
Smiling at Evolution ∗

D.A. Bloch †, C.A. Coello Coello ‡

Mizuho Securities §, CINVESTAV-IPN ¶

Working Paper

21st of May 2010

Abstract

We generate a reliable implied volatility surface without arbitrage in space and in time by parametris-
ing a mixture of shifted lognormal densities under constraints and use a Differential Evolution algorithm
to calibrate the model’s parameters to a finite set of option prices. It is used for marking options not
directly visible as well as for computing a proper deterministic local volatility. To do so, we devise an
evolutionary algorithm handling constraints in a simple and efficient way. Using some of the improve-
ments made to the DE algorithm and taking advantage of the specific structure of our objective function,
we use special operators to help satisfy the equality constraints together with feasibility rules to handle
the inequality constraints. Finally, we propose a modified algorithm for solving our optimisation problem
under constraints which, after testing on real market data, greatly improves its performances.

1 Introduction

Since the Black-Scholes model in [BS73], market prices of index options and foreign exchange options have
reached a high degree of liquidity such that they became the benchmark for marking to market or calibrating
option pricing models when pricing and hedging exotic options. Deterministic local volatility models (see
Dupire in [Du94]) are widely used because they give perfect fit to market prices allowing for simple hedging
of exotic options. In order to implement the deterministic local volatility, Dupire’s formula requires the
knowledge of call prices for all strikes and maturities. However, in practice we can only observe a few market
prices from standard strikes and maturities. These points do not necessary satisfy the no-arbitrage conditions,
can have wide or narrow spreads depending on the liquidity on the market and the volume traded. As a
result, the market is incomplete and there are more than one acceptable price (volatility) surfaces satisfying
the no-arbitrage conditions.

The recent reform of the over-the-counter (OTC) market is seen as an evolutionary step leading bilateral
trades to a shift towards central counterparties (CCP) to mitigate the counterparty risks. Wood in [Woo10]
reports that about 50% to 70% of the market will be eligible for clearing, standardising trades within the
next few years. As it becomes easier and safer to trade, volume will increase while profit will decline. As a

∗We are gratefull to Nicole El Karoui, Monique Jeanblanc, Mark Davis, Rama Cont, the GRO and the GRM for their useful
comments and suggestions. All mistakes are ours.
†daniel.bloch@mizuho-sc.com
‡ccoello@cs.cinvestav.mx
§Otemachi First Square, 1-5-1 Otemachi, Chiyoda-ku, Tokyo 100-0004
¶Depto. de computacion, Av. Instituto Politecnico Nacional No. 2508, Col. San Pedro Zacatenco, Mexico, D.f. 07300

1

result, demand will increase for options for which prices are not directly visibe, that is vanilla options with
longer matutities and strikes further in and out of the money. Hence, the need for obtaining a reliable smile
surface from market prices.

A standard approach to compute local volatility is to interpolate and extrapolate market prices or volatil-
ities to complete the market. Practitioners use the Black-Scholes implied volatility and smooth the prices in
a parabolic way to generate the missing prices. However, direct interpolation of implied volatility surfaces
does not guarantee a resulting smooth risk-neutral density, hence a proper local volatility surface. Among
the different techniques proposed for obtaining from market prices a smooth volatility surface, Rebonato et
al in [RC04] argued that modeling directly the density was the most desirable approach. Alternatively, the
no-arbitrage conditions on the local volatility being simply that it must be positive and Lipschitz continuous,
one can assume a particular functional form for the local volatility and fit it to market prices. For example,
in the case of deterministic rates, Ben Hamida et al in [BC04] introduced the parametrisation of a set of
admissible local volatility surface. However, in markets with long maturity products and discrete dividends
such as the Japanese market, it is important for model pricing to obtain a reliable volatility surface satis-
fying the no-arbitrage constraints not only in space but also in time. Therefore, we are going to assume
a functional form for the market prices and solve a constrained numerical optimisation problem (CNOP),
generating a surface without arbitrage in time and in space as closely as possible to market data.

We are going to consider an Evolutionary Algorithm (EA) to calibrate a local volatility diffusion model
to a finite set of option prices, devising an algorithm that handle constraints in a simple and efficient way.
Evolutionary algorithms introduced by Fogel in [Fog66] and Holland in [Hol75] are robust and efficient
optimisation algorithms based on the theory of evolution proposed by Darwin in [Dar82], where a biological
population evolves over generations to adapt to an environment by mutation, recombination and selection.
They search from multiple points in space instead of moving from a single point like gradient-based methods
do. Moreover, they work on function evaluation alone (fitness) and do not require derivatives or gradients
of the objective functions. Among the different EA’s commonly used to solve CNOPs such as evolutionary
programming, evolution strategies, genetic algorithm and many more, differential evolution (DE) became
very popular. DE is a population-based approach to function optimisation generating a new position for
an individual by calculating vector differences between other randomly selected members of the population.
The DE algorithm is found to be a powerful evolutionary algorithm for global optimisation in many real
problems. As a result, since the original article of Storn and Price in [StPr95] many authors improved
the DE model to increase the exploration and exploitation capabilities of the DE algorithm when solving
optimisation problems.

Since EAs are search engines working in unconstrained search spaces they lacked until recently of a
mechanism to deal with the constraints of the problems. The first attempts to handle the constraints were
either to incorporate methods from mathematical programming algorithms within EAs such as penalty
functions or to exploit the mathematical structure of the constraints. Then, a considerable amount of
research proposed alternative methods to improve the search of the feasible global optimum solution. Most
of the research on DE focused on solving CNOPs by using a sole DE variant, a combination of variants or
combining DE with another search method. One of the most popular constraint handling mechanisms is
the use of the three feasibility rules proposed by Deb in [Deb00] on genetic algorithms. Using some of the
improvements to the DE algorithm combined with simple and robust constraint handling mechanisms we
propose a modified algorithm for solving our optimisation problem under constraints which greatly improves
its performances.

We present in Section (2) the dynamics of our underlying asset together with its local volatility. We
describe in Section (3) our volatility model with constraints and discuss in Section (4) the DE algorithm for
solving a nonlinear programming problem under constraints. Using the specific structure of our objective

2

function, we propose in Section (5) a constraint handling approach that combines a generic method together
with a specific one by using special operators to help satisfy the equality constraints together with feasibility
rules to handle inequality constraints. Dividing the population vector into subvectors, we apply the mutation
and recombination operators independently to each subvector followed by a global selection method. Finally,
we propose a robust algorithm for solving our optimisation problem under constraints with fast convergence
and provide results showing the effectiveness of our algorithm.

2 The underlying asset

We consider the probability space (Ω, F , P) where Ft is a right continuous filtration including all P negligible
sets in F . For simplicity of exposition we let the market be complete and assume that there exist an equivalent
martingale measure denoted Q.

2.1 The dynamics

We let the underlying process (St)t≥0 be a one-dimensional Ito process valued in the open subset D with
dynamics under the risk-neutral measure Q being

dSt
St

= µtdt+ σ(t, St)dWS(t) (2.1)

where the drift µ : D → R as well as the diffusion σ : D → R are regular enough to have a unique strong
solution valued in D. We let the drift be µt = rt− qt where (rt)t≥0 is the deterministic spot rate and (qt)t≥0

is a deterministic repo rate. Using the concept of absence of arbitrage opportunities (AAO) (see Harrison
and Kreps in [HK79]), contingent claims can be valued by taking expectation of their discounted payoffs
under the risk-neutral measure.

We assume that we know at time t a continuum of market prices C(t, St, T,K) such that given the family
{C(T,K); (T,K) ∈ R+ × R+} the application K → C(T,K) is convex and decreasing continuously. Dupire
showed in [Du94] that the deterministic local volatility can be estimated from market call and put prices
of all strikes and maturities. Considering call prices as function of strike K and maturity T , he solved the
forward equation

∂TC =
1

2
σ2
DLV (T,K)K2∂KKC − µTK∂KC (2.2)

with initial condition C(t, St,K, t) = (St −K)+ obtaining a unique solution to the function of volatility

σ2
DLV (T,K) =

∂TC(t, St,K, T) +K(rT − qT)∂KC(t, St,K, T) + qTC(t, St,K, T)
1
2∂KKC(t, St, T,K)K2

called the deterministic local variance DLV. This result is crucial because it allows perfect fit to the market
prices leading to a complete modification of the equity market. The Black-Scholes implied volatility is no
longer the only form of observable volatility and one can directly use the local volatility for calibration. So,
in principle one can directly diffuse a process St with stochastic instantaneous volatility provided that its
local variance LV matches that of the DLV. That is, we may impose any dynamics such that the equality
holds and the local variance stays non-negative. This is very appealing because we get perfect fit to the
market prices but it is in general difficult to implement in practice. Hence, in the rest of this article we are
going to concentrate on computing a smooth and arbitrage-free deterministic local volatility.

3

2.2 The spot model with discrete dividends

We are now going to introduce discrete dividends to the stock price with dynamics given in Equation (2.1)
as well as to describe our framework. With the aim of obtaining closed-form solutions to European option

prices we consider the Spot Model described by Frishling in [Fri02]. We let C(0, t) = Re(0,t)
B(0,t) = e

∫ t
0
µsds be

the capitalisation from time zero until time t so that the forward capitalisation factor is

C(t, T) =
Re(t, T)

B(t, T)

with C(t, t) = 1. Given a set of discrete dividends (di)i∈N , we let Dt = D(0, t) be the accumulated dividends
at time t in the interval [0, t], that is the dividends paid from t0 = 0 till time t and capitalised at t is given
by

Dt =

∞∑
i=0

H(t− tdi)diC(tdi , t)

where H(.) is the heaviside function and D0 = 0. We consider the process (Zt)t≥0 to be the asset price St
plus the forward value of all dividends paid from today up to time t. In that setting, the stock price and the
dynamics of the diffusion process under the risk-neutral measure Q becomes

St = Zt −Dt (2.3)

dZt = µtZtdt+ σZ(t, Zt)ZtdWt

Z0 = S0

This model is popular mainly due to the fact that adding the already paid dividends to the strike, the market
price of a call option on the stock price seen at time t0 = 0 is

C(t0, S0;K,T) = EQt0 [e
−

∫ T
t0
rsds(ZT −K

′
)+]

where K
′

= K +DT . Similarly, we can express the price of a call option on the diffusion process Z in terms
of a call option on the stock price

CZ(t0, Z0; k, T) =
1

B(t0, T)
C(t0, S0; k −DT , T) (2.4)

To recover market prices we use Equation (2.4) to compute the local volatility with discrete dividends, getting

σ2
Z(T, k) =

∂TC(t, St, k −D(t, T), T) + qTC(t, St, k −D(t, T), T) + (rT − qT)k∂kC(t, St, k −D(t, T), T)
1
2∂kkC(t, St, T, k −D(t, T))k2

which correspond to the local volatility on the stock price without discrete dividends given in Section (2.1).

3 The choice of a volatility model

Pricing options at strikes not observed in the market is necessary when pricing and hedging exotic derivative
products dependent on the entire risk-neutral probability density function of the underlying. We saw earlier
that Dupire’s formula requires the knowledge of call prices for all strikes and maturities. However, in practice
we can only observe a few market prices from standard strikes and maturities. For an index, one can easily
obtain more than 100 points (prices or implied volatility) where some of them are listed while the others

4

are produced by brokers. On the other hand, there are only a few points for single stock (from 0 to 30)
produced only by brokers. These points do not necessary satisfy the no-arbitrage conditions, can have wide
or narrow spreads depending on the liquidity on the market and the volume traded. As a result, the market
is incomplete and there are more than one acceptable price (volatility) surfaces satisfying the no-arbitrage
conditions.

3.1 The standard approach

The standard approach is to interpolate and extrapolate market prices or volatilities to complete the market.
Practitioners use the Black-Scholes implied volatility and smooth the prices in a parabolic way to generate
the missing prices. As described by Daglish, Hull and Suo in [DHS06], a natural choice would be to perform a
Taylor expansion up to the second order of the implied volatility surface around the money forward level. For
example Malz in [Mal97] interpolated the smile within the region of observed prices with a polynomial and
cut the volatility outside that region. Alternatively, one can fit with little control a parametric form for the
implied volatility derived from a model which is usually the result of an asymtotic expansion of a stochastic
volatility model, see for examples Hagan et al in [HKLW02] or Bloch in [Blo09]. Recently, Benaim et al in
[BDK08] directly extrapolated the prices outside the range of observed prices with a simple convex function
of strikes matching the market prices at the two boundaries as well as their first two derivatives. However,
direct interpolation and extrapolation of implied volatility surfaces does not guarantee a resulting smooth
risk-neutral density, hence a proper local volatility surface. Moreover, they rely on some interpolation and
extrapolation of parameters in time with no guarantee of satisfying the calendar spreads. As explained by
Overhaus et al in [OBBFJL07], satisfying these conditions when expressed in terms of implied volatilities
is non trivial. Alternatively, the no-arbitrage conditions on the local volatility being simply that it must be
positive and Lipschitz continuous, one can assume a particular functional form for the local volatility and
fit it to market prices. For example, Ben Hamida et al introduced in [BC04] the parametrisation of a set of
admissible local volatility surface by considering a cubic spline with ten spline nodes per maturity. Instead,
we are directly going to assume a functional form for the market prices and solve a non-linear programming
problem under constraints.

3.2 The parametric model

In a market with a limited number of prices, a model of interpolation and extrapolation of the volatility
surface should have few parameters with the ability of mapping a large family of surfaces. Among the
different techniques proposed for obtaining a smooth volatility surface from market prices, Rebonato et al
in [RC04] argued that modeling directly the density was the most desirable approach. They extended the
mixture of normals approach proposed by Alexander in [Ale01], obtaining a density with non-zero skew and
satisfying the risk-neutral forward condition while retaining an unconstrained numerical search. However, in
markets with long maturity products and discrete dividends such as the Japanese market, it is important for
model pricing to obtain a reliable volatility surface satisfying the no-arbitrage constraint not only in space
but also in time. So, we intend to generate a surface without arbitrage in time and in space as closely as
possible to market data. We are going to use a model which was first initiated by the GRM and improved
over time, see Baude et al in [BR02].

Given the framework described in Section (2.2) to represent the stock price with discrete dividends, we
are going to use a parametric representation of the market call prices in order to smooth the data and get
nice probability distribution function (pdf). We let Ψ ⊂ RN be a vector of model parameters and consider a
weighted sum of interpolation functions taken in a parametric family. We want each function to satisfy the
no-free lunch constraints in such a way that the constraints are preserved in the weighted sum. Consequently,
in our parametric model, the market option price CM (K,T) of strike K and maturity T is estimated at time
t0 = 0 by the weighted sum

5

CM (t0, S0, B(t0, T), R(t0, T), D(t0, T);K,T) =

n∑
i=1

ai(T)Fi(t0, S0, PT , RT , DT ;K,T)

where ai(t) are the weights and where Rt = Re(0, t) is the repo factor between [0, t], Pt = B(t0, t) = e−rt

is the zero-coupon bond price, Ct = C(t0, t) = Rt

Pt
is the cost of carry and Dt = D(t0, t) is the compounded

sum of discrete dividends between [0, t]. Several families Fi can satisfy the No-Free-Lunch constraints and
we choose a sum of shifted log-normal distributions, that is, using the Black-Scholes formula with shifted
strike (modified by the parameters µi(t)) as an interpolation function

Fi(t0, S0, PT , RT , DT ;K,T) = CallBS(t0, S0, RT , PT ,K
′
(K,T)(1 + µi(T)), T, σi(T))

= PTCallBlack(t0, S0CT ,K
′
(K,T)(1 + µi(T)), T, σi(T))

where K
′
(K, t) = K+Dt with Black-Scholes price CallBS(t0, S0, RT , PT ,K, T, σ) = C(t0, S0,K, T) and such

that the time function t→ σi(t) is regular enough. The time dependent parameters ai(t) and µi(t) are used
to recover the time structure of the volatility surface. The simplest way to ensure that condition is to take
the same time dependency for each µ, that is, µi(t) = µif(t) where µi is a constant and

f(t, β) = 1− 2

1 + (1 + t
β)2

with β > 0 for f(t, .) to be positive. To increase control of the model we let each function Fi have its own
parameter beta so that the function f becomes fi = f(t, βi) for i = 1, .., n. Moreover, to keep manageable
the no-free lunch constraints, ensuring that the weights sum to one, we let the weight ai(t) be proportional

to
a0i

f(t,βi)
for some constant a0

i > 0, getting the representation

µi(t) = µ0
i f(t, βi) and ai(t) =

a0
i

f(t, βi)× norm

where norm =
∑n
i=1

a0i
f(t,βi)

. Making the weights and the shift parameter time-dependent to fit a large class

of volatility surfaces leads, for all time t, to the following no-free lunch constraints

• ai(t) ≥ 0 to get convexity of the price function

•
∑n
i=1 ai(t) = 1 to get a normalised risk-neutral probability

•
∑n
i=1 ai(t)µi(t) = 0 to keep the martingale property of the induced risk-neutral pdf

• µi(t) ≥ −1 to get non-degenerate functions

where the pdf is normalised by construction. Fortunately, with seperable functions of time the above con-
straints simplify to

a0
i ≥ 0 (3.5)

n∑
i=1

a0
iµ

0
i = 0

µ0
i ≥ −1

for all i. The model being invariant when multiplying all the terms a0
i with the same factor, we impose the

normalisation constraint
∑n
i=1 a

0
i = 1 to avoid different parameter sets to give the same model. Given the

6

n parameters βi and assuming a constant volatility σi(t) = σ0
i , there are N = 4n elements in the vector Ψ

but only 4n− 2 free parameters since we can always write a0
1 = 1−

∑n
i=2 a

0
i and a0

1µ
0
1 = −

∑n
i=2 a

0
iµ

0
i .

As such, this model does not allow for the control of the long term volatility surface. Therefore, for our
model to be complete we need to specify the time-dependent volatility σi(t) to capture the term structure
of the implied volatility surface. For simplicity and good performances, we choose the function

σi(t) = aie
−cit + di

for ci, ai and di positive constants. In that setting, the number of elements in the vector Ψ becomes N = 6n.
As a result, we can therefore write at time t0 = 0 the parametric model for a call option price of maturity t
as

CM (t0, S0, Pt, Rt, Dt;K, t) =
1

norm

n∑
i=1

ai(t)CallBS(t0, S0, Rt, Pt,K(K, t), t, σi(t)) (3.6)

where K(K, t) = K
′
(K, t)(1 + µi(t)) and ai(t) =

a0i
f(t,βi)

. Computation of the Greeks and the local volatility

can be found in [Blo10].

4 Nonlinear programming problems with constraints

4.1 The calibration problem

Since the Black-Scholes model in [BS73], market prices of index options and foreign exchange options have
reached a high degree of liquidity such that they became the benchmark to mark to market or calibrate
option pricing models for pricing and hedging exotic options. More formally, using market prices, we need
to estimate the vector Ψ of model parameters in order to price exotic options. This amount to solving the
following inverse problem.

Problem 1 Given prices Ct(Ti,Ki) for i ∈ I where I is the total number of market prices considered, find
the vector Ψ of model parameters such that the discounted asset price Ŝt = e−rtSt is a martingale and the
observed option prices are given by their risk-neutral expectations

∀i ∈ I , Ct(Ti,Ki) = e−r(T−t)EΨ[(S(Ti)−Ki)
+|St = S]

That is, we need to retrieve the risk-neutral process and not just the conditional densities which is equivalent
to a moment problem for the process S. However, as explained in Section (3.2), in practice we do not know
the call and put prices for all strike prices but only for a finite number of them so that extrapolation and
interpolation is needed, resulting in solutions at best approximately verifying the constraints. It is typically
an ill posed problem as there may be either no solution at all or an infinite number of solutions, see Cont and
Tankov in [CT02] for more details. Therefore, one need to use additional criterions for choosing a solution.
It means that we need to reformulate the calibration as an approximation problem, for instance minimising
the in-sample quadratic pricing error

Ψ∗ = arg inf
Ψ
J (Ψ) (4.7)

J (Ψ) =

n∑
i=1

wi
∣∣Pt(Ti,Ki)− Ct(Ti,Ki; Ψ)

∣∣2

7

where wi is a weight associated to each market option price. Market practice is to solve the optimisation
problem with a gradient-based minimisation method to locate the minima. In that case we can always find
a solution but the minimisation function is not convex and the gradient descent may not succeed in locating
the minimum. In order to circumvent these difficulties various authors proposed different regularisation
methods all consisting in adding to the objective function a penalisation criterion. As a result, it makes the
problem well-posed and allow for gradient-based optimisation algorithm. We will not discuss these criterions
in detail and will refer the readers to Tankov in [Tan05] for more details on regularisation techniques.

In an incomplete market, a deterministic optimisation method will at best locate one of the local minima
of the fitting criterion but will not guarantee the global minima and will not acknowledge the multiplicity
of solutions of the initial calibration problem. To overcome these issues, Ben Hamida et al in [BC04]
introduced a stochastic optimisation algorithm which generates a random sample from the set of global
minima of the in-sample error and allow for the existence of multiple global minima. The population of
model parameters is updated through cycles of independent random moves followed by selection according
to pricing performance. Parametrising a set of admissible local volatility surface, they used an Evolutionary
Algorithm (EA) to calibrate a local volatility diffusion model to a finite set of option prices. Instead, as
explained in Section (3.2) we chose to parametrise a mixture of shifted lognormal densities under constraints.
Hence, we are going to detail an alternative approach to solving non-linear programming problems under
constraints that do not require computing the gradient of the model. We will need to devise an evolutionary
algorithm that handle constraints in a simple and efficient way.

4.2 Defining the problems

We consider a system with the real-valued properties

gm for m = 0, .., P − 1

making the objectives of the system to be optimised. Given a N -dimensional vector of real-valued parameter
X ⊂ RN the optimisation problem can always be written as

min fm(X)

where fm(.) is a function by which gm is calculated and where each element X(i) of the vector is bounded
by lower and upper limits Li ≤ X(i) ≤ Ui which define the search space S. We follow Lueder in [Lu90] who
showed that all functions fm(.) can be combined in a single objective function H : X ⊂ RN → R expressed
as the weighted sum

H(X) =

P∑
m=1

wmfm(X)

where the weighting factors wm define the importance of each objective of the system. Hence, the optimisation
problem becomes

minH(X)

so that all the local and global minima (when the region of eligibility in X is convex) can be found. However,
since the problems of calibration in finance involves a single objective function, the optimisation function
simplifies. Most complex search problems such as optimisation problems are constrained numerical problem
(CNOP) more commonly called general nonlinear programming problems with constraints given by

gi(X) ≤ 0 , i = 1, .., p

hj(X) = 0 , j = 1, .., q

8

Equality constraints are usually transformed into inequality constraints by

|hj(X)| − ε ≤ 0

where ε is the tolerance allowed. Given the search space S ⊂ RN , we let F be the set of all solutions
satisfying the constraints of the problems called the feasible region. It is defined by the intersection of S and
the set of p+ q additional constraints. At any point X ∈ F , the constraints gi(.) that satisfy gi(X) = 0 are
active constraints at X while equality constraints hj(.) are active at all points of F . Many practical problems
have objective functions that are non-differentiable, non-continuous, non-linear, noisy, multi-dimensional and
have many local minima. This is the case of the calibration problem defined in Section (4.1). Evolutionary
algorithms (EAs) introduced by Holland in [Hol62] and later in [Hol75] as well as by Fogel in [Fog66]
are robust and efficient optimisation algorithms based on the theory of evolution proposed by Darwin in
[Dar82], where a biological population evolves over generations to adapt to an environment by mutation,
recombination and selection. They search from multiple points in space instead of moving from a single
point like gradient-based methods do. Moreover, they work on function evaluation alone (fitness) and do
not require derivatives or gradients of the objective functions. Since EAs are search engines working in
unconstrained search spaces they lacked until recently of a mechanism to deal with the constraints of the
problems. The first attempts to handle the constraints was to incorporate methods from mathematical
programming algorithms within EAs such as penalty functions. Then, a considerable amount of research
proposed alternative methods to improve the search of the feasible global optimum solution. Among the
different EA’s commonly used to solve CNOPs such as evolutionary programming, evolution strategies,
genetic algorithm and many more, differential evolution (DE) became very popular. DE is a population-
based approach to function optimisation generating a new position for an individual by calculating vector
differences between other randomly selected members of the population. Most of the research on DE focused
on solving CNOPs by using a sole DE variant, a combination of variants or combining DE with another
search method. One of the most popular constraint handling mechanisms is the use of the three feasibility
rules proposed by Deb in [Deb00] on genetic algorithms.

4.3 The DE algorithm

The Differential Evolution (DE) proposed by Storn and Price in [StPr95] is an algorithm that can find
approximate solutions to nonlinear programming problems. It is a parallel direct search method which uses
NP parameter vector

Xi,G for i = 0, .., NP − 1

as a population for each generation G like any evolutionary algorithms. Each of the NP parameter vectors
undergoes mutation, recombination and selection.

4.3.1 The mutation

The role of mutation is to explore the parameter space by expanding the search space. For a given parameter
vector Xi,G called the Target vector, the DE generates a Donor vector V made of three or more independent
parent vectors Xrl,G for l = 1, 2, .. where rl is an integer chosen randomly from the interval [1, NP] and
different from the running index i. In the spirit of Wright in [Wri91], the main idea is to perturbate a Base
vector V̂ with a weighted difference vector (called differential vectors)

V = V̂ + F
∑
l=1

(
Xr2l−1,G −Xr2l,G

)
where the mutation factor F is a constant taking values in [0, 2] and scaling the influence of the set of pairs
of solutions selected to calculate the mutation value. Most of the time, the Base vector is defined as the
arithmetical crossover operator

9

V̂ = λXbest,G + (1− λ)Xr1,G

where λ ∈ [0, 1] allows for a linear combination between the best element Xbest,G of the parent population
vectors and a randomly selected vector Xr1,G. It is called a global selection when λ = 1 while when λ = 0
the base vector is the same as the target vector, Xr1,G = Xi,G and we get a local selection. In the special
case where the mutation factor is set to zero, the mutation operator becomes a crossover operator.

4.3.2 The recombination

Recombination incorporates successful solutions from the previous generation. That is, according to a rule,
we combine elements of the Target vector Xi,G with elements of the Donor vector Vi,G to create an offspring
called the Trial vector Ui,G. In order to increase the diversity of the parameter vectors, elements of the
Donor vector enter the Trial vector with probability CR. In the DE algorithm, each element of the Trial
vector satisfies

Ui,G(j) = Vi,G(j) for j = nr mod dim, (nr + 1) mod dim, ..., (nr + L− 1) mod dim

= Xi,G(j) for all other j ∈ [0, .., NP − 1]

where dim is the dimension of the vector V (here dim = N) and the starting index nr is a randomly chosen
integer from the interval [0, dim− 1]. Hence, a certain sequence of the element of U is equal to the element
of V while the other elements get the original element of Xi,G. We only choose a subgroup of parameters for
recombination, enhancing the search in parameter space. The integer L denotes the number of parameters
that are going to be exchanged and is drawn from the interval [1, dim] with probability

P (L > ν) = (CR)ν , ν > 0

The random decisions for both nr and L are made anew at each new generation G. The term CR ∈ [0, 1] is
the crossover factor controlling the influence of the parent in the generation of the offspring. A higher value
means less influence from the parent. Most of the time, the mutation operator in Section (4.3.1) is sufficient
and one can directly set the Trial vector equal to the Donor vector.

4.3.3 The selection

The tournament selection only needs part of the whole population to calculate an individual selection proba-
bility where subgroups may contain two or more individuals. In the DE algorithm, the selection is determin-
istic between the parent and the child. The best of them remain in the next population. We compute the
objective function with the original vector Xi,G and the newly created vector Ui,G. If the value of the latter
is smaller than that of the former, the new Target vector Xi,G+1 is set to Ui,G otherwise Xi,G is retained

Xi,G+1 = Ui,G if H(Ui,G) ≤ H(Xi,G) , i = 0, .., NP − 1

= Xi,G otherwise

Mutation, recombination and selection continue until some stopping criterion is reached. The mutation-
selection cycle is similar to the prediction-correction step in the EM algorithm or in the filtering problems.

4.3.4 Convergence criterions

We allow for different convergence criterion in such a way that if one of them is reached, the algorithm
terminates. We let fmin be the fittest design in the population and define fa,G = 1

NP

∑NP−1
i=0 f(Xi,G) as

10

the average objective value in a generation. Then, when the percentage difference between the average value
and the best design reaches a specified small value ε1

|fa,G − fmin|
|fa,G|

× 100 ≤ ε1

we terminate the algorithm. Also, we let fminOld be the fittest design in the previous generation and consider
as a criterion the difference

fminOld − fmin < ε2

where ε2 is user defined. In that case, the DE algorithm will continue until there is no appreciable improve-
ment in the minimum fitness value or some predefined maximum number of iterations is reached.

4.3.5 Pseudocode

We now present the pseudo code of a standard DE algorithm.

Initialise vectors of the population NP

Evaluate the cost of each vector

for i=0 to Gmax do

repeat

Select some distinct vectors randomly

Perform mutation

Perform recombination

Perform selection

if offspring is better than main parent then

replace main parent in the population

end if

until population is completed

Apply convergence criterions

next i

4.4 Improvements

The DE algorithm is found to be a powerful evolutionary algorithm for global optimisation in many real
problems. As the DE algorithm performs mutation based on the distribution of the solutions in a given
population, search directions and possible step sizes depend on the location of the individuals selected to
calculate the mutation values. As a result, since the original article of Storn and Price in [StPr95] many
authors improved the DE model to increase the exploration and exploitation capabilities of the DE algorithm
when solving optimisation problems. We are going to review a few changes to the DE algorithm which greatly
improved the performances of our problem.

4.4.1 Ageing

The DE selection is based on local competition only. The number of children that may be produced to
compete against the parent Xi,G should be chosen sufficiently high so that a sufficient number of child will
enter the new population. Otherwise, it would lead to survival of too many old population vectors that may
induce stagnation. To prevent the vector Xi,G from surviving indefinitely, Storn in [Sto96] used the concept
of ageing. One can define how many generations a population vector may survive before it has to be replaced
due to excessive age. If the vector Xi,G is younger than Num generations it remains unaltered otherwise it
is replaced by the vector Xr3,G with r3 6= i being a randomly chosen integer in [1, NP].

11

4.4.2 Constraints on parameters

Given the parent vector Xi,G for i = 0, .., NP−1 we define upper and lower bounds for each initial parameters
as

L(j) ≤ Xi,G0(j) ≤ U(j)

and we randomly select the initial parameter values uniformly on the interval [L(j), U(j)] as

Xi,G0(j) = L(j) + U(0, 1)
(
U(j)− L(j)

)
where U(0, 1) generates a random number in the range [0, 1] with a uniform distribution. Obviously, as the
number of generation G increases, the DE algorithm will generate elements of the vector outside of the limits
established (lower and upper) by an amount. Following Mezura Montes et al in [MezCoeTun04] this amount
is substracted or added to the limit violated to shift the value inside the limits. If the shifted value is now
violating the other limit, a random value inside the limits is generated.

4.4.3 Convergence

In order to accelerate the convergence process, when a child replaces its parent, Mezura-Montes et al in
[MezCoeTun04] copied its value both into the new generation and into the current generation. It allows
the new child, which is a new and better solution, to be selected among the rl solutions and create better
solutions. Therefore, a promising solution does not need to wait for the next generation to share its genetic
code. Similarly, to improve performance and to accelerate the convergence process, Storn in [Sto96] explored
the idea of allowing a solution to generate more than one offspring. Once a child is better than its parent, the
multiple offspring generation ends. Following the same idea, Coello Coello and Mezura-Montes in [CoeMez03]
and then Mezura-Montes et al in [MezVelCoe06] allowed for each parent at each generation to generate k > 0
offspring. Among these newly generated solutions, the best of them is selected to compete against its parent,
increasing the chances to generate fitter offspring.

4.4.4 Self-adaptive parameters

Balamurugan et al in [BaSu07] considered the key parameters of control in DE algorithm such as the crossover
CR and the weight applied to random differential F to be self-adapted. That is, the control parameters are
not required to be pre-defined and can change during the evolution process. These control parameters are
applied at the individual levels in the population so that better values lead to better individuals producing
better offspring and hence better values. F is a scaling factor controlling the amplification of the difference
between two individuals to avoid search stagnation. At generation G = 1 the amplification factor Fk,G for
the kth individual is generated randomly in the range [0.1, 1.0]. Then, at the next generations the control
parameter is given by

Fk,G+1 =

{
FL + U(0, 1)FU if U(0, 1) < τ1
Fk,G otherwise

where FL = 0.1, FU = 0.9 and τ1 represent the probability to adjust the parameter F .

4.5 Handling the constraints

We saw above that EAs in general and DE in particular lacked a mechanism to deal with the constraints
of the problems. Recently, various academics worked on solving that problem, and one of the most popular
constraint handling mechanisms was proposed by Deb in [Deb00] on genetic algorithms who used the three
feasibility rules. In a single-objective optimisation problem, the traditional approach for handling constraints

12

is the penalty function method. The fitness of a candidate is based on a scale function F which is a weighted
sum of the objective function value and the amount of design constraint violation

F (X) = f1(X) +
(p∑
k=1

ωk max (gk(X), 0)

q∑
k=p+1

ωk|hk(X)|
)

where ωk are positive penalty function coefficients and such that the kth constraint gk(.) and hk(.) should be
normalised. This method requires a careful tuning of the coefficients ωk to obtain satisfactory design, that
is a balance between the objective function and the constraints but also between the constraints themselves.
To overcome this problem, Deb proposed a penalty function approach based on the non-dominance concept,
ranking candidates using the definition of domination between two candidates.

Definition 4.1 A solution i is said to dominate a solution j if both of the following conditions are true

1. solution i is no worse than solution j in all objective

∀fm(Xi) ≤ fm(Xj)

2. solution i is strictly better than solution j in at least one objective

∃fm(Xi) < fm(Xj)

The constrained domination approach ranks candidates according to the following definition

Definition 4.2 A solution i is said to constrained-dominate a solution j if any of the following conditions
is true

1. solutions i and j are feasible and solution i dominates solution j.

2. solution i is feasible and solution j is not.

3. both solutions i and j are infeasible but solution i has a smaller constraint violation.

He let the fitness function be

F (X) =

{
f(X) if gk(X) ≤ 0 ∀k = 1, 2, ..
fmax + TACV otherwise

where fmax is the objective value with the worst feasible solution in the population and (TACV) is the total
amount of constraint violation

TACV =

p+q∑
k=1

max (gk(X), 0)

Therefore, solutions are never directly compared in terms of both objective function and constraint violation
information. However, the high selection pressure generated by tournament selection will induce the use
of additional procedure to preserve diversity in the population such as niching or sharing. Clearly, there is
no tuning of the penalty function coefficients when the number of constraint is one. But, when multiple
constraints are considered some considerations must be taken to relate constraints together. Again, many
different approaches were proposed, for instance Coello Coello in [Coe00] modified the definition of the
constrained domination approach given in Definition (4.2) such that if the individuals are infeasible he
compares the number of constraints violated first and only in the case of a tie would he use the total amount
of constraint violation. Going one step further, Oyama et al in [OSF05] introduced dominance in constraint

13

space. In that setting, any non-dominance ranking can be applied to feasible designs and infeasible designs
separately. As a result, in a single-objective constrained optimisation problem, Bloch in [Blo10] modified
the dominance-based tournament selection of Coello and Mezura with the non-dominance concept of Oyama
et al, getting

Definition 4.3 The new dominance-based tournament selection is

1. if solutions i and j are both feasible and solution i dominates in objective function solution j then
solution i wins.

2. if solution i is feasible and solution j is not, solution i wins.

3. if solutions i and j are both infeasible and solution i dominates in constraint space solution j then
solution i wins.

4. if solutions i and j are infeasible and non-dominated in constraint space, if solution i violates less
number of constraints than solution j then solution i wins.

5. if solutions i and j are both infeasible, non-dominated in constraint space and violating the same number
of constraints but solution i has a smaller TACV than solution j then solution i wins.

5 Boundary search

Many techniques experience difficulties in solving real-world problems which include non-trivial constraints.
For such problems, very often the global solution lies on the boundary of the feasible region. This is the
case for our optimisation problem, since market prices evolves stochastically over time, leading to marking
to market our pricing model on a constantly changing volatility surface. As a result, depending on the
market prices and the shape of the volatility surface, some inequality constraints in Equation (3.5) might
become active. Hence, the importance of problem specific operators to search the boundary in an efficient
way. Even though some of our inequality constraints are active, we can not use the general approach for
boundary search proposed by Leguizamon et al in [LeguizamonCoe09] since most of our constraints remain
inactive. However, taking advantage of the structure of our objective function, we combines specific operators
together with feasibility rules to handle simultaneously the equality and inequality constraints. Dividing the
population vector into subvectors, we apply the mutation and recombination operators independently to
each subvector followed by a global selection method.

5.1 Combining generic and specific method

Classical optimisation algorithms distinguish two main groups of constraint handling methods, the generic
methods and the specific methods exploiting mathematical structure of the constraint. We considered in
Section (4.5) the generic approach by using feasibility rules combined with a penalty function method after
converting equality constraints into inequality ones. However, even if we generate initial parameters inside
the domain of definition as explained in Section (4.4.2), it is very unlikely that the equality constraint derived
in Equation (3.5) will be satisfied, making the initial vector guess XG0

infeasible. Hence, if we handle our
constraints using the dominance-based tournament selection introduced in Definition (4.3) we will rely sole
on non-dominance ranking applied to infeasible designs. That is, our algorithm will rely on the relevance
of the penalty function chosen as well as the fine tuning of its coefficients, slowing convergence. One way
forward is to add some domain knowledge to our DE algorithm at initialisation time as Landa Becerra et
al did in [LandaCoe06]. To do so, we let our population space consists of the vector X1

G0
generated as in

Section (4.4.2) while our belief space that consists of the vector X2
G0

is generated in such way as to enforce the
AAO constraints derived in Equation (3.5) so that it becomes feasible (see Annexe (A)). Given a probability

14

CR0 taking values in [0, 1] we will compute our ith initial vector guess Xi,G0
from either the population

vector or the belief vector. As a result, depending on the probability chosen, part of our initial NP vectors
will be feasible and the dominance-based tournament selection will be applied to both feasible and infeasible
designs.

Alternatively, we can consider specific methods which are only applicable to special types of constraints.
For instance, Michalewicz et al in [MNM96] proposed a geometrical crossover and a special mutation operator
to generate offspring lying on the boundary between the feasible and infeasible search space. Consequently,
the search space is reduced as the exploration considers only the boundary of the feasible search space.
Instead, we are going to propose a third approach by combining the generic method together with the
specific one, using special operators to help satisfy the equality constraint. Using the specific structure of
our objective function together with its constraints, we will conserve the penalty function method when
handling inequality constraints, but we will be using a set of closed operators converting feasible solution
into another feasible solution for equality constraints.

5.2 The structure of our optimisation problem

The DE algorithm described in Section (4.3) is a powerful and robust optimisation method when the model
parameters are relatively homogeneous. However, the structure of our model parameters is peculiar in
that our model price in Equation (3.6) is a weighted sum of interpolation functions taken in a parametric
family. That is, we have n times the same parameters such that we can choose to gather similar parameters
into subvectors when entered into the parameter vector, getting X(.) = [X1

(.), .., X
k
(.)]
> where k is the total

number of parameters per function and X l
(.) for l ∈ [1, k] is a subvector of size n. Moreover, the constraints

in Equation (3.5) do not directly applies to the vector X(.) but to its subvectors so that we can consider the
constraints to be given by

gi(X
i
(.)) ≤ 0 , i = 1, .., k

hj(X
j
(.)) = 0 , j = 1, .., k

As a result, we consider exploring the search space by applying the mutation and recombination operators
independently to each subvector X l

(.).

5.3 Handling inequality constraints

We are now going to reconsider the DE algorithm described in Section (4.3) focussing first on the mutation
operator. Because our Target vector decomposes into k subvectors, we can also decompose the Donor vector
together with the Base vector into k subvectors, getting

Vl = V̂l + Fl
∑
j=1

(
X l
r2j−1,G −X

l
r2j ,G

)
for l = 1, .., k

where Fl is the mutation factor for the lth subvector. In the case of inequality constraints applied to the
l-subvector, the Base subvector is defined as

V̂l = λX l
best,G + (1− λ)X l

r1,G

with Fl taking values in [0, 2]. Then, we use the recombination operator in the subvectors, getting each
element of the Trial vector to satisfy

15

U li,G(j) = V li,G(j) for j = nr mod dim, (nr + 1) mod dim, ..., (nr + L− 1) mod dim

= X l
i,G(j) for all other j ∈ [1, .., n]

where dim = n

5.4 Handling equality constraints

5.4.1 The Mutation operators

In our optimisation problem we have to handle two different types of constraints. In the first type, we are
given the subvector X l

(.) of size n where l ∈ [1, k] with the constraint
∑n
i=1X

l
(.)(i) = δ. We let p be a random

variable taking values in [0, 1] and consider two integers i 6= j when the the ith component is selected for
mutation such that

X
l

(.)(i) = pX l
(.)(i)

X
l

(.)(j) = (1− p)X l
(.)(i) +X l

(.)(j)

In the second type, if we let m ∈ [1, k], set m 6= l and consider the subvectors X l and Xm together with the
constraint

∑n
i=1X

l(i)Xm(i) = δ, then for i 6= j we get

X
m

(.)(i) = pXm
(.)(i)

X
m

(.)(j) = (1− p)
X l

(.)(i)X
m
(.)(i)

X l
(.)(j)

+Xm
(.)(j)

5.4.2 The recombination operators

Given the first type of equality constraints, we consider two parent subvectors X l
1 and X l

2 and want to
generate the offspring X l

3 such that it satisfies the constraint. It can be done with the arithmetical crossover
by letting X l

3 be a linear combination of its two parents

X l
3(i) = αX l

1(i) + (1− α)X l
2(i)

for α ∈ [0, 1] since

n∑
i=1

X l
3(i) = αδ + (1− α)δ = δ

In the second type, if we let m ∈ [1, k], set m 6= l and consider the subvectors X l
(.) and Xm

(.) together with

the constraint
∑n
i=1X

l
(.)(i)X

m
(.)(i) = δ we can reproduce the above procedure, getting

X l
3(i)Xm

3 (i) = αX l
1(i)Xm

1 (i) + (1− α)X l
2(i)Xm

2 (i)

and the sum becomes

n∑
i=1

X l
3(i)Xm

3 (i) = αδ + (1− α)δ = δ

16

Therefore, given the element X l
3(i) we can construct Xm

3 (i) such that the constraint is satisfied

Xm
3 (i) =

αX l
1(i)Xm

1 (i) + (1− α)X l
2(i)Xm

2 (i)

X l
3(i)

In the DE algorithm, it is equivalent to setting the mutation factor to zero Fl = 0, forcing the Donor
subvector to be generated sole with crossover operator. In the first type of equality constraints, the Base
subvector satisfies

V̂l = αX l
s1,G + (1− α)X l

s2,G

where s1 and s2 are integers chosen randomly from the interval [1, NP] and different from the running index.
In the second type of equality constraints, the Base subvector satisfies for each element i the relation

V̂m(i) =
αX l

s1,G
(i)Xm

s1,G
(i) + (1− α)X l

s2,G
(i)Xm

s2,G
(i)

V̂l(i)
, i = 1, .., n

where V̂l is already computed.

5.5 The proposed algorithm

Using the improvements in Section (4.4) together with a particular mutation operator and our combined way
of handling the equality and inequality constraints, the pseudo code for the DE algorithm with constraints
becomes

Begin

G = 0 and Age_i, G = 0 ∀ i, i = 0, .., NP − 1
Create a random initial population X_i, G ∀ i, i = 0, .., NP−1 from feasible and infeasible vectors

Evaluate f(X_i, G) ∀ i, i = 0, .., NP − 1
while niter < max_iter and G < Gmax do

fmin_old = fmin
for i = 0 to NP − 1 do

for k = 1 to N_K do

Loop subvectors for l = 1, .., k
if equality constraint then

Do specific mutation and recombination

Get U_i, l, G(j)
else if inequality constraint then

Select randomly r_1 6= r_2 6= r_3 6= i j_r = U(1, N)
for j = 1 to n do

if U(0, 1) < CR or j = j_r then

U_i, l, G(j) = X_r_3, l, G(j) + F_l (X_r_1, l, G(j) − X_r_2, l, G(j))
else

U_i, l, G(j) = X_i, l, G(j)
end if

end for

end if

end loop

if k > 1 then

if U_i, G(j) is better than U_i_best,G(j) based on five selection criteria then

U_i_best,G(j) = U_i, G(j)
else

17

U_i_best,G(j) = U_i, G(j)
end of for

Apply selection criterions :

if U_i_best,G is better than X_i, G based on five selection criteria then

X_i, G+ 1 = X_i, G = U_i_best,G
else

if Age_i, G < N_A or i = i_best then

X_i, G+ 1 = X_i, G
else

Select randomly r_4 6= i
X_i, G+ 1 = X_r_4, G
Age_i, G = 0

end if

end if

if fmin > f(X_i, G)
fmin = f(X_i, G)
i_best = i

end if

end for

Apply convergence criterions :

if fmin_old − f_min < precision
niter = niter + 1

else

niter = 0
end if

G = G+ 1
end while

End

5.6 The results

We proposed in Section (3.2) a model producing an arbitrage-free implied volatility surface both in time
and in space and discussed in Section (4.1) the calibration problem together with a global measure of fit for
estimating the model parameters. More precisely, we considered in Equqtion (4.7) a weighted least square
estimator (WLSE) as our prediction error method. That is, after calibration of the model to market prices
we obtain the optimised objective function J (Ψ∗) with optimal model parameter Ψ∗. We are now going to
discuss the in-sample performance of the model using the root mean square error (RMSE) defined by

RMSE =

√√√√ n∑
i=1

wi
(
Pt(Ti,Ki)− Ct(Ti,Ki; Ψ∗)

)2
where the difference between market price and model price is the prediction error. To measure the effective-
ness of our algorithm, we test it against a quasi-Newton method called Broyden-Fletcher-Goldfarb -Shanno
(BFGS) with penalty function (see Press et al in [PTVF92]) and a DE algorithm with feasibility rules where
equality constraints are transformed into inequality constraints (see Bloch in [Blo10]). Tests are performed on
the Nikkei 225 index over the last two years on a monthly basis. For illustration purpose, we will only repro-
duce a single day, that is, the evaluation day is the 21st of December 2009 with index value being 10197.81 yen.
The calibration of the model to market prices is performed on 8 maturities such that for all strikes less than

18

the forward price we use put option while for all strikes above the forward price we use call options. The matu-
rities are 2010/1/8 with strikes {8500, 8750, 9000, 9250, 9491, 9740, 10000, 10250, 10490, 10750, 11000, 11250},
2010/2/12 with strikes {7000, 7250, 7500, 7550, 8000, 8250, 8500, 8750, 9000, 9241, 9500, 9750, 10000, 10039, 10250,
10500, 10750, 11000, 11250, 11500, 11750, 12000, 12250}, 2010/3/12 with strikes {6000, 6500, 7000, 7500, 7750,
8000, 8250, 8492, 8500, 8750, 9000, 9250, 9500, 9750, 10000, 10250, 10490, 10500, 10750, 11000, 11239, 11250, 11489,
11750, 12000, 12250, 12500}, 2010/4/9 with strikes {5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
9990, 10000, 10490, 11000, 11500, 12000, 12500, 13000}, 2010/6/11 with strikes {4500, 5000, 6500, 7493, 7992, 8492,
9491, 11500, 12000, 12500, 13000}, 2010/9/10 with strikes {5000, 5500, 6000}, 2010/12/10 with strikes {4500, 5000,
6000}, 2011/6/10 with strikes {10500, 11988}. For these maturities and strikes, the mid-market prices range
from 2.5 yen to 585 yen, so that the WLSE and the RMSE are expressed in yen. However, following market
practice, we express the WLSE in volatility by replacing the model and market prices in Equqtion (4.7)
with their implied volatility. We generate 50 independent trials and compute the optimised objective func-
tion, displaying in Table (1) the best and worst values together with the sample mean and sample standard
deviation.

BFGS DE Modified DE
Best 3.932 10−3 3.483 10−5 2.716 10−6

Worst - 0.013547 6.139 10−4

Mean - 0.00144455 3.247 10−5

SdDev - 0.0034326 4.521 10−4

Table 1: WLSE for the three optimisation methods expressed in volatility

The proposed algorithm outperforms the two other methods with the lowest objective function on average
and provide a much lower standard deviation when compared with the other DE algorithm. The RMSE
results expressed in price for the three optimisation methods in the best case are given in Table (2).

BFGS DE Modified DE
RMSE 20.76 18.93 15.35

Table 2: RMSE for the three optimisation methods expressed in price

In all the tests performed, our modified algorithm returned the smallest prediction errors with smallest
weighted differences between market prices and model prices. Hence, our modified approach on handling
equality constraints with special operators can find better optimums than transforming them into inequalities
and using the feasibility rules, improving calibration to market prices. As a result, market prices being
correctly matched, our model pricer can be used more pertinently to quote prices not directly visible in the
market and to generate local volatility.

6 Conclusions and future work

To mark options not directly visible in the market as well as to compute a proper deterministic local volatility
for pricing exotic options, we proposed a reliable implied volatility surface without arbitrage both in space
and in time. We considered a parametric mixture of shifted lognormal densities under constraints and used
a Differential Evolution algorithm to calibrate the model’s parameters to a finite set of option prices. Our
improved algorithm focused on handling constraints in a simple and efficient way by taking advantage of the
specific structure of our objective function and used special operators to help satisfy the equality constraints
together with feasibility rules to handle the inequality constraints. That is, dividing the population vector

19

into subvectors, we applied the mutation and recombination operators independently to each subvector
followed by a global selection method. Finally, we tested the algorithm on real market data and showed
that, compared to other DE method, our approach for handling constraints led on average to better optimums
with smaller standard deviations. One possibility for potential future work would be to handle both equality
and inequality constraints independently from the model pricer in a more general way. That would allow for
the choice of other model pricers to be considered.

20

Annexes

A Enforcing constraints on parameters

We are presenting a simple way of enforcing the constraints on model parameters given in Equation (3.5).
We first take the absolute value of the parameters a0

i for all i and consider the normalisation constraint∑n
i=1 a

0
i = 1. We set sum1 =

∑n
i=1 a

0
i and create a new vector with element a0

i =
a0i

sum1
so that the new

constraint
∑n
i=1 a

0
i = 1 is satisfied. We then consider the constraint

∑n
i=1 a

0
iµ

0
i = 0 together with µ0

i ≥ −1.
Again, we set sum2 =

∑n
i=1 a

0
i |µ0

i | and consider the modified parameter

µ0
i = −1 +

|µ0
i |

sum2

and since sum2 > 0 and
∑n
i=1 a

0
i = 1 then the new constraint

n∑
i=1

a0
iµ

0
i = 0

is satisfied. Note, when sum2 → 0 the parameter µ0
i is not defined but in that case

∑n
i=1 a

0
iµ

0
i ≈ 0. Therefore,

when sum2 < ε for a small enough parameter ε we directly assume that the constraint is satisfied.

21

References

[Ale01] C. Alexander, Market models - a guide to financial data analysis., John Wiley and Sons, New York,
(2001).

[BaSu07] R. Balamurugan, S. Subramanian, Self-adaptive differential evolution based power economic dispatch

of generators with valve-point effects and multiple fuel options., International Journal of Computer
Science and Engineering, Winter (2007).

[BR02] S. Baude, CH. Roubinet, GRM smile model for the pricing of regular and exotic options on equities.,
Working Paper, GRM, Credit Lyonnais, October (2002).

[BDK08] S. Benaim, M. Dodgson, D. Kainth, An arbitrage-free method for smile extrapolation., Working Paper,
QuaRC, Royal Bank of Scotland, (2008).

[BC04] S. Ben Hamida, R. Cont, Recovering volatility from option prices by evolutionary optimization., Working
Paper, CMAP, (2004).

[BS73] F. Black, and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Eco-
nomics, 81, 637-659 (1973).

[Blo09] D. Bloch, A note on calibration of Markov processes., Working Paper, University of Paris 6, April,
(2009).

[Blo10] D. Bloch, A practical guide to implied and local volatility., Working Paper, University of Paris 6,
January, (2010).

[BGS03] R. Bos, A. Gairat and A. Shepeleva, Dealing with discrete dividends., Risk, January, p109-112 (2003).

[Coe99] C.A. Coello Coello, A comprehensive survey of evolutionary-based multiobjective optimization tech-

niques., Knowledge and Information Systems, An International Journal, 1 (3), p269-p308, (1999).

[Coe00] C.A. Coello Coello, Constraint-handling using an evolutionary multiobjective optimization technique.,
Civil Engineering and Environmental Systems, Vol. 17, p319-p346, (2000).

[CoeMez02] C.A. Coello Coello, E. Mezura-Montes, Constraint-handling in genetic algorithms through the use

of dominance-based tournament selection., Advanced Engineering Informatic, Vol. 16, p193-p203,
(2002).

[CoeMez03] C.A. Coello Coello, E. Mezura-Montes, Increasing successful offspring and diversity in differential

evolution for engineering design., Advanced Engineering Informatic, Vol. 16, p193-p203, (2003).

[CT02] R. Cont, P. Tankov, Calibration of jump-diffusion option-pricing models : a robust non-parametric

approach, CMAP, 42, September (2002).

[CC88] C.E. Curtis, and G.L. Carriker, Estimating implied volatility directly from ”nearest-to-the-money” com-

modity option premiums., Working Paper 081588, Clemson University, (1988).

[DHS06] T. Daglish, J. Hull and W. Suo, Volatility surfaces : theory, rules of thumb and empirical evidence,
Working Paper, August (2006).

[Dar82] C.R. Darwin, The variation of animals and plants under domestication., Murray, London, second
edition (1882).

[Deb00] K. Deb, An efficient constraint handling method for genetic algorithms., Computer Methods in Applied
Mechanics and Engineering, 186 (2/4), 311-338 (2000).

22

[Du94] B. Dupire, Pricing with a smile, Risk, 7, pp. 18-20, (1994).

[Fog66] L.J. Fogel, Artificial intelligence through simulated evolution., John Wiley, New York, (1966).

[Fri02] V. Frishling, A discrete question., Risk, January, p115-116 (2002).

[HKLW02] P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward, Managing smile risk., Wilmott
Magazine, September, 84-108 (2002).

[HK79] J.M. Harrison, D. Kreps, Martingale and arbitrage in multiperiods securities markets., Journal of
Economic Theory, 20, 381-408 (1979).

[Har68] J. Hart, Computer approximations., Wiley, Algorithm 5666 for the error function, (1968).

[Hol62] J.H. Holland, Outline for a logical theory of adaptive systems., Journal of the Association for Com-
puting Machinery, 9, pp 297-314 (62).

[Hol75] J.H. Holland, Adaptation in natural and artificial systems., University of Michigan Press, Ann Arbor,
(1975).

[LandaCoe06] R. Landa Becerra, C.A. Coello Coello Cultured differential evolution for constrained optimization.,
Computer Methods in Applied Mechanisand Engineering, 195, Jully, pp 4303 - 4322 (2006).

[LeguizamonCoe09] G. Leguizamon, C.A. Coello Coello Boundary search for constrained numerical optimization

problems with an algorithm inspired by the ant colony metaphor., IEEE Transactions on Evolutionary
Computation, 13, No2, April, pp 350 - 368 (2009).

[Lu90] E. Luede, Optmization of circuits with a large number of parameters, Archiv f. Elektr. u. Uebertr.,
Band (44), Heft (2), pp 131-138, (1990).

[Mal97] A. Malz, Estimating the probability distribution of the future exchange rate from option prices., Journal
of Derivatives, Winter, pp 18 - 36, (1997).

[MezCoeTun04] E. Mezura-Montes, C.A. Coello Coello and E.I. Tun-Morales Simple feassibility rules and dif-

ferential evolution for constrained optimization., Third Mexican International Conference on Artificial
Intelligence, MICAI, Lecture Notes in Artificial Intelligence, p707-p716, (2004).

[MezCoe04] E. Mezura-Montes, C.A. Coello Coello A study of mechanisms to handle constraints in evolutionary

algorithms., Workshop at the Genetic and Evolutionary Computation Conference, Seattle, Wash-
ington, ISGEC, (2004).

[MezVelCoe06] E. Mezura-Montes, J. Velazquez-Reyes and C.A. Coello Coello Modified differential evolution

for constrained optimization., IEEE Congress on Evolutionary Computation, IEEE Press, p332-
p339, (2006).

[Mi95] Z. Michalewicz, Gnetic algorithms, numerical optimization and constraints., L. Eshelman, ed., Pro-
ceeding of the Sixth International Conference on Genetic Algorithms, San Mateo, 151-158, (1995).

[MNM96] Z. Michalewicz, G. Nazhiyath and M. Michalewicz A note on usefulness of geometrical crossover for

numerical optimization problems., Proc. 5th Annu. Conf. Evolut. Prog., L.J. Fogel, P.J. Angeline
and T. Back, Eds., Cambridge, MA, pp 305-311 (1996).

[OBBFJL07] M. Overhaus, A. Bermudez, H. Buehler, A. Ferraris, C. Jordinson and A. Lamnouar, Equity

hybrid derivatives, Wiley Finance, (2007).

23

[OSF05] A. Oyama, K. Shimoyama and K. Fujii, New constraint-handling method for multi-objective multi-

constraint evolutionary optimization and its application to space plane design., Evolutionary and Deter-
ministic Methods for Design, (2005).

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes, 2nd ed. Cam-

bridge, Cambridge University Press, (1992).

[RC04] R. Rebonato, M.T. Cardoso, Unconstrained fitting of implied volatility surfaces using a mixture of

normals., Working Paper, QUARC and Oxford University, July 6 (2004).

[SanCoe05] L.V. Santana-Quintero, C.A. Coello Coello, An algorithm based on differential evolution for multi-

objective problems., International Journal of Computational Intelligence Research, 1, ISSN 0973-
1873, pp 151 - 169 (2005).

[StPr95] R. Storn and K. Price, Differential evolution - a simple and efficient adaptive scheme for global opti-

mization over continuous spaces., International Computer Science Institute, Berkeley, TR-95-012,
(1995).

[Sto96] R. Storn, System design by constraint adaptation and differential evolution., International Computer
Science Institute, Berkeley, TR-96-039, (1996).

[Tan05] P. Tankov, Calibration de modeles et couverture de produits derives., Working Paper, Universite Paris
VII, (2005).

[Wri91] A.H. Wright, Genetic algorithms for real parameter optimization., In Foundation of Genetic Algo-
rithms, ed. G. Rawlins, First Workshop on the Foundation of Gen. Alg. and Classified Systems,
Los Altos, CA, pp 205-218 (1991).

[Woo10] D. Wood, Future options., Risk Magazine, March, pp 23-25 (2010).

24

	Introduction
	The underlying asset
	The dynamics
	The spot model with discrete dividends

	The choice of a volatility model
	The standard approach
	The parametric model

	Nonlinear programming problems with constraints
	The calibration problem
	Defining the problems
	The DE algorithm
	The mutation
	The recombination
	The selection
	Convergence criterions
	Pseudocode

	Improvements
	Ageing
	Constraints on parameters
	Convergence
	Self-adaptive parameters

	Handling the constraints

	Boundary search
	Combining generic and specific method
	The structure of our optimisation problem
	Handling inequality constraints
	Handling equality constraints
	The Mutation operators
	The recombination operators

	The proposed algorithm
	The results

	Conclusions and future work
	Annexes
	Enforcing constraints on parameters

