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Abstract: When making decisions, having multiple options available for a possible realization
of the same project can be advantageous. One way to increase the number of interesting choices
is to consider, in addition to the optimal solution x*, also nearly optimal or approximate
solutions; these alternative solutions differ from x* and can be in different regions – in the
design space – but fulfil certain proximity to its function value f(x*). The scope of this article is
the efficient computation and discretization of the set E of e–approximate solutions for scalar
optimization problems. To accomplish this task, two strategies to archive and update the data of
the search procedure will be suggested and investigated. To make emphasis on data storage
efficiency, a way to manage significant and insignificant parameters is also presented. Further
on, differential evolution will be used together with the new archivers for the computation of E.
Finally, the behaviour of the archiver, as well as the efficiency of the resulting search procedure,
will be demonstrated on some academic functions as well as on three models related to space
mission design.
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1 INTRODUCTION

One common way to solve a real world engineering

problem is by transforming it into an optimization

problem* and to seek for the (or at least one) optimal

solution. From a practical point of view, however,

it can, in some cases, make sense to include (in addi-

tion to the optimal solutions) also nearly optimal

solutions since this will give the decision maker

(DM) a larger variety of possibilities: two solutions

which are ‘near’ in objective space (i.e. have similar

objective values)may differ significantly in parameter

space. The storage of both solutions may give the DM

a second option for the realization of his/her project.

As one example, consider the objective shown in

Fig. 1. In case, the DM is willing to accept a deterio-

ration of e2 IRþ, the objective function f contains next

to the global minimizer x1 also the local minimizer x2
which is such an ‘e-approximate solution’ (i.e. the

function values of f(x1) and f(x2) differ by less

than e). All other points in [a,b][ [c,d ] are also

approximate solutions, however, they are all ‘domi-

nated’ (i.e. they offer worse values of f ) within their

connected components by the solutions x1 and x2.

Hence, these solutions are possibly too near to
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1

Proc. IMechE Vol. 0 Part G: J. Aerospace Engineering



XML Template (2011) [19.7.2011–5:08pm] [1–14]
//blrnas1/journals/application/sage/PIG/PIG 413693.3d (PIG) [PREPRINTER stage]

these two points in order to give the DM a significant

new alternative. This depends on the minimal dis-

tance that these two solutions must keep from each

other in order to be considered as ‘distinct’ from a

practical point of view.

Hence, an ‘optimal’ outcome of the optimization

process (depending on the problem) could be to pre-

sent the possible choices x1 and x2 – and no other

solution to avoid confusing the DM and for the sake

of an efficient computation (since no superfluous

options have to be stored and updated).

As another example, consider the problem of

designing an ‘optimal’ trajectory from Earth to the

comet 67P/Churyumov-Gerasimenko (see references

[1, 2], and also Section 5.4). One crucial parameter is

the launch date T0which is in the time window [1460,

1825] MJD2000 (Modified Julian Date 2000). The best

known solution is a trajectory P1 with T0(P1)¼ 1546

[MJD2000] (value rounded) and objective value

f(P1)& 1.34 [km/s] (measured as the total variation

in velocity that the engines have to deliver to reach

the destination). If the DM is willing to accept a dete-

rioration of e¼ 0.5 [km/s], then he/she is given

(among others) another two possible local optimal

trajectories P2 (with T0(P2)¼ 1619 [MJD2000] and

f(P2)¼ 1.76 [km/s]) and P3 (with T0(x3)¼ 1748

[MJD2000] and f(x3)¼ 1.76 [km/s]). Hence, in that

case, the DM is offered two more choices for the

launch of the spacecraft (2.5 respectively 6.5 months

after T0(P1)).

In this article, the problem of computing approxi-

mate solutions of scalar optimization problems is

addressed. Since the set E of these e-approximate

solutions typically forms a n-dimensional set, where

n is the dimension of the parameter space, a suitable

discretization is mandatory in order to be applicable

to real world problems. In this study, the focus will be

on the approximation of the local minima within E.

However, also further points will be considered. If, for

instance, the objective is ‘flat’ around a local mini-

mum in E (as, for instance, happens for the ‘funnels’

in models related to space mission design), then also

points which are not locally optimal but differ suffi-

ciently in parameter space from the local solutions

could be interesting for the DM. To achieve this

goal, two archiving strategies (i.e. strategies to main-

tain a subset of the obtained data) will be proposed

and investigated. In order to obtain an efficient algo-

rithm for the approximation of E, the archivers will be

combined with Differential Evolution (DE), a heuris-

tic that has already shown its efficiency on spacemis-

sion design problems [3, 4].

This study can be considered as an ‘extension’ of

previous studies on the computation of approximate

solutions for multi-objective optimization problems

(MOPs) [5–7]. The crucial difference when consider-

ing scalar optimization problems (i.e. one objective)

is that in that case, a discretization in parameter

space can be performed. As will be seen later on, a

discretization of the set of interest is mandatory.

In case multiple objectives are under consideration,

a discretization in parameter space leads either to a

tremendous number of archive entries when choos-

ing small or even moderate values for the discretiza-

tion parameter, or leads to grave loss of information

in case this parameter is large. The latter is due to the

fact that the solution set (the so-called Pareto set) typ-

ically forms a (kÿ 1)-dimensional object, where k is

the number of objectives in the MOP, and hence, a

discretization around a promising point (optimal or

nearly optimal) leads to a non-observance of an entire

(and large) optimal region. This will change, however,

if we consider only one objective since in that case the

(local or global) optima are typically isolated (as in

Fig. 1). Thus, in such case, a discretization can in prin-

ciple be performed in parameter space without

essential loss of information. A preliminary study of

this can be found in reference [8].

Next, there is a certain relation to multi-modal

optimization [9–17], where the task is to detect all

local minima within a given region. However, note

that there are some differences to the approach in

this study: first, this study is not interested in local

minima nor any other point outside E. Second, and

that is more important, the present study is not

‘restricted’ to local minima (though better solutions

in a given neighbourhood will be preferred in order

to discretize the set of interest E). For this, consider

for instance Rosenbrock’s banana function (which

indeed shares some characteristics with the objec-

tives related to space mission design considered

in this study). The function contains one global min-

imum m which is located inside a long, narrow, and

Fig. 1 Example of an objective function with two local
minima x1 and x2 which are similar in objective
space but differ in parameter space
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flat valley. Hence, it could make sense to compute

next to m (as for multi-modal optimization) also fur-

ther approximate solutions along the valley, since

they could be distinct solutions for the DM.

Finally, approximate solutions in space mission

design problems have already been considered in

reference [18], where a hybrid multiagent approach

has been chosen for their detection.

The remainder of this article is organized as

follows: Section 2 gives the required background

for the understanding of the sequel. Section 3

presents and investigates the set of interest, and in

Section 4 methods are proposed for their efficient

computation. Section 5 presents some numerical

results, and finally, some conclusions are drawn

in Section 6.

2 BACKGROUND

In this article, we consider single-objective optimiza-

tion problems (SOPs) of the following form:

min
x2Q

f ðxÞ ð1Þ

where it is assumed that f :Q� IRn! IR is continuous.

For theoretical purposes, it has to be assumed that f

is even continuously differentiable, though this

smoothness assumption will never be used in the

numerical treatment (since DE does not exploit gra-

dient information). Further, it has to be assumed that

the domain Q is compact which is typically given if Q

is defined by equality and inequality constraints.

In the easiest case (which is already sufficient for

the models considered in this study), Q can be

defined by box-constraints, i.e. the domain forms

an n-dimensional box

Q ¼ x 2 R
n
: ai � xi � bi , i ¼ 1, . . . ,n

� 	

ð2Þ

where ai and bi are the lower and upper bounds of

each parameter xi.

The solution set of (1) is given by

MQ :¼ fx 2 Q : f ðxÞ � f ð yÞ 8y 2 Qg ð3Þ

Note that MQ does not have to consist of one single

solution, however, except for plateau functions,

the solution set will be a finite set of points (i.e. a

0-dimensional set). To illustrate this, the reader may

think of the sine curve restricted to a closed interval.

Algorithm 1 gives a framework of a generic stochas-

tic search algorithm, which has first been studied

in reference [19], and which will be considered in

this study. Here, Q� IRn denotes the domain of the

problem, Pj the candidate set (or population) of

the generation process at iteration step j, and Aj the

corresponding archive.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0�Q drawn at random

2: A0¼ArchiveUpdate(P0, ;)
3: for j¼ 0, 1, 2, . . . do

4: Pjþ1¼Generate(Pj)

5: Ajþ1¼ArchiveUpdate(Pjþ1, Aj)

6: endfor

Finally, some distances between points and sets as

well as between different sets are defined which will

be needed to evaluate the approximation quality of

the outcome set.

Definition 2.1

Let u, v2 IRn and A, B� IRn. The semi-distance dist(�, �)
and the Hausdorff distance dH(�, �) are defined as

follows:

(a) dist ðu,AÞ :¼ infv2A ku ÿ vk;
(b) dist ðB,AÞ :¼ supu2B dist ðu,AÞ;
(c) dH(A, B)9max {dist(A, B), dist(B, A)}.

3 THE SET OF INTEREST

In the following, the set of interest, MQ,e, is defined

and some of its topological properties are discussed.

Definition 3.1

Let e> 0. x2Q is called an e-approximate solution of

(1) if f(x)ÿ e� f(y) for all y2Q. The set of e-efficient

solutions MQ,e of (1) is defined by

MQ,� ¼ fx 2 Q : f ðxÞ ÿ � � f ð yÞ 8y 2 Qg ð4Þ

A point x is an e-approximate solution of a set A if

f(x)ÿ e� f(a) for all a2A.

The following examples illustrate the set of interest.

Example 3.2

(a) Let f : IRn! IR be given by

f ðxÞ ¼
X

n

i¼1

x2
i ð5Þ

then the sets MQ and MQ,e for an e> 0 are given by

MQ ¼ f0g, MQ,� ¼ x 2 R
n

:

X

n

i¼1

x2
i � �

( )

ð6Þ

that is, MQ,e is the closed ball with centre 0 and

radius
ffiffiffi

�
p

.

(b) The set of e-approximate solutions for the intro-

ductory example (Fig. 1) is given by MQ,e¼
[a, b][ [c, d], i.e., in particular disconnected.

Single-objective space mission design problems 3
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The following short discussion shows that MQ,e is

typically n-dimensional (whereas MQ is typically

0-dimensional): let x� 2 MQ\ Q
�
, where Q

�
denotes

the interior of Q, and f is continuous. Then, there

exists, by continuity of f, a neighbourhood N of x*

inside Q such that

f ðxÞ ÿ � � f ðx�Þ 8x 2 N ð7Þ

and hence, the n-dimensional set N is contained

in MQ,e. Thus, suitable discretization strategies are

required for the efficient use of approximate

solutions.

Another important aspect is the connectedness of

the set of interest. It can be shown (analogue to refer-

ence [20]) that in case both the objective f as well

as the domain Q are convex, then MQ,e is connected

(and can possibly be computed most efficiently by

local search procedures if at least one solution is

available), but this does not hold in general, as the

above example shows. Hence, global strategies seem

to be advantageous for the treatment of general

objectives.

One potential problem at least for theoretical

observations is that MQ,e may contain isolated

points. For this, consider the objective function

shown in Fig. 2 which is a modification of the intro-

ductory example: in this case, it is MQ,e¼ {x*}[ [c, d],

that is, contains the isolated point x*. The problem

with such points is that it cannot be guaranteed

to capture them by the use of stochastic search algo-

rithms [20]. To allow convergence of the algorithm

the following has to be assumed

B �
�
Q and rf ðxÞ 6¼ 0 8x 2 B ð8Þ

where rf (x) denotes the gradient of f at x, and B the

boundary of MQ,e, i.e. it holds

B :¼ fx 2 Q j f ðmÞ þ � ¼ f ðxÞ for m 2 MQg ð9Þ

Under this assumption, it can be shown (analogue

to reference [20] that MQ,e contains no isolated

points, i.e.

�
MQ,� ¼ MQ,� ð10Þ

Finally, it is important to note that the approach

can be used to detect multiple solutions in MQ since

every optimal solution is also an e-approximate

solution. To be more precise, the set of optima MQ

is contained in MQ,e for every e> 0. Furthermore, it is

MQ ¼
\

�40

MQ,� ð11Þ

Classical elitist approaches have strong limitations in

detecting multiple solutions since there is typically

only one ‘best’ (scalar) value out of a finite set of can-

didates. Regarding this, it is important to note that a

discretization ofMQ,e cannot be performed by merely

considering the objective values (as e.g. done in

reference [20] for the multi-objective case).

4 AN ALGORITHM FOR THE APPROXIMATION

OF MQ,e

In this section, one possibility to compute approxi-

mations of MQ,e – DE together with an external

archive – is presented. Following the notation of

Algorithm 1, the archiver and the generator which

constitute the stochastic search process will be con-

sidered separately.

4.1 Two archiving strategies

In the following, two possible archiving strategies

aiming for the representation of MQ,e are discussed:

the first captures all e-approximate solutions out of

the obtained data, and the second one uses a certain

discretization strategy.

The first archiver considered here,

ArchiveUpdateMQ,e, is shown in Algorithm 2. The

information management is straightforward: the

algorithm captures all the e-efficient solutions out

of the obtained data (i.e. out of the sequence of can-

didate sets Pi). The following proposition states this

more precisely.

Proposition 4.1

Let l2N, e2 IRþ, P1, . . . ,Pl� IRn be finite sets, and Ai,

i¼ 1, . . . , l, be obtained by ArchiveUpdateMQ,e as in

Algorithm 1. Then

Al ¼ MCl ,� ¼ fx 2 Cl : f ðxÞ ÿ � � f ð yÞ 8y 2 Clg
ð12Þ

where Cl ¼
Sl

i¼1 Pi .
Fig. 2 Example where the set of interest contains an

isolated point: here, it is MQ,e¼ {x*}[ [c, d]
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Proof

Follows by construction of ArchiveUpdateMQ,e. h

Next, the limit behaviour of the sequence of

archives Ai generated by the archiver is investigated.

For this, the following assumption on the generation

process has to be made [21, 22]:

8x 2 Q and 8�4 0 :

P 9l 2 N : Pl \ B�ðxÞ \Q 6¼ ;ð Þ ¼ 1 ð13Þ

where P(Å) denotes the probability for event A.

Assumption (13) says, roughly speaking, that every

neighbourhood U\Q of every point gets ‘visited’

by Generate() after finitely many steps with probabil-

ity one. The following consideration shows that

we cannot assume less: if (13) does not hold,

there exists with probability one a point x2Q and

a neighbourhood Ũ¼U\Q of x such that no

candidate solution p2Pl lies in Ũ for all l2N.

Thus, no convergence can be guaranteed since

a part of MQ,e can be contained in Ũ which is never

‘visited’.

Corollary 4.2

Let a SOP f : IRn! IR be given, where F is continuous,

let Q� IRn be a compact set and e2 IRþ. Further, let the

assumptions (8) and (13) be fulfilled. Then, an appli-

cation of Algorithm 1, where ArchiveUpdateMQ,e is

used to update the archive, leads to a sequence of

archives Al, l2N, with

lim
l!1

dH ðMQ,�,Al Þ ¼ 0, with probability one

ð14Þ

Proof

The proof is analogue to the proof of Theorem 2 of

reference [5] using the modified assumption (8). h

However, due to the dimension ofMQ,e, the strategy

is apart from a theoretical point of view only interest-

ing, e.g. if the cost of a function evaluation is relatively

high, i.e. if only a moderate amount of function calls

can be spent within a given time budget. In that case,

it makes sense to store all interesting information

(and not to lose single promising candidates due to

discretization) and ArchiveUpdateMQ,e can be chosen

without significant computational loss.

More interesting – and mandatory for the efficient

application to real world problems – is certainly to

filter the incoming data farther by considering a suit-

able discretization strategy. In order to accomplish

this task, ArchiveUpdateMQ,eDx (Algorithm 3) is

proposed here which is similar to the first archiver

but performs a selection of the promising data. The

underlying idea of ArchiveUpdateMQ,eDx is to keep

(locally) best found solutions within a certain range

(using e2 IRþ in objective space and a vector � 2 R
n
þ

in parameter space) and to discard inferior points in

the neighbourhood of these ones in order to obtain a

suitable discretization (compare to the motivating

example in Section 1).

Algorithm 2 A9ArchiveUpdateMQ,e (A0, P, e)

Require: archive A0, candidate set P�Q, tolerance

e2 IRþ
Ensure: updated archive A

1: A9A0

2: for all p2P do

3: if `a2A : f(a)þ e� f(p) then

4: A9A[ {p}

5: end if

6: for all a2A do

7: if f(p)þ e< f(a) then

8: A9A\{a}

9: end if

10: end for

11: end for

More precisely, given an archive A0 and a candidate

solution p, the new archiver A is constructed as

follows: p is rejected (and hence, A is set to A0)

if either p is not an e-approximate solution of A0

(i.e. f (xb)þ e< f(p), where xb is the best found solu-

tion), or if there exists an element a 2 A0 \ B1
�
ðpÞ,

where the neighbourhood B1
�
ðpÞ is defined as

B1
�
ðpÞ :¼ fx 2 R

n
: jxi ÿ pi j5�i , i ¼ 1, . . . ,ng

ð15Þ

which is at least as good as p (line 6 of Algorithm

4). If p is not discarded, this means that (i) this

point is an e-approximate solution of A, and (ii)

that it is the best point in its neighbourhood (the

latter defined by � 2 R
n
þ). Hence, the new archive A

consists of p as well as all other points of A0 which

are e-approximate solutions of p, and which are

not in the �-neighbourhood of p (lines 10-14 of

Algorithm 3).

Note that ArchiveUpdateMQ,eDx in Algorithm 3

is formulated for the consideration of one candi-

date point p. However, an extension to entire sets

P�Q is straightforward. Further, for the sake of

a better readability the best found solution xb
is explicitly stated. This is, in fact, not required

since the best found solution is always included

in the archive due to the construction of

Algorithm 3.

Single-objective space mission design problems 5
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Algorithm 3 {A, xb}9ArchiveUpdateMQ,eDx (A0, xb,0,

p, e, �)

Require: archive A0, best found solution xb,0, candi-

date solution p2Q, tolerance e2 IRþ, discretization

parameter � 2 R
n
þ

Ensure: updated archive A, best found solution xb
1: if f(p)< f(xb,0) then

2: xb9p

3: else

4: xb9 xb,0
5: end if

6: if f(xb)þ e< f(p) or (9a 2 A0 : p 2 B1
�
ðaj Þ and

f(a)� f(p)) then

7: A9Ao [ discard p

8: return

9: end if

10: A9 {p}

11: for all a2A0 do

12: if f(a)� f(xb)þ e and a 62 B1
�
ðpÞ then

13: A9A[ {a}

14: end if

15: end for

Results of the sequence of archives when using

ArchiveUpdateMQ,eDx are not as straightforward as

for the first archiver ArchiveUpdateMQ,e. Given Al

and Cl as above, and denoting by xb,l to the best

found solution in step l, then it holds

xb,l 2 MCl
and Al � MCl ,� ð16Þ

However, further approximation qualities (such as

the Hausdorff distance between Al and MCl
,e) for

finite candidate solutions {p1, . . . ,ps}, s2N, cannot

be given since the final archive Al depends on the

order the candidate solutions pi are considered.

For this, consider the following example: let f :

[0, 10]! IR, f(x)¼ x2, and e¼ 1. Then, it is MQ,e¼ [0,

1]. Let a hypothetical candidate set be given by

P1 ¼ f0, 0:05, 0:1, . . . , 0:95, 1g ð17Þ

and �¼ 0.1. Then, an application of

ArchiveUpdateMQ,eDx, where A09 ; and the entries

of P1 are considered in ascending order, leads to the

archive

Að1Þ
21 ¼ f0, 0:1, 0:2, . . . , 1g ð18Þ

If the entries of P1 are considered instead in descend-

ing order, then the final archive is given by

Að2Þ
21 ¼ f0g ð19Þ

since in each iteration the actual candidate point

is added to the archive while the previous one is

deleted. However, since by assumption on the

generator, each region is (re-)visited after finitely

many steps, the ‘limit archive’ (i.e. for iteration step

l!1) in this case will be equal to Að1Þ
21 .

The following result shows that local minima

within MQ,e will be approximated under certain

assumptions (and also explain the ‘limit archive’

of the above example):

Proposition 4.3

Let m 2
�

MQ,� be the unique minimum of f within

the domain Q \ B1
~�
ðmÞ, where ~�i 4�i , i¼ 1, . . . ,n.

Then an application of Algorithm 1, where

ArchiveUpdateMQ,eDx is used to update the archive,

leads to a sequence of archives Al, l2N such that

with probability one

(a) 9al2Al : al!m for l!1
(b) Al \ B1

�
ðmÞ ¼ falg 8l � l0 for an integer l0

Proof

Ad (a): By assumption (13) on the generator there

exists with probability one a sequence of candidate

solutions pli2Q such that pli2MQ,e and pli!m for

i!1. By construction of ArchiveUpdateMQ,eDx, the

candidate solution pli is either discarded if there

already exists an archive entry ali2Ali with f(ali)� f(pli)

(line 6 of Algorithm 3), or ali9pli is added to the

archive (line 10 of Algorithm 3). Since entries a2Al

are only replaced from the archive if there is a better

solution in the �-neighbourhood of a, there exists

with probability one for all l2N an archive entry

al 2 Al \ B1
�
ðmÞ) such that f(al)! f(m) for l!1.

Since m is the unique solution in Q \ B1
~�
ðmÞ, it

follows that al!m for l!1 with probability one.

Ad (b): follows by (a) and the construction of

ArchiveUpdateMQ,eDx. h

Crucial for the successful application of the latter

archiver is certainly the proper choice of �. By con-

struction of the archiver, it holds for every archive

entry a2Al

A \ B1
�
ðaÞ ¼ fag ð20Þ

and hence, the choice of � has a direct influence on

the distribution of the archive entries (see e.g. the

numerical results in Section 5.2). In general, smaller

values lead to a better approximation quality

(measured in the Hausdorff sense). However, too

small values should be avoided in order to prevent

huge archive sizes: assume, for simplicity, that

�¼ (d, . . . , d), where d2 IRþ is ‘small’. Then, we

expect due to the dimension of MQ,e that the magni-

tude of the limit archive is of the order O(dÿn).

Larger entries of � lead to the focus – and in the
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ideal case also to a complete reduction – of the

local minima within MQ,e (i.e. O(1) entries in the

limit archive), however, the possibility increases

that several minima are located within one

�-neighbourhood.

In case the objective f is derived from a real world

problem, a possible rule of thumb is to choose the

entries of � such that two solutions x1 and x2 within

the same set B1
�
ðxÞ do not represent different options

for the DM. As an example, consider the departure

time T0 of a trajectory design problem. If two trajec-

tories are given where the departure time does

not differ significantly (say, less than 1 week), the

two trajectories cannot be regarded as different

(at least according to T0), and the choice would

always be in favour of the best of both trajectories

(i.e. the inferior trajectory does not have to be

stored). In this manner, the required number

of archive entries depends on the behaviour of f and

the preferences of the DM.

4.2. Using differential evolution as our generator

Having stated the archiver, it remains to define the

generator in order to obtain a complete search pro-

cedure as defined in Algorithm 1. Themost important

aspect for the generation process – next to conver-

gence to (local)minima – is a good exploratory behav-

ior. Hence, a population-based method seems to be

most promising. Here, we have chosen to utilize DE

as the basis for the generator procedure. This state of

the art heuristic has shown its efficiency on a variety

of scalar optimization problems – including problems

related to space mission design [3].

Algorithm 4 shows the complete search procedure.

As it can be seen, the outcome of DE is simply

used to feed the archiver with candidate solutions.

We have observed that this already defines a satisfy-

ing search engine. In the implementations, we

have used the classical variant of DE as described

in reference [23].

For future investigation, there are several issues

to be explored. For instance, it seems promising to

couple the population of DE with entries of the

archive. Our studies have shown, however, that this

is a non-trivial task for practical use of the algorithm

due to a performance decrease in case the archive

contains many elements. Further, we do not exclude

here the possibility that other DE variants or even

other population-based methods can yield similar

or even better results. Note, however, that the focus

of this work is on the choice of the archiver. The sub-

sequent results show that the chosen approach is

suitable enough for the treatment of the problems

that interest us.

Algorithm 4 DEþArchiveUpdateMQ,eDx

1: procedure DE

2: A0¼ArchiveUpdate(P0, ;).
3: Generate a random initial population P0.

4: for j¼ 0, 1, 2, . . . ,do

5: Apply the DE operators to Pj in order to get

6: a new population Pjþ1.

7: for every p2Pjþ1 do

8: Aj9ArchiveUpdate(p, Aj).

9: end for

10: Ajþ19Aj

11: end for

12: end procedure

5 NUMERICAL RESULTS

In the following, some numerical results on two aca-

demic problems as well as on three space mission

design problems are presented in order to demon-

strate the benefit of both the new archiver and the

new strategy for the approximation of MQ,e.

5.1 Example A

The first academic function considered here is f :

Q� IR2! IR, where

f ðxÞ ¼
ÿ sinðx1Þ sinðx2Þ if x1, x2ð Þ 2 ½0, 10�2

ÿ sinðx1Þ sinðx2Þ þ 1 otherwise

8

<

:

ð21Þ

and domain Q¼ [0, 200]2. The objective is con-

structed such that the minima are located within [0,

10]2, i.e. MQ ¼ fx�
1 , x

�
2 , x

�
3 , x

�
4 , x

�
5g, where

x�
1 ¼ �

2
,
�

2

� �

, x�
2 ¼ �

2
,
5�

2

� �

, x�
3 ¼ 5�

2
,
�

2

� �

,

x�
4 ¼ 3�

2
,
3�

2

� �

, x�
5 ¼ 5�

2
,
5�

2

� �

ð22Þ

If choosing for instance e¼ 0.3, the set of approximate

solutions MQ,e consists of five connected compo-

nents, each of them containing one minimizer x�
i .

Further, for�¼ (2, 2) an ‘optimal’ archiver A contains

exactly five solutions, each of them approximating

one minimizer x�
i (compare to Fig. 3).

In order to compare the result of the novel

approach (i.e. DEþ archiver), we have chosen

to take a multistart optimization process (using

FMINCON of Matlaby) and a random search

procedure, both equipped with the archiver

yhttp://www.mathworks.com.

Single-objective space mission design problems 7

Proc. IMechE Vol. 0 Part G: J. Aerospace Engineering



XML Template (2011) [19.7.2011–5:08pm] [1–14]
//blrnas1/journals/application/sage/PIG/PIG 413693.3d (PIG) [PREPRINTER stage]

ArchiveUpdateMQ,eDx. We have not consideredmulti-

modal optimizers in this case, since SOP (21) contains

a total of 2000 local minima, but only five of them are

contained in MQ,e. Hence, a comparison is not

suitable.

Tables 1 to 3 show some averaged numerical results

using the three algorithms and a budget of 12 000

function calls per run. For DE, a population size of

200 has been used together with the rand/1 strategy,

and the Fweight factor of the DE was set to 0.9 in

all cases. Table 1 shows the number of connected

components detected by each method. Here, DE

clearly outperforms the two other methods. This is

important to note since the maintainance of diversity

is an important issue when considering approximate

solutions asmotivated in Section 1. Tables 2 and 3 are

dedicated to the (local) convergence behaviour of the

archive entries. Since MQ consists of five different

solutions, the following values have been chosen to

be used for a comparison (note that both sets Afinal

and MQ are finite, and hence, the operators min and

max can be used)

dist ðAfinal ,MQÞ ¼ max
a2Afinal

min
i¼1,...,5

ka ÿ x�
i k ð23Þ

that is, the maximal distance from an archive entry

of Afinal to MQ, and the Hausdorff distance

dH ðAfinal ,MQÞ ¼maxðdist ðAfinal ,MQÞ,dist ðMQ ,Afinal ÞÞ
ð24Þ

where

dist ðMQ ,AfinalÞ ¼ max
i¼1,::,5

min
a2Afinal

kx�
i ÿ ak ð25Þ

Surprisingly, DE can compete with the FMINCON

solver when considering dist(Afinal, MQ) in this exam-

ple (and is even better in the mean), and is by far the

best when considering the Hausdorff distance. The

latter is strongly connected to the result in Table 1.

Since all the local minima of (21) within MQ,e

are also global minima it could be argued that the

problem is equal to a ‘classical’ single-objective opti-

mization problem. To investigate if DE is also able to

pull the population toward local optima within MQ,e,

which are not global ones we consider the following

variation of problem (21)

f ðxÞ ¼
ÿsinðx1Þsinðx2Þÿ0:15 if k x1,x2ð Þk1 ��

ÿsinðx1Þsinðx2Þ if �5k x1,x2ð Þk1 � 10

ÿsinðx1Þsinðx2Þþ1 otherwise

8

>

<

>

:

ð26Þ

f
f(x) = -0.95
f(x) = -0.85
f(x) = -0.65
f(x) = -0.55
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Fig. 3 Surface and contour plot of objective (21) within
the ranges [0, 10]2 and the setsMQ,e for different
values of e (the circles around the minimizers x�

i
indicate the boundaries of MQ,e)

Table 2 Distance from the archive obtained with

each method to the optima set. Minimum,

maximum, and average values are over 100

independent runs with at least one compo-

nent reached. The best values are emphasized

in boldface

Dist(Afinal, MQ)

Method Min Mean Max

Random search 1.54819e-01 7.95134e-01 3.30567eþ00
Multistart (fmincon) 7.18079e-07 1.48833e-01 3.46062eþ00
Using DE 4.17808e-03 2.96775e-02 3.96064e-01

Table 3 Hausdorff distance between the archive

obtained with each method and the optima

set. Minimum, maximum, and average

values are over 100 independent runs with at

least one component reached. The best values

are emphasized in boldface

Hausdorff

Method Min Mean Max

Random search 6.76238e-01 5.20366eþ00 9.32016eþ00
Multistart (fmincon) 4.44283eþ00 6.28666eþ00 1.12152eþ01
Using DE 4.17808e-03 2.51149e-01 4.44260eþ00

Table 1 Number of components found by each

method. Minimum, maximum, and average

values are over 100 independent runs

Number of components found

Method Min Mean Max

Random search 1 2.92 5
Multistart (fmincon) 0 1.79 4
Using DE 4 4.97 5
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For Q¼ [0, 200]� [0, 200] and e¼ 0.3 MQ,e contains

the same five local minima x�
1 to x�

5 , but only x�
1 is a

global solution. Table 4 shows a comparison of the

components found by each algorithm. The new

strategy outperforms the other methods in terms of

finding both the global minimum as well as the local

minima within MQ,e. Hence, it can be argued that DE

is in this case also able to pull the population toward

locally optimal solutions.

Summarizing, it can be said that the new strategy

(DEþArchiveUpdateMQ,eDx) is efficient in approxi-

mating all the local minima of MQ,e (and only them

in this case). However, it has to be noted that the

result (i.e. the set of entries which are kept in the

archive) highly depends on the choice of e and �

which is ad hoc unclear for this (and in principle for

any other) academic model.

5.2 Example B

The next academic function under consideration is

(compare to Example 3.2)

f : R
2 ! R

f ðxÞ ¼ x2
1 þ x2

2

ð27Þ

Figure 4 shows some numerical results for the two

different archiving strategies and different discretiza-

tions. In all cases, e¼ 1 has been chosen and

N¼ 100 000 randomly chosen points out of the

domain Q¼ [ÿ2, 2]2 have been inserted into the

archivers. Figure 4 (a) shows the result of

ArchiveUpdateMQ,e, where the final archive Afinal con-

sists of the numerically intractable amount of 16 607

elements. Figure 4 (b) shows a result of the archiver

ArchiveUpdateMQ,eDx using �¼ (0.1, 0.1) leading

to 175 archive entries. Though this is, unlike the

first result, a tractable number of elements, similar

small values of the entries of � can quickly lead

to similar problems when increasing the number

of parameters. A possible remedy could be (if possi-

ble) to assign different values for the entries �i

according to their significance. Figure 4 (c) shows

a result of ArchiveUpdateMQ,eDx for �¼ (0.1, 1).

Hereby, it is assumed that a change in x1 is relatively

important (and results with even small changes in x1
have to be stored) while a change in parameter x2 is

not of relevance (or not as relevant as a change in x1).

Accordingly, the result in Fig. 4 (c) resembles more a

1D set than a 2D set (as it is the case for MQ,e).

Proceeding in a similar manner, the ‘dimension’ of

MQ,e (and hence the number of elements in the
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(b)

ArchiveUpdateM Dx, ∆=(0.1,0.1),
|Afinal|= 175
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(c)

ArchiveUpdateM Dx, ∆=(0.1,1),

Fig. 4 Numerical results for SOP (27) using dif-
ferent archiver and different discretization
parameters

Table 4 Number of components found by each

method (minimum, maximum and average

values are over 100 runs, each run with a

budget of 12 000 function evaluations) and

percentage of runs that reached the compo-

nent corresponding to the global optima.

The best values are emphasized in boldface

Number of
components Percentage of runs

reaching the
optimal componentMethod Min Mean Max

Random search 1 2.73 5 77
Multi-start (fmincon) 0 1.9 5 40
Using DE 2 4.15 5 100
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archive) can be reduced in any order according to

the problem and the computational limitations: if,

in the extreme case, the value �i¼ biÿ ai is chosen,

where ai and bi are the bounds for parameter xi, then

the archiver makes no distinction with respect to xi,

and hence, the ‘dimension’ of the outcome set

obtained by ArchiveUpdateMQ,eDx is indeed reduced.

5.3 Transfer from earth to apophis

In addition to the previous academic examples, three

interplanetary trajectory design problems are consid-

ered in the following.

The peculiarity of all problems (as well as other

problems related to space mission design) is that:

the local minima are – similar to Rosenbrock’s

famous banana function – typically located in long,

narrow valleys, often flat in one particular direction;

there are multiple local minima grouped in clusters

with a funnel structure [24]. Hence, such problems

are typically (i) hard to solve and (ii) the approxima-

tion of MQ,e by using ArchiveUpdateMQ,eDx can con-

tain a tremendous number of archive entries for small

or even moderate values of �. To avoid this and

to obtain a meaningful approximation of MQ,e, the

authors of this article have proceeded as described

in the previous subsection: the domain was divided

into ‘significant’ and ‘insignificant’ parameters. For

the significant parameters (launch date, initial veloc-

ity, and time of flights), the discretization parameter

�i¼ (biÿai)/0.01, i.e. 1 per cent of the given range

[ai,bi], has been chosen, and for the insignificant

parameters (angles, k2) the value �j¼ (bjÿ aj)/0.1

has been chosen.

The first example is an apparently simple transfer

from the Earth to the asteroid Apophis. The transfer is

performed by applying a change of velocity at depar-

ture, or�v, to leave the Earth, and a change of velocity

at Apophis to rendezvous with the asteroid. The cost

function is the sum of the modula of the two velocity

variations. Due to the similarity of the orbital ele-

ments of the two celestial bodies, there exist many

local minima corresponding to many possible ways

to reach Apophis. The cost function depends on the

launch date and transfer time. Here, both parameters

have been chosen to be significant and a wide range

of values was chosen for both parameters (about 7000

days for the launch date and 800 for the transfer time).

Over such a wide range of values, identifying the

global minimum is a challenge. Figure 5 shows the

level curves of the objective function. Darker areas

correspond to lower values of the total �v. In Fig. 1,

one can observe a large number of local minima with

the associated long narrow neighbourhood men-

tioned before. The minima are grouped and the

clusters are distributed along the launch-date axis

with a certain periodicity. Each cluster, or group of

minima, belongs to a different funnel.

For this kind of problems, although the identifica-

tion of the global minimum is useful, it is also not

sufficient to design a mission. Decision makers

require other two pieces of information: given an

optimal launch date and transfer time, alternative

launch dates and transfer times with similar cost are

required as back up options, for each locally optimal

launch date and transfer time all transfer solutions

in a close neighbourhood of the local minimum are

required. The set of solutions that are in a neighbour-

hood of the local minimum and at a distance e from

it in the image space, form the so-called launch

window. A wide launch windowmeans a flexible mis-

sion that can accommodate delays and contingen-

cies. The set of local minima with similar cost

represents multiple launch opportunities: a mission

with multiple launch opportunities offers a higher

degree of robustness and flexibility.

The dots in Fig. 5 are the solutions collected by the

archiving strategy using e¼ 0.5 [km/s], after n¼ 1e7

function evaluations of Differential Evolution, with

a population size of 100, F¼ 0.9, and CR¼ 1. The

archiving procedure correctly identified the most

interesting launch opportunities (lowest �v) with

their associated local neighbourhood. Therefore,

in this case, the decision maker is offered with three

groups of launch opportunities and for each one
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Fig. 5 Numerical results for the objective considered
in Section 5.3. The figure shows the contour
plot of the objective plus the archive entries
obtained by the novel algorithm
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multiple launch windows with transfer times ranging

from less that 100 days to over 400 days. All the col-

lected solutions have a total �v at an e distance from

the best solution, therefore, they are all admissible.

In fact, the value e is easily set a priori based on

mission constraint on the available �v budget.

Note that the best known solution for this problem

is included in the archive.

6 THE ROSETTA CASE

This second case study is a multigravity assist trajec-

tory from the Earth to the comet 67P/Churyumov–

Gerasimenko following the gravity assist sequence

that was planned for the spacecraft Rosetta: Earth-

Earth-Mars-Earth-Earth-Comet. This mission was

initially scheduled for launch on an Ariane 5

launcher. However, due to a failure in the previous

launch, the mission had to be rescheduled.

Rescheduling a mission with such a complex

sequence of gravity assist manoeuvres is not an easy

matter. Therefore, for this type of mission, it is desir-

able to generate multiple transfer options since the

start of the mission design process. The trajectory

model considered here is the one described in refer-

ences [1, 2]. A deep space maneuver is allowed along

the transfer arc from one planet to the other accord-

ing to the model presented in references [1, 24]. The

objective is the sum of all the deep spacemanoeuvres

plus the initial �v0 at departure and the final �vf to

rendezvous with the comet. The search space for this

problem has 22 dimensions and cannot be graphi-

cally completely represented. An analysis of this

search space can be found in reference [24]. Even

in this case the local minima are grouped in multiple

funnels, for each funnel, the analysis in reference

[24], revealed a high number of local minima irregu-

larly distributed.

Figure 6 shows three projections of the final archive

Afinal of one run of the algorithm described in Section

3 for e¼ 0.5 [km/s] and � as described above. Afinal

consists of a total of 122 elements and contains an

approximation of the best known solution 20 P1

with f(P1)& 1.34 [km/s] [2] as well as other e-approx-

imate solutions of P1 within three connected compo-

nents. The three local optima within the components

are shown in Table 5. The clusters in Figure 6 corre-

spond to the funnel structures identified in reference

[24]. As already mentioned in Section 1, the DM

is offered (at least) two more options in addition

to the best known trajectory. Also, the number of

archive entries is tractable since it does not slow

down the computational cost significantly. If, hypo-

thetically, for unified small values of �i three points

per coordinate direction and connected component

would have been required for the approximation

(which is much less than shown in Fig. 6), this

would have led to a total of 3� 322& 1011 archive

entries, which would certainly not have been

realizable.
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Fig. 6 Numerical results for the Rosetta case. Hereby,
x1 denotes the value of the launch date
(MJD2000), x2 denotes the initial velocity (km/
s), x5 denotes the time of flight for the first arc of
the trajectory (d), and x6 the time of flight for the
second arc of the trajectory (d)
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7 THE CASSINI CASE

The Cassini case is a multigravity assist trajectory

from the Earth to Saturn following the sequence

Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS).

Even in this case, a deep space manoeuvre is allowed

along the transfer arc from one planet to the other

according to the model presented in reference

[1, 24]. The objective is the sum of all the deep

space manoeuvres plus the initial �v0 at departure

and the final �vf at arrival at Saturn. This model

reproduces the actual Cassini–Huygens mission that

was launched in 1997 and successfully entered into

orbit around Saturn in 2004. Unlike the Rosetta case,

the current hypothesis from previous analyses is that

there is only one principal funnel and that the

minima are nested in very narrow valleys. Figure 7

shows a final archive Afinal (with jAfinalj ¼ 635)

obtained from this model using the same values for

e and � as for the Rosetta case.

From Fig. 7, one can see one main cluster with the

solutions distributed in two connected groups.

In the x1ÿ x6 and x1ÿ x5 planes, i.e. launch time,

time of flight of the first transfer arc, time of flight

of the second transfer arc, one can notice that the

solutions are aligned along particular directions,

revealing a narrow valley structure. In the x1ÿ x2
plane, the solutions are much more scattered,

although still two main groups can be identified

(for further details on this particular problem,

please refer to [24].

Therefore, also in this case, the archiving procedure

seems to have correctly captured the distribution of

the minima, providing information on the structure

of the problem. The DM is offered a variety of

options which are all admissible, because e is the
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Fig. 7 Numerical results for the Cassini case. Hereby,
x1 denotes the value of the launch date
(MJD2000), x2 denotes the initial velocity
(km/s), x5 denotes the time of flight for the
first arc of the trajectory (d), and x6 the time of
flight for the second arc of the trajectory (d)

Table 5 The three local solutions Pi, i¼ 1, 2, 3, from

the three connected components shown

in Fig. 6

Variable Units P1 P2 P3

x1 MJD2000 1.542Eþ03 1.748Eþ03 1.620Eþ03
x2 km/s 4.443Eþ00 5.000Eþ00 5.000Eþ00
x3 n/a 9.881E-01 5.146E-01 9.613E-01
x4 n/a 5.623E-01 2.958E-01 5.000E-01
x5 Days 3.652Eþ02 3.652Eþ02 4.940Eþ02
x6 Days 7.082Eþ02 5.391Eþ02 5.389Eþ02
x7 Days 2.574Eþ02 6.810Eþ02 6.811Eþ02
x8 Days 7.304Eþ02 6.307Eþ02 6.309Eþ02
x9 Days 1.850Eþ03 1.818Eþ03 1.813Eþ03
x10 n/a 3.178E-01 5.496E-01 4.151E-01
x11 n/a 8.097E-01 1.088E-01 9.516E-02
x12 n/a 1.361E-01 4.308E-01 3.963E-01
x13 n/a 6.566E-01 2.713E-01 4.703E-02
x14 n/a 4.375E-01 4.908E-01 4.876E-01
x15 n/a 2.986Eþ00 2.374Eþ00 1.699Eþ00
x16 n/a 1.050Eþ00 1.050Eþ00 1.050Eþ00
x17 n/a 3.202Eþ00 3.326Eþ00 3.338Eþ00
x18 n/a 1.050Eþ00 1.050Eþ00 1.050Eþ00
x19 rad 3.273Eþ00 3.122Eþ00 3.361Eþ00
x20 rad ÿ2.187E-01 ÿ4.443E-01 ÿ4.423E-01
x21 rad 3.135Eþ00 2.556Eþ00 2.560Eþ00
x22 rad 3.554Eþ00 3.656Eþ00 3.656Eþ00
F(P) 1.342Eþ00 1.763Eþ00 1.770Eþ00
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quantification of the available�v budget and all differ

at least by the value of �.

8 CONCLUSIONS AND FUTURE WORK

In this article, the problem of computing the set MQ,e

of e-approximate solutions of a scalar optimization

problem with a focus on local minima has been

addressed. For this, two archiving strategies have

been proposed, one which captures all e-approximate

solutions out of the obtained data, and another one

which uses a certain discretization strategy. Since

the dimension of MQ,e is typically n, where n is the

number of parameters involved in the model, the

first archiver is mainly of theoretical interest, and

required a suitable discretization. The strategy used

in the second archiver is designed to focus on the

local minima within MQ,e. However, the outcome

of the archiver is crucially dependent on the choice

of the discretization parameter � 2 R
n
þ which has

hence to be chosen problem dependent. Since the

‘optimal’ choice of this parameter may be ad hoc

unclear, or intuitive choices may lead to a numeri-

cally untractable number of archive entries, one way

to reduce the elements in the archive has been dis-

cussed which has an analogue effect as the reduction

of the dimension of the set of interest and which

allows for the efficient treatment of higher dimen-

sional problems. Finally, the efficiency of the search

strategy (DE together with the new archiver) has been

shown on some benchmark functions and its useful-

ness has been illustrated showing several models

related to space mission design.

As part of our future work, an adaptive choice of �

would be of particular interest for both theoretical

and practical considerations: such an adaptation

could for instance be used to explore the neighbour-

hood of a locally e-approximate solution within MQ,e

since this set is very important to quantify its robust-

ness. Finally, open branches of research can be found

when interleaving the archive with the generator heu-

ristic (DE, PSO, etc.) as a matter of feedback into its

main population.
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