
EMOPG+FS: Evolutionary Multi-Objective Prototype

Generation and Feature Selection

Alejandro Rosales-Pérez, Jesus A. Gonzalez, Carlos A. Coello Coello, Carlos A.

Reyes-Garcia, and Hugo Jair Escalante

1 Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE)

Tonantzintla, Puebla, Mexico
2 CINVESTAV-IPN, Computer Science Department

Mexico City, Mexico

Abstract. k-NN is one of the most popular and effective classifiers nowadays. However, it has

some limitations that overcome its applicability in large scale scenarios: basically, it requires

storing the whole training set, and it computes distances of a test sample with the training data

set. These limitations have been traditionally alleviated with data reduction techniques. This

paper introduces a multi-objective evolutionary approach for data reduction. Our method simul-

taneously generates prototypes and selects features for k-NN classifiers. Contrary to most of the

existing approaches, our method treats the problem with multi-objective evolutionary optimiz-

ers. We show the effectiveness of our proposal in benchmark data and compare its performance

with state of the art techniques.

1 Introduction

Classification is a very common task in pattern recognition. The goal is to build a classification

model that learns to map instances to a set of predefined labels. Nowadays, there is a large

number of pattern classification methods, being the k-nearest neighbor (k-NN) classifier one

of the most well-known [19]. Its popularity relies on its simplicity and good performance.

k-NN belongs to the lazy learning family, meaning that this method does not have a training

phase. Instead, unknown samples are classified based on the labels assigned to their most

similar training samples. Hence, the standard k-NN requires to store in memory the entire

training set, as well as to perform as many distance/similarity estimations as samples are

available in the training set when classifying a single test pattern. These are major concerns

when using the k-NN classifier on large data sets.

A number of studies have been proposed in order to overcome the aforementioned short-

comings. These studies aim at reducing the number of instances of the training set, while

trying to preserve a good classification performance. In the literature, we can find two main

approaches for instance reduction: prototype selection (PS) methods [10, 13], which attempt

2 A. Rosales-Pérez et al.

to select a representative subset of samples from the training set, and prototype generation

(PG) methods [17], whose goal is to generate a small set of artificial prototypes to replace the

original training set. Both approaches have benefits and limitations, although an important

advantage of PG methods is that they are not limited to select samples from the training

set only, but they can also modify the values of these samples, resulting in a change of their

position in the multi-dimensional feature space. Therefore, PG methods subsume PS tech-

niques, raising our particular interest on their study. Another aspect that can have an impact

in both, classification performance and the computational cost of k-NN is the dimensionality

of the problem, since the higher the number of features the larger the cost of the similarity

estimation. Furthermore, some features can be redundant or irrelevant and it is often useful

to eliminate them. PG and feature selection procedures are usually applied separately. How-

ever, we believe that the joint reduction of instances and features is a promising solution for

k-NN’s limitations.

In recent years, the interest of using techniques based on bio-inspired optimization for

approaching the PG problem has significantly grown [1,6–8,12,16,17]. These methods try to

optimize a criterion related to the classification performance of a k-NN classifier that uses the

prototypes. There are studies that also consider a reduction criterion in a single aggregated

objective function, aiming to find effective prototypes with maximum reduction. However,

there are two main issues when using an aggregated objective function. The first one is re-

lated to the determination of an appropriate preference for each objective to embed both

criteria in a single formula, which could be non trivial. The second one is that a single solu-

tion can be obtained from this approach (the one that optimizes the aggregated criterion),

which could result in little insight gained about the problem. The latter is an important

issue when objectives are in conflict, i.e., maximizing accuracy may decrease the reduction

performance, and viceversa. Therefore, we believe that by explicitly optimizing three objec-

tives: classification performance, instance and feature reduction criteria, simultaneously in a

multi-objective optimization approach, it is possible to obtain a number of solutions which

represent acceptable trade-offs among the objectives, which could enable the user to make a

better decision when facing a particular classification problem.

We propose EMOPG+FS, an evolutionary multi-objective approach that seeks to reduce

the number of training samples, through the generation of prototypes, and the number of

features, by means of selecting a subset of them, while preserving a good classification perfor-

mance for k-NN. EMOPG+FS adopts a positioning adjustment approach for generating the

prototypes, i.e., each pattern is represented as a point in the feature space, whose position

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 3

is modified by an optimization process. To this end, we used PAES (Pareto Archived Evolu-

tion Strategy) [11] as our multi-objective optimization technique. Our method was initially

introduced in [14]. Here, we extend the previous work by explaining in depth our proposed

algorithm and performing an analysis of its behavior as well as an experimental assessment

of the method using a suite of benchmark data sets. Experimental results provide evidence

of the suitability of using a multi-objective approach for dealing with the PG problem.

The remainder of this paper is organized as follows. Section 2 briefly reviews the most

relevant previous related work on PG, focusing on evolutionary computation approaches. Sec-

tion 3 explains in detail the formulation of the PG problem as a multi-objective optimization

one and introduces our proposed approach. Section 4 reports experimental results that pro-

vide an experimental validation of the suitability of our proposal. Finally, Section 5 presents

our conclusions, and outlines some possible paths for future work.

2 Related Work

A wide variety of PG methods have been proposed so far, see e.g. [17] for a compendium.

However, in recent studies, PG methods based on bio-inspired optimization have reported

better results than alternative techniques [1, 6–9, 12, 16, 17]. These methods start from a set

of solutions (sets of prototypes) and modify them according to certain operators, through

an iterative search procedure that aims to optimize a criterion related to the classification

performance of prototypes.

A PG method based on particle swarm optimization (PSO) was proposed in [12]. A stan-

dard PSO method was designed to minimize the classification error in the training set. The

method is run for several times in order to obtain varied solutions. When classifying a new

object the outputs of the prototypes set are combined via voting. Another variant of PSO,

adaptive Michigan PSO (AMPSO), has also been used for generating prototypes. In AMPSO

each swarm particle is associated to a prototype in such a way that the whole population

is the set of prototypes to optimize [1]. The ENPC (Evolutionary Design of NN classifiers)

method was proposed in [8], ENPC is an evolutionary algorithm that starts from a single

individual that is evolved by applying a variety of operators to combine and split prototypes.

This method is able to automatically determine the number of prototypes and requires lit-

tle information from the user. In [6], genetic programming is used to generate prototypes:

a prototype is encoded as a tree combining training instances via arithmetic operators, and

a standard genetic program is implemented with the aim of maximizing classification per-

4 A. Rosales-Pérez et al.

formance of k-NN, when using the prototypes. In [16] a hybrid method based on differential

evolution was proposed in which, after applying a PS method, the positioning of prototypes is

updated with differential evolution. Finally, in [7] a multi-objective genetic algorithm is pro-

posed for PG. Although being effective, this method does not perform any feature reduction

step.

The above methods have reported acceptable results (see, e.g., [17]). However, they treat

the classification-performance and reduction objectives as a single (aggregated) objective. As

mentioned above, this form of optimization has drawbacks that may lead to solutions that do

not offer a good tradeoff among the individual objectives. Furthermore, in most PG studies,

the feature selection process has been disregarded, in spite of the fact that reducing the data

dimensionality directly leads to important savings in computational cost. This paper proposes

a multi-objective optimization method, EMOPG-FS, that treats the objectives separately, and

incorporates a feature reduction process in addition to the PG mechanism.

3 EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and

Feature Selection

In this section, we describe the proposed multi-objective optimization approach to the PG

problem. We initially provide a short introduction to multi-objective optimization followed

by the description of the proposed approach.

3.1 Evolutionary Multi-Objective Optimization

A general MOP can be formulated as follows:

minimize f (x) = [f1 (x) , . . . , fl (x)]T

subject to x ∈ X
(1)

where x = [x1, . . . , xn]T ∈ Rn is a vector of decision variables, fi (x), i = 1, . . . , l, are the

l−objective functions, and X is the set of feasible solutions. In a MOP, the objectives can be

in conflict causing that there does not exist a single solution that minimizes simultaneously

all of the objectives. Hence, the notion of optimum in MOPs consists of finding solutions that

provide a good trade-off among the objectives. Pareto optimality provides a framework to

determine such trade-offs. We say that a solution x1 dominates a solution x2 (denoted by

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 5

x1 � x2) if and only if x1 is not worse than x2 in any objective, and there exists at least one

objective for which is better, i.e.:

∀i : fi

(
x1
)
≤ fi

(
x2
)
∧ ∃i : fi

(
x1
)

< fi

(
x2
)

(2)

A solution x∗ is a Pareto optimal solution if there does not exist another solution x′ ∈ X

such that x′ � x∗. The set of all Pareto optimal solutions is known as the Pareto optimal

set, and the image of this in objective space is referred to as the Pareto Front.

Evolutionary algorithms are stochastic search techniques which mimic the principles of

Darwin’s evolutionary theory. These algorithms are well-suited for solving multi-objective

problems (MOPs), due to the fact that they work with a population of solutions, allowing

them to obtain a widespread set of non-dominated solutions in a single run. Furthermore,

they are less susceptible to the shape and continuity of the Pareto front than mathematical

programming techniques [2, 3]. From the seminal work of Schaffer [15] in 1985, the interest

on using evolutionary algorithms for handling multi-objective problems has significantly in-

creased. Among the most well known multi-objective evolutionary algorithms (MOEA), we

can find SPEA2 [22], PAES [11], NSGA-II [4], and MOEA/D [21]. A comprehensive review

of MOEAs can be found in [2, 3].

In this work, we use (1+1)-PAES [11] for solving the prototype generation problem

through an adjustment position approach. PAES can be considered the simplest evolutionary

multi-objective algorithm reported in the state of the art, and we describe it in Algorithm 1.

PAES starts by creating an initial individual, who serves as a parent to create new solu-

tions. The next step is to create an offspring from the parent individual, which is achieved by

applying a mutation operator over the parent. After that, PAES compares the parent and the

child solution in order to determine if the child dominates the parent or viceversa or whether

neither the child dominates the parent nor the parent dominates the child. It also determines

whether the child should be included into the external archive and what solution should serve

as a parent for the next generation. For doing this, PAES takes into consideration whether a

solution is located in a crowded region of the feature space or not. At each iteration, PAES

stores the non-dominated solutions found so far during the search in an external archive. A

detailed description of PAES is out of the scope of this paper, but interested readers are

referred to [11]. The remainder of this section explains the application of this MOEA for

handling the adjustment of the positions of the initial set of prototypes and performing a

features selection step.

6 A. Rosales-Pérez et al.

Algorithm 1 PAES [11]
Require: f (x): fitness functions

Ensure: A set of non-dominated solutions

1: Create an empty external archive A

2: Create an initial individual p0

3: Add p0 to external archive A : A = A ∪ p0

4: while stopping criterion is not satisfied do

5: Mutate pt to create ct

6: if pt � ct then

7: Discard ct

8: else

9: if ct � pt then

10: Replace pt with ct, and add ct to archive A : A = A ∪ ct

11: else

12: if ∃a ∈ A | a � ct then

13: Discard ct

14: else

15: Apply test (pt, ct, A) to determine who becomes the new current solution and whether to add

ct to A

16: end if

17: end if

18: end if

19: end while

3.2 EMOPG+FS

In this work, the prototype generation (PG) task is simultaneously treated with feature

selection. The aim is to reduce both instances and dimensionality while preserving the clas-

sification performance. We approach the problem with multi-objective optimization where

the three considered objectives are: (1) the minimization of the 1-NN classification error in

the training set when using the prototypes, (2) the reduction in the number of prototypes,

and (3) the reduction in the number of features. Moreover, we constrain the set of feasible

solutions (X) to be formed by all possible sets of prototypes that have at least one prototype

per class and are described by at least one feature.

Figure 1 shows the general scheme of EMOPG+FS. It starts weighting each instance.

The weight of each instance is based on the distance to the boundary of each class in order

to give preference to those instances that are more discriminative. Based on these weights,

EMPOG+FS selects a subset of training samples, in which such samples are represented

as points in a multi-dimensional space. Next, their positions are adjusted through an op-

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 7

timization process. Simultaneously to the position adjustment, EMPOG+FS also performs

a selection of the features to be used in the classification task. The outcome of the multi-

objective optimization process is a set of solutions that satisfy a good trade-off among the

objectives. A single solution must be chosen from this set for its use; this is known as the

decision making step. In this regard, we propose a strategy to select a single solution from

the non dominated set of solutions. Algorithm 2 describes the EMPOG+FS approach, and

each stage of this algorithm is detailed next.

Training Set
Weighting

Instances

Choosing an

Initial Subset

EMO for Ad-

justing the

Prototypes’

Positions and

Selecting Features

Decision Making

Prototypes Set

Computing Error

and Reduction

Fig. 1: General scheme of EMOPG+FS that shows its main stages.

Weighting Instances In the first step of the proposed algorithm we obtain a weight for

each training instance related to its discriminative power. The goal is to use this weight

for the selection of initial prototypes for the evolutionary algorithm. We consider an instance

weighting scheme inspired by the criteria considered for condensation-based instance selection,

see e.g., [18]. The main idea behind the weighting scheme is that instances that are closer to

instances from different classes have a higher weight than those that are farther away, due to

the fact that instances closer to the borders are expected to be the most difficult to classify

and, therefore, give more information that allows us to discriminate among classes.

8 A. Rosales-Pérez et al.

Algorithm 2 EMOPG+FS
Require: X: training set, N : maximum number of prototypes, k : number of nearest neighbors, IC: number

of instances competing in a tournament, MOEA’s parameters

Ensure: A set of prototypes

1: Let N = [n1, . . . , nm] be the number of instances for each class, such that
∑m

i=1 ni = N for m classes

{Weight each instance in the training set based on its k nearest neighbors from other classes}

2: for each instance xi ∈ X do

3: Find the k nearest neighbor from other classes

4: Compute the weight of the instance xi using equation (3)

5: end for

{Construct an initial set of N prototypes giving preference to border instances}

6: for each class ci ∈ C do

7: while the cardinality of prototypes from ci < ni do

8: Randomly choose IC prototypes from X that belong to ci

9: Add to the set of prototypes the prototype with the highest weight among the IC prototypes

10: end while

11: end for

12: Apply a multi-objective evolutionary algorithm for adjusting the positions of the prototypes

13: Select a single solution from the resulting non-dominated front based on some preference

This procedure is described in steps 2 to 5 in Algorithm 2. For each instance xi, we first

determine N 6=xi , the set of its k nearest neighbors of different classes. Next, we assign a weight

to each instance xi depending on its closeness with its neighbors of a different class as follows:

w (xi) = 1
k

k∑
xj∈N 6=

xi

1
‖xi − xj‖

(3)

where ‖xi − xj‖ is the Euclidean norm between xi and xj . This weight is used to generate

the initial prototypes as described below.

Constructing an Initial Set of Prototypes The second step of our proposal is to generate

an initial set of prototypes through the selection of samples from the training set. As we

previously stated, border instances could provide useful information that help to discriminate

among classes. Therefore, the initial set of prototypes should give more preference to such

instances. One way of doing this would consist in choosing the instances with the highest

weights according to equation (3). Nonetheless, under this approach, the chosen prototypes

could belong to a specific region of the feature space, reducing the diversity among the

prototypes for the further optimization process. To overcome this shortcoming, we propose

an initialization process inspired on the tournament selection from evolutionary algorithms.

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 9

The procedure for choosing an initial set of N prototypes is described in steps 6 to

11 in Algorithm 2. First, we determine the maximum number of prototypes for each class,

which is found in a stratified fashion, looking to preserve, in the prototypes set, the original

proportions of examples of each class as in the training set. After that, for each class, we select

IC prototypes at random, and the one with the highest weight is added to the initial set of

prototypes. This process is repeated until the maximum number of prototypes is reached. We

should highlight that the tournament selection process is done with replacement. One should

also note that by proceeding in this manner, we guarantee that there is at least one prototype

per class in the set of initial prototypes. The motivation for using this sort of initialization

instead of a random one, is to help the optimization process to converge faster.

3.3 Evolutionary Multi-Objective Optimization for Position Adjustment

Once the initial set of prototypes is selected, their position is adjusted. To do so, the multi-

objective evolutionary algorithm PAES is used. In the rest of this section, we detail the

formulation of the adjustment-position problem as one of multi-objective optimization which

is solved using an evolutionary algorithm.

Representation The task of our PG method is to adjust the position of prototypes in the

feature space as well as performing a selection of the most descriptive features for the problem

at hand. To achieve this task, the prototypes are encoded in an N ×d+d dimensional vector,

where N is the maximum allowable number of prototypes and d is the dimensionality of each

prototype in feature space. In addition to the position of the prototypes in feature space, and

for the sake of reducing the initial number of prototypes as much as possible, the proposed

encoding also considers a mechanism that allows selecting candidate prototypes. With this

in mind, each potential solution to the problem (i.e., a set of prototypes) is represented in an

N × (d + 1) + d dimensional vector as follows:

x(i) =
[
g1

1, . . . , gd
1 , . . . , g1

N , . . . , gd
N , b1, . . . , bN , bN+1, . . . , bN+d

]
(4)

where gj
i ∈ R represents the jth feature value of the ith prototype, and bi ∈ {0, 1} is a

variable that indicates whether the corresponding prototype/feature is considered as part of

the solution or not.

Alternatively, one can see the above representation as a matrix, where each row represents

a prototype, and each column represents the features that describe a particular prototype

plus a binary value. One should note that the class label is not encoded in the adopted

10 A. Rosales-Pérez et al.

representation. This is because the initial set of prototypes is chosen from the training set.

Therefore, each sample has a class label, which is defined a priori, and remains unchanged

during the evolutionary search.

Evolutionary Operators (1+1)-PAES uses the mutation operator as the only evolution-

ary operator for creating an offspring from a parent. In the literature, there are a number of

mutation operators that allow us to deal either with real-numbers, integer representations,

binary encoding, or any other sort of encoding (interested readers are referred to [20]). Nev-

ertheless, EMOPG+FA adopts a mixed-encoding representation that involves two types of

variables: a real part and a binary part. One could obviously use a standard mutation for

real-numbers encoding and after performing mutation, such variables that correspond to the

binary part can be rounded off. This could be a naive fashion for handling, in a single and

well-known operator, the mixed-encoding problem. However, in this case, small changes made

to binary variables by the operator may be lost after performing the rounding-off process. To

overcome this limitation, we propose to mutate both real and binary variables independently.

Therefore, the individual is decomposed into two parts: the real part and the binary part.

For each part, an ad-hoc mutation operator is applied. For the real-numbers part, we used

polynomial-based mutation [3], while bit-flip mutation [20] was adopted for the binary part.

Fitness Functions The next step is to determine how good a solution is for the problem

at hand and the fitness function is in charge of this. In order to do so we need to assess

the solution with the considered optimization criteria. As we previously stated, we are inter-

ested not only in the classification performance of the generated prototype, but also in the

reduction attained both in the prototype set size and in the feature set size. Therefore, these

three criteria are the fitness functions of our multi-objective prototype generation and fea-

ture selection formulation. The first objective is assessed through a fitness function, f1, that

accounts for the error incurred by the prototypes when used with a 1-NN rule to classify the

training set. The second objective, f2, measures the relative samples reduction rate attained

by a specific individual. Finally, the third objective, f3, counts the number of features re-

quired to describe the samples in the set of prototypes. Besides the definition of the objective

function, we should also recall that the set of prototypes must have at least one prototype

for each class and they must be described by at least one feature. These constraints should

be taken into consideration during the evaluation of the objective functions. We handle this

in a straightforward fashion by adopting a penalty function approach, i.e., we penalize the

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 11

solutions that violate any of these constraints. The fitness functions for our problem can be

stated as follows:

f1 (x) = 1
P

P∑
i=1
L (yi, y∗i) + v (x)

f2 (x) =
∑N

i=1 pi

N
+ v (x)

f3 (x) =
d∑

i=1
fi + v (x)

(5)

where P is the number of samples in the training set, yi is the class label, y∗i is the class

predicted by the set of prototypes, L (yi, y∗i) is a suitable loss function,
∑N

i=1 pi is the total

number of prototypes chosen for a particular individual, N is the (desired) maximum number

of prototypes,
∑d

i=1 fi is the number of features required to describe the prototypes, and v (x)

is a function that indicates the number of classes that are not represented by at least one

prototype and described by at least one feature. The 0/1 loss function was used for our

purposes, due to the fact that it is well suited for classification tasks. This loss function is

defined as:

L (yi, y∗i) =


1 if y∗i 6= yi

0 if y∗i = yi

(6)

Thus, the goal of PAES is to search the space of prototypes aiming to simultaneously

optimize the three aforementioned criteria. At the end of the search stage, PAES returns the

set of non-dominated solutions found. The next section describes our approach to select a

single set of prototypes from the set of solutions obtained by PAES.

3.4 Selecting a Single Solution from the Non-dominated Set

By working with multi-objective optimization problems, one normally expects that more than

one solution will be needed to satisfy the trade-offs among the objectives. Hence, the outcome

of a MOEA is a set of non-dominated solutions, which is expected to be an approximation

of the true Pareto optimal set. In the absence of user preferences, all of them are equally ac-

ceptable solutions to the problem at hand. In our case, each of these non-dominated solutions

represents a set of prototypes to be used as a reduced data set for the 1NN classifier. Thus,

it does not make any sense working with all solutions for classifying a test pattern. Instead

of that, one can try to choose a single solution to be used as the final set of prototypes for

the classification task.

12 A. Rosales-Pérez et al.

In order to choose a single solution, we first define what an ideal solution to the problem

would be. We should recall the three criteria that we look for in EMOPG+FS. The first one

is to reduce the error rate, the second one is to reduce the number of prototypes, and the

third one is to reduce the number of features required to describe the prototypes. Taking this

into consideration, an ideal set of prototypes should correctly classify each instance, i.e., it

should not commit errors when classifying the samples. Moreover, a single prototype should

appropriately represent its corresponding class. Thus, an ideal solution should have at most

as many prototypes as classes the problem has. Finally, with respect to the third goal, an

ideal solution should only require a single feature to perfectly discriminate among the classes.

These aspects are what define our ideal solution or our ideal outcome from the prototype

generation and feature selection approach. Here, we used our ideal solution to choose the most

similar solution in the resulting Pareto set. In order to determine which is the most similar

solution to the ideal one, a distance computation is performed between the ideal solution and

each solution in the resulting Pareto set. The solution located at the minimum distance3 is

chosen to be used as the set of prototypes for classifying unseen test patterns using the 1-NN

rule.

We used the Tchebycheff metric [3] as our distance measure between non-dominated

solutions and zideal. Thus, the solution is chosen through the following expression:

S∗ = argmin
x

[max {|fi (x)− zi|}]∀i∈{1,2,3} (7)

where fi (x) is the ith criterion considered in EMOPG+FS and z = [z1, z2, z3] is our ideal

solution. The following section reports the experiments that we performed in order to assess

the performance of EMOPG.

4 Experiments and Results

This section describes the experimental study performed over a suite of benchmark data

sets widely used for the evaluation of PG methods [17]. We present a statistical analysis of the

results and compare the performance of our proposal with respect to several other methods

from the state of the art.

3 This allows us to choose the solution nearest to our ideal solution. If a designer, however, has a preference

for one particular objective, he/she can pick up another solution from the non-dominated set.

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 13

4.1 Experimental Settings

For our experiments, we considered a suite of 59 data sets taken from the KEEL repository4,

which were also used in the comparative study of PG methods performed by Triguero et

al. [17]. Table 1 shows some characteristics of these data sets. In [17], the authors divided the

datasets according to the number of samples into two categories: in small data sets (less than

2000 samples) and large data sets (2000 and more samples). Moreover, each of these were

previously partitioned into 10 training/test subsets by means of a 10 fold cross validation

strategy. In k fold cross validation, the data set is divided into k disjoint subsets, which are

used for training and testing. This procedure is repeated k times, and at the ith iteration, the

ith subset is used as the test set and the rest are used as the training set.

Here, we performed experiments in order to evaluate the performance of EMOPG+FS

over the suite of data sets. For this set of experiments, we applied our EMOPG+FS to

each data set 10 times, each time for each of the training partitions, in order to generate a

corresponding prototypes set, whose performance is assessed by using the corresponding test

set.

For assessing the performance of the PG methods we considered two criteria: test-set

accuracy and training-set reduction. We compared the experimental results obtained by our

proposed method with those obtained by other evolutionary and non-evolutionary methods

for PG and by the 1-NN classifier.

Regarding the parameters configuration used in our experiments, we fixed the maximum

number of prototypes (N) to be a 5% of the training set size, the number of nearest neighbor

(k) used to weight instances was fixed to 5, the number of instances competing in a tour-

nament (IC) was set to 2, the distribution index for the crossover was set to 10, and the

mutation rate was set to 0.06, the stopping criterion for PAES was to perform 20,000 fitness

functions evaluations, and the external archive keeps at most 20 solutions. These parameters

were empirically chosen by testing different combinations of such parameters (i.e., those pro-

viding the best performance were selected). The parameters from the comparative methods

were those adopted in [17]. The number of fitness function evaluations performed by the com-

parative methods could differ from those performed in our proposal, but we adopted these

parameters under the assumption that they were the ones that gave the best performance for

each method.

4 These data sets are available at http://sci2s.ugr.es/keel/datasets.php

14 A. Rosales-Pérez et al.

Table 1: Description of the data sets used for the experimental study [17]. For each data set,

we show the number of samples, the number of attributes, and the number of classes.
Data set Samples Attributes Classes Data set Samples Attributes Classes

Abalone 4174 8 28 Mammographic 961 5 2

Appendicitis 106 7 2 Marketing 8993 13 9

Australian 690 14 2 Monks 432 6 2

Autos 205 25 6 Movements-libras 360 90 15

Balance 624 4 3 Newthyroid 215 5 3

Banana 5300 2 2 Nursey 12960 8 5

Bands 539 19 2 Pageblocks 5472 10 5

Breast-Cancer 286 9 2 Penbased 10992 16 10

Bupa 345 6 2 Phoneme 5404 5 2

Car 1728 6 4 Pima 768 8 2

Chess 3196 36 2 Ring 7400 20 2

Cleveland 297 13 5 Saheart 462 9 2

Coil2000 9822 85 2 Satimage 6435 36 7

Contraceptive 1473 9 3 Segment 2310 19 7

Crx 125 15 2 Sonar 208 60 2

Dermatology 366 33 6 Spambase 4597 57 2

Ecoli 336 7 8 Spectheart 267 44 2

Flare-Solar 1066 9 2 Splice 3190 60 3

German 1000 20 2 Tae 151 5 3

Glass 214 9 7 Texture 5500 40 11

Haberman 306 3 2 Thyroid 7200 21 3

Hayes-Roth 133 4 3 Tic-tac-toe 958 9 2

Heart 270 13 2 Titanic 2201 3 2

Hepatitis 155 19 2 Twonorm 7400 20 2

Housevotes 435 16 2 Vehicle 846 18 4

Iris 150 4 3 Vowel 990 13 11

Led7digit 500 7 10 Wine 178 13 3

Lymphography 148 18 2 Wisconsin 683 9 2

Magic 19020 10 2 Yeast 1484 8 10

Zoo 101 16 7

4.2 Experimental Results

In this section, we present experimental results obtained by our proposal to show its feasibility

for the PG problem. Table 2 shows the average and standard deviation of the results obtained

by our proposal (EMOPG) and by the reference studies. This table shows separately the

results obtained when considering: all the data sets (59 data sets), only small data sets (40

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 15

Table 2: Results obtained by EMOPG+FS in terms of classification performance and reduc-

tion rate averaged over different data sets for all, for the small and for the large data sets. It

also shows the results obtained by other PG methods, see [17]. The best results are shown in

boldface.

Method
Accuracy

All Small Large

1-NN 74.79± 18.48 72.45± 16.08 79.73± 22.24

AMPSO 70.66± 17.68 69.03± 15.92 74.10± 20.97

GENN 77.47± 17.71 75.64± 15.45 81.33± 21.70

LVQTC 70.05± 18.74 69.81± 17.44 70.56± 21.74

MSE 73.78± 17.64 72.37± 14.81 76.74± 22.69

PSCSA 66.90± 19.68 66.82± 18.74 67.07± 22.05

PSO 76.62± 16.39 75.01± 14.09 79.99± 20.44

EMOPG+FS 76.70± 16.89 74.26± 14.70 81.82± 20.24

data sets), and only large data sets (19 data sets). It also shows the results of other prototype

generation methods reported in the state of the art.

From Table 2, we can see that GENN, PSO, and EMOPG+FS reached a slightly better

accuracy-performance than the 1-NN classifier. Both in all and in small data sets, GENN had

the best performance with respect to the reference methods. PSO had a performance similar

to that of GENN in those data sets. Regarding large data sets, both GENN and EMOPG+FS

had almost the same performance. On the other hand, PSCSA showed the worst performance

among the considered methods for all cases.

Table 3 shows the results in terms of the reduction rates attained both in prototypes

and features. Here, we can note that PSCSA is the best one for reducing the prototype set

size. EMOPG+FS showed to be the second best for both all and the small data sets, and

ranked fourth for the large data sets. On the other hand, GENN is the one that showed the

worst rates with respect to the reduction in the prototype set size, which was the only one

that attained a reduction rate lower than a 20%. We would like to remark that none of the

comparative methods performs a dimensionality reduction step, while EMOPG+FS does. In

this regard, EMOPG+FS is able to reduce the feature set size in almost a 50%; this represents

computational-savings during the similarity computation phase.

In order to assess if there exists a statistically significant difference among the evaluated

methods, we used the Friedman test. This test is conducted on GENN, LVQTC, PSCSA,

PSO, 1-NN, and EMPOG+FS, due to the fact that they had a competitive performance

16 A. Rosales-Pérez et al.

Table 3: Results obtained by EMOPG+FS in terms of the reduction rate in number of

prototypes and number of features averaged over different data sets for all, for the small and

for the large data sets. It also shows the results obtained by other PG methods, see [17]. The

best results are shown in boldface.

Method

Reduction Rate

Prototypes Features

All Small Large All Small Large

AMPSO 95.49± 1.86 94.39± 0.99 97.97± 0.09 00.00± 0.00 00.00± 0.00 00.00± 0.00

GENN 17.70± 14.93 19.91± 14.48 15.76± 19.92 00.00± 0.00 00.00± 0.00 00.00± 0.00

LVQTC 96.87± 3.13 95.61± 2.96 99.75± 0.16 00.00± 0.00 00.00± 0.00 00.00± 0.00

MSE 96.54± 4.66 95.30± 5.10 99.36± 0.73 00.00± 0.00 00.00± 0.00 00.00± 0.00

PSCSA 99.00± 1.37 98.60± 1.47 99.88± 0.17 00.00± 0.00 00.00± 0.00 00.00± 0.00

PSO 95.90± 1.57 94.97± 0.83 97.99± 0.08 00.00± 0.00 00.00± 0.00 00.00± 0.00

EMOPG+FS 97.68± 1.35 97.32± 1.49 98.42± 0.46 56.80± 23.16 60.47± 19.14 49.09± 29.00

either on accuracy or on reduction. This test is suitable to compare multiple algorithms over

multiple data sets [5]. We applied it with a 95% of confidence. Moreover, we should highlight

that our goal was to compare the performance of our proposal (EMOPG+FS) with respect

to the reference methods. Therefore, the Bonferroni-Dunn test was performed as a post-hoc

test. We summarize the results obtained by these tests as follows:

– In terms of accuracy performance for all, small, and large data sets, there is not a statisti-

cally significant difference between EMOPG+FS, GENN, PSO, and 1-NN. EMOPG+FS

performs significantly better than all of these methods in terms of prototype set size

reduction.

– EMOPG+FS significantly outperforms PSCSA in all, small, and large data sets in terms

of accuracy performance, but it is statistically worst in terms of the prototype set size

reduction.

Figure 2 shows in a graphical fashion a comparison between EMOPG+FS and other

evolutionary and non-evolutionary approaches for prototype generation. It shows, separately,

the performance of each of these methods both in small and large data sets. It can be seen

from Figure 2a that for small data sets, EMOPG+FS was outperformed by two methods in

terms of test-accuracy. GENN was the best one, but the difference in accuracy between both

methods is not statistically significant. Regarding large data sets, from Figure 2b one can

note that EMOPG+FS outperforms most of the existing methods in terms of both reduction

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 17

and accuracy. This is interesting, since PG methods are normally applied to large data sets.

The accuracy with respect to GENN is similar, but EMOPG+FS has a better reduction rate.

In fact, from this figure it can be observed that the performance of EMOPG+FS is the closest

to the top right corner, where hypothetically, the best method would be located.

Reduction

A
cc

ur
ac

y

0 10 20 30 40 50 60 70 80 90 100
60

62

64

66

68

70

72

74

76

78

80

GENN

Depur

BTS3

MixtGaussSGP

LVQ3

MSE

DSM

LVQTC

VQ

AVQ

HYB
LVQPRU

Chen

RSP3

ENPC

PSO

AMPSO

PSCSA

1NN

EMPOG+FS

(a) Small

Reduction

A
cc

ur
ac

y
0 10 20 30 40 50 60 70 80 90 100

60

62.5

65

67.5

70

72.5

75

77.5

80

82.5

85

GENN
Depur

BTS3

SGP

LVQ3

MSE

DSM

LVQTC

MixtGaussVQ

AVQ

HYB

LVQPRU

Chen
RSP3

ENPC PSO

AMPSO

PSCSA

1NN

EMPOG+FS

(b) Large

Fig. 2: Trade-off between training-reduction and test-accuracy reached by several evolutionary

and non-evolutionary methods for prototype generation and EMPOG+FS for both (a) small

and (b) large data sets.

Finally, in Figure 3 we can observe an approximation of the Pareto front generated by

EMOPG+FS. These figures show that there exists a trade-off among the considered objec-

tives, yielding that there does not exist a single solution that would minimize all objectives

simultaneously. The advantage of using this multi-objective approach is that it provides the

user with more information about the problem in order to make a decision about which

solution should be chosen for a given data set that satisfies his/her requirements.

4.3 Discussion

From the experiments, we can note that several prototypes generation methods seek to find

a reduced set of prototypes while trying to preserve the classification performance. GENN

is a prototype generation method which offers prototypes that preserve or even improve the

1-NN rule in accuracy rate in classification performance. Nevertheless, the reduction rate

reached by this method (in terms of the generated prototype set size) is the worst one. This

is particularly depicted as it is the only one with a reduction rate in prototypes set size

18 A. Rosales-Pérez et al.

0

0.1

0.2

0.3

0.4

0.2

0.3

0.4

0.5

0.05

0.1

0.15

0.2

0.25

0.3

(a) German

0.35

0.4

0.45

0.5

0.55

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

(b) Magic

Fig. 3: Non-dominated fronts generated by EMOPG+FS for two data sets in a particular

trial. The left plot shows a small data set and the right one shows a large data set.

lower that a 20%, while most of the considered methods for the comparison are able to reach

reduction rates above a 90%.

On the other hand, PSCSA is the best one when the reduction in the prototype set size

is the most important issue. PSCSA outperforms the second best in more than 1% for all

cases. This one percent can represent a considerable number of samples in data sets of large

scale. However, as we can see, the accuracy performance of PSCSA is the worst, getting

classification rates below a 70%, while the others, in most cases, attain rates above this 70%.

Therefore, this shows the necessity of considering both criteria as equally important.

There exist other methods that offer a more balanced trade-off between accuracy and

prototype set size reduction. Among these, we can find PSO, LVQTC, and EMOPG+FS.

However, the main difference between EMOPG+FS and the others is that the former is not

only limited to reduce the prototypes set size at the time that it tries to preserve the classi-

fication performance, but it also tries to reduce the dimensionality of the problem at hand.

The latter could represent computational savings during the computation of the similarity

between a test pattern and the prototypes. From the numerical results, we can note that

EMOPG+FS is the one that offers the most balanced trade-off when the three criteria are

taken into consideration without significant over-fitting.

5 Conclusions and Future Work

EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection 19

We presented EMOPG+FS, an evolutionary multi-objective approach for dealing jointly

with prototype generation (PG) and feature selection problems, while keeping a good accuracy

performance. Approaching the problem of generating a new set of prototypes with multi-

objective evolutionary algorithms allows to find solutions that satisfy good trade-offs among

the considered criteria. Experimental results showed that our proposal is able to obtain

representative prototypes and to considerably reduce the dimensionality of the data set,

without significantly degrading the performance of k-NN. Besides this, the performance of

EMOPG+FS over different data sets from different domains gives evidence of the suitability

of using it as a general method for this task.

Our future work involves extending our proposal to deal with user preferences during

the optimization process. We would also like to evaluate the performance of EMOPG+FS

using different values of k for the k-NN classifier. Our current experimental study has been

carried out using a set of standard benchmark datasets, which were previously pre-processed.

However, dataset from real world problems can have noise/missing datasets. Analyzing the

behavior of EMOPG+FS on such dataset is also part of the future work. Moreover, study-

ing the impact of the evolutionary parameters on the quality of the solutions generated by

EMOPG+FS and testing EMOPG+FS on very large scale data sets are other potential paths

for future research.

Acknowledgments

The third author acknowledges support from CONACyT project no. 221551.

References

1. Cervantes, A., Galvan, I.M., Isasi, P.: AMPSO: a new particle swarm method for nearest neighborhood

classification. IEEE Trans. Sys. Man Cy. B 39(5), 1082–1091 (2009)

2. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-

objective problems. Springer, US, second edn. (2007)

3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2001)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30

(2006)

6. Escalante, H.J., Graff, M., Morales-Reyes, A.: Pggp: Prototype generation via genetic programming.

Applied Soft Computing 40, 569–580 (2016)

7. Escalante, H.J., Maŕın-Castro, M., Morales-Reyes, A., Graff, M., Rosales-Pérez, A., y Gómez, M.M.,

Reyes, C.A., Gonzalez, J.A.: MOPG: A Multi-Objective Evolutionary Algorithm for Prototype Generation.

Pattern Analysis and Applications (2016), (in press)

20 A. Rosales-Pérez et al.

8. Fernandez, F., Isasi, P.: Evolutionary design of nearest prototype classifiers. J. Heuristics 10, 431–454

(2004)

9. Garain, U.: Prototype reduction using an artificial immune system. Pattern Anal. Appl. 11(3–4), 353–363

(2008)

10. Garćıa, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor classification:

Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

11. Knowles, J., Corne, D.: Approximating the nondominated front using the pareto archived evolution strat-

egy. Evol. Comput. 8(2), 149–172 (2000)

12. Nanni, L., Lumini, A.: Particle swarm optimization for prototype reduction. Neurocomputing 72(4–6),

1092–1097 (2008)

13. Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.F.: Prototype selection methods. Com-

putación y Sistemas 13(4), 449–462 (2010)

14. Rosales-Pérez, A., Gonzalez, J., Coello-Coello, C., Reyes-Garcia, C., Escalante, H.: Evolutionary multi-

objective approach for prototype generation and feature selection. In: Bayro-Corrochano, E., Hancock,

E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture

Notes in Computer Science, vol. 8827, pp. 424–431. Springer International Publishing (2014), http://dx.

doi.org/10.1007/978-3-319-12568-8_52

15. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of

the 1st International Conference on Genetic Algorithms. pp. 93–100. L. Erlbaum Associates Inc., Hillsdale,

NJ, USA (1985)

16. Triguero, I., Garcia, S., Herrera, F.: Differential evolution for optimizing the positioning of prototypes in

nearest neighbor classification. Pattern Recogn. 44, 901–916 (2011)

17. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study on prototype gener-

ation for nearest neighbor classification. IEEE Trans. Syst. Man Cy. C 42(1), 86–100 (Jan 2012)

18. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn.

38, 257–286 (2000)

19. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B.,

Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl.

Inf. Sys. 14(1), 1–37 (2007)

20. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer (2010)

21. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE

Transactions onEvolutionary Computation 11(6), 712–731 (2007)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for

multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty,

T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial

Problems. pp. 95–100. International Center for Numerical Methods in Engineering (2001)

http://dx.doi.org/10.1007/978-3-319-12568-8_52
http://dx.doi.org/10.1007/978-3-319-12568-8_52

	EMOPG+FS: Evolutionary Multi-Objective Prototype Generation and Feature Selection

