from previous environments).
However, they may only be helpful when optima reappear in their earlier lo-
cations; otherwise, the previously stored information may become redundant
[1].

Xu et al. [38] introduced a memory-enhanced dynamic multi-objective
evolutionary algorithm that leverages decomposition. This approach di-
vides a dynamic multi-objective optimization problem (DMOP) into mul-
tiple dynamic scalar optimization subproblems, enabling their co-evolution.
To address environmental changes effectively, the algorithm incorporates a
subproblem-based memory scheme that selectively stores high-quality solu-
tions from previous environments and reuses them when needed.

2.1.3. Prediction-based approaches
If environmental changes follow a specific pattern, it might be useful to

learn these patterns to predict future changes. As previously mentioned,
Kalman filters have been incorporated to predict the location of optima in

5

new environments [30]. In another case, in a dynamic combinatorial op-
timization problem, two prediction models, namely linear regression and
Markov chains, have been adopted [31]. The former was used to estimate
the time when a change in the environment will happen, while the lat-
ter estimates which environment will arise in the following change. Also,
interaction-based prediction methods have been developed to forecast task
scheduling in cooperative multi-robot systems, enabling improved collabo-
ration and adaptability [39]. These prediction methods were beneficial as
the algorithm could find the next optima quickly. However, it is unlikely to
obtain good solutions for irregular changes.

2.1.4. Multi-population approaches
This approach is considered the most efficient and popular category for

solving DOPs. In this approach, certain subpopulations may be responsible
for exploring for the global optimum, whereas others may track any potential
changes [40]. In some other approaches, a parent subpopulation is used to
explore the new peaks, and some child subpopulations are used to follow the
found peaks [41]. However, there is little guidance on selecting the number
and sizes of subpopulations, which would be useful, as an excessive number
of subpopulations may impede the efficiency of the search process [11].

2.2. Cooperative Coevolution (CC)
As shown in Algorithm 1, CC was initially developed by [24]. In the

process, firstly, a high-dimensional optimization problem is decomposed into
several subproblems, each with fewer decision variables. Each subproblem
is then allowed to evolve with its own subpopulation for a certain number
of generations in a round-robin fashion, where computational resources are
shared evenly across all subproblems [24]. Finally, cooperative action is re-
quired, which involves exchanging information among all subproblems and
then merging their solutions to update a context vector (because a solution
consists of the best solutions from all subproblems) [42]. The CC framework
helps to speed up the convergence of the search process, to enhance the search
capabilities and to maintain the population’s diversity.

In the CC domain, the decomposition of a problem is based on a variable
grouping approach, which is generally classified as either static [43], random
[44] or variable interaction grouping [45, 46, 47]. In static and random group-
ing methods, the arrangement of an n-dimensional problem is decomposed
into s subproblems of size k manually and randomly, respectively. Thus, a

6

Algorithm 1 Cooperative Co-evolution
1: Randomly generate initial population (P);
2: [V1, ..., VNP

]← evaluate(f(
−→
X i),∀i = 1, ..., NP ;

3: (
−→
X best, fbest)← P (min([V1, ..., VNP

]));
4: initialize context vector;
5: S = {s1, ..., sk} ← decompose(f(x), dim);
6: cycle← 0;
7: while FEs < FEsmax do
8: cycle← cycle+ 1;
9: for i = 1 : k do

10: evaluate subproblem si, within the context vector;
11: update context vector;
12: FEs = FEs + used_FEs;
13: end for
14: end while

number of subproblems and their sizes need to be specified. In variable in-
teraction grouping, the interactions among the decision variables are the key
factor for grouping. This grouping is conducted as a pre-processing phase
that consumes a portion of the allocated resources.

The round-robin technique of the CC method treats all subproblems
equally, regardless of their level of contribution [24]. However, this could
result in a significant waste of computational resources since the lower con-
tributing subproblems would use more resources than required. To deal with
this issue, the resource allocation approach based on each subproblem’s con-
tribution is suggested [48, 49]. Here, more emphasis is given to the subprob-
lems that contribute more to the overall fitness value [48].

Only a few studies use the CC strategy to effectively handle the curse
of dimensionality in LSDOPs. The algorithm in [50] uses the concept of
divide and conquer to solve high-dimensional moving peaks problems. It in-
corporates the differential grouping method [51] to divide the problem into
independent subproblems before using the species-based PSO [52] to evolve
each subproblem’s swarm. When an environmental change occurs, a mem-
ory strategy is conducted to exploit the previous information. However, it
is assumed that prior knowledge about the number of peaks in each sub-
problem and the number of generations between consecutive changes are

7

Fig. 1: The architecture of a neural network

available. Yazdani et al. [28] proposed a CC multi-population framework for
solving LSDOPs by using a composite MPB suite generator with up to 200
variables. The framework divides the problem into lower-dimensional sub-
problems and controls the resource allocation to these subproblems for the
following multiple moving optima. However, they solved fully nonseparable
problems without obviously exploitable modularity.

2.3. Neural Networks
Researchers have increasingly utilized statistical approaches, including

neural networks, as effective tools for solving complex optimization prob-
lems [53, 54]. In the context of dynamic optimization, these methods are
frequently employed for prediction. A neural network is a simplified rep-
resentation of a biological neural network that retains functions in neurons
and their connections, where it learns to execute useful functions through
data-driven training [55]. Fig. 1 demonstrates the basic framework of a neu-
ral network. It comprises several layers, each containing several neurons and
interconnections between them. The leftmost layer is denoted as the input
layer, which accepts the input vector, the rightmost layer is called the output
layer, which produces the output of the neural network, and the intermediate
layers are referred to as hidden layers. Each neuron in the network has an ac-
tivation function and a bias, and the weight between each neuron-to-neuron
connection is represented by w. When detecting environmental changes, the
input layer and the output layer contain the old and new environment’s so-
lutions, respectively.

8

3. Our Proposed approach

For solving LSDOPs, a new algorithm is proposed in this paper, as shown
in Fig. 2 and Algorithm 2 , which has three major phases, namely: 1) decom-
position, 2) optimization, and 3) learning and prediction. The proposed al-
gorithm decomposes the large-scale problem, and the generated subproblems
are evolved using a multi-population optimizer. A reaction-based method
is employed to handle the diversity loss when an environmental change is
detected. Details of the proposed algorithm are provided in the following
sub-sections.

3.1. Decomposition Phase
The problem decomposition (or variable grouping) is conducted using a

variable interaction method [45, 47] to ensure that each subcomponent con-
tains a group of highly dependent variables and the interdependencies among
subcomponents are minimal. This method identifies the interactions among
the decision variables based on fitness variations after perturbation, which
employs the DG2 [56] to decompose problems. It is an improved version
of DG [51], with higher decomposition accuracy and a lower computational
time. DG2 is a parameter free decomposition method which automatically
calculates a different threshold for each pair by approximating the magnitude
of the roundoff errors, as identifying variable interactions is not effective us-
ing only one threshold value, when dealing with imbalanced contributing
components. DG2 calculates the lower bound einf and upper bound esup for
computational errors. When comparing each pair of decision variables, if the
value λ = |∆(1) − ∆(2)| < einf, it is considered zero, leading to the declara-
tion of the pair as separable. To determine ∆(1) and ∆(2), it is essential to
conduct the following evaluations to identify the interaction between the ath
and bth dimensions:®

∆(1) = f (. . . , x′
a, . . .)− f (x1, . . . , xn)

∆(2) = f (. . . , x′
a, . . . , x

′
b, . . .)− f (. . . , x′

b, . . .) .

Conversely, if λ exceeds esup, it is deemed a non-zero value, resulting in the
pair being declared as interacting. For values of λ within the range [einf, esup],
ϵ is determined as a weighted average of the two bounds, considering the total
number of instances identified as zeros and non-zeros. This decomposition
process is conducted before the start of the optimization phase, which con-
sumes a portion of the allocated resources.

9

Fig. 2: General structure of the proposed algorithm

10

Algorithm 2 Proposed Algorithm
1: components← decomposition(f);
2: Initialize an explorer population for each component;
3: Initialize the context vector;
4: while stopping condition is not met do
5: for each component c in components do
6: g∗r ← optimize the explorer population;
7: if explorer population converges to a peak then
8: Convert it to an exploiter population;
9: Create a new explorer;

10: end if
11: for each active exploiter t do
12: g∗t ← optimize the exploiter t;
13: if diversity < rdeact then
14: Deactivate the tth exploiter;
15: end if
16: end for
17: end for
18: H ← component with high progress;
19: for each active exploiter t in H do
20: g∗t ← optimize active trackers in H;
21: end for
22: for each component c in components do
23: g∗ ← optimize the best exploiter;
24: end for
25: if an environmental change is detected then
26: Update context vector using best position of each population;
27: Append g∗past and g∗current of all subpopulations to the training data;
28: for each component c in components do
29: netc ← train neural network
30: Predict promising solutions using the prediction model
31: Increase diversity by predicted solutions and randomizing a por-

tion of the population;
32: end for
33: end if
34: end while

11

3.2. Optimization Phase
As previously mentioned, one of the effective ways to address DOPs is

by employing the multi-population approach [18], where an explorer subpop-
ulation and several exploiter subpopulations are allocated to each subcom-
ponent, (Algorithm 2, lines 5 to 17). The proposed algorithm incorporates
a multi-population optimizer that iterates over subcomponents to find all
peaks, tracks them, and determines the contribution of each subcomponent
in enhancing the overall fitness value. Unlike the assumption in [57, 58], the
number of peaks is not specified, and an explorer subpopulation is used to
discover any uncovered peaks. The convergence of the explorer subpopula-
tion is evaluated based on its diversity (i.e., the Euclidean distances between
individuals [59, 60]), and if the diversity is less than a predefined threshold
[28], the explorer subpopulation is assumed to have converged. Once con-
verged, it is assumed that a promising region has been discovered. After
that, exploiter subpopulations (including the converged explorer) are used in
this region to track the peak, and another random explorer subpopulation
will be generated. In lines 11 to 16 of Algorithm 2, an exploiter subpopu-
lation undergoes deactivation when its diversity falls below a predetermined
threshold, denoted as rdeact[28], calculated by evaluating the infinity norm
distance between any pair of individuals within the population.

As the typical round-robin search strategy is not an effective way of deal-
ing with the variable contribution of subproblems, contribution-based CC
(CBCC) [61] is employed in this algorithm as it is more suitable for this type
of problem [62]. Also, as inspired by the idea in [28], the resource allocation
at both component and population levels is employed to save the computa-
tional budget due to inefficient design. This process is conducted by placing
more emphasis (i.e., executing extra iterations) on the higher contributing
subcomponent and the best exploiter subpopulation of each subcomponent ,
as described in Algorithm 2, lines 18–24.

3.3. Learning and prediction
In this phase, there are two tasks. Firstly, diversity loss due to environ-

mental changes is addressed. To do this, at the start of each environment,
once a change is identified, one of the individuals from the best-found region
in the previous environment is selected. Then, some individuals are randomly
selected around this region, with a radius of shift severity estimated based
on each subpopulation’s best-found global solutions at the end of the two
previous environments [28].

12

Fig. 3: Example of the movement of the best solution of the subpopulation in a subcom-
ponent of DOP

Second, the solutions for the current environment are predicted using the
solutions of the past environments. For this sake, a prediction model is in-
tegrated into the DOP optimizer. In the process, the final best solutions
obtained by all subpopulations in each subproblem in each environment are
archived. Then, a training data set is constructed by pairing these solutions,
which represent the transitions of the subcomponents’ optimum between any
two consecutive environments. In the training data set, each row contains an
input of one component that was optimum from a certain environment and
an output, which is the optimum of the same element from the subsequent
environment. Note that we use the subproblem solutions for each new envi-
ronment from all the preceding environments (i.e., 1 to t − 1) to build the
training data set. An example of the movement of the best solution due to
an environmental change is shown in Fig. 3, where solid circles represent the
best solutions found by each subpopulation at environment i − 1, while the
stars are the best solutions at the environment i. The dashed arrows indicate
the transitions of these solutions from environment i−1 to the environment i.

A neural network, which is a powerful tool to solve time series predic-
tion problems, is utilized to enable learning from previous observations [55].
It uses the constructed training data to discover how solutions change be-
tween different environments. First, a suitable neural network architecture
must be determined, such as the number of layers, neurons, and activation
function. Then, for each component in the DOP, we utilize a three-layer
neural network comprised of an input layer, a hidden layer, and an output
layer. For an n-dimensional component, the input and output of the neural
network will be a vector with n elements. All the networks use the Leven-
berg–Marquardt algorithm [63] for training with 100 iterations [64]. This is
reasonable for dynamic optimization because of the time limitation in solving

13

each environment.
After training, the learnt networks can be used to predict promising so-

lutions for the new environment. The solutions for each component in the
last environment t − 1 are fed into the neural networks, and the outputs of
all these networks form the prediction solutions. The promising solutions
are then added to the previous group of individuals in the initial population,
thereby assisting the optimizer in the new environment.

4. Experiments and Results

In this section, the experiments carried out to evaluate the performance
of the proposed algorithm are discussed. Firstly, the experimental settings
and performance measures are discussed. Then, the behavior of the proposed
algorithm is tested by comparing the results with those obtained from the
existing algorithms. Finally, the robustness of the proposed algorithm un-
der different settings, including number of peaks, shift severity and change
frequency, is analyzed.

4.1. Benchmark for Experimentation
In dynamic optimization, different test suites have been proposed to eval-

uate the efficacy of dynamic optimization algorithms [65, 66, 67, 68, 28, 69].
One of them is the moving peaks benchmark, which is considered the most
popular and is employed in more than 70% of the DOP literature because of
its ease of implementation and control [2]. Its landscapes consist of multiple
peaks with randomly changing locations, heights and widths over time. The
fitness of a solution x in a changing environment t is defined as:

f(x⃗, t) = max
i∈{1,...,#peaks}

hi(t)

1 + wi(t)
∑D

j=1(xj − ci,j(t))2
(1)

where xj is the jth dimension in a d-dimensional problem, ci,j(t) is the jth

dimension of the center position of the ith peak. hi(t) and wi(t) are the height
and width of the ith peak, respectively.

For each peak, the height, width and center change from one environment
to another as follows:

hi(t) = hi(t− 1) + Sh.N (0, 1) (2)

wi(t) = wi(t− 1) + Sw.N (0, 1) (3)

14

ci(t) = ci(t− 1) + S
ε

∥ε∥
(4)

where N (0, 1) is a random number with mean 0 and variance 1, Sh, Sw and
S are the height, width and length of the movement severities, respectively.
In addition, ε is a vector of random values.

Generalized MPB (GMPB) [69] is another test suite whose landscapes are
formed by combining multiple components. GMPB-generated components
exhibit a wide range of characteristics, such as varying degrees of irregularities
(smooth to extremely irregular), different types of modalities (unimodal and
multimodal), as well as both symmetric and asymmetric features. In each
instance of environmental change, the parameters of all components within
the GMPB experience random dynamics. In addition, each component’s
degree of irregularity and variable interactions are controllable.

4.2. Experimental Settings
In order to evaluate the effectiveness of algorithms, we solved a set of

15 test functions which exhibit different characteristics, all of which were
generated using the GMPB benchmark generator [70]. The test suite con-
sists of functions with five distinct variable interaction structures, which were
tested in spaces with dimensions of 50-D, 100-D, and 200- D (as indicated in
Table 1). We adopted Particle Swarm Optimization (PSO) [71] as our com-
ponent optimizer, since it has been widely used in the literature of dynamic
optimization and has demonstrated its effectiveness [18]. The environmental
change is explicitly detected, and the change frequency (i.e., the number of
function evaluations for each environment) is set to 500 ∗D. The average er-
ror of the best found solutions before each environmental change is employed
as a performance metric. The results are based on 15 independent runs, each
of which involves 30 environmental changes, and their best, median, mean,
worst and standard errors are reported for comparison. To determine whether
there are any significant differences among the algorithms, a non-parametric
statistical comparison is performed using the Wilcoxon signed-rank test at
a significance level of 0.05. The use of three symbols, namely +, -, and ≈,
indicates whether the former algorithm is significantly better, worse, or not
significantly different from the latter algorithm, respectively. Also, a Fried-
man ranking test [72] is used to rank all the algorithms according to their
fitness values.

15

Table 1: The characteristics of the 15 GMPB Scenarios.

4.3. Experimental Results
The proposed algorithm is compared with CTR [28] and TMMO [28], a

monolithic multi-population framework that represents the typical approach
to tracking multiple moving optima. TMMO does not explicitly rely on a
divide-and-conquer mechanism; instead, it utilizes a large subpopulation for
global search and several smaller subpopulations to track changes in iden-
tified peaks. Additionally, GCM-PSO [50], a hybrid particle swarm opti-
mization algorithm, is considered. GCM-PSO decomposes the problem into
sub-problems, optimizes them using species-based PSO with nearest-better
clustering to divide the swarm into species, and incorporates a memory strat-
egy. The experimental results obtained on GMPB are shown in Table 2.

The results obviously demonstrate that the proposed algorithm exhibits
superior performance compared to the other algorithms on a large number
of the functions. This clearly illustrates the benefit of integrating the multi-
population approach with a prediction method. Also, decomposition-based
algorithms (i.e., the proposed CTR and GCM-PSO ones) outperform TMMO
on all fully and partially separable functions, clearly showing the importance
of problem decomposition for handling LSDOPs. As shown in Table 2, the
GCM-PSO algorithm demonstrates superior performance compared to other
algorithms in some functions, particularly those that are nonseparable.

Based on the Wilcoxon test, Table 3 shows comparisons of the best, me-
dian and mean values obtained by the proposed and other algorithms using

16

T
ab

le
2:

R
es

ul
ts

by
th

e
pr

op
os

ed
al

go
ri

th
m

,
C

T
R

,
T

M
M

O
an

d
G

C
M

-P
SO

fo
r

th
e

G
M

P
B

pr
ob

le
m

s
w

it
h

ch
an

ge
fr

eq
ue

nc
y

=
50

0D
.

Fu
n

P
ro

po
se

d
al

go
ri

th
m

C
T

R
T

M
M

O
G

C
M

-P
SO

B
es

t
M

ed
ia

n
M

ea
n

W
or

st
ST

D
B

es
t

M
ed

ia
n

M
ea

n
W

or
st

ST
D

B
es

t
M

ed
ia

n
M

ea
n

W
or

st
ST

D
B

es
t

M
ed

ia
n

M
ea

n
W

or
st

ST
D

f 1
5.

04
E

+
00

9.
24

E
+

00
1.

02
E

+
01

1.
81

E
+

01
1.

04
E

+
00

5.
32

E
+

00
1.

08
E

+
01

1.
02

E
+

01
1.

67
E

+
01

9.
01

E
-0

1
3.

45
E

+
01

5.
10

E
+

01
5.

09
E

+
01

7.
52

E
+

01
3.

03
E

+
00

7.
72

E
+

00
1.

18
E

+
01

1.
27

E
+

01
2.

07
E

+
01

1.
11

E
+

00
f 2

1.
29

E
+

00
2.

98
E

+
00

2.
81

E
+

00
3.

39
E

+
00

1.
42

E
-0

1
2.

11
E

+
00

3.
09

E
+

00
3.

31
E

+
00

5.
88

E
+

00
2.

62
E

-0
1

2.
00

E
+

01
2.

42
E

+
01

2.
46

E
+

01
3.

17
E

+
01

7.
52

E
-0

1
5.

45
E

+
00

7.
01

E
+

00
7.

13
E

+
00

8.
94

E
+

00
2.

28
E

-0
1

f 3
4.

30
E

+
00

9.
80

E
+

00
9.

54
E

+
00

1.
55

E
+

01
8.

46
E

-0
1

5.
23

E
+

00
9.

73
E

+
00

9.
64

E
+

00
1.

39
E

+
01

7.
49

E
-0

1
3.

85
E

+
01

5.
96

E
+

01
5.

94
E

+
01

8.
63

E
+

01
3.

86
E

+
00

5.
44

E
+

00
1.

31
E

+
01

1.
36

E
+

01
3.

95
E

+
01

2.
15

E
+

00
f 4

3.
14

E
-0

1
1.

32
E

+
00

2.
91

E
+

00
1.

41
E

+
01

9.
88

E
-0

1
3.

59
E

-0
1

1.
53

E
+

00
3.

30
E

+
00

1.
54

E
+

01
1.

10
E

+
00

1.
48

E
+

01
1.

70
E

+
01

1.
69

E
+

01
1.

85
E

+
01

2.
35

E
-0

1
6.

61
E

+
00

7.
36

E
+

00
7.

41
E

+
00

8.
32

E
+

00
1.

31
E

-0
1

f 5
2.

48
E

+
01

1.
19

E
+

02
1.

45
E

+
02

4.
58

E
+

02
2.

97
E

+
01

4.
69

E
+

01
1.

83
E

+
02

2.
19

E
+

02
6.

29
E

+
02

4.
31

E
+

01
1.

53
E

+
01

8.
88

E
+

01
1.

21
E

+
02

4.
31

E
+

02
2.

69
E

+
01

9.
51

E
+

00
4.

63
E

+
01

7.
09

E
+

01
2.

83
E

+
02

1.
84

E
+

01

f 6
1.

27
E

+
01

1.
66

E
+

01
2.

81
E

+
01

1.
21

E
+

02
7.

94
E

+
00

1.
18

E
+

01
1.

74
E

+
01

2.
95

E
+

01
1.

95
E

+
02

1.
19

E
+

01
8.

25
E

+
01

1.
05

E
+

02
1.

05
E

+
02

1.
24

E
+

02
3.

23
E

+
00

1.
19

E
+

01
2.

15
E

+
01

2.
05

E
+

01
3.

15
E

+
01

1.
46

E
+

00
f 7

2.
55

E
+

00
4.

48
E

+
00

5.
75

E
+

00
1.

56
E

+
01

8.
79

E
-0

1
3.

15
E

+
00

4.
48

E
+

00
5.

75
E

+
00

2.
06

E
+

01
1.

11
E

+
00

2.
87

E
+

01
3.

28
E

+
01

3.
30

E
+

01
4.

07
E

+
01

9.
14

E
-0

1
7.

02
E

+
00

8.
31

E
+

00
9.

99
E

+
00

2.
37

E
+

01
1.

18
E

+
00

f 8
1.

40
E

+
01

2.
27

E
+

01
2.

42
E

+
01

4.
36

E
+

01
2.

30
E

+
00

1.
48

E
+

01
2.

23
E

+
01

2.
49

E
+

01
3.

86
E

+
01

2.
32

E
+

00
1.

01
E

+
02

1.
51

E
+

02
1.

44
E

+
02

2.
13

E
+

02
9.

63
E

+
00

1.
91

E
+

01
3.

17
E

+
01

3.
53

E
+

01
7.

37
E

+
01

4.
24

E
+

00
f 9

3.
67

E
-0

1
8.

59
E

+
00

8.
46

E
+

00
2.

09
E

+
01

1.
93

E
+

00
4.

61
E

-0
1

9.
65

E
+

00
9.

07
E

+
00

2.
14

E
+

01
1.

95
E

+
00

1.
95

E
+

01
2.

19
E

+
01

2.
19

E
+

01
2.

31
E

+
01

2.
29

E
-0

1
6.

52
E

+
00

7.
19

E
+

00
7.

16
E

+
00

7.
82

E
+

00
8.

76
E

-0
2

f 1
0

7.
09

E
+

01
3.

46
E

+
02

4.
12

E
+

02
1.

52
E

+
03

9.
00

E
+

01
2.

09
E

+
02

8.
08

E
+

02
8.

06
E

+
02

1.
52

E
+

03
1.

07
E

+
02

6.
44

E
+

01
3.

73
E

+
02

4.
53

E
+

02
1.

24
E

+
03

8.
46

E
+

01
1.

91
E

+
01

1.
04

E
+

02
2.

45
E

+
02

8.
94

E
+

02
6.

75
E

+
01

f 1
1

2.
81

E
+

01
4.

86
E

+
01

7.
21

E
+

01
3.

70
E

+
02

2.
18

E
+

01
2.

81
E

+
01

5.
17

E
+

01
7.

82
E

+
01

4.
20

E
+

02
2.

47
E

+
01

1.
48

E
+

02
2.

46
E

+
02

2.
36

E
+

02
3.

05
E

+
02

1.
49

E
+

01
1.

90
E

+
01

5.
86

E
+

01
5.

56
E

+
01

9.
12

E
+

01
5.

34
E

+
00

f 1
2

1.
78

E
+

01
4.

02
E

+
01

6.
71

E
+

01
1.

81
E

+
02

1.
52

E
+

01
1.

90
E

+
01

5.
31

E
+

01
9.

08
E

+
01

2.
75

E
+

02
2.

27
E

+
01

5.
81

E
+

01
7.

81
E

+
01

9.
19

E
+

01
1.

65
E

+
02

8.
69

E
+

00
2.

37
E

+
01

3.
75

E
+

01
4.

68
E

+
01

9.
60

E
+

01
5.

82
E

+
00

f 1
3

4.
01

E
+

01
9.

23
E

+
01

1.
07

E
+

02
2.

23
E

+
02

1.
33

E
+

01
5.

86
E

+
01

1.
30

E
+

02
1.

39
E

+
02

2.
29

E
+

02
1.

40
E

+
01

2.
52

E
+

02
3.

36
E

+
02

3.
84

E
+

02
6.

88
E

+
02

2.
98

E
+

01
4.

93
E

+
01

1.
11

E
+

02
1.

09
E

+
02

2.
23

E
+

02
1.

24
E

+
01

f 1
4

6.
55

E
-0

1
6.

86
E

+
00

1.
21

E
+

01
2.

69
E

+
01

2.
77

E
+

00
8.

78
E

-0
1

8.
26

E
+

00
1.

30
E

+
01

2.
76

E
+

01
2.

88
E

+
00

2.
58

E
+

01
2.

76
E

+
01

2.
77

E
+

01
2.

92
E

+
01

2.
67

E
-0

1
6.

83
E

+
00

7.
33

E
+

00
7.

27
E

+
00

7.
66

E
+

00
6.

25
E

-0
2

f 1
5

1.
93

E
+

02
6.

52
E

+
02

7.
57

E
+

02
1.

73
E

+
03

1.
11

E
+

02
5.

52
E

+
02

2.
28

E
+

03
2.

30
E

+
03

4.
28

E
+

03
2.

68
E

+
02

2.
40

E
+

02
8.

40
E

+
02

9.
31

E
+

02
1.

82
E

+
03

1.
14

E
+

02
4.

00
E

+
01

1.
89

E
+

02
3.

47
E

+
02

1.
65

E
+

03
1.

06
E

+
02

17

Table 3: Results from the Wilcoxon signed rank test

Algorithm Criteria Better Equal Worse p-value Decision

CTR
Best 13 0 2 5.00E-03 +
Median 13 0 2 3.00E-03 +
Mean 14 0 1 1.00E-03 +

TMMO
Best 13 0 2 1.00E-03 +
Median 14 0 1 3.00E-03 +
Mean 14 0 1 2.00E-03 +

GCM-PSO
Best 10 0 5 7.33E-01 ≈
Median 10 0 5 4.96E-01 ≈
Mean 7 0 8 1.91E-01 ≈

Table 4: Results obtained from Friedman rank test

Algorithm Criteria Rank Order

Proposed

Mean

1.67 1
CTR 2.73 3
TMMO 3.73 4
GCM-PSO 1.87 2

Proposed

Median

1.57 1
CTR 2.50 3
TMMO 3.73 4
GCM-PSO 2.20 2

18

the test functions previously indicated. It can be seen that the proposed
algorithm is evaluated as superior, inferior, or similar to others for 108, 27
and 0 instances, respectively, out of a total of 135 instances. Therefore, it
can be stated that the proposed algorithm performs better than the others
for 80.0% of the instances, and it is worse for only 20.0%. Furthermore, the
Friedman rank test presented in Table 4, based on the mean and median re-
sults obtained, shows that the proposed algorithm is ranked first (having the
smallest value), highlighted in bold, followed in order by GCM-PSO, CTR,
and TMMO.

4.4. Robustness to Dynamic Changes
This section presents an evaluation of the performance of the proposed

algorithm, using a test suite with different dynamic changes, including a
varied number of peaks for each component, stronger shift severity and faster
change frequency.

Table 5 shows the results obtained by both the proposed and the CTR
algorithms, in which a distinct number of peaks were randomly generated
for each component within the ranges of {1,...,5} and {1,...,10}. Increasing
the number of peaks allocated to each component usually increases the com-
plexity of the landscape. Therefore, the results reveal that the performance
of both algorithms worsen as the number of assigned peaks increases. In
spite of this, the proposed algorithm maintains its superior performance over
CTR for the two different peaks scenarios. According to the Wilcoxon test,
the proposed algorithm is significantly better than CTR for both cases, as
presented in Table 6. Out of 90 cases, our proposed approach is superior,
inferior and similar to CTR for 79, 11 and 0 instances, respectively.

Also, it is clear that obtaining high-quality solutions within a high change
frequency (i.e., a short computational time) is essential for real-world dy-
namic optimization problems. Table 7 displays the results of the proposed
and the CTR algorithm with a lower number of fitness evaluations between
any consecutive environments (200D). The results indicate that the perfor-
mance of both algorithms deteriorates with a high change frequency, com-
pared to those with slower changes. This is expected, since time constraints
often make problems more difficult. However, the proposed algorithm still
outperforms CTR on the majority of test instances. Also, the Wilcoxon test
results shown in Table 8 clearly show that the proposed algorithm is sig-
nificantly better than those of the CTR algorithm in the median and mean
results.

19

Table 5: Results by the proposed algorithm and CTR for the GMPB problems with the
number of peaks for each component.

Table 6: Results from Wilcoxon signed rank test

Peaks Criteria Better Equal Worse p-value Decision

{1,...,5}
Best 13 0 2 1.70E-02 +
Median 13 0 2 1.10E-02 +
Mean 13 0 2 9.00E-03 +

{1,...,10}
Best 12 0 3 2.70E-02 +
Median 14 0 1 1.00E-03 +
Mean 14 0 1 1.00E-03 +

20

Table 7: Results by the proposed algorithm and CTR for the GMPB problems with a
change frequency = 200D.

Fun CTR Proposed algorithm

Best Median Mean Worst STD Best Median Mean Worst STD

f1 1.01E+01 1.98E+01 2.07E+01 3.69E+01 2.15E+00 1.13E+01 2.10E+01 2.10E+01 3.49E+01 1.70E+00
f2 4.23E+00 6.83E+00 6.55E+00 1.01E+01 3.97E-01 4.57E+00 6.31E+00 6.19E+00 1.03E+01 3.66E-01
f3 8.08E+00 1.58E+01 1.85E+01 3.11E+01 1.70E+00 8.70E+00 1.76E+01 1.77E+01 2.63E+01 1.54E+00
f4 1.01E+00 3.14E+00 5.01E+00 1.94E+01 1.39E+00 1.14E+00 2.69E+00 4.90E+00 1.97E+01 1.38E+00
f5 7.96E+01 2.35E+02 2.94E+02 7.33E+02 4.75E+01 3.67E+01 1.44E+02 1.78E+02 4.58E+02 3.40E+01

f6 2.32E+01 3.29E+01 5.06E+01 2.86E+02 1.69E+01 2.30E+01 3.14E+01 4.23E+01 2.09E+02 1.20E+01
f7 5.91E+00 1.04E+01 1.20E+01 4.45E+01 2.52E+00 4.87E+00 9.36E+00 1.00E+01 2.40E+01 1.27E+00
f8 2.35E+01 3.85E+01 4.27E+01 7.55E+01 3.98E+00 2.05E+01 3.34E+01 3.75E+01 6.73E+01 3.61E+00
f9 1.14E+00 1.36E+01 1.21E+01 2.55E+01 2.36E+00 1.12E+00 1.18E+01 1.14E+01 2.48E+01 2.28E+00
f10 3.46E+02 1.24E+03 1.19E+03 2.21E+03 1.52E+02 8.86E+01 4.09E+02 4.70E+02 8.94E+02 6.63E+01

f11 5.61E+01 1.13E+02 1.53E+02 7.58E+02 4.41E+01 6.15E+01 8.38E+01 1.31E+02 6.81E+02 4.00E+01
f12 3.15E+01 1.45E+02 1.54E+02 3.66E+02 2.71E+01 3.53E+01 9.04E+01 1.22E+02 3.22E+02 2.39E+01
f13 1.05E+02 2.03E+02 2.04E+02 3.10E+02 1.61E+01 6.08E+01 1.48E+02 1.51E+02 2.46E+02 1.33E+01
f14 1.76E+00 9.95E+00 1.63E+01 3.37E+01 3.41E+00 2.28E+00 9.34E+00 1.54E+01 3.25E+01 3.18E+00
f15 8.24E+02 2.93E+03 2.72E+03 4.79E+03 3.10E+02 2.81E+02 9.35E+02 1.01E+03 1.71E+03 1.15E+02

Table 8: Results from the Wilcoxon signed rank test

Better Equal Worse p-value Decision

Best 8 0 7 4.27E-01 ≈
Median 13 0 2 8.00E-03 +
Mean 14 0 1 1.00E-03 +

Table 9: Results by the proposed algorithm and CTR for the GMPB problems with a shift
severity in the range [3, 5].

Fun CTR Proposed algorithm

Best Median Mean Worst STD Best Median Mean Worst STD

f1 7.10E+00 1.23E+01 1.24E+01 1.77E+01 9.01E-01 6.73E+00 1.17E+01 1.33E+01 2.59E+01 1.44E+00
f2 2.03E+00 3.91E+00 3.98E+00 5.52E+00 2.27E-01 1.91E+00 3.26E+00 3.44E+00 4.81E+00 1.92E-01
f3 5.45E+00 1.24E+01 1.18E+01 1.71E+01 9.69E-01 6.93E+00 1.26E+01 1.24E+01 1.92E+01 1.04E+00
f4 3.53E-01 1.74E+00 3.69E+00 1.73E+01 1.24E+00 4.19E-01 1.54E+00 3.15E+00 1.48E+01 1.06E+00
f5 5.20E+01 1.78E+02 2.06E+02 5.70E+02 3.18E+01 3.49E+01 9.64E+01 1.34E+02 2.64E+02 2.05E+01

f6 1.43E+01 2.11E+01 3.69E+01 2.02E+02 1.28E+01 1.53E+01 1.92E+01 3.25E+01 1.45E+02 8.84E+00
f7 2.83E+00 5.11E+00 6.49E+00 2.08E+01 1.13E+00 2.95E+00 5.23E+00 6.98E+00 2.33E+01 1.29E+00
f8 1.76E+01 2.87E+01 2.88E+01 4.51E+01 1.95E+00 1.45E+01 2.53E+01 2.74E+01 5.24E+01 2.58E+00
f9 5.13E-01 1.04E+01 1.00E+01 2.36E+01 2.18E+00 4.57E-01 8.78E+00 8.86E+00 2.21E+01 1.96E+00
f10 1.76E+02 7.22E+02 8.23E+02 2.16E+03 1.32E+02 8.73E+01 3.80E+02 4.91E+02 1.92E+03 1.15E+02

f11 3.31E+01 5.39E+01 9.74E+01 6.38E+02 3.89E+01 2.78E+01 5.24E+01 8.14E+01 4.74E+02 2.84E+01
f12 2.38E+01 5.60E+01 9.62E+01 3.00E+02 2.19E+01 1.32E+01 4.67E+01 7.10E+01 2.21E+02 1.61E+01
f13 6.11E+01 1.55E+02 1.48E+02 2.32E+02 1.11E+01 4.71E+01 8.60E+01 1.10E+02 1.92E+02 1.25E+01
f14 1.05E+00 8.78E+00 1.40E+01 2.96E+01 3.10E+00 7.98E-01 7.45E+00 1.25E+01 2.71E+01 2.80E+00
f15 7.68E+02 2.15E+03 2.16E+03 3.73E+03 2.47E+02 1.83E+02 7.20E+02 9.92E+02 2.68E+03 1.90E+02

21

Furthermore, the robustness of the proposed algorithm is tested with
stronger shift severities that make the tracking process more difficult. Table 9
shows the obtained results with stronger shift severities randomized in the
range [3, 5], which shows that the results of the proposed algorithm are better
than those of CTR. Also, Table 10 confirms the superiority of the proposed
algorithm over CTR on stronger shift severities, as it is superior, similar
and inferior to CTR in 36, 0 and 9 cases, respectively. The reason for the
effectiveness of the proposed algorithm for solving dynamic problems with
different dynamic changes is due to the expectation of some good solutions
that help handling new environmental changes.

4.5. Variability in Dynamic Changes
To introduce a predictable movement for the components, Equation (4)

is replaced by
ci(t) = ci(t− 1) + Si(t) (5)

where Si(t) represents the peaks’ center movement which is calculated as
follows:

Si(t) =
S

∥(1− λ)ε+ λSi(t− 1)∥
((1− λ)ε+ λSi(t− 1)) (6)

Here, λ ∈ [0, 1] is the correlation coefficient factor. A λ = 0 makes a com-
pletely random direction of the peak’s movement whereas if λ = 1, the move-
ment’s direction is fully correlated with the direction of the previous move
(i.e., linear shift). The parameter λ = 0.5 indicates that the peak movements
exhibit a moderate level of correlation [69]. The results obtained from both
the proposed and CTR algorithms are presented in Table 11. The proposed
algorithm demonstrates its superior performance consistently compared to
the CTR algorithm across most functions. Moreover, the statistical analysis
conducted using the Wilcoxon test, as depicted in Table 12, shows that the
proposed algorithm significantly outperforms the CTR algorithm in terms of
median and mean results.

5. Conclusions and Future Work

In this paper, an algorithm for solving large-scale dynamic problems is
proposed. The algorithm consists of three components: (1) problem decom-
position to mitigate the curse of dimensionality: this was done by incor-
porating a variable interaction grouping and CC methods; (2) performing

22

Table 10: Results from the Wilcoxon signed rank test

Better Equal Worse p-value Decision

Best 11 0 4 2.50E-02 +
Median 13 0 2 1.00E-03 +
Mean 12 0 3 5.00E-03 +

Table 11: Results by the proposed algorithm and CTR for the GMPB problems with
variability in dynamic changes.

Fun CTR Proposed algorithm

Best Median Mean Worst STD Best Median Mean Worst STD

f1 3.09E+00 8.20E+00 7.66E+00 1.26E+01 6.78E-01 4.23E+00 8.01E+00 9.94E+00 2.02E+01 1.23E+00
f2 1.26E+00 2.38E+00 2.58E+00 4.98E+00 2.36E-01 9.94E-01 1.88E+00 2.03E+00 4.09E+00 2.32E-01
f3 3.80E+00 7.75E+00 7.79E+00 1.40E+01 7.85E-01 2.65E+00 6.34E+00 6.84E+00 1.33E+01 8.12E-01
f4 7.35E-01 4.87E+00 5.96E+00 1.41E+01 1.25E+00 2.26E-01 5.07E+00 5.65E+00 1.37E+01 1.31E+00
f5 6.34E+01 3.14E+02 2.83E+02 6.78E+02 4.70E+01 1.77E+01 1.48E+02 1.57E+02 3.32E+02 2.57E+01
f6 6.24E+00 1.13E+01 2.45E+01 2.03E+02 1.28E+01 6.60E+00 1.06E+01 1.72E+01 9.39E+01 5.55E+00
f7 2.41E+00 4.22E+00 5.66E+00 1.88E+01 1.16E+00 2.26E+00 3.76E+00 6.08E+00 1.79E+01 1.25E+00
f8 7.82E+00 1.60E+01 1.91E+01 4.04E+01 2.23E+00 5.74E+00 1.64E+01 1.87E+01 3.54E+01 2.36E+00
f9 7.15E-01 6.33E+00 7.80E+00 1.87E+01 1.72E+00 2.89E-01 6.55E+00 7.62E+00 1.89E+01 1.79E+00
f10 3.01E+02 7.39E+02 8.17E+02 1.51E+03 9.68E+01 1.04E+02 2.91E+02 3.60E+02 8.90E+02 5.75E+01
f11 1.72E+01 3.87E+01 5.95E+01 3.46E+02 2.07E+01 1.76E+01 3.42E+01 5.34E+01 2.37E+02 1.37E+01
f12 1.80E+01 4.53E+01 6.27E+01 1.54E+02 1.04E+01 2.16E+01 4.39E+01 5.20E+01 1.28E+02 7.90E+00
f13 6.67E+01 9.90E+01 1.14E+02 1.97E+02 9.61E+00 4.10E+01 6.91E+01 8.45E+01 1.87E+02 9.64E+00
f14 1.41E+00 8.84E+00 1.08E+01 2.31E+01 1.83E+00 8.02E-01 8.93E+00 1.10E+01 2.40E+01 1.93E+00
f15 6.38E+02 2.07E+03 2.21E+03 4.27E+03 2.92E+02 1.81E+02 7.48E+02 8.69E+02 2.60E+03 1.53E+02

Table 12: Results from the Wilcoxon signed rank test

Better Equal Worse p-value Decision

Best 11 0 4 6.10E-02 ≈
Median 11 0 4 8.00E-03 +
Mean 12 0 3 9.00E-03 +

23

an evolutionary process through a multi-population algorithm that adopted
PSO and its operators, where an explorer and exploiter subpopulations are
assigned to each subproblem to be evolved in a contribution-based manner;
and (3) a prediction mechanism based on a neural network to predict new
solutions when a dynamic change happens. The proposed algorithm was
tested on the generalized moving peaks benchmark problems with 50, 100
and 200 decision variables. The results presented indicate that the proposed
algorithm is capable of locating the optimum in a new environment more
quickly. Interestingly, the experimental analysis revealed that the proposed
algorithm outperforms state-of-the-art algorithms in 80.0% of all instances.
Also, the proposed algorithm achieves superior performance on difficult sce-
narios, including stronger shift severity and faster change frequency. As part
of our future work, we are interested in designing a dynamic optimization
method to handle constrained DOPs, as many real-world DOPs are con-
strained.

Acknowledgment

This research is supported by the ARC Discovery Project (No. DP210102939).
Carlos A. Coello Coello gratefully acknowledges support from CONACyT
grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016).

References

[1] T. T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization:
A survey of the state of the art, Swarm and Evolutionary Computation
6 (2012) 1–24. doi:https://doi.org/10.1016/j.swevo.2012.05.001.

[2] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, X. Yao,
A survey of evolutionary continuous dynamic optimization over two
decades—part b, IEEE Transactions on Evolutionary Computation 25
(2021) 630–650. doi:10.1109/TEVC.2021.3060012.

[3] J. K. Kordestani, A. E. Ranginkaman, M. R. Meybodi, P. Novoa-
Hernández, A novel framework for improving multi-population al-
gorithms for dynamic optimization problems: A scheduling ap-
proach, Swarm and Evolutionary Computation 44 (2019) 788–805.
doi:https://doi.org/10.1016/j.swevo.2018.09.002.

24

[4] C. Bu, W. Luo, L. Yue, Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strate-
gies, IEEE Transactions on Evolutionary Computation 21 (2017) 14–33.
doi:10.1109/TEVC.2016.2567644.

[5] N. Hamza, R. Sarker, D. Essam, Sensitivity-based change detection
for dynamic constrained optimization, IEEE Access 8 (2020) 103900–
103912. doi:10.1109/ACCESS.2020.2999161.

[6] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, X. Yao,
A survey of evolutionary continuous dynamic optimization over two
decades—part a, IEEE Transactions on Evolutionary Computation 25
(2021) 609–629. doi:10.1109/TEVC.2021.3060014.

[7] J. Branke, Evolutionary optimization in dynamic environments, vol-
ume 3, Springer Science & Business Media, 2012.

[8] D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a
particle swarm model using speciation, IEEE Transactions on Evolution-
ary Computation 10 (2006) 440–458. doi:10.1109/TEVC.2005.859468.

[9] K. Deb, U. B. Rao N., S. Karthik, Dynamic multi-objective optimiza-
tion and decision-making using modified nsga-ii: A case study on hydro-
thermal power scheduling, in: S. Obayashi, K. Deb, C. Poloni, T. Hi-
royasu, T. Murata (Eds.), Evolutionary Multi-Criterion Optimization,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 803–817.

[10] S. Das, A. Mandal, R. Mukherjee, An adaptive differential
evolution algorithm for global optimization in dynamic environ-
ments, IEEE Transactions on Cybernetics 44 (2014) 966–978.
doi:10.1109/TCYB.2013.2278188.

[11] T. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence
in dynamic environments, IEEE Transactions on Evolutionary Compu-
tation 10 (2006) 459–472. doi:10.1109/TEVC.2005.857074.

[12] W. Luo, J. Sun, C. Bu, H. Liang, Species-based particle swarm optimizer
enhanced by memory for dynamic optimization, Applied Soft Comput-
ing 47 (2016) 130–140. doi:https://doi.org/10.1016/j.asoc.2016.05.032.

25

[13] J. Branke, Memory enhanced evolutionary algorithms for changing op-
timization problems, in: Proceedings of the 1999 Congress on Evolu-
tionary Computation-CEC99 (Cat. No. 99TH8406), volume 3, 1999, pp.
1875–1882 Vol. 3. doi:10.1109/CEC.1999.785502.

[14] M. Jiang, Z. Huang, L. Qiu, W. Huang, G. G. Yen, Trans-
fer learning-based dynamic multiobjective optimization algorithms,
IEEE Transactions on Evolutionary Computation 22 (2018) 501–514.
doi:10.1109/TEVC.2017.2771451.

[15] A. Meier, O. Kramer, Prediction with recurrent neural networks in
evolutionary dynamic optimization, in: K. Sim, P. Kaufmann (Eds.),
Applications of Evolutionary Computation, Springer International Pub-
lishing, Cham, 2018, pp. 848–863.

[16] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, C. A. Coello Coello, Adap-
tive multilevel prediction method for dynamic multimodal optimization,
IEEE Transactions on Evolutionary Computation 25 (2021) 463–477.
doi:10.1109/TEVC.2021.3051172.

[17] J. Branke, T. Kaussler, C. Smidt, H. Schmeck, A multi-population
approach to dynamic optimization problems, in: I. C. Parmee (Ed.),
Evolutionary Design and Manufacture, Springer London, London, 2000,
pp. 299–307.

[18] M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm in-
telligence for dynamic optimization: Algorithms and applica-
tions, Swarm and Evolutionary Computation 33 (2017) 1–17.
doi:https://doi.org/10.1016/j.swevo.2016.12.005.

[19] X. Chen, W. Du, R. Qi, F. Qian, H. Tianfield, Hybrid gradient
particle swarm optimization for dynamic optimization problems
of chemical processes, Asia-Pacific Journal of Chemical Engi-
neering 8 (2013) 708–720. doi:https://doi.org/10.1002/apj.1712.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/apj.1712.

[20] N. Dige, U. Diwekar, Efficient sampling algorithm
for large-scale optimization under uncertainty problems,
Computers Chemical Engineering 115 (2018) 431–454.
doi:https://doi.org/10.1016/j.compchemeng.2018.05.007.

26

[21] X. Mingming, Z. Jun, C. Kaiquan, C. Xianbin, T. Ke, Cooperative
co-evolution with weighted random grouping for large-scale crossing
waypoints locating in air route network, in: 2011 IEEE 23rd Inter-
national Conference on Tools with Artificial Intelligence, 2011, pp. 215–
222. doi:10.1109/ICTAI.2011.40.

[22] W. Dong, T. Chen, P. Tino, X. Yao, Scaling up estimation of distri-
bution algorithms for continuous optimization, IEEE Transactions on
Evolutionary Computation 17 (2013) 797–822.

[23] M. Bhattacharya, R. Islam, J. Abawajy, Evolutionary optimization: a
big data perspective, Journal of Network and Computer Applications
59 (2016) 416–426.

[24] M. A. Potter, K. A. De Jong, A cooperative coevolutionary approach
to function optimization, in: Y. Davidor, H.-P. Schwefel, R. Männer
(Eds.), Parallel Problem Solving from Nature — PPSN III, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1994, pp. 249–257.

[25] M. Omidvar, X. Li, X. Yao, A review of population-based metaheuristics
for large-scale black-box global optimization: Part b, IEEE Transactions
on Evolutionary Computation (2021).

[26] M. N. Omidvar, X. Li, X. Yao, A review of population-based
metaheuristics for large-scale black-box global optimization: Part
a, IEEE Transactions on Evolutionary Computation (2021) 1–1.
doi:10.1109/TEVC.2021.3130838.

[27] M. Meselhi, R. Sarker, D. Essam, S. Elsayed, A decom-
position approach for large-scale non-separable optimiza-
tion problems, Applied Soft Computing 115 (2022) 108168.
doi:https://doi.org/10.1016/j.asoc.2021.108168.

[28] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, X. Yao, Scal-
ing up dynamic optimization problems: A divide-and-conquer ap-
proach, IEEE Transactions on Evolutionary Computation 24 (2020)
1–15. doi:10.1109/TEVC.2019.2902626.

[29] X.-F. Liu, Z.-H. Zhan, T.-L. Gu, S. Kwong, Z. Lu, H. B.-L. Duh,
J. Zhang, Neural network-based information transfer for dynamic opti-

27

mization, IEEE Transactions on Neural Networks and Learning Systems
31 (2020) 1557–1570. doi:10.1109/TNNLS.2019.2920887.

[30] C. Rossi, M. Abderrahim, J. C. Díaz, Tracking moving optima using
kalman-based predictions, Evolutionary Computation 16 (2008) 1–30.
doi:10.1162/evco.2008.16.1.1.

[31] A. Simões, E. Costa, Prediction in evolutionary algorithms for dynamic
environments, Soft Computing 18 (2014) 1471–1497.

[32] C.-K. Goh, K. C. Tan, A competitive-cooperative coevolution-
ary paradigm for dynamic multiobjective optimization, IEEE
Transactions on Evolutionary Computation 13 (2009) 103–127.
doi:10.1109/TEVC.2008.920671.

[33] H. G. Cobb, An investigation into the use of hypermutation as an adap-
tive operator in genetic algorithms having continuous, time-dependent
nonstationary environments, Technical Report, Naval Research Lab
Washington DC, 1990.

[34] Y. G. Woldesenbet, G. G. Yen, Dynamic evolutionary algorithm with
variable relocation, IEEE Transactions on Evolutionary Computation
13 (2009) 500–513. doi:10.1109/TEVC.2008.2009031.

[35] J. J. Grefenstette, et al., Genetic algorithms for changing environments,
in: Ppsn, volume 2, Citeseer, 1992, pp. 137–144.

[36] C. Li, S. Yang, A general framework of multipopulation meth-
ods with clustering in undetectable dynamic environments, IEEE
Transactions on Evolutionary Computation 16 (2012) 556–577.
doi:10.1109/TEVC.2011.2169966.

[37] H. G. Cobb, J. J. Grefenstette, Genetic algorithms for tracking changing
environments., Technical Report, Naval Research Lab Washington DC,
1993.

[38] X. Xu, Y. Tan, W. Zheng, S. Li, Memory-enhanced dynamic multi-
objective evolutionary algorithm based on lp decomposition, Applied
Sciences 8 (2018) 1673.

28

[39] X.-F. Liu, X.-X. Xu, Z.-H. Zhan, Y. Fang, J. Zhang, Interaction-
based prediction for dynamic multiobjective optimization, IEEE
Transactions on Evolutionary Computation 27 (2023) 1881–1895.
doi:10.1109/TEVC.2023.3234113.

[40] T. T. Nguyen, X. Yao, Evolutionary optimization on continuous dy-
namic constrained problems - an analysis, in: S. Yang, X. Yao
(Eds.), Evolutionary Computation for Dynamic Optimization Problems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 193–217.

[41] R. I. Lung, D. Dumitrescu, Evolutionary swarm cooperative optimiza-
tion in dynamic environments, Natural Computing 9 (2010) 83–94.

[42] X. Li, X. Yao, Cooperatively coevolving particle swarms for large
scale optimization, IEEE Transactions on Evolutionary Computation
16 (2012) 210–224. doi:10.1109/TEVC.2011.2112662.

[43] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary
programming with cooperative coevolution, in: Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol-
ume 2, 2001, pp. 1101–1108 vol. 2. doi:10.1109/CEC.2001.934314.

[44] Z. Yang, K. Tang, X. Yao, Differential evolution for high-dimensional
function optimization, in: 2007 IEEE Congress on Evolutionary Com-
putation, 2007, pp. 3523–3530. doi:10.1109/CEC.2007.4424929.

[45] M. Yang, A. Zhou, C. Li, X. Yao, An efficient recursive
differential grouping for large-scale continuous problems, IEEE
Transactions on Evolutionary Computation 25 (2021) 159–171.
doi:10.1109/TEVC.2020.3009390.

[46] Y. Mei, M. N. Omidvar, X. Li, X. Yao, A competitive divide-and-
conquer algorithm for unconstrained large-scale black-box optimization,
ACM Trans. Math. Softw. 42 (2016). doi:10.1145/2791291.

[47] Y. Sun, M. Kirley, S. K. Halgamuge, A recursive decompo-
sition method for large scale continuous optimization, IEEE
Transactions on Evolutionary Computation 22 (2018) 647–661.
doi:10.1109/TEVC.2017.2778089.

29

[48] M. N. Omidvar, X. Li, K. Tang, Designing benchmark problems for
large-scale continuous optimization, Information Sciences 316 (2015)
419–436. doi:https://doi.org/10.1016/j.ins.2014.12.062, nature-Inspired
Algorithms for Large Scale Global Optimization.

[49] G. A. Trunfio, P. Topa, J. Wąs, A new algorithm for adapting
the configuration of subcomponents in large-scale optimization with
cooperative coevolution, Information Sciences 372 (2016) 773–795.
doi:https://doi.org/10.1016/j.ins.2016.08.080.

[50] W. Luo, B. Yang, C. Bu, X. Lin, A hybrid particle swarm optimiza-
tion for high-dimensional dynamic optimization, in: Y. Shi, K. C. Tan,
M. Zhang, K. Tang, X. Li, Q. Zhang, Y. Tan, M. Middendorf, Y. Jin
(Eds.), Simulated Evolution and Learning, Springer International Pub-
lishing, Cham, 2017, pp. 981–993.

[51] M. N. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-
evolution with differential grouping for large scale optimization,
IEEE Transactions on Evolutionary Computation 18 (2014) 378–393.
doi:10.1109/TEVC.2013.2281543.

[52] D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a
particle swarm model using speciation, IEEE Transactions on Evolution-
ary Computation 10 (2006) 440–458. doi:10.1109/TEVC.2005.859468.

[53] Z.-H. Zhan, J.-Y. Li, S. Kwong, J. Zhang, Learning-aided evolution
for optimization, IEEE Transactions on Evolutionary Computation 27
(2023) 1794–1808. doi:10.1109/TEVC.2022.3232776.

[54] Y. Jiang, Z.-H. Zhan, K. C. Tan, J. Zhang, Knowledge learning for
evolutionary computation, IEEE Transactions on Evolutionary Compu-
tation (2023) 1–1. doi:10.1109/TEVC.2023.3278132.

[55] R. Rojas, Neural networks: a systematic introduction, Springer Science
& Business Media, 2013.

[56] M. N. Omidvar, M. Yang, Y. Mei, X. Li, X. Yao, Dg2: A faster and
more accurate differential grouping for large-scale black-box optimiza-
tion, IEEE Transactions on Evolutionary Computation 21 (2017) 929–
942. doi:10.1109/TEVC.2017.2694221.

30

[57] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. R. Meybodi, A novel
multi-swarm algorithm for optimization in dynamic environments based
on particle swarm optimization, Applied Soft Computing 13 (2013)
2144–2158. doi:https://doi.org/10.1016/j.asoc.2012.12.020.

[58] T. Blackwell, Particle swarm optimization in dynamic environments,
in: Evolutionary computation in dynamic and uncertain environments,
Springer, 2007, pp. 29–49.

[59] K. Trojanowski, Properties of quantum particles in multi-swarms for
dynamic optimization, Fundamenta Informaticae 95 (2009) 349–380.

[60] A. Sepas-Moghaddam, A. Arabshahi, D. Yazdani, M. M. Dehshibi, A
novel hybrid algorithm for optimization in multimodal dynamic envi-
ronments, in: 2012 12th International Conference on Hybrid Intelligent
Systems (HIS), IEEE, 2012, pp. 143–148.

[61] M. N. Omidvar, B. Kazimipour, X. Li, X. Yao, Cbcc3 —
a contribution-based cooperative co-evolutionary algorithm with
improved exploration/exploitation balance, in: 2016 IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 3541–3548.
doi:10.1109/CEC.2016.7744238.

[62] S. Mahdavi, S. Rahnamayan, M. E. Shiri, Multilevel framework for
large-scale global optimization, Soft Computing 21 (2017) 4111–4140.

[63] M. Hagan, M. Menhaj, Training feedforward networks with the mar-
quardt algorithm, IEEE Transactions on Neural Networks 5 (1994)
989–993. doi:10.1109/72.329697.

[64] J. S. Smith, B. Wu, B. M. Wilamowski, Neural network training with
levenberg–marquardt and adaptable weight compression, IEEE Trans-
actions on Neural Networks and Learning Systems 30 (2019) 580–587.
doi:10.1109/TNNLS.2018.2846775.

[65] R. Morrison, K. De Jong, A test problem generator for non-stationary
environments, in: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), volume 3, 1999, pp. 2047–
2053 Vol. 3. doi:10.1109/CEC.1999.785526.

31

[66] B. Nasiri, M. Meybodi, M. Ebadzadeh, History-driven particle swarm
optimization in dynamic and uncertain environments, Neurocomputing
172 (2016) 356–370. doi:https://doi.org/10.1016/j.neucom.2015.05.115.

[67] C. Li, S. Yang, A generalized approach to construct benchmark problems
for dynamic optimization, in: X. Li, M. Kirley, M. Zhang, D. Green,
V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K. C.
Tan, J. Branke, Y. Shi (Eds.), Simulated Evolution and Learning,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 391–400.

[68] G. Pamparà, A. P. Engelbrecht, A generator for dynamically constrained
optimization problems, in: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, GECCO ’19, Association
for Computing Machinery, New York, NY, USA, 2019, p. 1441–1448.
doi:10.1145/3319619.3326798.

[69] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen,
X. Yao, Benchmarking continuous dynamic optimization: Survey and
generalized test suite, IEEE Transactions on Cybernetics (2020) 1–14.
doi:10.1109/TCYB.2020.3011828.

[70] M. N. Omidvar, D. Yazdani, J. Branke, X. Li, S. Yang, X. Yao, Gen-
erating large-scale dynamic optimization problem instances using the
generalized moving peaks benchmark, 2021. arXiv:2107.11019.

[71] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4,
1995, pp. 1942–1948 vol.4. doi:10.1109/ICNN.1995.488968.

[72] E. Theodorsson-Norheim, Friedman and quade tests: Basic computer
program to perform nonparametric two-way analysis of variance and
multiple comparisons on ranks of several related samples, Computers in
biology and medicine 17 (1987) 85–99.

32

