

Improving the Vector Generation Strategy of Differential
Evolution for Large-Scale Optimization

Carlos Seguraa,∗, Carlos A. Coello Coellob, Alfredo G. Hernández-Dı́azc

aArea of Computer Science, Centre for Research in Mathematics (CIMAT), Callejón Jalisco s/n, Mineral de Valenciana,
Guanajuato, Guanajuato 36240, Mexico

bEvolutionary Computation Group, Department of Computer Science, Center of Research and Advanced Studies, National
Polytechnic Institute, Mexico City 07300, Mexico

cDepartment of Economics, Quantitative Methods and Economic History, Pablo de Olavide University, Seville, Spain

Abstract

Differential Evolution is an efficient metaheuristic for continuous optimization that suffers from the curse
of dimensionality. A large amount of experimentation has allowed researchers to find several potential
weaknesses in Differential Evolution. Some of these weaknesses do not significantly affect its performance
when dealing with low-dimensional problems, so the research community has not paid much attention to
them. The aim of this paper is to provide a better insight into the reasons of the curse of dimensionality
and to propose techniques to alleviate this problem. Two different weaknesses are revisited and schemes
for dealing with them are devised. The schemes increase the diversity of trial vectors and improve on
the exploration capabilities of Differential Evolution. Some important mathematical properties induced
by our proposals are studied and compared against those of related schemes. Experimentation with a set
of problems with up to 1000 dimensions and with several variants of Differential Evolution shows that
the weaknesses analyzed significantly affect the performance of Differential Evolution when used on high-
dimensional optimization problems. The gains of the proposals appear when highly exploitative schemes
are used. Our proposals allow for high-quality solutions with small populations, meaning that the most
significant advantages emerge when dealing with large-scale optimization problems, where the benefits of
using small populations have previously been shown.

Keywords: Differential evolution, diversity preservation, global numerical optimization, large-scale
optimization, vector generation strategy

1. Introduction

Differential Evolution (de) [43] is an efficient population-based metaheuristic initially designed for con-
tinuous optimization. From its inception, it has yielded remarkable results in several optimization compe-
titions [12], such as in the 2005 IEEE Congress on Evolutionary Computation (cec) competition on real
parameter optimization [39], or in the special issue on Scalability of Evolutionary Algorithms and other5

Metaheuristics for Large Scale Continuous Optimization Problems, recently organized for the Soft Comput-
ing Journal (soco) [21]. In addition, it has been successfully applied to demanding practical optimization
problems [56, 16].

In spite of the promising results obtained with different variants of de, several potential weaknesses have
been discovered. One of the first weaknesses studied is the large dependency between the de parameters and10

the quality of the results. Several studies have shown that de is very sensitive to the setting of its control

∗Corresponding author. Tel.: + 52 473 732 7155
Email addresses: carlos.segura@cimat.mx (Carlos Segura), ccoello@cs.cinvestav.mx (Carlos A. Coello Coello),

agarher@upo.es (Alfredo G. Hernández-Dı́az)

Preprint submitted to Information Science March 25, 2015

parameters [15, 60]. Furthermore, several de trial vector generation strategies have been proposed [37, 17],
hampering the choice of de’s parameters and components. In order to sidestep this drawback, some schemes
consider the simultaneous use of several de components and parameter values [55, 34].

Some weaknesses involving the specific way in which new individuals are created in de have also been15

identified [19, 20]. de borrows the idea from the Nelder & Mead method [28] of employing information from
the vector population to alter the behavior of the variation scheme. Thus, the perturbation performed by the
scheme is internally induced, i.e., the strength of the mutation depends on the contents of the population.
The main associated problem is that de has the potential to generate only a limited number of different
trial solutions within one generation. In [19], it was shown that this can lead to a situation where de20

may stop proceeding towards a global optimum even though the population has not even converged to a
local optimum. This situation is called stagnation. The likelihood of stagnation occurring depends on the
population size in question, and is more likely to occur when low population sizes are involved. An additional
weakness of de was reported in [20], where the authors generated a set of complex problems by applying
genetic programming with the aim of detecting the drawbacks of different metaheuristics. It was shown25

that, in general, de is less expansive than other metaheuristics. Thus, de might be deceived into converging
on the wrong peak, and once there, it could be impossible for this approach to escape.

The aforementioned weaknesses are closely related to the high selection pressure introduced by de’s
survivor selection scheme and to its premature loss of diversity [2]. In the field of evolutionary computation,
several schemes for dealing with such drawbacks have been proposed, some of which have been considered30

with the aim of improving the capabilities of de. In fact, since its inception, the hybridization of de with
annealing procedures was studied to reduce the selection pressure [37]. Some more recent schemes include
the introduction of stochasticity into the selection process [2] or the use of generational replacement [3].

The papers listed above enumerated some of the potential weaknesses of de. However, most state-of-the-
art de schemes do not introduce any special mechanisms to address these weaknesses, probably because in35

most cases their effects are not very significant. In fact, in many cases the main effects of these weaknesses can
be bypassed by increasing the population size [19]. Thus, it seems that with the traditional parameterizations
of de, the effect of these potential weaknesses is not very cumbersome. The result is that not much attention
has been paid to these weaknesses. On the other hand, it is well-known that de suffers from the curse of
dimensionality, which refers to various phenomena that arise when dealing with high-dimensional spaces that40

do not occur in low-dimensional settings. In these cases, the results can generally be improved by applying
micro-de [30], i.e., schemes with low population sizes, meaning that inducing additional intensification is
useful in these cases. However, such a reduction in the population size can lead to problems in terms of
reliability [60].

The main aim of this paper is to show that when dealing with high-dimensional problems, the weaknesses45

mentioned above might arise and greatly deteriorate the performance of de. Thus, in this paper, two
techniques to address these drawbacks are proposed. Instead of considering general proposals from the field
of evolutionary computation, our modifications take into account the particular variation method of de so as
to preserve its basic principles. Then, we show the utility of these schemes when faced with two well-known
sets of high dimensional optimization benchmark problems. This is tested with several different non-hybrid50

variants of de. Experimental evaluation shows that the benefits are more significant when exploitative
configurations of de are used, such as when considering low population sizes. This indicates that the effects
of the weaknesses analyzed herein have a higher likelihood of appearing when large-scale complex problems
are involved because of the required balance towards intensification. Note that it is beyond the scope of this
paper to design a complete state-of-the art optimization scheme, which usually involves hybrid methods that55

combine several optimization methodologies. Instead, we want to better explore the reasons for the sub-
optimal behavior of de when applied to large-scale problems, which is why simple baseline and non-hybrid
state-of-the-art algorithms are used.

The rest of the paper is organized as follows. A brief summary of de and a discussion of the relevant
background are given in Section 2. Section 3 is devoted to justifying the development of the new scheme60

by analyzing certain mathematical properties of several related schemes. The new proposal is described in
Section 4. Then, our experimental validation is presented in Section 5. Finally, our conclusions and some
lines of future work are given in Section 6.

2

2. State of the art in DE

2.1. Fundamentals65

de was initially proposed as a direct search method for single-objective continuous optimization prob-
lems [44]. In continuous optimization, the variables governing the system to be optimized are given by a

vector ~X = [x1, x2, x3, ..., xD], where each variable xi is a real number. The number of variables (D) defines

the dimensionality of the optimization problem. Finally, the objective function f(~X)(f : Ω ⊆ RD → R)
measures the quality of each set of variables. The aim of the optimization — considering a minimization70

problem — is to find a vector ~X∗ ∈ Ω in which f(~X∗) ≤ f(~X) holds for all ~X ∈ Ω. The problems most
typically addressed with de are box-constrained optimization problems. In these cases, the region Ω is
specified with the lower (aj) and upper (bj) bounds of each variable (j) in the problem.

de is a population-based stochastic algorithm that belongs to the broad class of Evolutionary Algorithms
(eas). As with other eas, it randomly initializes a population (P) with np individuals (P = { ~X1, ..., ~XNP }).75

Each individual is a vector with D real numbers. The value of the j-th variable of individual Xi is denoted
by xi,j . Then, the population evolves over successive iterations to explore the search space. In de, the term
vector, instead of individual, is commonly used. At each de iteration, the following steps are executed. First,
for each vector in the population — called target vector — a new mutant vector is created using a vector
generation strategy. Several vector generation strategies have been proposed [37, 29]. Then, the mutant80

vector is combined with the target vector to generate the trial vector. After generating np trial vectors,
each one is compared against its corresponding target vector. In each comparison, the best one is selected
to survive. In case of a tie, the new generated trial vector survives.

Regardless of the vector generation strategy, the term base vector is used to refer to an initial vector
that is subsequently perturbed to generate the mutant vector. The perturbation is done by considering one85

or several differences among other vectors in the population. In order to classify the different variants of
de, the well-known notation de/x/y/z was introduced in [44]. In this paper, in order to comment some
properties of several mutation strategies, the notation de/x/y is used. The descriptions given in such cases
are independent from the crossover scheme.

One of the most common ways of selecting the base vectors is the “rand” strategy. In the “rand” strategy,90

any vector in the population different from the target vector is randomly selected as the base vector. Then,
this vector is mutated to create the mutant vector (Vi). The most commonly applied crossovers are the
binomial (bin) and the exponential (exp) operators. The crossover operation is controlled by means of the
crossover rate (CR). In the bin strategy, the trial vector (Ui) is generated using (1). randi,j is a uniformly
distributed random number in the range [0,1], and jrand ∈ [1, 2, ..., D] is a randomly chosen index.95

ui,j =

{
vi,j if (randi,j ≤ CR or j = jrand)
xi,j otherwise

(1)

The exp crossover operates as follows. First, an integer n is chosen at random from among the numbers
[1, D]. This integer is the starting point in the target vector, from where the crossover starts. In addition,
an integer L ∈ [1, D], which represents the number of mutated components, is generated by considering the
truncated geometric distribution (see (2)) [54]. Finally, the mutant vector is generated using (3). In this
equation the angular brackets 〈 〉D denote a modulo function with modulus D.100

Prob(L = h) =

{
(1− CR) CRh−1 if 1 ≤ h < n
CRn−1 if h = n

(2)

ui,j =

{
vi,j if j − 1 ∈ {〈n− 1〉D, ..., 〈n+ L〉D}
xi,j otherwise

(3)

It is also important to note that the vector generation strategy might generate trial vectors outside
the feasible region. Several ways of dealing with this scenario have been proposed [37]. A widely used
repairing scheme is based on randomly reinitializing the offending values. As this last approach is the most
unbiased [37] and has yielded promising results [38], it is the one we will use in this paper.

3

2.2. Large Scale Optimization105

The large amount of research conducted on de in the last two decades has shown that the performance
of de quickly deteriorates as the size of the search space increases [12]. In fact, this is a common finding in
the field of evolutionary computation [50]. The reasons appear to be two-fold. First, problem complexity
usually increases with the size of the search space, meaning that more efficient search strategies might be
required. Second, the search space grows exponentially but the available computational resources cannot110

be scaled in the same way. In fact, in most scalability studies, the number of function evaluations only
increases linearly with the dimensionality of the problem.

The new properties of the optimization process imply that the features required of the optimization
scheme might differ from those corresponding to low-dimensional cases. For instance, the balance needed
between exploration and exploitation might vary. In light of this, the most promising schemes for large-scale115

problems might not be the same as those used for low-dimensional problems. In some ways, it is similar
to those cases where the optimal scheme depends on the number of function evaluations allowed, because
the optimal way of exploring the search space might depend on the proportion of the search space to be
explored. Moreover, in our opinion, we cannot expect to have schemes as efficient as in low-dimensional
spaces precisely because of the reduction in the percentage of the space being explored. We should note that120

there exist some methods, as Multiple Offspring Sampling (mos) [21], that have yielded quite good results
for a large range of dimensionalities without the requirement to adapt their parameters to the different
search space sizes. However, even in these high-quality cases, there exist other approaches that might be
preferred for some specific dimensions. For instance, in some problems, Generalized Adaptive Differential
Evolution (gade) [52] yielded better results than mos at the lowest dimensionalities, but not at the largest125

ones.
Since the inception of de, it has been obvious that its optimal setting might depend on the dimensionality

of the given optimization problem. For instance, several different recommendations for setting np based on
D have been given. Some initial studies [15, 60] recommended to establish a linear dependency between np
and D. However, when very large search spaces were used [30], it was clear that using such large population130

sizes is not practical. In fact, in mos — one of the top-rated schemes for the special issue held in soco —
the population size was fixed to 15 even for dimensions as high as 1000. Small population sizes induce a
higher convergence speed but at the cost of increasing the likelihood of stagnation or premature convergence.
Thus, the proper setting of np does not only depend on D but also on the stopping criterion. Finally, some
promising schemes use a variable population size so as to adapt the exploitation and exploration capabilities135

to the requirements of different stages [8, 58]. This idea has been successfully adopted to deal with high-
dimensional problems [7].

In the case of the crossover scheme, several comparative studies involving low-dimensional spaces [26]
have shown that the bin strategy is generally more adequate. However, in some high-dimensional bench-
marks, much better results have been reported with exponential crossover than with binomial crossover [21].140

The reason seems to be that when too many values from the mutant vector are considered, the pertur-
bation is too disruptive. In [54] it was shown that the difference between the behavior of binomial and
exponential crossover is influenced more by the different impact of CR on the number of values taken from
the mutant vector than by the different strategies for selecting components. In fact, when dealing with
high-dimensional problems, promising results have also been obtained with binomial crossover and very145

low CR values [30]. However, when operating with other large-scale optimization problems, such as those
devised for the competition on Large Scale Global Optimization [45] that was organized at the 2010 IEEE
Congress on Evolutionary Computation (cec’10), some different conclusions can be drawn. For instance,
some of the best solutions that have been reported for de consider the combination of several crossover
operators [48, 5]. The implications of these combinations are not fully analyzed in the previously indicated150

papers, but our preliminary experiments with this benchmark show that by only using exp crossover, the
perturbations are too limited to avoid stagnation. However, relatively small perturbations are required in
some stages, which seems to justify the combination of several crossover operators. The large differences
between the best-behaved schemes for the soco and cec’10 benchmark sets — where not only the crossover
operators are different — probably indicate that adapting the schemes to the features of the problems at155

4

hand is more important when dealing with large-scale problems than when dealing with problems with a low
number of variables. In fact, it has been recently shown that some of the best schemes defined for certain
benchmarks do not perform well when other functions are considered [23].

Several different alternatives for dealing with large-scale optimization have been devised. The reader is
referred to [25] for a detailed review of different frameworks. In [25], adaptations involving several different160

metaheuristics are reviewed. Most of the ideas presented have also been applied to de. One of the most
popular design decisions when dealing with large-scale optimization is to hybridize the scheme by taking into
account different optimization methodologies [34]. Probably the most popular choice is to design memetic
schemes by combining de with an intensification scheme such as a local search strategy. However, note that
in some of the most successful memetic schemes for large-scale optimization, the additional components are165

not used only for intensification. For instance, in mos, the Multiple Trajectory Search (mts) can lead to very
large movements. Thus, two different schemes where both can do global and local searches are integrated.
While this idea is quite promising, the purposes of each method are not independent, meaning that the
control of the different schemes involved is not trivial at all. This is also an indication of the poor diversity
induced by de when dealing with large search spaces. In fact, another popular choice is to apply a de with170

a structured population [49], which also gives additional control over the diversity.
Several other authors are working on non-hybrid de schemes. While these schemes are not yet able

to yield the high-quality solutions obtained with hybrid methods, they are usually easier to analyze and
control. Advances in non-hybrid variants are important, as they might yield future hybrid schemes that
are easier to control, along with further improvements. For instance, if the capabilities of de as a global175

searcher are improved, it might be used only as a global optimizer and combined with a “real” local search
that is based only on making small movements. Some of the most popular non-hybrid alternatives that have
been devised in the de field are based on the application of adaptive schemes [52] and on the application of
opposition-based learning [47]. The principle of the former is to exploit the strengths of different components
and/or parameter values. The latter is based on diversifying the search by incorporating an opposition-180

based population. gade [52] is an example of the former, while Generalized Opposition-based Differential
Evolution (gode) [47] is an example of the latter. Both schemes were successfully applied to the soco tests.
While these schemes are not yet competitive when compared to hybrid approaches, they are clearly superior
to the basic variant of de. In the case of the cec’10 tests, some similar ideas have also been adopted. In
this case, however, several adjustments must be made in order to obtain competitive results. For instance,185

in jdesps [5], in addition to parameter adaptation, a varying population size, ageing, a local search and
several other mechanisms were included.

Finally, another relatively unexplored topic for large-scale optimization with de is the use of cooperative
co-evolution [35]. The principle of co-evolution is to exploit the separability of problems [50]. In these kinds
of schemes the problem is decomposed by splitting the variables into different subcomponents, each of which190

is then optimized and the findings combined. A major difficulty in applying co-evolution is the choice of a
suitable decomposition [42, 31], though some strategies for automatically decomposing problems have been
proposed [51, 32]. Note that even with the use of co-evolution, considering small population sizes seems
very promising [33].

2.3. Adaptation of Scale Factor195

In de, one of the parameters that must be set by the user is the mutation scale factor (F). Several
adaptive proposals have been devised to avoid having to manually tune this parameter [12]. Since these
schemes are related to the new proposals put forth in this paper, they are briefly summarized in this section.
The first proposals that considered a non-static F value did not take into account the feedback obtained
from the optimization process. In some cases, a static schedule for F was defined [11]. In other cases, the F200

value was randomly set [37]. The update process can be done at the generation, vector (dither) or variable
level (jitter). Several random distributions have been proposed for generating the new values, with some
of the most widely used being the Gaussian, Log-normal and Cauchy distributions [36]. Empirical studies
have revealed that the results are highly dependent on the distribution used, although no single distribution
has been shown to be superior to the others.205

5

In order to better adapt the scheme to the given optimization problem, the feedback obtained in the
optimization process can be used to set F [46, 53]. Interestingly, in many of these schemes a large amount
of randomness is considered in the generation of new F values. In fact, proposals where less randomness
is considered have not yielded such promising results [9]. Some of the most successful schemes have been
jDE [6] and JADE [55]. In jDE, each individual has its own value for F . When a new individual is created,210

a new random F value in the range [Fmin, Fmax] is used with ratio τ . Otherwise, the F value of the target
vector is used. In JADE, the F value is generated based on a Cauchy distribution with location factor µF

and scale parameter 0.1. If the generated value is lower than 0, it is regenerated. If it is higher than 1, it is
truncated to 1. The location factor is initialized to 0.5 and updated after each generation by considering the
Lehmer mean of the successful F values, the previous location factor and a parameter c, which represents215

the location factor’s velocity of adaptation.
Finally, it is interesting to note that some researchers have claimed that the benefits obtained by consid-

ering feedback when setting the F values are not significant [59]. They assert that the advantages obtained
with these methods stem from the increase in diversity and that random schemes could be used as well. In
fact, it is worth noting that in SaDE [38] — one of the most promising variants of de — F is set randomly220

using a Gaussian distribution with mean 0.5 and standard deviation 0.3. However, the study presented
in [59] was carried out with a basic de variant. In [41] it was shown that there is a relationship between
the likelihood of success of the adaptation schemes and the balance between exploration and intensification
caused by the trial vector generation strategy. Thus, these kinds of adaptive schemes are useful but they
are not as general as expected; thus, designing more general methods is still an open area of research.225

3. Mathematical Analysis of Related Approaches

3.1. Number of Potential Trial Vectors

The appearance of stagnation in de is closely related to the limited number of potential trial vectors
that can be generated in each generation [19, 20]. In [19], an analysis of the number of potential trial vectors
that can be created in different contexts is carried out by considering binomial crossover. As previously230

mentioned, in the case of high-dimensional spaces, the use of exponential crossover has led to promising
results [21]. By adapting the equation developed in [19] to binomial crossover (4), the number of potential
trial vectors of exponential crossover can be calculated (5). A de/rand/1/exp strategy is considered.

ntrial = (NP 3 − 3NP 2 + 2NP)× 2D ×NP (4)

ntrial = (NP 3 − 3NP 2 + 2NP)×NP × (D2 −D + 1) (5)

The number of potential trials that can be generated with exponential crossover is much smaller than
the number generated with binomial crossover. In fact, in the exponential case, the number of potential235

trials only grows polynomially with D. This means that as D grows, the difference between the search
space size and the number of potential trials increases exponentially. For this reason, our hypothesis is that
as D grows, the exploration capabilities of de deteriorate and stagnation is more likely to appear. The
above equations also reveal that by increasing np, the number of trial vectors can be increased. Doing so,
however, reduces the convergence speed, so expanding np could significantly increase the number of function240

evaluations required, which might be non-viable for expensive, large-scale optimization problems.
In the cases where the binomial strategy is used, the number of trial solutions grows exponentially.

However, when dealing with high-dimensional spaces, the most promising results have been achieved by
using very low CR values [30]. This means that the generation of each potential trial solution is not
equiprobable. For instance, a vector containing the whole variables of a mutant vector is generated with a245

very low probability (CRD). Thus, in practice, the number of potential trial vectors with no insignificant
probabilities of being generated does not grow as much as the search space.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000

P
(P

e
rt

u
rb

a
ti
o

n
 <

 x
)

x

Perturbation CDFs

N(0,1)
N(0.5,0.3)
C(0.5,0.1)

F=0.5

Figure 1: cdfs used for mutating in different de variants

3.2. Effects of Adapting the Mutation Scale Factor

Several schemes that consider a variable F value have been devised in an effort to increase the robustness
of de. The number of potential trial vectors can be indirectly increased by using these schemes, which could250

alleviate stagnation problems. As previously described, the methods that consider a non-static F value can
be separated into those schemes that take into account feedback to set the value of F and those that do
not do it. Among the schemes that do not consider any feedback, the most popular strategies set F by
using a random (e.g., Gaussian or Cauchy) distribution. One of the first distributions tested was the N(0,
1) [1], i.e., a Gaussian distribution with µ = 0 and σ = 1. This distribution has a large standard deviation,255

and as such it could generate very low and very high F values frequently. This means that the size of the
vector differences and the strength of the perturbations are not as correlated as in the basic version of de.
For instance, in the first stages of the optimization, even if all the differences that appear in the population
are large, some small perturbations might be carried out. In some way, this goes against the principles of
de. Related to this drawback, it is important to note that in most of the distributions considered so far,260

the probabilities of generating values near zero are not negligible. Thus, whereas all of these schemes could
improve the exploitation capabilities of de, they would do so at the cost of accepting small movements even
in the first stages of the optimization, where the original de does not generate small perturbations. In the
cases in which large-scale spaces are explored and a limited amount of resources are considered, these small
movements could significantly deteriorate performance. In the same way, when using distributions with long265

tails, de might generate highly disruptive mutations even at the end of the optimization.
In order to better understand the behavior of these schemes, it is interesting to show the conversions

performed by these methods for a one-dimensional problem. Let us consider a problem with one variable
(v) whose lower and upper bounds are 0 and 10 000, respectively, and assume that the N individuals in
the current population are almost equidistributed in the search space. Specifically, five individuals with270

the following v values are considered: 20, 2 505, 5 008, 7 419 and 9 819. Figure 1 shows the cumulative
distribution function (cdf) used to perturb the individuals in different de variants, i.e. the probability of
using perturbations lower than the value given on the horizontal axis. Specifically, it shows the cdfs obtained
with a de that considers a fixed scale factor (F = 0.5) and with three typically applied distributions: the
distribution N(0,1), used in [1]; the N(0.5,0.3), applied in SaDE [38]; and finally, the Cauchy distribution275

with location factor 0.5 and scale parameter 0.1, which is the initial distribution considered in JADE [55].
For this last case, the truncation mechanism applied in JADE is considered. Given the symmetry of de,
absolute values are considered.

de with the distributions tested tends to yield small perturbations with a larger probability than the
basic de. In fact, the original de does not yield perturbations smaller than 1,200 units. However, in the rest280

of the schemes, the probability of producing a perturbation lower than 1,200 units is larger than 12%. In the
same way, larger perturbations than in the original de might be generated. For instance, de with a fixed F
value does not produce any perturbation larger than 5000 units. However, the probabilities of having such
perturbations with the remaining distributions are not insignificant. Thus, many of the perturbations might

7

generate individuals outside the feasible region. In fact, several perturbations larger than the search space285

size can be generated. These undesired movements might deteriorate the performance of de, especially when
dealing with large spaces where the percentage of space explored by de is smaller than in low-dimensional
spaces. Considering all these properties, it is clear that using such random distributions might have a large
impact on the results. However, it is not clear whether these properties are beneficial when high-dimensional
spaces are involved.290

In other promising schemes, the feedback obtained during the execution is used to set the value of F .
In these cases, it is not easy to develop a theoretical analysis because the behavior depends on the function
to be optimized. However, it is important to note that the advantages of using feedback are not as robust
as expected [59, 41]. In any case, since some state-of-the-art de schemes use feedback to set the value of
F , the experimental evaluation developed in this research takes into account some of the most well-known295

adaptive schemes.

4. Our Proposals

In this paper, a novel de scheme is proposed whose aim is to avoid the aforementioned weaknesses. The
scheme incorporates two main modifications. Both proposals change the way of perturbing solutions in
de. Specifically, when the new modifications are considered, the way of calculating the perturbation size300

is modified. Thus, instead of using the scaled difference vector to perturb a given base vector, alternative
methods are applied. The principle of the first modification is to increase the number of potential trial
solutions while at the same time preserving the basic behavior of de. The aim of the second modification
is to improve the exploration capabilities of de so as to correctly deal with large search spaces and enable
additional ways of avoiding stagnation and premature convergence. Both modifications are used when a305

trial vector that considers only one mutant variable is going to be created, i.e., when the value L generated
by the exponential crossover is equal to one. These modifications might also be applied when several mutant
variables are inherited by the trial vector. This can be done in several ways, however, and requires a more
in-depth study considering the relationships among the distributions that arise for the different variables.
We carried out some initial experiments in which the distributions were regarded as independent, though310

this resulted in unsuccessful schemes. This could probably be fixed by taking into account the relationships
among the distributions that arise in the different variables. One option might be to apply copula functions,
as was done in Estimation of Distribution Algorithms [40]. However, this would result in a quite complex
scheme. Since quite promising results are obtained without the incorporation of these more complex schemes,
this analysis is beyond the scope of this paper.315

4.1. Continuation Scheme

The aim of the first modification is to increase the number of potential trial vectors that can be generated
with de. In order to define the proposal, the mathematical analysis developed for the de schemes presented
before for dealing with random F values was considered. One of the main strengths of these models is
that any perturbation between the maximum and the minimum admissible perturbations has a non-zero320

probability of being generated. Thus, if for a given variable i the maximum and minimum perturbations
that can be generated with a given distribution are maxi and mini, respectively, any modification in the
range [mini, maxi] can be generated. In other words, the cdf is monotonically increasing in this range.
This does not happen when a fixed value of F is used. In contrast, the main weaknesses detected involve
the very small or large mutations that are occasionally carried out.325

Our proposal is based on generating a monotonically increasing cdf by slightly modifying the cdfs that
appear in those de schemes that consider a fixed F value. Then, these cdfs are used to generate random
numbers that are multiplied by F and used to mutate the population vectors, just as in the original de.
The scheme functions as follows. First, an approximation of the cdf that models the absolute values of
the perturbation performed by a de with F = 1 is calculated for the variable that is going to be mutated.330

This is done by considering (6), where minor(x) is the number of differences that appear in the population
that are lower than x. The denominator is the amount of vector differences appearing in the population

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8

P
(P

e
rt

u
rb

a
ti
o

n
 <

 x
)

x

Perturbation CDFs

F = 1
Approximated

cDE

Figure 2: cdf generated with cde

minus one. This ensures that the maximum value of (6) is one. The generated cdfs have the form of a step
function. Then, for each difference (d) that does not appear in the current population and that is located
between the minimum and maximum existing differences, CDF (d) is calculated using a linear interpolation.335

The interpolation is done by considering the differences d1 and d2, where d1 is the highest difference lower
than d that appears in the population, and d2 is the lowest difference higher than d that appears in the
population.

CDF (x) =
minor(x)

0.5× (NP)× (NP − 1)− 1
(6)

As an example, assume that the set of differences appearing in a given population with NP = 5 is:
1.1, 1.3, 1.4, 1.41, 1.43, 1.45, 8, 8.3, 8.5, 8.7. Figure 2 shows the cdf corresponding to a de with F = 1, the340

approximate cdf calculated using the above steps — function (6) is evaluated for each of the differences
appearing in the population — and the cdf corresponding to the new model, i.e., the previous one with
interpolation. The scheme that considers the use of this new cdf is called Continuous Differential Evolution
(cde), in reference to the fact that any mutation step in the range [mini, maxi] can be generated. As we
can see, the cdf in cde has a larger slope in the zones where a larger number of differences appear and the345

values mini and maxi remain intact. Thus, differently to the cases that apply a variable F value, the de
principle that correlates the strength of the mutation to the size of the differences is better respected in our
transformation. At the same time, the number of potential trials is augmented with the aim of avoiding
stagnation.

Note that in order to calculate the cdf, NP×(NP−1)
2 distances must be taken into account. In our350

implementation, the only cdfs that are calculated are those that are used in each generation. In the worst
case, and taking into account that for large-scale optimization, NP is usually much smaller than D, NP
cdfs should be calculated, meaning that in the worst case about NP 3 operations are required. However,
in the average case fewer operations are used. In fact, when the “exp” crossover is taken into account,
on average only (1− CR)×NP cdfs are calculated in each generation, meaning that the time associated355

with the continuation scheme is shorter. When using benchmark problems, this task can consume a non-
negligible proportion of the total time. For instance, when de with NP = 15 and CR = 0.9 is used to solve
the f1 problem of the soco benchmark, the model with the continuation scheme uses about 35% more time.
Moreover, the penalty grows for larger population sizes. Specifically, the penalty is 75% when NP is set to
30 and 255% when NP is set to 50. However, when more expensive functions are used, these penalties are360

drastically decreased. Once a case is analyzed, it is not difficult to predict the penalty obtained for other
problems. The most important features are the evaluation time associated with the new problem and the
value of NP . For instance, if for a given problem whose evaluation cost is EvCost, the basic de variant
takes t1 seconds to complete StopEv evaluations and the model that incorporates the continuation scheme
takes t2 seconds, the penalty percentage can be approximated using (7). In this equation, t represents365

the evaluation time associated with the problem whose penalty is predicted. Note that the numerator

9

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

P
e

n
a

lt
y
 (

%
)

Evaluation Time (s)

NP=50
NP=30
NP=15

Figure 3: Approximation of the penalty (%) induced by the continuation scheme

represents the increase in time caused by our proposal, which is independent of the evaluation cost, while
the denominator is an estimation of the time of an execution of the DE variant that does not include the
continuation scheme, for a problem whose evaluation cost is t.

Penalty(t) =
t2− t1

t1− StopEv × EvCost+ StopEv × t
× 100 (7)

Figure 3 shows an approximation of the penalty by using the data obtained for f1 with three different370

values of NP . Note that for short evaluation times, the penalty is large. However, as the evaluation time
increases, the penalty quickly diminishes. In order to evaluate the accuracy of the approximation, the
penalties associated with f17 were calculated. Experimentally, the penalties were 0.87%, 2.02% and 4.3%
when NP was set to 15, 30 and 60, respectively. In problem f17, the evaluation takes about 3 × 10−4

seconds, so the predicted values are 0.42%, 0.87% and 2.93%. While these values are not exact, they are375

proper approximations, meaning (7) can be used to accurately estimate the penalties. In any case, the key
is that even with relatively inexpensive evaluation functions such as f17, the penalty is not too large, so in
computationally demanding problems the penalty term is probably negligible. As a result, in this paper the
computational study is carried out considering the number of evaluations instead of the time.

4.2. Avoiding a Large Reduction in Diversity380

Initial experimentation —which did not consider any technique to promote large perturbations— has
shown that large mutations were not required in most of the executions. However, in some of the worst
cases, the maximum difference between the values appearing for one variable might be highly reduced
from one generation to the next. This might leave large portions of the search space unexplored, yielding
unsatisfactory results. In addition, our initial experiments showed that the likelihood of this occurrence385

increases with the number of dimensions considered. Our analysis showed that this was related to the fake
large moves studied in [27], which are a set of moves that appears when there are some low differences in
the population. Note that, given two randomly generated individuals (Xi and Xj), the probability (P) that
the difference between the values of their corresponding v-th variables will be lower than ε is given by (8).
Obviously, as the number of dimensions considered grows, the probability associated with the appearance390

of low differences in at least one variable increases sharply. Specifically, the expected number of variables
where this happens is D×P , meaning that as the number of dimensions grows, there will be a larger number
of variables where low differences will appear. In fact, the probability associated to this event tends to one
when the number of variables considered tends to infinity.

P (|xi,v − xj,v| < ε) =
2ε

bv − av
− ε2

(bv − av)2
(8)

The previous formula applies to any type of EA. However, de is the only variant which is affected by395

the fake large moves, which is why special actions must be taken in de. Considering this and the promising

10

results that have been obtained with complex multimodal problems by using distributions with long tails to
generate the F values [36], we decided to design an adaptive scheme that promotes large perturbations in a
controlled fashion. Since the scheme promotes large perturbations, using it frequently might provoke a too
disruptive scheme. For this reason, the scheme is only used when the value L generated by the exponential400

crossover is equal to one and with a ratio equal to hmr — high mutation ratio. In the remaining cases (ratio
1−hmr), the original de or the continuation scheme previously described is applied.

The scheme operates as follows. Each time that it is applied to a given variable i, a large random
number (R) is generated. Then, R is used to perturb such a variable in the base vector, i.e., it acts as the
scaled difference vector in the original de. In half of the cases it is added and in the remaining cases it405

is subtracted. In order to calculate R, our scheme stores the maximum admissible mutation (FalseMaxi)
for each variable i. Initially, they are set using (9). Thus, a maximum R equal to at least 20% of the
variable range size is initially allowed. Then, R is generated by producing a random number in the range
[Maxi, FalseMaxi], where Maxi represents the maximum perturbation that can be generated for such a
variable by using the cdf of cde. In each application of this scheme, if the value of Maxi is higher than410

FalseMaxi, FalseMaxi is reset to Maxi. This usually happens in the first generations, meaning that our
scheme is not sensitive to the initialization of FalseMaxi. Even so, this initialization should be maintained
in order to ensure a minimum amount of perturbation, even if an improper initial population is generated.
After perturbing the base vector, the value FalseMaxi is updated. In cases where the trial vector generated
was successful, i.e., better than the target vector, the value is updated with (10). Otherwise, it is updated415

with (11). The principle of the update mechanism is similar to the one that governed the design of the
Win or Learn Fast approach [4]. Specifically, in the cases where large mutations are successful, even larger
mutations are promoted. In contrast, when mutations are not successful, the maximum admissible mutation
for this variable is shortened. The UpdateDenom parameter can be used to specify how quickly FalseMaxi
is adapted. Specifically, the adaptation is slower when larger values are used. As a result, higher values420

should be used for cases where a higher balance towards exploration is required. Note that the denominators
in (10) and (11) might even take different values. However, since the experimental evaluation shows that the
new proposal is not too sensitive to this parameter, devoting great efforts to tuning the update mechanism
in this way seems unproductive.

FalseMaxi =
bi − ai

5
(9)

FalseMaxi = FalseMaxi +
(FalseMaxi −Maxi)

UpdateDenom
(10)

FalseMaxi = FalseMaxi −
(FalseMaxi −Maxi)

UpdateDenom
(11)

Finally, we would like to mention that considering how schemes that adapt the F value usually improve on425

the intensification capabilities of de, incorporating some modifications to enhance the exploitation features
of de seems encouraging. In fact, some of the most promising schemes published in the literature are hybrid
approaches that combine de with local search mechanisms [23]. As mentioned earlier, in some of the most
promising hybrid schemes, such as mos [21], several components are used to carry out the global search.
We did some initial tests by incorporating a local search mechanism at the end of the executions. However,430

these schemes were not as successful as other hybrid approaches where several components are in charge of
the global search. This means that while our schemes clearly improve the global search capabilities — as
demonstrated by the experimental validation—, additional work will be required to develop a competitive
de for large-scale optimization where no other components are involved in the global search. Thus, any
further improvement to the global search capabilities, as well as hybridizing the new de schemes with some435

of the highly efficient local search mechanisms proposed in the literature, is left for future work.

11

5. Experimental Evaluation

In this section, the experiments conducted with the newly designed de scheme are described. Most of
the analyses were performed with the benchmark problems devised for soco [24], which are a set of 19
scalable continuous optimization problems to be minimized. The parameter D allows setting the number of440

variables in the problems. These problems have different features and combine different properties involving
modality, separability, and ease of optimization dimension by dimension. In order to analyze the schemes,
six sets of experiments were carried out with such a benchmark. In every case, each execution was repeated
1000 times, unless otherwise stated. In addition, and so as to illustrate how our schemes can provide
benefits for problems with very different features, we also conducted some experiments with the cec’10445

test problems [45]. As previously described, the schemes that have reported promising results for each of
these benchmarks are quite different. Specifically, the selection of the proper crossover operator seems very
important. In the case of the soco test problems, and considering the results obtained in [21], exp crossover
was used. In the case of the cec test problems, similarly to the scheme devised in [10], in our proposal
we decided to alternate between the use of bin and exp crossover operators, using the bin operator in even450

generations and the exp operator in the odd ones. The other properties of de were the same for both
benchmarks.

Since stochastic algorithms were considered in this study, comparisons were carried out by applying a
set of statistical tests. A similar guideline as the one applied in [13] was taken into account. Specifically, the
following tests were applied, assuming a significance level of 5%. First, a Shapiro-Wilk test was performed455

to check whether or not the values of the results followed a Gaussian distribution. If so, the Levene test
was used to check for the homogeneity of the variances. If samples had equal variance, an anova test was
done; if not, a Welch test was performed. For non-Gaussian distributions, the non-parametric Kruskal-
Wallis test was used for testing whether samples are drawn from the same distribution. Note that some
researchers [18] have suggested that the obtained p-values might be normalized by taking into account460

the number of independent executions carried out. However, in our experiments the p-values were either
very high or very low, so such scaling does not affect the results of our statistical tests. In this work, the
sentence “algorithm A is better than algorithm B” means that the differences between them are statistically
significant, and that the mean and median obtained by A are lower —one of the metrics might be equal—
than the mean and median achieved by B. In the experiments below, the tables provided show the results465

of certain statistical tests used to compare a variant of de with the same scheme, but incorporating our
proposals. In these tables the following symbols, and their associated meanings, are used:

• ↑: the model that incorporates our proposals is better.

• ↓: the model that incorporates our proposals is worse.

• ∗: the differences are statistically significant, and the model that incorporates our proposals achieves470

a higher mean and lower median.

• ∗∗: the differences are statistically significant, and the model that incorporates our proposals achieves
a lower mean and higher median.

• ↔: the differences are not statistically significant.

5.1. First Set of Experiments: Benefits of each Proposal475

As described in Section 4, in this work we propose two modifications for enhancing de. Each modification
can be included separately into de or they can be used in conjunction. The aim of the first experiment was
to analyze the benefits contributed by each proposal. The de schemes that incorporate the continuation
scheme are referred to as cde, whereas in those cases where it was not considered, the term de is used.
Regarding the scheme that promotes the use of large perturbations, the UpdateDenom parameter was set480

to 10 and several hmr ratios were considered. Specifically, the following ratios were tested: 0, 0.01, 0.02,
0.04, 0.08, 0.16, 0.32 and 0.64. In the rest of the paper, the models are referred to as de-hmr or cde-hmr. If
no value for hmr is given, it means that hmr = 0 is assumed. The number of variables D was fixed to 50 in

12

a first set of experiments, while the stopping criterion was set to 150 000 function evaluations. Both de and
cde were parameterized as in [21]. Specifically, the vector generation strategy used was DE/rand/1/exp,485

while F and CR were set to 0.5. Finally, np was set to 15.
Figure 4 shows the median and mean values obtained with the different schemes at the end of the

executions for the set of functions where the new schemes caused a larger effect on the results. Specifically,
they show the results for de and cde with the different values of hmr. Since in some functions the means
and medians obtained were quite different, different axes are used to represent each of them. In most490

of the problems tested, the positive effect of considering an hmr value different from 0 is clear, both for
de and cde. The effects caused by the low values of hmr on the mean are more significant than on the
median. The reason is that in most of the problems, premature convergence only appears occasionally, so
the large perturbations resulting from the use of a non-zero hmr have the main effect of improving the
worst-case behavior, which significantly reduces the mean but not the median. For instance, some cases495

where this effect is clear are F4 and F9, where even large hmr values can be successfully applied. However,
in F13 and F15, making large perturbations does not provide benefits, probably because these problems
are not as heavily affected by premature convergence. Also worth noting is the fact that there are some
problems, e.g., F4 and F17, where the best results are obtained by considering very high hmr values. This
indicates that a large loss of diversity is emerging in these problems, so using large perturbations frequently500

is helpful. However, in most of the test cases, using a too high value for hmr deteriorates the quality of
the results because the scheme loses its intensification capabilities. Some cases where this happens are F10,
F12, F14 and F15. Note than in these last problems, the medians are much lower than the mean values.
This happens in several problems where the eventual executions that suffer from premature convergence
govern the resulting mean value. In these cases, using a large hmr does not significantly deteriorate the505

mean value, at least when compared to the deterioration caused by the use of hmr = 0. The reason is that
as hmr increases, the likelihood of premature convergence does not increase. However, since many large
perturbations are involved, the typical executions are affected, meaning that the medians are more heavily
penalized. Considering the overall results, the most promising schemes consider low, but non-zero, values
of hmr; specifically, the cde scheme, where hmr = 0.04 seems very promising.510

It is also remarkable that in several cases, the differences between the errors obtained by using different
hmr values are not too large. This happens because relatively low errors are obtained for several of the
functions with low dimensionalities. de was executed with the previously tested hmr values for the following
values of D: 50, 100, 200, 500, 750 and 1000. The stopping criterion was set at 5000D in every case. Figure 5
shows, for the first four problems, the differences between the maximum and minimum mean fitness values515

obtained by using the different hmr. It is quite clear that as the dimensionality grows, the effect of hmr is
larger. However, probably due to the stochastic nature of the schemes, the graphics are not monotonically
increasing. For instance, in the case of F3, when D = 500 was considered, de-0 exhibited quite a large mean
error because one execution attained a very low quality. Such a high error did not appear when considering
larger dimensions, which is the reason why the differences between the maximum and minimum mean values520

decreased for these larger dimensionalities. However, in general, larger dimensions imply larger differences.
In fact, in every problem the differences that appear for D = 1000 are larger than those that appear for
D = 50. Several aspects regarding the scalability are analyzed further in subsequent sections.

Further statistical analyses were carried out in order to check the benefits of cde over de. Specifically,
we statistically compared the results obtained by de and cde for each value of hmr with D = 50. Table 1525

shows the results of these statistical tests. From a total set of 152 statistical tests, cde is better in 65, while
it is worse in only 12, demonstrating its overall superiority. The only problem where de is clearly superior
to cde is F4. In this case, the optimum values are almost equidistributed in the search space. Thus, de
with an F value equal to 0.5 allows for perturbations that jump from one local optimum to another local
optimum with a large probability. This property is not shared by cde, which explains its inferior behavior.530

It is also interesting to perform a statistical comparison of cde-0.04 with the original de, i.e., de with hmr
= 0. Table 2 shows the results of these comparisons for a short-time period (75 000 function evaluations) and
a longer period (150 000 function evaluations). Even when the differences have been significant, there are
some cases where similar medians have been obtained. This has occurred when both schemes have reached
the optimal values in most cases. In the case of the median, the symbol ↑= expresses that differences have535

13

-450

-445

-440

-435

-430

-425

-420

 0 0.1 0.2 0.3 0.4 0.5 0.6

-450

-445

-440

-435

-430

-425

-420

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F2

DE-Median
CDE-Median

DE-Mean
CDE-Mean

420

430

440

450

460

470

480

 0 0.1 0.2 0.3 0.4 0.5 0.6
420

430

440

450

460

470

480

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F3

DE-Median
CDE-Median

DE-Mean
CDE-Mean

-330.1

-330.05

-330

-329.95

-329.9

-329.85

-329.8

-329.75

-329.7

 0 0.1 0.2 0.3 0.4 0.5 0.6
-330.1

-330.05

-330

-329.95

-329.9

-329.85

-329.8

-329.75

-329.7

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F4

DE-Median
CDE-Median

DE-Mean
CDE-Mean

180

200

220

240

260

280

 0 0.1 0.2 0.3 0.4 0.5 0.6
180

200

220

240

260

280

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F8

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
F

it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F9

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

5e-20

1e-19

1.5e-19

2e-19

2.5e-19

3e-19

3.5e-19

4e-19

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.002

0.004

0.006

0.008

0.01

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F10

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

0.0005

0.001

0.0015

0.002

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.0005

0.001

0.0015

0.002

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F11

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

2e-17

4e-17

6e-17

8e-17

1e-16

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.0001

0.0002

0.0003

0.0004

0.0005

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F12

DE-Median
CDE-Median

DE-Mean
CDE-Mean

10

15

20

25

30

35

40

45

50

 0.1 0.2 0.3 0.4 0.5 0.6

10

15

20

25

30

35

40

45

50

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F13

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

1e-17

2e-17

3e-17

4e-17

5e-17

6e-17

7e-17

8e-17

9e-17

1e-16

 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F14

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

5e-28

1e-27

1.5e-27

2e-27

 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F15

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

5e-17

1e-16

1.5e-16

2e-16

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.002

0.004

0.006

0.008

0.01

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F16

DE-Median
CDE-Median

DE-Mean
CDE-Mean

2

4

6

8

10

12

 0 0.1 0.2 0.3 0.4 0.5 0.6

2

4

6

8

10

12

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F17

DE-Median
CDE-Median

DE-Mean
CDE-Mean

2.8e-17

2.85e-17

2.9e-17

2.95e-17

3e-17

3.05e-17

3.1e-17

3.15e-17

3.2e-17

 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F18

DE-Median
CDE-Median

DE-Mean
CDE-Mean

0

2e-22

4e-22

6e-22

8e-22

1e-21

 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.002

0.004

0.006

0.008

0.01

F
it
n
e
s
s
 (

m
e
d
ia

n
)

F
it
n
e
s
s
 (

m
e
a
n
)

High Mutation Ratio (HMR)

F19

DE-Median
CDE-Median

DE-Mean
CDE-Mean

Figure 4: Mean and median obtained by de and cde with different values of hmr in 150 000 function evaluations for several
functions

14

1e-08

1e-06

0.0001

0.01

1

100

 0 200 400 600 800 1000
0

20

40

60

80

100
F

1
 F

it
n
e
s
s

F
2
 F

it
n
e
s
s

Dimensions (D)

F1 - F2

F1
F2

1

10

100

1000

10000

100000

 0 200 400 600 800 1000
0

5

10

15

20

25

30

35

F
3
 F

it
n
e
s
s

F
4
 F

it
n
e
s
s

Dimensions (D)

F3 - F4

F3
F4

Figure 5: Differences between the maximum and minimum obtained means with different hmr values for several functions

Table 1: Statistical comparison of de vs. cde in 150.000 evaluations
hmr = 0 hmr= 0.01 hmr= 0.02 hmr= 0.04 hmr= 0.08 hmr= 0.16 hmr= 0.32 hmr= 0.64

F1 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
F2 ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑
F3 ↑ ↑ ↑ ↑ ↑ ↑ ↔ ↔
F4 ↓ ↓ ↓ ↓ ↓ ↔ ↔ ↔
F5 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
F6 ↑ ↑ ↔ ↔ ↔ ↔ ↔ ↔
F7 ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↔
F8 ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑
F9 ↑ ↔ ↔ ↔ ↑ ↑ ↑ ↔
F10 ↔ ↔ ↑ ↑ ↑ ↑ ↓ ↓
F11 ↔ ↔ ↔ ↔ ↑ ↑ ↔ ↔
F12 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑
F13 ↑ ↑ ↑ ↑ ↑ ↑ ↔ ↑
F14 ↓ ↔ ↔ ↔ ↔ ↔ ↔ ↑
F15 ↑ * ↑ ↑ ↑ ↑ ↑ ↑
F16 ↔ ↑ ↑ ↔ ↔ ** ↓ ↑
F17 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
F18 ↔ ↔ ↔ ↔ ** ** ** ↑
F19 * * * ↑ ↑ ↑ * ↑

Table 2: Statistical comparison of de vs. cde-0.04
Median Mean 75.000 ev. 150.000 ev.
↑ = ↑ F2, F3, F6, F7, F13, F14, F14, F15, F17, F19 F2, F3, F6, F9, F11, F12, F13, F14, F15, F16, F17, F19
↓ = ↓ F4
↑ = ↓ F18
↓ = ↑ F9, F10, F11, F12, F16, F18 F10

↔ F1, F5, F8 F1, F4, F5, F7, F8

been significant and that cde-0.04 obtained a lower or similar median than the original de. Similarly, ↓=
indicates that the original de obtained a lower or similar median than cde-0.04. It is interesting to note
that:

• In the long term, cde is not statistically inferior in any of the problems, when considering both the
mean and median.540

• In the long term, cde is superior to de in 12 problems.

• In some of the problems (F4, F7), there are significant differences in the short term but both schemes
are similar in the long term. The reason is that both schemes reach optimal values in most of the
executions for these problems in the long term.

• In four problems (F9, F11, F12, F16), cde obtains a lower mean but a higher median in the short545

term, while in the long term, cde is a better scheme.

15

1
e

−
2

0
1

e
−

1
5

1
e

−
1

0
1

e
−

0
5

1
e

+
0

0

F9

F
it
n

e
s
s

DE

75K

cDE

75K

DE

150K

cDE

150K

DE

300K

cDE

300K

Figure 6: Boxplots of results obtained by de and cde-0.04 for different numbers of function evaluations (F9)

An additional analysis was carried out with the aim of better understanding the last fact described
above. This analysis was performed with F9. Specifically, de and cde-0.04 were executed considering a
stopping criterion of 300 000 function evaluations. This study considered 50 000 executions of each scheme.
The reason for using such a large number of executions is that in the long term most of the executions reach550

optimal values, meaning that in order to also analyze the worst-case behavior, a large number of repetitions
is required. Figure 6 shows the box-plots of the results for different numbers of function evaluations.

In the case where 75 000 function evaluations were considered, de yielded better results in most execu-
tions, hence a lower median was obtained. However, the worst results obtained by de were worse than those
obtained by cde-0.04, indicating that stagnation or premature convergence might be arising in some cases.555

Considering the logarithmic scale of the axes, the differences between the worst-case behavior of de and
cde-0.04 was large. In fact, cde-0.04 had a lower mean because of its best behavior in the worst cases. In
150 000 function evaluations, both schemes present a similar median because both reached optimal values
in most cases. In any case, we can see that the worst results obtained by de are of very low quality. Finally,
in the very long term (300 000 function evaluations), all the executions of cde-0.04 reached the optimal560

value, while several de executions converged prematurely to non-optimal values. Moreover, statistical tests
confirm the superiority of cde-0.04 in the long term.

The previous analyses show the benefits of the new scheme in terms of the quality of the results. However,
it is interesting to also analyze the number of function evaluations required to obtain high quality results.
In order to carry out this kind of analysis, the first step is to set the quality level (Q) that must be reached.565

To do this, de and cde-0.04 were executed with the stopping criterion fixed at 250 000 function evaluations.
Q was set as the higher of the two resulting medians. Then, the number of evaluations required to obtain
a success ratio equal to 50% was calculated. Table 3 shows the number of evaluations required by each
model, as well as the percentage of evaluations that were saved by using cde-0.04. Negative values indicate
that cde required a larger number of function evaluations. In those cases where cde required more function570

evaluations, the penalty was not very large. However, in several cases the number of function evaluations
that were saved using cde was very large. For instance, there were 9 cases where the number of function
evaluations saved by cde was larger than 20%. Moreover, the mean of the percentages of saved evaluations
was 20.2%, demonstrating once again the benefits of the new scheme.

5.2. Second Set of Experiments: Population Size575

The likelihood of having stagnation or premature convergence is highly dependent on the population
size that we adopt. Specifically, when large population sizes are considered, the appearance of premature
convergence and stagnation is less likely. Increasing the population size has the effect of reducing the
convergence velocity. As a result, large population sizes are not commonly used when dealing with large-
scale problems. The aim of this experiment is to study the effects of the population size on the new proposal.580

16

Table 3: Evaluations required by de and cde-0.04 to obtain a fixed quality level
de cde-0.04 Saved (%)

F1 35 000 37 000 −5.40%
F2 248 000 29 000 88.30%
F3 249 000 128 000 48.59%
F4 88 000 90 000 −2.22%
F5 43 000 45 000 −4.44%
F6 217 000 170 000 21.65%
F7 63 000 71 000 −11.26%
F8 250 000 250 000 0%
F9 78 000 86 000 −9.30%
F10 232 000 239 000 −2.92%
F11 79 000 85 000 −7.05%
F12 245 000 250 000 −2%
F13 248 000 152 000 38.70%
F14 249 000 241 000 3.21%
F15 249 000 72 000 71.08%
F16 245 000 145 000 40.81%
F17 247 000 141 000 42.91%
F18 250 000 197 000 21.2%
F19 249 000 115 000 53.81%

Table 4: Comparison of errors obtained by de and cde-0.04 with np = 15 in 150.000 evaluations
de cde-0.04

Median Mean Std. Dev. Median Mean Std. Dev.

F1 0 5.16 · 10−3 0.16 0 1 · 10−14 3.21 · 10−13

F2 24.96 26.99 15.60 3.98 · 10−2 4.51 · 10−2 2.28 · 10−2

F3 64.22 54.86 57.16 38.80 44.43 34.49

F4 0 9.05 · 10−2 0.62 0 5.57 · 10−2 0.47

F5 0 4.51 · 10−5 9.31 · 10−4 0 2.62 · 10−5 4.41 · 10−4

F6 8.52 · 10−14 1 · 10−2 0.20 8.52 · 10−14 8.52 · 10−14 1.69 · 10−14

F7 0 0 0 0 0 0
F8 192.90 204.38 71.72 196.89 203.90 68.01

F9 0 2.39 · 10−3 7.45 · 10−2 0 1.79 · 10−5 3.69 · 10−4

F10 1.16 · 10−19 1.04 · 10−3 3.31 · 10−2 1.31 · 10−19 1.65 · 10−19 1.22 · 10−19

F11 0 1.25 · 10−3 3.84 · 10−2 0 1.99 · 10−5 3.97 · 10−4

F12 4.25 · 10−17 1.08 · 10−2 0.33 4.20 · 10−17 1.46 · 10−4 2.32 · 10−3

F13 14.14 20.99 23.49 11.11 16.97 20.37

F14 5.34 · 10−15 7.64 · 10−2 0.50 1.81 · 10−17 3.46 · 10−2 0.32

F15 5.58 · 10−28 1.70 · 10−13 5.39 · 10−12 5.91 · 10−31 2.47 · 10−29 3.60 · 10−28

F16 3.88 · 10−17 7.71 · 10−4 8.78 · 10−3 1.01 · 10−18 3.92 · 10−4 2.95 · 10−3

F17 3.96 10.11 18.05 2.30 8.04 19.21

F18 3.07 · 10−17 9.39 · 10−2 0.44 2.84 · 10−17 0.12 0.33

F19 1.73 · 10−22 1.60 · 10−14 4.68 · 10−13 1.39 · 10−24 1 · 10−19 5.82 · 10−19

de and cde-0.04 were executed considering the same parameterization as in previous experiments, but with
np = 15 and np = 50. The stopping criterion was set at 150 000 function evaluations.

Table 4 shows the mean, median and standard deviation obtained for np = 15. In those problems where
one of the schemes was statistically superior to the other, data are shown in boldface. There are 12 problems
where cde-0.04 was superior, while de was not superior in any problem. A similar analysis is presented in585

Table 5 for np= 50. In this case, de is clearly superior to cde-0.04, showing superior statistical behavior
in 12 problems. This means that, when considering a more explorative configuration, further increasing the
diversity of the potential trials and promoting large perturbations is counterproductive. The reason might
be the loss of intensification capabilities produced by the modifications proposed herein. In any event, when
comparing the results obtained with np = 15 and np = 50, the superiority of using smaller population sizes590

is clear. In fact, the statistical tests comparing cde-0.04 with np = 15 against de with np = 50 show that
cde-0.04 is superior in 13 problems, and inferior in only 2 problems.

Since the use of different population sizes induces distinct convergence velocities, it is also interesting to
study the evolution of the fitness values during the executions. Figure 7 shows the evolution of the mean of
the fitness for de and cde-0.04 with the aforementioned population sizes. They are shown for four selected595

problems that are representative of the different behaviors arising from this set of benchmarks. First, it

17

Table 5: Comparison of errors obtained by de and cde-0.04 with np = 50 in 150.000 evaluations
de cde-0.04

Median Mean Std. Dev. Median Mean Std. Dev.
F1 0 0 0 0 0 0
F2 6.28 6.30 0.54 6.98 6.96 0.56
F3 70.34 72.96 22.46 76.38 75.47 22.85

F4 0 0 0 0 9.94 · 10−4 3.14 · 10−2

F5 0 3.54 · 10−10 5.65 · 10−9 0 2.88 · 10−10 4.34 · 10−9

F6 1.17 · 10−10 1.19 · 10−10 2.39 · 10−11 3.14 · 10−10 3.17 · 10−10 6.19 · 10−11

F7 2.21 · 10−11 2.23 · 10−11 3.85 · 10−12 6.22 · 10−11 6.32 · 10−11 1.06 · 10−11

F8 4714.86 4708.31 709.18 4659.60 4643.85 690.13

F9 2.87 · 10−2 2.87 · 10−2 2.80 · 10−3 3.77 · 10−2 3.81 · 10−2 3.99 · 10−3

F10 2.59 · 10−18 3.12 · 10−18 2.22 · 10−18 2.57 · 10−18 3.03 · 10−18 2.11 · 10−18

F11 2.98 · 10−2 2.99 · 10−2 3.14 · 10−3 3.99 · 10−2 4.07 · 10−2 5.21 · 10−3

F12 1.06 · 10−3 1.19 · 10−3 5.69 · 10−4 2.18 · 10−3 2.37 · 10−3 9.99 · 10−4

F13 25.36 25.56 8.14 25.70 26.48 9.26

F14 1.17 · 10−4 1.28 · 10−4 5.74 · 10−5 2.10 · 10−4 2.37 · 10−4 1.13 · 10−4

F15 9.21 · 10−12 9.45 · 10−12 2.34 · 10−12 2.38 · 10−11 2.41 · 10−11 5.48 · 10−12

F16 3.34 · 10−3 3.48 · 10−3 1.08 · 10−3 5.82 · 10−3 5.96 · 10−3 1.59 · 10−3

F17 4.97 6.61 5.33 4.93 6.52 5.48

F18 1.55 · 10−3 2.59 · 10−3 3.14 · 10−2 2.61 · 10−3 2.70 · 10−3 5.94 · 10−4

F19 3.82 · 10−14 4.10 · 10−14 1.54 · 10−14 1.47 · 10−13 1.58 · 10−13 5.86 · 10−14

-450

-440

-430

-420

-410

-400

-390

-380

-370

-360

-350

 50000 100000 150000

M
e
a
n
 F

it
n
e
s
s

Evaluations

F2

DE-0 NP=15

cDE-0.04 NP=15

DE-0 NP=50

cDE-0.04 NP=50

 100

 1000

 10000

 100000

 1e+06

 1e+07

 50000 100000 150000

M
e
a
n
 F

it
n
e
s
s

Evaluations

F8

DE-0 NP=15

cDE-0.04 NP=15

DE-0 NP=50

cDE-0.04 NP=50

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 50000 100000 150000

M
e
a
n
 F

it
n
e
s
s

Evaluations

F13

DE-0 NP=15

cDE-0.04 NP=15

DE-0 NP=50

cDE-0.04 NP=50

 1

 10

 100

 1000

 10000

 100000

 1e+06

 50000 100000 150000

M
e
a
n
 F

it
n
e
s
s

Evaluations

F17

DE-0 NP=15

cDE-0.04 NP=15

DE-0 NP=50

cDE-0.04 NP=50

Figure 7: Evolution of the mean obtained by de and cde-0.04 with different population sizes

is important to remark that in the short term, the advantages of using small population sizes are quite
clear, which is a known fact in the field of de. In fact, in the short term, using NP = 15 is preferable in
every problem. However, in the long term, different behaviors appear. In the case of F2, the advantages
of using cde-0.04 with NP = 15 are clear. The low population sizes coupled with the diversity controlling600

mechanisms designed herein yield high-quality results quickly and robustly. Note that when the original
de is used with NP = 15, the fast convergence results in premature convergence, meaning that over the
long term, the schemes that consider NP = 50 obtain better results. A somewhat similar situation arises
in F13. In this case, cde-0.04 is the best model, but de with NP = 15 is also better than the schemes
with NP = 50. Problem F8 is a typical case where maintaining a high diversity is not required. In fact, by605

using an adaptive local search, high-quality results can be obtained in this problem [21]. For this reason, the
superiority of the schemes that use a low population size is clear. Note that the inclusion of the diversity
controlling mechanisms does not deteriorate performance. Finally, in problem F17, cde-0.04 with NP = 15
yields better results than de with NP = 15. However, the schemes that use NP = 50 provide better results
in the long term, meaning that the diversity induced by the increase in the population size is more useful.610

In order to better illustrate the differences between the schemes with F17, Figure 8 shows the boxplots

18

1
e

−
0

2
1

e
−

0
1

1
e

+
0

0
1

e
+

0
1

1
e

+
0

2

F17 − 150000 Evaluations

F
it
n

e
s
s

DE

NP=15

cDE−0.04

NP=15

DE

NP=50

cDE−0.04

NP=50

Figure 8: Boxplots of results obtained by de and cde-0.04 with different population sizes (F17)

Table 6: Results obtained with DE by adapting F with different schemes (150.000 evaluations)
SaDE jde jade

Median Mean Stat. Median Mean Stat. Median Mean Stat.
F1 0 0 ↔ 0 0 ↔ 0 0 ↔
F2 1.65 3.88 ↑ 14.49 17.26 ↑ 0.35 0.35 ↑
F3 28.92 40.61 ↓ 40.53 45.69 ↔ 53.54 58.73 ↑
F4 0 0.28 ↑ 0 0.45 ↑ 0 9.94 · 10−4 ↓
F5 0 4.45 · 10−4 ↑ 0 2.60 · 10−4 ↑ 0 2.95 · 10−5 ↔
F6 8.52 · 10−14 8.52 · 10−14 ↔ 5.68 · 10−14 4.95 · 10−4 ↑ 8.52 · 10−14 1.13 · 10−13 ↑
F7 0 0 ↔ 0 0 ↔ 0 3.33 · 10−19 ↔
F8 206.31 216.90 ↑ 175.50 184.54 ↓ 526.91 544.28 ↑
F9 0 1.50 · 10−2 ↑ 0 9.27 · 10−3 ↑ 0 2.55 · 10−4 ↑
F10 4.65 · 10−20 3.82 · 10−2 ∗∗ 4.96 · 10−20 5.25 · 10−2 ∗∗ 2.68 · 10−19 1.04 · 10−3 ↑
F11 0 1.61 · 10−3 ↑ 0 5.03 · 10−3 ↑ 0 3.35 · 10−4 ↑
F12 4.17 · 10−17 1.91 · 10−4 ↔ 4.15 · 10−17 7.90 · 10−3 ↔ 1.62 · 10−16 1.44 · 10−4 *
F13 4.05 16.49 ↓ 4.10 18.29 ∗∗ 20.77 22.07 ↑
F14 1.78 · 10−15 0.25 ↑ 2.44 · 10−17 0.28 ↑ 2.58 · 10−17 0.19 ↑
F15 4.89 · 10−27 8.23 · 10−3 ↑ 5.21 · 10−27 4.61 · 10−3 ↑ 8.64 · 10−25 2.22 · 10−19 ↑
F16 4.26 · 10−17 9.29 · 10−4 ↔ 1.62 · 10−18 7.71 · 10−3 ↔ 3.92 · 10−16 2.37 · 10−4 *
F17 4.69 11.57 ↑ 6.58 13.49 ↑ 2.48 5.95 ↔
F18 3.37 · 10−17 4.28 · 10−2 ∗∗ 3.23 · 10−17 0.10 ∗ 6.73 · 10−14 6.21 · 10−2 *

F19 4.03 · 10−23 2.92 · 10−2 ↑ 2.62 · 10−23 3.54 · 10−2 ↑ 4.26 · 10−21 3.71 · 10−5 ↑

obtained at 150 000 function evaluations. The schemes that consider lower population sizes were able to
obtain the best solutions due to the fast convergence, but they also reported the worst solutions. Thus,
the preferred population size depends on the risk that can be assumed, the number of repetitions and the
stopping criterion established. Note also that using cde-0.04 with NP = 15 provides some benefits over615

using de with NP = 15. Specifically, the minimum, median and first and third quartiles are improved.
The amount of improvement is not very large, but the way in which it is obtained is robust. In fact, the
statistical tests indicate that the differences are significant.

5.3. Third Set of Experiments: Adapting F

Since the schemes that consider a non-static F value have the effect of increasing the number of potential620

trial vectors created by the vector generation strategies, it is very interesting to compare the new proposal
against some of the most popular schemes that consider a variable F value. Three different adaptive models
were considered. The first one belongs to the group of randomized F values. Specifically, we considered
the random distribution applied in SaDE [38], i.e., a Gaussian distribution with mean 0.5 and standard
deviation 0.3. The de parameters were fixed as in previous experiments, with np = 15. In addition, two625

adaptive schemes that rely on the feedback obtained during the execution were considered. They were the
adaptive schemes incorporated in jDE [6] and JADE [55]. In both cases, they were parameterized using the
values proposed by their authors. Specifically, in jDE the value τ was set to 0.1, while Fmin and Fmax were
set to 0.1 and 0.9, respectively. In JADE the parameter c was set to 0.1.

19

Table 7: Comparison of errors obtained by DE and CDE-0.04 in 1,000,000 evaluations (D = 200)
de cde-0.04

Median Mean Std. Dev. Median Mean Std. Dev. Stat.

F1 0 0 1.79 · 10−14 0 0 0 ↔
F2 65.83 65.89 17.21 1.43 1.46 0.19 ↑
F3 243.92 243.43 59.87 230.86 227.26 53.34 ↑
F4 0 8.13 · 10−2 0.71 0 4.34 · 10−2 0.51 ↔
F5 0 3.23 · 10−4 5.38 · 10−3 0 8.74 · 10−5 2.04 · 10−3 ↔
F6 1.98 · 10−13 5.62 · 10−3 4.14 · 10−2 1.98 · 10−13 1.98 · 10−13 2.18 · 10−14 ↑
F7 0 0 0 0 0 0 ↔
F8 4381.43 4412.40 609.19 4404.58 4423.31 617.84 ↔
F9 0 0 0 0 1.69 · 10−10 5.36 · 10−9 ↔
F10 2.69 · 10−20 3.12 · 10−20 4.51 · 10−20 2.05 · 10−20 2.14 · 10−20 1.03 · 10−20 ↑
F11 0 0 0 0 2.31 · 10−10 7.32 · 10−9 ↔
F12 8.33 · 10−17 1.81 · 10−2 0.56 8.32 · 10−17 5.45 · 10−5 1.07 · 10−3 ↑
F13 147.99 149.34 63.67 129.86 129.89 48.01 ↑
F14 1.03 · 10−17 9.00 · 10−2 0.56 9.17 · 10−18 0.11 0.59 *

F15 9.94 · 10−30 1.92 · 10−7 6.09 · 10−6 0 1.48 · 10−31 4.51 · 10−31 ↑
F16 5.56 · 10−17 3.52 · 10−4 8.23 · 10−3 5.62 · 10−17 2.40 · 10−5 4.76 · 10−4 ↔
F17 6.07 16.29 23.80 3.80 10.33 17.85 ↑
F18 6.46 · 10−17 5.96 · 10−2 0.28 5.88 · 10−17 5.89 · 10−2 0.30 ↑
F19 1.31 · 10−24 3.81 · 10−3 0.12 3.47 · 10−27 1.23 · 10−26 4.37 · 10−26 ↑

Table 6 shows the mean and median obtained by each of the models for the different benchmark functions.630

In addition, the results of the statistical tests when comparing each model with cde-0.04 are shown. The
comparisons reveal that cde-0.04 is statistically better than the schemes that employ the adaptation of
SaDE and jDE in 10 problems, and worse in one problem. They also show that cde-0.04 is statistically
better than de with the JADE adaptation scheme in 11 problems and worse in only one problem. The above
results show that the way of increasing diversity proposed here is preferable to the methods that adapt the635

F value during the run. Moreover, it also calls into question the robustness of those adaptive schemes that
consider feedback to set the value of F .

5.4. Fourth Set of Experiments: Scalability

It is also very interesting to check the relationship between the behavior of the new proposal and the
dimensionality of the problem. It was shown that as the number of dimensions grows, the number of potential640

trials also grows. However, while the growth in the search space is exponential, the growth in the potential
trials is only polynomial when exp crossover is considered. Thus, it is not easy to predict the overall effect.

Regarding the parameterization of de, note that according to [57], the optimal CR value usually depends
on the dimensionality. In order to avoid having to tune CR for each dimension, the techniques proposed in
that paper might be used. However, for the set of problems considered, a fixed CR value equal to 0.5 allows645

obtaining competitive results for the dimensions considered in this paper [21]. Thus, in order to keep our
approach as simple as possible, de and cde-0.04 were executed with the same parameterization as in the
first set of experiments, but considering several dimensionalities. Specifically, the following values of D were
considered: 200, 500 and 1000. The stopping criterion was set at 5000D in every case. Tables 7, 8, and 9
show the mean, median and standard deviation of both models for each of the dimensionalities tested. The650

results of the statistical tests are also shown. These show that both the median and mean errors increase as
higher dimensionalities are used. This was expected because while the search space size grows exponentially,
the number of function evaluations increases only linearly. In any event, the advantages of cde-0.04 remain
clear and are even greater than for lower dimensionalities. For instance, while for D = 200, cde-0.04 is
statistically better than de in 10 problems, for D = 1000 the number of problems where cde-0.04 is better655

increases to 14. It is also interesting to note that for the total number of statistical tests conducted in the
scalability analysis, cde-0.04 was superior to de in 38 out of the 57 cases, being inferior in only one case.
This indicates a clear superiority of the cde-0.04 scheme.

It is also remarkable that when dealing with the largest search spaces, there are several cases where de
yields very high mean values, while the behavior of cde-0.04 does not degrade too much. The reason is660

20

Table 8: Comparison of errors obtained by DE and CDE-0.04 in 2,500,000 evaluations (D = 500)
de cde-0.04

Median Mean Std. Dev. Median Mean Std. Dev. Stat.
F1 0 0.43 13.71 0 0 0 ↑
F2 90.72 89.82 16.67 17.07 17.10 0.75 ↑
F3 658.36 59373.95 1330246 637.85 635.42 78.47 ↑
F4 0 0.75 2.92 0 0.22 1.42 ↑
F5 0 1.34 · 10−2 0.25 0 1.23 · 10−5 3.89 · 10−4 ↑
F6 4.54 · 10−13 6.61 · 10−3 2.71 · 10−2 4.54 · 10−13 4.54 · 10−13 2.42 · 10−14 ↑
F7 0 7.56 · 10−9 2.39 · 10−7 0 0 0 ↔
F8 53737.73 53724.33 3928.97 53335.88 53434.75 3939.66 ↔
F9 0 2.39 · 10−4 6.25 · 10−3 0 2.21 · 10−5 4.94 · 10−4 ↔
F10 2.96 · 10−20 1.10 · 10−2 0.34 2.42 · 10−20 1.04 · 10−3 3.31 · 10−2 ↑
F11 0 5.82 · 10−5 9.42 · 10−4 0 2.70 · 10−4 8.09 · 10−3 ↔
F12 1.66 · 10−16 0.15 3.59 1.38 · 10−16 3.90 · 10−4 2.17 · 10−3 ↑
F13 429.37 440.70 274.80 405.87 404.27 82.05 ↑
F14 1.80 · 10−17 0.39 1.63 1.64 · 10−17 0.30 1.17 ↑
F15 1.95 · 10−29 3.20 · 10−3 0.10 0 1.34 · 10−31 4.24 · 10−31 ↑
F16 1.11 · 10−16 8.57 · 10−3 0.23 1.11 · 10−16 4.08 · 10−4 1.98 · 10−3 ↑
F17 73.64 294.66 5220.16 70.60 54.09 44.35 ↑
F18 3.37 · 10−16 0.15 0.64 1.88 · 10−16 0.18 0.74 ↔
F19 1.24 · 10−24 1.05 · 10−3 3.31 · 10−2 3.41 · 10−27 2.54 · 10−22 8.03 · 10−21 ↑

Table 9: Comparison of errors obtained by DE and CDE-0.04 in 5,000,000 evaluations (D = 1000)
de cde-0.04

Median Mean Std. Dev. Median Mean Std. Dev. Stat.

F1 0 1.38 · 10−5 4.39 · 10−4 0 0 0 ↑
F2 104.10 102.90 17.89 44.98 44.94 1.04 ↑
F3 1380.32 1381.01 109.88 1353.80 1347.02 113.79 ↑
F4 0 2.16 6.59 0 0.59 3.01 ↑
F5 0 1.40 · 10−2 0.28 0 6.01 · 10−4 1.32 · 10−2 ↑
F6 8.81 · 10−13 9.96 · 10−3 3.78 · 10−2 9.09 · 10−13 8.27 · 10−12 9.88 · 10−11 ∗∗
F7 0 5.97 · 10−6 1.88 · 10−4 0 0 0 ↑
F8 281066.30 280617.10 16914.34 281155.30 280555.05 17147.64 ↔
F9 0 4.27 · 10−4 7.70 · 10−3 0 2.46 · 10−5 4.64 · 10−4 ↔
F10 3.35 · 10−20 8.28 · 10−7 1.86 · 10−5 3.33 · 10−20 3.07 · 10−20 3.67 · 10−20 ↑
F11 0 2.32 · 10−5 5.21 · 10−4 0 2.81 · 10−7 8.27 · 10−6 ↑
F12 3.05 · 10−16 0.46 12.97 3.05 · 10−16 7.70 · 10−4 3.66 · 10−3 ↑
F13 945.00 13076.96 383406.5 905.31 899.26 100.83 ↑
F14 4.38 · 10−17 1.39 3.88 4.95 · 10−17 0.88 2.60 ∗∗
F15 2.55 · 10−29 5.14 · 10−2 1.62 0 8.89 · 10−32 1.66 · 10−30 ↑
F16 2.22 · 10−16 0.14 1.74 1.94 · 10−16 1.21 · 10−3 3.42 · 10−3 ↑
F17 201.52 201.75 293.60 165.18 175.80 71.21 ↑
F18 1.14 · 10−13 0.27 1.01 5.61 · 10−12 0.65 1.40 ↓
F19 1.35 · 10−24 8.31 · 10−2 1.11 3.11 · 10−27 2.10 · 10−3 4.69 · 10−2 ↑

that the worst-case behavior of de is much worse than the worst-case behavior of cde-0.04. Some of the
problems where this happens are F3, F15 and F17 with D = 500, and F6, F13 and F15 with D = 1000.

5.5. Fifth Set of Experiments: Other de variants

The above experiments have shown the advantages of incorporating our proposals into a basic variant of
de. Since there are several non-hybrid de variants that have been successfully used to improve on the results665

obtained with de in the soco tests, analyzing the combination of these de variants with the new proposals
defined in this paper is quite interesting. gade [52], gode [47] and jdelscop [7] are three non-hybrid de
variants that have yielded promising results by following significantly different principles. For this reason,
they were selected for this study. In every case the integration was done in a similar way. Specifically,
when the value L generated by the crossover is equal to one, instead of using the original way to create the670

trial vector, our proposal was applied. As in previous experiments, the parameter hmr was set to 0.04 and
UpdateDenom to 10. The remaining details and parameterization of the schemes were as proposed by their
authors.

21

Table 10: Comparison of errors obtained by gade and cgade-0.04 in 5,000,000 evaluations (D = 1000)
np = 15 np = 60

gade cgade-0.04 gade cgade-0.04
Median Mean Median Mean St. Median Mean Median Mean St.

F1 0 0 0 0 ↔ 0 0 0 0 ↔
F2 39.6 43.8 10.6 11.6 ↑ 88.5 86.3 33.4 34.9 ↑
F3 800.0 791.9 773.2 769.0 ↑ 945.5 946.4 941.0 966.5 ↔
F4 1.9 2.8 1.9 2.4 ↔ 0 0 0 0 ↔
F5 0 2.7 · 10−2 0 2.9 · 10−2 ↔ 0 1.3 · 10−4 0 2.7 · 10−4 ↔
F6 1.3 · 10−13 2.3 · 10−13 1.3 · 10−13 1.7 · 10−13 ↔ 1.8 · 10−14 1.4 · 10−11 1.8 · 10−14 2.3 · 10−14 ↑
F7 0 7.9 · 10−17 0 0 ↔ 0 0 0 0 ↔
F8 17421.3 17651.7 11374.6 11498.0 ↑ 17242.3 17670.5 15254.1 15316.7 ↑
F9 8.3 · 10−2 1.0 · 10−1 3.0 · 10−2 3.7 · 10−2 ↑ 0 7.5 · 10−5 0 1.1 · 10−4 ↓
F10 20.9 21.3 1.0 7.9 · 10−1 ↑ 0 3.9 · 10−1 0 4.3 · 10−2 ↑
F11 8.3 · 10−2 9.5 · 10−2 3.0 · 10−2 3.7 · 10−2 ↑ 0 6.4 · 10−5 0 2.5 · 10−4 ↓
F12 10.5 14.8 0 3.5 · 10−2 ↑ 3.7 · 10−12 3.4 · 10−2 1.3 · 10−11 1.5 · 10−11 **
F13 717.2 712.5 638.2 629.2 ↑ 715.1 723.6 714.7 722.5 ↔
F14 1.9 2.2 9.9 · 10−1 1.42 ↑ 8.4 · 10−11 19.33 1.6 · 10−10 1.8 · 10−10 **

F15 3.1 3.0 3.1 4.0 ↓ 0 1.3 · 10−2 0 3.6 · 10−2 ↓
F16 14.4 18.2 2.1 · 10−2 4.1 · 10−2 ↑ 2.4 · 10−12 1.1 · 10−5 5.1 · 10−12 5.2 · 10−12 **
F17 239.5 244.7 227.0 222.6 ↑ 218.1 220.9 219 220.5 **

F18 1.0 9.07 · 10−1 4.2 · 10−2 3.3 · 10−1 ↑ 1.1 · 10−7 2.2 · 10−1 3.1 · 10−7 6.4 · 10−5 **

F19 7.3 7.8 0 7.8 · 10−1 ↑ 0 2.8 · 10−1 0 8.7 · 10−2 ↑

The gade scheme [52] is based on adapting the mutation strategy, as well as the F and CR parameters.
Among the mutation strategies, the greedy DE/current-to-pbest/2 is taken into account, meaning that675

more intensification is induced. As a result, larger population sizes might be preferred. In fact, in [52], the
population size was set to 60. Since the incorporation of our schemes shifts this balance towards exploration,
gade and the new proposal (cgade-0.04) were tested with two different population sizes (np = 15 and np
= 60). Table 10 shows the mean and median obtained for each problem. In addition, statistical tests were
used to compare gade and cgade-0.04 for each NP value. As in previous cases, the symbol ↑ is used to680

denote the superiority of the scheme that incorporates our proposals, i.e. cgade-0.04. Note that when NP
is set to 15, the superiority of cgade-0.04 is clear. Since using such a low population size induces a larger
degree of exploitation, increasing the diversity of trial vectors with the new proposals provides significant
benefits. Moreover, even when NP is set to 60, the proposed schemes provide significant improvements in
several cases. However, for some problems using NP = 60 and increasing the diversity produces too much685

exploration, causing degradation to appear. This happens in problems where very low errors are obtained.
In these cases, in order to refine the solutions, small perturbations are required, so the schemes proposed
in this paper delay the convergence. In the light of the results, it seems clear that the popullation size can
be increased in some cases to get a better balance between exploration and exploitation. However, in other
more complex cases, this is not enough and our proposal should be taken into account. In general, in the690

case of cgade-0.04, more diversity is induced, so a shorter population can be used, whereas in the case of
gade, more intensification is promoted, and thus larger populations are admissible.

The gode scheme [47] combines de with generalized opposition-based learning (gobl). Similarly to
gade, this scheme balances the search towards exploitation. The reason is that when gobl is used, the
replacement strategy is the replace-worst [14], meaning that diversity can be highly reduced. In fact, in [47]695

the population size was also set to 60. This is why, as in the previous case, gode and the new proposal
(cgode-0.04) were tested with two different population sizes (np = 15 and np = 60). Table 11 shows the
mean, median and the result of the statistical tests obtained for each problem. In this case, the combination
of the replace-worst strategy with low population sizes produces a significant degradation in several cases.
This can be partially fixed by the use of cgode-0.04. Moreover, when taking into account larger population700

sizes, cgode-0.04 is also useful. In fact, the statistical tests reveal that it produces significant benefits in
12 out of the 19 cases, and that in none of them is the degradation significant.

One of the main features of jdelscop [7] is that it uses a variable population size. Specifically, it starts with
a large population size and it is reduced during the run. It also incorporates self-adaptation, adaptation and
occasionally changes the sign of F so as to select improvement directions with a greater likelihood. Table 12705

22

Table 11: Comparison of errors obtained by gode and cgode-0.04 in 5,000,000 evaluations (D = 1000)
np = 15 np = 60

gode cgode-0.04 gode cgode-0.04
Median Mean Median Mean St. Median Mean Median Mean St.

F1 10132.8 10936.1 3.2 · 10−1 6.5 · 10−1 ↑ 0 0 0 0 ↔
F2 99.1 99.0 96.1 96.0 ↑ 92.3 91.8 85.1 84.8 ↑
F3 1.8 · 109 2.1 · 109 4271.3 4627.0 ↑ 970.6 970.7 970.4 970.5 ↑
F4 368.2 371.2 121.7 123.1 ↑ 9.9 · 10−1 1.04 0 3.1 · 10−2 ↑
F5 93.3 97.8 1.8 · 10−1 2.8 · 10−1 ↑ 0 0 0 0 ↔
F6 5.23 5.27 1.2 · 10−1 1.1 · 10−1 ↑ 3.3 · 10−13 3.3 · 10−13 3.1 · 10−13 3.1 · 10−13 ↑
F7 13.10 13.74 1.5 · 10−1 1.6 · 10−1 ↑ 0 0 0 0 ↔
F8 16223.4 16406.3 14029.8 14320.1 ↑ 189379.5 189146.1 185877 185541.7 ↑
F9 251.6 253.7 36.2 38.2 ↑ 1.6 · 10−4 1.9 · 10−4 3.3 · 10−5 3.3 · 10−5 ↑
F10 497.1 534.2 9.2 9.4 ↑ 0 0 0 0 ↔
F11 250.8 253.2 36.4 38.9 ↑ 1.6 · 10−4 1.6 · 10−4 3.3 · 10−5 3.3 · 10−5 ↑
F12 6258.5 6924.5 62.5 67.7 ↑ 1.8 · 10−9 3.8 · 10−2 2.6 · 10−10 2.7 · 10−10 ↑
F13 8.6 · 108 1.1 · 109 3233.5 3676.3 ↑ 730.8 732.4 730.3 732.5 *

F14 258.1 261.6 82.2 84.3 ↑ 6.4 · 10−1 7.7 · 10−1 1.2 · 10−8 3.1 · 10−2 ↑
F15 77.4 92.5 1.2 1.3 ↑ 0 0 0 0 ↔
F16 2075.5 2278.3 135.4 139.8 ↑ 4.5 · 10−9 5.5 · 10−2 6.4 · 10−10 6.4 · 10−10 ↑
F17 2.2 · 106 4.5 · 107 956.2 1028.0 ↑ 236.2 236.4 235.8 235.8 ↑
F18 110.7 112.3 29.8 31.0 ↑ 1.0 · 10−5 1.3 · 10−1 2.3 · 10−6 1.2 · 10−2 ↑
F19 268.2 292.6 4.7 4.8 ↑ 0 0 0 0 ↔

Table 12: Comparison of errors obtained by jdelscop and cjdelscop-0.04 in 5,000,000 evaluations (D = 1000)
jdelscop cjdelscop-0.04

Median Mean Median Mean St.

F1 4.1 · 10−16 4.1 · 10−16 4.1 · 10−16 4.1 · 10−16 ↔
F2 24.3 24.8 26.4 27.2 ↓
F3 844.4 849.6 844.5 849.5 ↔
F4 0 1.9 · 10−1 0 9.9 · 10−3 ↑
F5 2.0 · 10−16 2.1 · 10−16 2.0 · 10−16 2.1 · 10−16 ↔
F6 1.1 · 10−12 1.1 · 10−12 1.1 · 10−12 1.1 · 10−12 ↔
F7 6.6 · 10−16 8.4 · 10−16 5.5 · 10−16 8.3 · 10−16 ↔
F8 31145.0 31980.8 30851.8 31660.8 ↔
F9 5.9 · 10−8 8.8 · 10−4 0 5.4 · 10−4 ↑
F10 5.5 · 10−30 2.0 · 10−29 2.6 · 10−30 7.0 · 10−30 ↑
F11 8.4 · 10−8 9.1 · 10−4 0 5.9 · 10−4 ↑
F12 4.1 · 10−16 2.0 · 10−2 4.1 · 10−16 4.0 · 10−16 ↑
F13 645.7 659.8 643.5 659.2 ↔
F14 4.1 · 10−16 2.1 · 10−1 4.5 · 10−16 1.1 · 10−2 ↔
F15 1.4 · 10−31 4.0 · 10−18 3.6 · 10−32 6.0 · 10−18 ↔
F16 6.0 · 10−16 2.0 · 10−1 7.6 · 10−16 1.0 · 10−4 **
F17 166.3 173.4 165.5 172.3 ↑
F18 2.6 · 10−12 8.2 · 10−2 3.7 · 10−12 4.2 · 10−3 **

F19 1.3 · 10−30 2.2 · 10−30 6.2 · 10−31 1.5 · 10−30 ↑

shows the mean, median and the results of the statistical tests obtained for each problem with jdelscop and
cjdelscop-0.04. Note that many of the problems which were solved to optimality by other schemes do not
reach such low values in this case. In fact, a mean equal to 0 is not obtained in any problem. This is due to
the higher degree of exploration induced by the scheme in the initial phases. As a result, this scheme would
require more evaluations to converge. In any event, in most of these cases a very low error is obtained,710

meaning this drawback might be avoided by including a local search. The inclusion of our proposals yields
benefits in 8 cases. Probably the most impressive ones are those in which the mean is highly reduced. As
in the basic de variant, there are several cases where the eventual executions that suffer from premature
convergence govern the resulting mean value. In these cases, our proposals provide significant advantages.
This happens for instance in f12 and f16. In some cases, like f16, this is offset through a low increase in715

the median value. Note that similar effects also appeared in the other de variants tested. For instance, this
happens in gade with f14 and f18, and in gode with f12 and f16.

Finally, we would like to remark that the results obtained with these non-hybrid schemes are not as
successful as the hybrid approaches that adaptively incorporate different optimization frameworks [21]. For

23

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

F
it
n

e
s
s
 (

m
e

a
n

)

UpdateDenom

F14

cGODE-0.04 NP = 15
GODE NP = 15

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50

F
it
n

e
s
s
 (

m
e

a
n

)

UpdateDenom

F4

cGODE-0.04 NP = 60
GODE NP = 60

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40 45 50

F
it
n

e
s
s
 (

m
e

a
n

)

UpdateDenom

F8

cGADE-0.04 NP = 15
GADE NP = 15

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50

F
it
n

e
s
s
 (

m
e

a
n

)

UpdateDenom

F9

cGADE-0.04 NP = 60
GADE NP = 60

Figure 9: Mean of the fitness obtained with different UpdateDenom values

instance, mos provides a lower median than cgade-0.04 with NP = 60 in 8 problems, while cgade-0.04720

provides a lower median only in two problems. We also conducted some experiments by including some
simple local search mechanisms at the end of the executions. Since in some cases we could not improve
the results of [21] even when incorporating this post-processing strategy, this probably means that the
global search capabilities should be further improved so as to avoid the requirement of integrating different
optimization procedures to perform the global search. In any case, our proposals provide an important725

advancement in the non-hybrid de schemes and show the potential of schemes that attempt to control the
diversification capabilities of de.

5.6. Sixth Set of Experiments: Parameterization of the Update Mechanism

Our initial experimentation showed that by setting UpdateDenom to 10, promising results could be
obtained for different benchmark problems in several variants of de. As a result, in previous experiments730

this value was used. However, it is interesting to analyze the sensitivity of our scheme to this parameter, so
experiments with different UpdateDenom values were also carried out. Specifically, cde-0.04, cgode-0.04,
cgade-0.04 and cjdelscop-0.04 were tested with the following UpdateDenom values: 2, 5, 10, 15, 20, 30,
40, 50. Depending on the problem and scheme, different behaviors were detected.

Figure 9 shows the mean obtained with the different UpdateDenom values in four illustrative cases that735

appeared repeatedly. In each case, the mean obtained by the model that does not incorporate our proposals
is also shown. When applying cgode-0.04 with NP = 15 to problem f14, we can see that the largest
UpdateDenom value yields the lowest mean value. This happens because cgode with a low population
size induces an excessive amount of intensification, so inducing a slow update mechanism results in a useful
exploration. In other cases, as expected, it is the intermediate values of UpdateDenom that yield a better740

quality. This happens, for instance, when cgode with NP = 60 is applied to f4. We also identified some
cases where the quality is practically independent of the UpdateDenom value. For instance, this arose when
applying cgade with NP = 15 to f8. In this case, the only statistically significant difference appeared when
comparing the scheme with UpdateDenom = 2 with the one that uses UpdateDenom = 50. In cases like
this one, most of the benefits come from the continuation scheme and not from the large mutations, so even745

if the scheme is executed by setting hmr to 0, high-quality values are obtained. In all the previous cases, our

24

Table 13: Comparison of errors obtained by DE and CDE-0.04 in 3,000,000 evaluations with the CEC’10 Benchmark Test
Suite

de cde
Median Mean Std. Dev. Median Mean Std. Dev. Stat.

F1 4.17 · 10−17 2.56 · 105 5.39 · 106 6.84 · 10−21 1.33 · 101 2.55 · 102 ↑
F2 1.11 · 102 1.11 · 102 2.90 · 101 3.48 · 101 3.53 · 101 8.40 ↑
F3 1.74 · 10−13 3.67 · 10−2 2.10 · 10−1 1.03 · 10−13 1.17 · 10−4 7.7 · 10−4 ↑
F4 4.29 · 1013 4.30 · 1013 8.44 · 1012 4.21 · 1013 4.25 · 1013 8.63 · 1012 ↔
F5 1.70 · 108 1.70 · 108 2.43 · 107 1.69 · 108 1.69 · 108 2.45 · 107 ↔
F6 1.35 · 103 9.84 · 104 3.46 · 105 9.52 · 102 8.58 · 104 3.38 · 105 ↑
F7 1.46 · 107 1.80 · 107 3.14 · 107 1.42 · 107 1.71 · 107 1.22 · 107 ↑
F8 4.85 · 107 1.33 · 1011 1.92 · 1012 4.68 · 107 6.69 · 107 3.63 · 107 ↑
F9 8.41 · 108 8.39 · 108 5.61 · 107 8.35 · 108 8.35 · 108 5.67 · 107 ↑
F10 5.02 · 103 5.01 · 103 2.15 · 102 4.99 · 103 5.00 · 103 2.13 · 102 ↑
F11 2.062 · 102 2.05 · 102 3.29 2.061 · 102 2.04 · 102 3.65 ↑
F12 7.62 · 105 7.60 · 105 3.28 · 104 7.55 · 105 7.54 · 105 3.09 · 104 ↑
F13 1.64 · 103 1.45 · 107 1.76 · 108 1.15 · 103 1.62 · 103 1.59 · 103 ↑
F14 1.28 · 109 1.28 · 109 5.88 · 107 1.27 · 109 1.26 · 109 5.90 · 107 ↑
F15 1.20 · 104 1.20 · 104 3.82 · 102 1.20 · 104 1.20 · 104 3.73 · 102 ↔
F16 4.142 · 102 4.127 · 102 3.58 4.141 · 102 4.124 · 102 3.85 ↑
F17 1.72 · 106 1.72 · 106 5.23 · 104 1.70 · 106 1.69 · 106 5.06 · 104 ↑
F18 6.55 · 103 3.09 · 107 1.53 · 108 3.25 · 103 4.53 · 103 3.26 · 103 ↑
F19 4.64 · 106 4.63 · 106 2.63 · 105 4.62 · 106 4.61 · 106 2.73 · 105 ↑
F20 2.07 · 103 4.10 · 107 2.54 · 108 1.71 · 103 1.73 · 103 3.76 · 102 ↑

proposals provided benefits regardless of the UpdateDenom value applied. However, as we have shown, in a
minority of cases our proposals do lead to some degradation, as in the case of cgade with NP = 60 for f9.
In these cases, some improvements can be obtained by modifying the UpdateDenom value. However, we
could not obtain significant improvements when compared to the basic schemes that do not incorporate our750

proposals. This means that when dealing with new problems, the user can test the schemes with practically
any UpdateDenom value to check whether our proposals yield any benefits or not. If the scheme provides
significant benefits, it might make sense to tune the UpdateDenom value. If not, the scheme might already
be explorative enough, so testing different UpdateDenom values would probably not be productive.

5.7. Seventh Set of Experiments: Other Benchmarks755

This last experiment is devoted to demonstrating the generality of the weaknesses of de that have
been analyzed in this paper, and the suitability of our schemes for dealing with other problems of varying
complexity. As was explained earlier, the cec’10 tests were selected for this purpose because the features
that characterize them are different from those of the soco tests. For instance, it is known that in the soco
tests, “mutating a contiguous sequence of components is somehow more effective” [57], meaning that the760

exponential crossover is highly suitable. However, in the cec’10 benchmark, using a combination of bin and
exp crossover seems more effective [10, 48]. In our scheme, the exp and bin operators considered CR values
equal to 0.5 and 0.1, respectively. Several other modifications specifically designed for this benchmark have
been devised [10, 5]. For instance, in [5] the parameter control strategies were modified by using certain
threshold values at specific stages of the optimization process. In addition, ageing, adaptation of the scale765

factor sign, self-adaptation, local search and several mutation strategies were taken into account. In this
experiment, our purpose is merely to show that de is also affected by the weaknesses analyzed herein when
dealing with the cec’10 benchmark, so we decided to operate with a simple baseline scheme, meaning that
these additional modifications were not included. Thus, the only modification with respect to the basic de
used in our initial experiments is the integration of the bin crossover.770

Table 13 shows the mean, median and standard deviation of de and cde-0.04 in 3 000 000 function
evaluations. This stopping criterion was the one proposed during the competition held in cec’10, so it was
selected with the aim of facilitating the comparisons between different models. The format of the table is
similar to that used in previous sections. We can see that the new model provides significant benefits in
most problems. In fact, statistical tests report that cde-0.04 is significantly better than de in 17 out of 20775

problems. As in previous experiments, there are several cases where de has a much larger mean value than

25

the one attained by cde-0.04 — for instance F1, F8, F13 and F18 — meaning that the drawbacks analyzed
also appear in this benchmark, and that they can be alleviated using the schemes proposed in this paper.

Finally, we would like to note that while our proposals provided significant benefits in the baseline
de, the results are not as good as those reported in complex hybrid schemes [5, 22]. In fact, in none780

of the problems did our simple scheme achieve lower mean or median values than those reported in [5].
This was expected because we have not made an effort to adapt our scheme to the specific nature of this
benchmark, while in [5] several adaptations specifically designed for these problems were included. We did
some additional experiments with the schemes used for the soco tests. Similarly to what happened in our
previous experiments, the results could be improved upon and our proposals provided clear benefits. Thus,785

conclusions similar to those for the soco tests can be drawn, although the results obtained were far from
those attained in [5]. This is because most of the methods used for the soco tests must be adapted to
perform properly when the cec tests are considered [23].

6. Conclusions and Future Work

de is a highly efficient and popular metaheuristic especially tailored for continuous optimization problems.790

The analyses developed with de in recent decades have shown that this metaheuristic suffers from the curse
of dimensionality, i.e., its performance deteriorates rapidly when dealing with large-scale problems. In this
paper, the relationship between certain weaknesses that had been detected by several authors and the use of
large dimensionalities is explored. The weaknesses are related to the limited number of trial vectors that can
be generated in de, and to the less expansive behavior that de shows with respect to other metaheuristics.795

The main effects of these weaknesses when using low-dimensional problems can be avoided by increasing
the diversity induced by de, which is usually done by increasing the population size. However, when dealing
with large-scale problems, increasing the population size is not a proper choice as faster convergence is
required, given the fact that the portion of space being explored is much lower. In addition, the mathematical
analysis presented in this paper provides better insight into the reasons for the appearance of these drawbacks800

when dealing with high-dimensional spaces. The mathematical analysis also shows that by using a variable
mutation scale factor, these problems can be partially alleviated. However, these schemes introduce large
changes into the basic behavior of de, the benefits of which are not so clear.

Several different ways of avoiding these weaknesses might be proposed. In this paper, two schemes that
can be used simultaneously have been devised. While these schemes represent by themselves, an important805

advance in the field, the main contribution of this paper is that with the help of the new methods, we
have shown that the drawbacks analyzed herein have a significant effect on the behavior of de, especially
when high-dimensional spaces are involved. For this reason, the findings detailed in this paper should be
taken into account in the future when designing new de schemes. The first devised method has the effect of
increasing the number of potential vectors that can be generated in de while at the same time, respecting810

the basic principles of de. The second modification increases the explorative behavior of de by promoting
large perturbations with an adaptive scheme.

Computational results from a large set of scalable problems with various complexities show that the
new proposal is much better than the original de scheme. The benefits obtained in terms of the quality
of the solutions are clear. Moreover, the number of resources that can be saved with the new scheme is815

significant. Comparisons with several de variants that consider a variable scale factor showed the higher
effectiveness of the new scheme. Along the same line as other researches, this latest study also calls into
question the robustness of the adaptive schemes that use feedback to set the value of the mutation scale
factor. Experiments with several complex non-hybrid de variants have also been included. In these cases, the
benefits remain intact, meaning that the state-of-the-art non-hybrid de schemes for the soco tests could be820

improved. In the basic de variant, the benefits of the proposals vanish when dealing with larger population
sizes. However, when more complex de variants were applied, the benefits of our proposals were also evident
when dealing with large populations. The reason is that these state-of-the-art schemes induce a larger degree
of exploitation. Thus, the advantages reported depend on this aspect, and are clearer when exploitative
schemes are considered. In addition, the scalability study demonstrates that as the dimensionality of the825

26

problems involved increases, the advantages of the proposals are more significant. In these cases, the worst-
case behavior of de can be significantly improved by considering the schemes proposed herein. Finally, it
is important to remark that the schemes devised were not as successful as other hybrid approaches where
several components are in charge of the global search. This means that while our schemes clearly improve
the global search capabilities of de, additional work will be required to develop a more competitive de for830

large-scale optimization where no other components are involved in the global search. Similar conclusions
can be drawn when quite different problems, such as the cec benchmarks, are taken into account.

Several lines of future work might be explored. First, similar modifications to those we propose might
be applied when the trial vectors take several variables from the mutant vectors. Since the distributions
associated with the different variables are not independent, their dependencies should be modeled. One835

choice might be to use copula functions. Another line of future work is to combine the proposals described
here with some other methods that have been proposed in the literature. First, since in our opinion the
global search capabilities of de can already be improved upon, we would like to combine our methods with
some general diversity-preservation strategies. Specifically, since our schemes operate on the variation stage,
incorporating some of the methods that operate in the replacement phase seems truly promising. Once this840

is done, merging the scheme with co-evolution and with local search schemes seems quite encouraging. The
incorporation of these techniques might result in more robust and competitive schemes. In addition, since
the optimal UpdateDenom value depends on the problem at hand, schemes with automatic adaptation of
this parameter might be in order. Finally, since some questions concerning the robustness of using feedback
to set the mutation scale factor have emerged both in this work and in other related research, conducting845

more detailed analyses on this topic might be highly beneficial to the de community.

Acknowledgment

The first author acknowledges the financial support from CONCYTEG as part of the plan “Investigadores
Jóvenes - DPP-2014” (project 14-IJ-DPP-Q182-11). The second author is also affiliated to the UMI LAFMIA
3175 CNRS at CINVESTAV-IPN. He also acknowledges the financial support from CONACyT project no.850

221551.

References

[1] H. Abbass, The self-adaptive pareto differential evolution algorithm, in: IEEE Congr. on Evol. Computation 2002
(CEC’02), vol. 1, 2002, pp. 831–836.

[2] A. Angela, A. Andrade, A. Soares, Exploration vs exploitation in differential evolution, in: Convention in Commun.,855

Interaction and Social Intell., 2008.
[3] J. Arabas, L. Bartnik, K. Opara, DMEA - An algorithm that combines differential mutation with the fitness proportionate

selection, in: 2011 IEEE Symp. on Differential Evolution (SDE’11), 2011, pp. 1–8.
[4] M. Bowling, M. Veloso, Rational and convergent learning in stochastic games, in: Proceedings of the 17th International

Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01, Morgan Kaufmann Publishers Inc., San Francisco, CA,860

USA, 2001, pp. 1021–1026.
[5] J. Brest, B. Bošković, A. Zamuda, I. Fister, M. Maučec, Self-adaptive differential evolution algorithm with a small and

varying population size, in: Evolutionary Computation (CEC), 2012 IEEE Congress on, 2012, pp. 1–8.
[6] J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Žumer, Self-Adapting Control Parameters in Differential Evolution: A

Comparative Study on Numerical Benchmark Problems, IEEE Trans. Evol. Comput. 10 (6) (2006) 646–657.865

[7] J. Brest, M. Maučec, Self-adaptive differential evolution algorithm using population size reduction and three strategies,
Soft Comput. 15 (11) (2011) 2157–2174.

[8] J. Brest, M. Sepesy Maučec, Population size reduction for the differential evolution algorithm, Appl. Intell. 29 (3) (2008)
228–247.

[9] J. Brest, A. Zamuda, B. Bošković, S. Greiner, V. Žumer, An Analysis of the Control Parameters Adaptation in DE,870

in: U. Chakraborty (ed.), Advances in Differential Evolution, vol. 143 of Studies in Computational Intelligence, Springer
Berlin Heidelberg, 2008, pp. 89–110.

[10] J. Brest, A. Zamuda, I. Fister, M. Maučec, Large scale global optimization using self-adaptive differential evolution
algorithm, in: 2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8.

[11] S. Das, A. Konar, U. K. Chakraborty, Two improved differential evolution schemes for faster global search, in: The 2005875

Conference on Genetic and Evol. Computation (GECCO’05), ACM, 2005, pp. 991–998.
[12] S. Das, P. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011)

4–31.

27

[13] J. Durillo, A. Nebro, C. A. Coello Coello, J. Garcia-Nieto, F. Luna, E. Alba, A study of multiobjective metaheuristics
when solving parameter scalable problems, IEEE Trans. Evol. Comput. 14 (4) (2010) 618–635.880

[14] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Natural Computing Series, Springer, 2003.
[15] R. Gämperle, S. Müller, P. Koumoutsakos, A Parameter Study for Differential Evolution, in: A. Grmela, N. Mastorakis

(eds.), Advances in Intelligent Syst., Fuzzy Syst., Evol. Computation, WSEAS Press, 2002, pp. 293–298.
[16] M. Ghasemi, M. M. Ghanbarian, S. Ghavidel, S. Rahmani, E. M. Moghaddam, Modified teaching learning algorithm and

double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study, Inf. Sci. 278 (0)885

(2014) 231 – 249.
[17] W. Gong, A. Fialho, Z. Cai, H. Li, Adaptive strategy selection in differential evolution for numerical optimization: An

empirical study, Inf. Sci. 181 (24) (2011) 5364 – 5386.
[18] I. J. Good, The Bayes/Non-Bayes Compromise: A Brief Review, J. of The Am. Stat. Assoc. 87 (419) (1992) 597–606.
[19] J. Lampinen, I. Zelinka, On Stagnation Of The Differential Evolution Algorithm, in: 6th Int. Mendel Conference on Soft890

Computing (MENDEL 2000), 2000, pp. 76–83.
[20] W. Langdon, R. Poli, Evolving problems to learn about particle swarm optimizers and other search algorithms, IEEE

Trans. Evol. Comput. 11 (5) (2007) 561–578.
[21] A. LaTorre, S. Muelas, J.-M. Peña, A mos-based dynamic memetic differential evolution algorithm for continuous opti-

mization: a scalability test, Soft Comput. 15 (11) (2011) 2187–2199.895

[22] A. LaTorre, S. Muelas, J. M. Peña, Multiple offspring sampling in large scale global optimization, in: 2012 IEEE Congress
on Evolutionary Computation (CEC), 2012, pp. 1–8.

[23] A. LaTorre, S. Muelas, J.-M. Peña, A comprehensive comparison of large scale global optimizers, Inf. Sci. (0) (2014) In
Press.

[24] M. Lozano, D. Molina, F. Herrera, Editorial Scalability of Evolutionary Algorithms and Other Metaheuristics for Large-900

scale Continuous Optimization Problems, Soft Comput. (2010) 1–3.
[25] S. Mahdavi, M. E. Shiri, S. Rahnamayan, Metaheuristics in large-scale global continues optimization: A survey, Inf. Sci.

295 (0) (2015) 407 – 428.
[26] E. n. Mezura-Montes, J. Velázquez-Reyes, C. A. Coello Coello, A comparative study of differential evolution variants for

global optimization, in: 8th Annu. Conference on Genetic and Evol. Computation, GECCO ’06, ACM, New York, NY,905

USA, 2006, pp. 485–492.
[27] J. Montgomery, Differential evolution: Difference vectors and movement in solution space, in: IEEE Congress on Evolu-

tionary Computation 2009, 2009, pp. 2833–2840.
[28] J. A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313.
[29] F. Neri, V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev.910

33 (1-2) (2010) 61–106.
[30] M. Olguin-Carbajal, E. Alba, J. Arellano-Verdejo, Micro-differential evolution with local search for high dimensional

problems, in: IEEE Congr. on Evol. Computation 2013 (CEC’13), 2013, pp. 48–54.
[31] O. Olorunda, A. Engelbrecht, Differential evolution in high-dimensional search spaces, in: IEEE Congr. on Evol. Compu-

tation 2007 (CEC’07), 2007, pp. 1934–1941.915

[32] M. N. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution with differential grouping for large scale optimization,
IEEE Trans. Evol. Comput. In Press.

[33] K. E. Parsopoulos, Cooperative micro-differential evolution for high-dimensional problems, in: Proc. of the 11th Annu.
Conference on Genetic and Evol. Computation (GECCO’09), ACM, New York, NY, USA, 2009, pp. 531–538.

[34] A. P. Piotrowski, Adaptive memetic differential evolution with global and local neighborhood-based mutation operators,920

Inf. Sci. 241 (2013) 164 – 194.
[35] M. A. Potter, K. A. D. Jong, A cooperative coevolutionary approach to function optimization, in: Proc. of the Third

Conference on Parallel Problem Solving from Nature (PPSN III), Springer-Verlag, London, UK, UK, 1994, pp. 249–257.
[36] K. Price, Differential evolution, in: I. Zelinka, V. Snáŝel, A. Abraham (eds.), Handbook of Optimization, vol. 38 of

Intelligent Systems Reference Library, Springer Berlin Heidelberg, 2013, pp. 187–214.925

[37] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing
Series, U.S. Government Printing Office, 2005.

[38] A. K. Qin, V. L. Huang, P. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical
optimization, IEEE Trans. Evol. Comput. 13 (2) (2009) 398–417.

[39] A. K. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: IEEE Congr. on930

Evol. Computation 2005 (CEC’05), vol. 2, 2005, pp. 1785–1791 Vol. 2.
[40] R. Salinas-Gutiérrez, A. Hernández-Aguirre, E. R. Villa-Diharce, Using copulas in estimation of distribution algorithms,

in: A. H. Aguirre, R. M. Borja, C. A. R. Garćıa (eds.), MICAI 2009: Advances in Artificial Intelligence, vol. 5845 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp. 658–668.

[41] C. Segura, C. A. Coello Coello, E. Segredo, C. León, On the adaptation of the mutation scale factor in differential evolution,935

Optim. Lett. (2014) 1–10.
[42] Y.-j. Shi, H.-f. Teng, Z.-q. Li, Cooperative co-evolutionary differential evolution for function optimization, in: L. Wang,

K. Chen, Y. Ong (eds.), Advances in Natural Computation, vol. 3611 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2005, pp. 1080–1088.

[43] R. Storn, K. Price, Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous940

spaces, Tech. rep., International Computer Science Institute, Berkeley, Tech. Rep. TR95012 (1995).
[44] R. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous

Spaces, J. of Glob. Optim. 11 (4) (1997) 341–359.

28

[45] K. Táng, X. Ľı, P. N. Suganthan, Z. Yáng, T. Weise, Benchmark Functions for the CEC’2010 Special Session and
Competition on Large-Scale Global Optimization, Tech. rep., University of Science and Technology of China (USTC),945

School of Computer Science and Technology, Nature Inspired Computation and Applications Laboratory (NICAL): Héféi,
Ānhūı, China (2010).

[46] J. Tvrd́ık, R. Poláková, J. Veselský, P. Bujok, Adaptive variants of differential evolution: Towards control-parameter-
free optimizers, in: I. Zelinka, V. Snášel, A. Abraham (eds.), Handbook of Optimization, vol. 38 of Intelligent Systems
Reference Library, Springer Berlin Heidelberg, 2013, pp. 423–449.950

[47] H. Wang, Z. Wu, S. Rahnamayan, Enhanced opposition-based differential evolution for solving high-dimensional continuous
optimization problems, Soft Comput. 15 (11) (2011) 2127–2140.

[48] H. Wang, Z. Wu, S. Rahnamayan, D. Jiang, Sequential de enhanced by neighborhood search for large scale global opti-
mization, in: 2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–7.

[49] M. Weber, F. Neri, V. Tirronen, Shuffle or update parallel differential evolution for large-scale optimization, Soft Comput.955

15 (11) (2011) 2089–2107.
[50] T. Weise, R. Chiong, K. Táng, Evolutionary optimization: Pitfalls and booby traps, J. of Comput. Sci. and Technol.

(JCST) 27 (5) (2012) 907–936, spec. Issue on Evol. Comput.
[51] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using cooperative coevolution, Inf. Sci. 178 (15) (2008)

2985 – 2999.960

[52] Z. Yang, K. Tang, X. Yao, Scalability of generalized adaptive differential evolution for large-scale continuous optimization,
Soft Comput. 15 (11) (2011) 2141–2155.

[53] D. Zaharie, Control of Population Diversity and Adaptation in Differential Evolution Algorithms, in: R. Matousek,
P. Osmera (eds.), Proc. of Mendel 2003, 9th International Conference on Soft Computing, Brno, Czech Republic, 2003,
pp. 41–46.965

[54] D. Zaharie, Influence of crossover on the behavior of differential evolution algorithms, Appl. Soft Comput. 9 (3) (2009)
1126 – 1138.

[55] J. Zhang, A. Sanderson, JADE: Adaptive Differential Evolution With Optional External Archive, IEEE Trans. Evol.
Comput. 13 (5) (2009) 945–958.

[56] J. Zhao, Y. Xu, F. Luo, Z. Dong, Y. Peng, Power system fault diagnosis based on history driven differential evolution and970

stochastic time domain simulation, Inf. Sci. 275 (2014) 13 – 29.
[57] S.-Z. Zhao, P. N. Suganthan, Empirical investigations into the exponential crossover of differential evolutions, Swarm and

Evol. Comput. 9 (2013) 27 – 36.
[58] W. Zhu, Y. Tang, J. an Fang, W. Zhang, Adaptive population tuning scheme for differential evolution, Inf. Sci. 223 (2013)

164 – 191.975

[59] K. Zielinski, X. Wang, R. Laur, Comparison of adaptive approaches for differential evolution, in: G. Rudolph, T. Jansen,
S. Lucas, C. Poloni, N. Beume (eds.), Parallel Problem Solving from Nature - PPSN X, vol. 5199 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2008, pp. 641–650.

[60] K. Zielinski, P. Weitkemper, R. Laur, K. D. Kammeyer, Parameter study for differential evolution using a power allocation
problem including interference cancellation, in: IEEE Congr. on Evol. Computation 2006 (CEC’06), 2006, pp. 1857–1864.980

29

		Introduction

		State of the art in DE

		Fundamentals

		Large Scale Optimization

		Adaptation of Scale Factor

		Mathematical Analysis of Related Approaches

		Number of Potential Trial Vectors

		Effects of Adapting the Mutation Scale Factor

		Our Proposals

		Continuation Scheme

		Avoiding a Large Reduction in Diversity

		Experimental Evaluation

		First Set of Experiments: Benefits of each Proposal

		Second Set of Experiments: Population Size

		Third Set of Experiments: Adapting F

		Fourth Set of Experiments: Scalability

		Fifth Set of Experiments: Other de variants

		Sixth Set of Experiments: Parameterization of the Update Mechanism

		Seventh Set of Experiments: Other Benchmarks

		Conclusions and Future Work

