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Abstract

Non-dominated sorting is one of the prominent steps in developing any Pareto-
dominance based multi-objective evolutionary algorithm. The computational
complexity of any Pareto-dominance based multi-objective evolutionary algo-
rithm primarily depends on this step. Thus, researchers are working on reducing
the complexity of this step. Recently, an efficient approach for non-dominated
sorting known as Best Order Sort (BOS) has been proposed. This approach
is very efficient in terms of the number of comparisons between the solutions.
Another advantage of this approach is that while comparing two solutions, the
number of objectives which are compared is reduced from the actual number
of objectives associated with each solution. However, in spite of these two ad-
vantages, this approach is not suitable in its current form for cases in which
we have duplicate solutions. This paper generalizes BOS to handle duplicate
solutions while retaining both of its advantages. We call this generalized version
Generalized Best Order Sort (GBOS). The present work shows that BOS can
be generalized to handle its limitation without compromising its time and space
complexity.

Keywords: Non-dominated sorting, dominance relation, computational
complexity

1. Introduction

Non-dominated sorting is one of the most critical steps of an important
number of Pareto-dominance based multi- and many-objective evolutionary al-
gorithms [1], [2]. Additionally, non-dominated sorting has applications in sev-
eral domains including economics, databases, game theory and computational
geometry [3].
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Consider P = {s1, s2, . . . , sN} to be a population of N solutions in an M -
dimensional space. In case of multi- and many-objective evolutionary algo-
rithms, M is basically the number of objective functions considered. A solution
s in an M -dimensional space is represented as s = {f1(s), f2(s), . . . , fM (s)}
where fm(s), 1 ≤ m ≤ M is the value of s for the mth objective. We assume
the minimization of all the objective functions. In this case, a solution si is said
to dominate another solution sj represented as si ≺ sj when the two following
conditions are satisfied:

i. fm(si) ≤ fm(sj), ∀m ∈ {1, 2, . . . ,M}
ii. fm(si) < fm(sj), ∃m ∈ {1, 2, . . . ,M}

Two solutions si and sj are said to be non-dominated when neither si ⊀ sj nor
sj ⊀ si. Now, we formally define the problem of non-dominated sorting.

Definition 1 (Non-dominated Sorting). Given a population P = {s1, s2,
. . . , sN} of size N in an M -dimensional space. Non-dominated sorting divides
the solutions in the population in K(1 ≤ K ≤ N) different fronts {F1, F2, . . . , FK}
which are arranged in decreasing order of their dominance. These non-dominated
fronts are such that the two following conditions hold:

i. ∀si, sj ∈ Fk: si ⊀ sj and sj ⊀ si (1 ≤ k ≤ K). This represents that all
the solutions in a particular front are non-dominated to each other.

ii. ∀s ∈ Fk, ∃s′ ∈ Fk−1: s′ ≺ s (2 ≤ k ≤ K). This represents that all the
solutions in the kth front are dominated by at least one of the solutions in
the k − 1th front.

The recent past has seen various approaches for non-dominated sorting. In
the naive approach proposed by Srinivas et al. [4], each solution is compared
with all other solutions. The solutions which are not dominated by any other
solution are assigned to the first front. At that point, only those solutions
which have not been assigned to the first front are considered. These solutions
are compared with each other and the solutions which are not dominated by
any other solution are assigned to the second front. The process of assigning
solutions to the fronts is repeated until no solution is left. The worst case
time complexity of the naive approach is O(MN3) when all the solutions are in
different fronts, whereas the best case time complexity is O(MN2) when all the
solutions are in a single front. The space complexity of this approach is O(N).

Deb et al. [1] developed a fast approach for non-dominated sorting known
as Fast Non-dominated Sort (FNDS) with a better worst case time complex-
ity which is O(MN2). However, the space complexity has been increased to
O(N2). Jensen et al. [5] presented a recursive approach for non-dominated sort-
ing with time complexity of O(N logM−1N). The space complexity of Jensen’s
approach is O(MN). For two objectives, this approach has the time complexity
of O(N logN). However, this approach is not suitable when the solutions have
the same value for an objective. This limitation of Jensen’s approach is removed
by Fortin et al. [6]. However, this limitation is removed at the expense of an
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increased worst case time complexity to O(MN2). The average case time com-
plexity remains the same as Jensen’s approach. The space complexity of Fortin’s
approach is the same as in Jensen’s approach which is O(MN). An efficient
non-dominated sorting method for evolutionary algorithms based on divide-
and-conquer strategy is proposed by Fang et al. [7]. The space complexity of
this algorithm is O(MN). The worst case time complexity of this algorithm
is O(MN2) when all the solutions are non-dominated. The lower bound time
complexity of this algorithm is O(MN logN). This algorithm considers one so-
lution as dominated by another if both are identical. Tang et al. [8] proposed a
fast method for constructing the non-dominated set based on arena’s principle.
In some cases this approach can achieve a time complexity of O(MN

√
N) [9].

McClymont et al. [10] proposed two approaches: Climbing Sort and Deduc-
tive Sort (DS). Deductive sort performs better than climbing sort. The best
case time complexity of Deductive sort is O(MN

√
N). However, the worst case

time complexity remains O(MN2).
An Efficient Non-dominated Sort (ENS) approach is presented by Zhang et

al. [9]. This is a two-phased approach. In the first phase, the solutions are sorted
based on the first objective. In the second phase, the solutions are assigned to
their respective fronts. The solutions are taken from the sorted solutions in
the first phase and assigned to the fronts. Based on the search technique for
assigning solutions to the fronts, there are two variants – ENS-SS (ENS with
sequential search) and ENS-BS (ENS with binary search). The worst case time
complexity of ENS-SS and ENS-BS is O(MN2). However, the best case time
complexity of both approaches differ. ENS-SS has a best case time complexity
of O(MN

√
N) and ENS-BS has a best case time complexity of O(MN logN).

The space complexity of both ENS-SS and ENS-BS is O(1). A divide-and-
conquer based non-dominated sorting algorithm was developed by Mishra et
al. [11]. This approach also works in two phases as ENS. The worst case time
complexity of this approach is O(MN2) and the best case time complexity is
O(MN logN). The time complexity of non-dominated sorting was proved to
be O(N logM−1N) by Buzdalov et al. [12].

In general, for a solution to be inserted in a particular front, it is compared
with all the solutions in the front. Some recent approaches have shown that
there is no need to compare a solution with all the solutions in a front for its
insertion. In general, a subset of solutions that have been assigned to a front
are compared with the solution which needs to be inserted. This idea has been
exploited by some recent approaches [13, 14, 3, 15].

Tree based Efficient Non-dominated Sort (T-ENS) was developed by Zhang
et al. [13, 14]. In T-ENS, the solutions are sorted based on the first objective
as done in ENS [9]. T-ENS considers a front as a tree which saves many unnec-
essary dominance comparisons. The best case time complexity of this approach
is O(MN logN/logM) and the worst case time complexity is O(MN2). The space
complexity of T-ENS is O(MN). This approach is very efficient in terms of
the number of dominance comparisons. However, T-ENS is not suitable when
the solutions share identical values for any of the objectives [15]. Inspired by
ENS-BS [9], the Efficient Non-dominated Sort with Non-dominated Tree (ENS-
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NDT) [15] approach was recently proposed. Like in ENS [9] and T-ENS [13],
in ENS-NDT [15] the solutions are sorted based on the first objective. The
best case time complexity of this approach is O(MN logN) and the worst case
time complexity is O(MN2). The space complexity of this approach depends
on the situation. In the worst case, it is O(N logN). The average case space
complexity is O(N) and the best case space complexity is O(logN).

Roy et al. [3] developed Best Order Sort (BOS) for non-dominated sorting.
This approach works in two phases. In the first phase, the solutions are sorted
based on each objective separately unlike ENS [9], T-ENS [13] and ENS-NDT
[15] where solutions are sorted based on the first objective. In the second phase
(rank assignment phase), rank is assigned to the solutions. The worst case time
complexity of this approach is O(MN2) and the best case time complexity is
O(MN logN). The space complexity is O(MN). There are two main advan-
tages of BOS: (i) The number of dominance comparisons between the solutions
is reduced to a great extent and (ii) two solutions are compared without con-
sidering all the objectives. The second advantage is because of the comparison
set concept [3]. If all the solutions are in a single front, then the minimum
number of dominance comparisons can be 0 in case M ≥ N . However, in its
current form, BOS is not suitable when there are duplicate solutions (in terms
of objective vectors) in the population. This limitation is because of the com-
parison set concept. In case of duplicate solutions, one solution is considered
as dominated by another in BOS. Recently, BOS has been modified to handle
its limitation by removing the concept of comparison set.1 However, removing
the concept of comparison set will increase the time to compare two solutions
as all the objective values of the solutions will be considered then. Hence, the
second advantage of BOS is lost. We call this modified version of BOS which
can handle duplicate solutions as BOS∗. There are some approaches proposed
for steady-state evolutionary algorithms where a solution needs to be inserted
into a set of fronts (see for example [16, 17, 18, 19, 20, 21]).

The contributions in this paper are as follows.

• We have generalized BOS to remove its limitation by retaining both of
its advantages. The generalized version of BOS is termed as Generalized
Best Order Sort (GBOS)

• It has been theoretically shown that BOS can be generalized without com-
promising its worst case time and space complexities.

• The number of dominance comparisons performed by GBOS in three dif-
ferent scenarios in its worst and best case are also theoretically obtained.

• We have theoretically obtained the actual number of comparisons between
the objectives of the solutions in three different scenarios in its worst and
best case.

The rest of the paper is organized as follows. Best Order Sort (BOS) is
briefly described in Section 2. The proposed generalized version of BOS (GBOS)

1https://github.com/Proteek/Best-Order-Sort/blob/master/BestOrderSort.java
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is presented in Section 3. The complexity analysis of GBOS is provided in
Section 4. Section 5 provides a detailed experimental evaluation of our proposed
approach. Finally, Section 6 concludes the paper and provides some possible
future research directions.

2. Brief Description of BOS

In this section we briefly discuss BOS [3] which works in two phases. The
solutions are sorted in the first phase based on each objective individually. In the
second phase, the actual sorting is performed. BOS uses a concept of comparison
set Cs for each solution s and this comparison set is the set of objectives. Before
rank assignment, the comparison set of each solution contains all the objectives.
In BOS, the solutions are sorted based on each objective individually and the
sorted solutions are stored in a list Qj which stores the sorted solutions based
on jth objective. Initially, the first solution in each of the sorted lists is ranked,
then the second solution in each of the sorted lists is ranked and so on. When
a solution is explored in the sorted lists for rank assignment purposes, then its
comparison set is reduced. When a solution is compared with previously ranked
solutions for rank assignment, then only the objectives in the comparison set
of the previously ranked solutions are compared. BOS does not provide the
correct set of fronts when there are duplicate solutions in the population. This
limitation is due to the use of Comparison Set.

2.1. Influence of Duplicate solutions on BOS

Here, we discuss the influence of duplicate solutions on BOS using an exam-
ple.

Example 1. Consider P = {s1, s2, s3} be a population of three solutions in 2-
dimensional space. Let s1 = {1, 2}, s2 = {2, 1} and s3 = {2, 1}. Thus, solutions
s2 and s3 are identical (in terms of objective vectors). The sorted solutions
based on each objective is given in Table 1. Here, when the solutions are sorted
based on the first objective, then both objective values of solutions s2 and s3 are
considered. When the solutions are sorted based on the second objective, then
the sorted order of the solutions based on the first objective is used to decide the
order of the solutions s2 and s3, because the second objective value of these two
solutions is the same. Initially, the comparison set of all the three solutions are
as follows: Cs1 = {1, 2}, Cs2 = {1, 2} and Cs3 = {1, 2} .

Q1 Q2

s1 s2
s2 s3
s3 s1

Table 1: Sorted solutions in population P based on each objective after lexicographic sorting.

Initially, solution s1 is assigned a rank when it is found in Q1 and objective
1 is removed from the comparison set Cs1 . So, we have an updated Cs1 = {2}.
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Rank 1 is assigned to s1. After this, solution s2 is ranked as it is the first solution
in Q2. The rank of s2 is also 1 as there is no solution which had been ranked
based on the second objective. Objective 2 is removed from the comparison set
Cs2 . So, we have an updated Cs2 = {1}. Next, s2 is found in Q1. As s2 has
already been ranked, so objective 1 is removed from the comparison set of s2 and
we have an updated Cs2 = {}.

When solution s3 is found in Q2, then objective 2 is removed from Cs3 . So,
we have an updated Cs3 = {1}. As s2 has already ranked based on objective 2,
so s3 is compared with s2 using the DominationCheck(s3, s2) procedure [3]
which is adopted to obtain the dominance relation between two solutions. In this
procedure, as the comparison set of s2 is empty, i.e., Cs2 = ∅, so the loop in lines
1 − 5 of this procedure is not traversed and ‘True’ is returned. This ‘True’
means that solution s3 is dominated by s2 and hence s3 has a rank of 3. Two
identical solutions are considered as non-dominated, but here s3 is considered
as dominated by s2. So, in case of duplicate solutions, BOS does not provide
the correct set of non-dominated fronts.

2.2. Influence of Duplicate solutions on BOS∗

The original BOS is not able to handle duplicate solutions. However, BOS∗

has the ability to handle them. So, now we discuss the influence of duplicate
solutions in BOS∗. In the first phase of BOS∗, the solutions are sorted based on
each of the M objectives. In this phase, when the solutions are sorted based on
the first objective, then, in the presence of duplicate solutions, all the objective
values of these solutions are considered when they are compared with respect
to each other.

Duplicate solutions have the same order in each of the M sorted lists after
the first phase. In the second phase, the solutions are assigned a rank. In
BOS∗, a duplicate solution is compared with respect to all the previously ranked
duplicate solutions. Let all the solutions in the population be duplicate. In this
case, after sorting the solutions in the first phase, all the solutions have the same
order in all the M sorted lists. Thus, a solution is compared with respect to all
the previously ranked solution before being assigned a rank. Therefore, the total
number of dominance comparisons will be

∑N
i=1(i−1) = 1

2N(N−1) which is the
maximum number of dominance comparisons performed by BOS∗. Thus, when
all the solutions are duplicate, then BOS∗ performs the maximum number of
dominance comparisons. However, duplicate solutions can be handled efficiently
as in ENS-NDT [15].

3. Proposed Non-dominated Sorting Approach (GBOS)

This section describes our proposed generalized BOS. We call this generalized
BOS as GBOS (Generalized Best Order Sort).
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3.1. Generalization of BOS

In the process of generalizing BOS, we have retained all the steps of BOS. To
handle duplicate solutions and also keeping both advantages of BOS, we have
identified duplicate solutions before assigning rank to the solutions. Identifying
duplicate solutions helps in handling them in an efficient manner without losing
any of the advantages of BOS. To further improve the time complexity of gen-
eralized BOS, we have considered a binary search based technique to identify
the rank of a solution. The binary search based technique is also discussed in
other approaches like ENS-BS [9], DCNS-BS [11] and ENS-NDT [15]. GBOS is
similar to BOS and, therefore, the notations used to define the algorithms are
the same as in BOS. The changes to BOS are highlighted in the algorithms.

3.2. Proposed Approach

The steps of GBOS are summarized in Algorithm 1. Same as BOS [3], here,
we also have N×M empty sets which are represented by L and are initialized to
∅. These N ×M empty sets can be considered as a matrix of size N ×M where
each cell represents an empty set. A cell in this matrix which is in the ith row
and the jth column is denoted by Li

j . L
r
j represents the set of solutions which

have rank r and have been ranked based on the jth objective. For each solution
s in the population, a set of objectives known as comparison set Cs is associated.
The goal of the comparison set is to reduce the number of comparisons between
the objectives when two solutions are compared. If a solution s is checked
whether it is dominated by solution t or not, then only the objectives present in
Ct need to be compared. A variable isRanked(s) is associated with each solution
s to keep track of whether solution s is ranked or not.

Algorithm 1 Initialization of GBOS

Input: Population P of size N and objective M
Output: Ranked solutions

// global variables
1: Li

j ← ∅, ∀j = 1, 2, . . . ,M , ∀i = 1, 2, . . . , N // Stores the rank i solutions

which have been ranked based on jth objective
2: Cs ← {1, 2, . . . ,M}, ∀s ∈ P // Comparison set
3: isRanked(s)← False,∀s ∈ P // Solutions ranked or not
4: sameAs(s)← Φ,∀s ∈ P // Previous solution if it is same as s
5: SC← 0 // Number of solutions already ranked
6: RC← 1 // Number of fronts discovered so far
7: R(s)← 0,∀s ∈ P // Rank of solutions
8: for i← 1 to M do
9: Qj ← Sort the population P based on jth objective

A variable sameAs(s) is associated with each solution s to keep track of its
previous solution if it is the same as s. This helps in removing the limitation of
BOS and in reducing the number of dominance comparisons in the presence of
duplicate solutions in the population. The number of ranked solutions is stored
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in variable SC. Initially, no solution is ranked, so variable SC is initialized to
zero. Variable RC is used to store the number of already obtained fronts. The
rank of a solution s is stored in variable R(s).

GBOS works in two phases. In the first phase, the solutions are sorted
based on each objective, considered separately. Solutions are sorted based on a
lexicographic order. The sorted solutions based on the jth objective are stored
in a list Qj . The ith solution in the sorted list Qj is represented as Qj(i). When
solutions are sorted based on the first objective, if the value of the first objective
is the same for two solutions, then the value of the second objective is considered
to find the sorted order. If the value of the second objective is the same for two
solutions, then the value of the third objective is considered to find the sorted
order. In general, if the value of the jth objective is the same for two solutions,
then the value of the j + 1th objective is considered to find the sorted order. If
two solutions are identical, i.e., if they have the same value for all the objectives,
then any order can be considered. However, when the solutions are sorted based
on other objectives, except the first and if the value of two solutions is the same
for a particular objective, then sorted order between the solutions is decided
depending on the sorted order based on the first objective. In this manner, we
get M sorted lists of solutions based on each of the M objectives. The size of
each sorted list is N . The solutions are sorted based on all the objectives in
lines 8− 9 of Algorithm 1.

Algorithm 2 Main Loop of the GBOS Algorithm

Input: List of sorted solutions, Q1, Q2, . . . , QM

Output: Rank of each solution, R
1: for i← 2 to N do
2: if IsSame(Q1(i), Q1(i− 1)) then
3: sameAs(Q1(i))← Q1(i− 1)

4: for i← 1 to N do
5: for j ← 1 to M do
6: s← Qj(i) // Take ith solution from Qj

7: Cs ← Cs − {j} // Reduce comparison set of s
8: if isRanked(s) = True then // s is already ranked

9: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

10: else
11: FindRank(s, j) // Find the rank of s
12: isRanked(s)← True // Rank is assigned to s
13: SC← SC + 1 // Number of ranked solutions

14: if SC = N then // Ranks are assigned to all solutions
15: Break // Sorting completed

Once the sorted order of the solutions based on each objective is identified,
then the actual rank assignment is performed. The steps of the ranked assign-
ment are summarized in Algorithm 2. The input to this algorithm is the sorted
solutions based on each objective. For rank assignment purpose, M sorted lists
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based on each objective are considered as a matrix of size N ×M where the
jth column corresponds to the sorted solutions based on the jth objective, Qj .
We call this matrix sorted matrix. For rank assignment purposes, sorted ma-
trix is traversed in a row-wise manner. In each row, the solutions are traversed
from left to right. In this matrix, each solution occurs M times. Initially, the
solutions in the first row are assigned a rank, then the solutions in the second
row are assigned a rank and so on. If a solution is already ranked when it is
explored in the sorted matrix traversal, then the solution is not ranked again.
As soon as the rank is assigned to all the solutions, the sorted matrix traversal
stops and the process of non-dominated sorting is completed.

Algorithm 3 IsSame

// Not Considered in BOS

Input: Solution s and t
Output: True if s and t are duplicate solutions, False otherwise

1: for j ← 1 to M do // for each objective
2: if s(j) 6= t(j) then
3: return False // s and t are different solutions

4: return True // s and t are duplicate solutions

When the solutions are sorted based on all the objectives, then identical
solutions have the same order in all the objectives lists. So, before traversing the
sorted matrix row-wise for rank assignment, for each solution s in the objective
list Q1, we keep the information of whether the current solution is the same as
the previous solution. If s is the same as its previous solution, then the previous
solution of s is stored in variable isSame associated with s. To obtain this
information, the objective list Q1 is traversed and two consecutive solutions are
checked to see if they are same or not. Here, two solutions are compared using
IsSame() procedure which is summarized in Algorithm 3. The process is shown
in lines 1− 3 of Algorithm 2.

When a solution s is explored in the jth column of the sorted matrix, i.e., a
solution is explored in Qj , then its comparison set Cs is reduced (line 7). After
this, the algorithm checks whether s is already ranked or not (line 8). In case s

is already ranked (line 8), then s is added to L
R(s)
j (line 9). Otherwise, the rank

is assigned to s using Algorithm 4. Once the rank is assigned to s, it is marked
as ranked (line 12).

3.3. Illustration of the FindRank() procedure

This procedure assigns a rank to a solution s which is first explored in the jth

column of the sorted matrix, i.e., in objective list Qj . Initially, we check whether
the current solution (say s) is the same as its previous solution (line 1). If it is
the same, then the rank of the current solution is the same as the rank of its

previous solution and the solution is added to L
R(s)
j . If the current solution s is

not the same as the previous solution, then solution s is compared with respect
to all the solutions in the existing fronts in a sequential manner. Basically,
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Algorithm 4 FindRank

Input: Solution s and List number j
Output: Rank of s

1: if sameAs(s) 6= Φ then // Same solution as s is previously ranked
2: R(s)← R(sameAs(s))

3: L
R(s)
j ← L

R(s)
j ∪ {s} // Add s to L

R(s)
j

4: else // Current solution is different than previous solution
5: done← False // Rank is not yet assigned to s
6: for k ← 1 to RC do // for all discovered ranks
7: check← False // s is non-dominated
8: for t ∈ Lk

j do // for all solutions in Lk
j

9: check← DominationCheck(s, t)
10: if check = True then // s is dominated
11: Break

12: if check = False then // s is non-dominated
13: R(s)← k // Assign rank to s
14: done← True // Rank is assigned to s

15: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

16: Break

17: if done = False then // Rank is not yet assigned to s
18: RC← RC + 1 // Update rank count
19: R(s)← RC // Assign rank to s

20: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

solution s is compared with respect to those solutions which have been assigned
the rank based on the jth objective. This means that s is compared with respect
to Lk

j (1 ≤ k ≤ RC), sequentially. Solution s is compared with respect to the
solutions of the existing fronts using the DominationCheck() procedure which
is illustrated in Algorithm 5. As soon as s becomes non-dominated with respect
to all the solutions in Lk

j , the rank of s becomes k. Once s is dominated by any

of the solutions in Lk
j , solution s is compared with respect to the solutions of the

next front which had been ranked based on the jth objective, i.e., s is compared
with respect to Lk+1

j . If s is compared with respect to all Lk
j (1 ≤ k ≤ RC) and

it is dominated by at least one of the solutions in all Lk
j (1 ≤ k ≤ RC), then the

rank count RC is incremented and the updated rank is assigned to s. Once the

rank assignment is done, s is added to L
R(s)
j .

3.4. Illustration of DominationCheck() procedure

The dominance relation between two solutions s and t is obtained using the
DominationCheck(s, t) procedure which is illustrated in Algorithm 5. This
procedure does not compare all the objective values between the solutions. Only
the objectives which are present in the comparison set of solution t are used for
comparison.
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Algorithm 5 DominationCheck

Input: Solution s and t
Output: True if t dominates s, False otherwise

1: for each objective j ∈ Ct do // for all objectives in Ct

2: if s(j) < t(j) then // s is better than t in objective j
3: return False // t cannot dominate s

4: return True // t dominates s
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(a) Eight solutions

s1 s8
s2 s5
s3 s6
s4 s7
s5 s4
s6 s2
s7 s3
s8 s1
Q1 Q2

(b) Sorted list

s1 s8
s2 s5
s3 s6
s4 s7
s5 s4
s6 s2
s7 s3
s8 s1

8× 2

(c) Sorted matrix
s1 s8 s2 s5 s3 s6 s4 s7

Q1(1) Q2(1) Q1(2) Q2(2) Q1(3) Q2(3) Q1(4) Q2(4)

(d) Order of solutions in which they are assigned ranks.

Explored Objective Comparison Rank Lr
1 Lr

2

Solution List Set of solution 1 ≤ r ≤ 3

s1 1 Cs1= {2} 1 L1
1= {s1}

s8 2 Cs8= {1} 1 L1
1= {s1} L1

2= {s8}

s2 1 Cs2= {2} 1 L1
1= {s1, s2} L1

2= {s8}

s5 2 Cs5= {1} 1 L1
1= {s1, s2} L1

2= {s8, s5}

s3 1 Cs3= {2} 1 L1
1= {s1, s2, s3} L1

2= {s8, s5}

s6 2 Cs6= {1} 2
L1
1= {s1, s2, s3} L1

2= {s8, s5}
L2
2= {s6}

s4 1 Cs4= {2} 1
L1
1= {s1, s2, s3, s4}L1

2= {s8, s5}
L2
2= {s6}

s7 2 Cs7= {1} 3

L1
1= {s1, s2, s3, s4}L1

2= {s8, s5}
L2
2= {s6}

L3
2= {s7}

(e) Procedure for sorting.

Figure 1: Example showing the GBOS procedure.

Example 2. Let P = {s1, s2, . . . , s8} be a population of size eight in 2-dimensional
space as shown in Figure 1(a). In this population, two solutions s2 and s3 are
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identical in terms of their objective values. Let’s consider a problem such that
both objectives need to be minimized. In the first phase of GBOS, the solutions
are sorted based on each objective individually. Figure 1(b) shows the sorted
solutions based on each of the objectives. The size of both sorted lists is eight.
These two sorted lists of size eight can be considered as a matrix of size 8 × 2
which we call sorted matrix. The sorted solutions in the form of a matrix are
shown in Figure 1(c). The solutions are ranked considering each solution in
a row-wise manner in this matrix. The order in which solutions are ranked is
given in Figure 1(d).

Initially, the first solution in row-1 (i.e., s1) is ranked, then the second so-
lution in row-1 (i.e., s8) is ranked. As these two solutions are the first in their
respective columns, they are not compared with any other solutions and the rank
of these two solutions is 1. As solution s1 is found in the first column, so
the first objective is removed from its comparison set and we have an updated
Cs1 = {2}. Once the rank is assigned to s1, s1 is added to L1

1 as s1 is ranked
based on the first objective and its rank is 1. Similarly, as solution s8 is found
in the second column, so the second objective is removed from its comparison set
and we have an updated Cs8 = {1}. Once the rank is assigned to s8, it is added
to L1

2 as s8 is ranked based on the second objective and its rank is 1. Now, if
any other solution is compared with respect to these two solutions, then those
solutions will be compared only with respect to the objectives which are present
in the comparison set of these two solutions.

Next, the solutions in row-2 are ranked if they have not already been ranked.
Here, solution s2 is ranked and then s5 is ranked. As s2 is found in column-
1, so s2 is compared with respect to L1

1 (i.e., with respect to s1). When s2
is compared with respect to s1, then s2 is compared based on only the second
objective of s1 because the comparison set of s1 has only the second objective.
As s2 is non-dominated with respect to s1, so the rank of s2 is also 1. After
performing the rank assignment to s2, it is added to L1

1 as s2 is ranked based on
the first objective and its rank is 1. Similarly, as s5 is found in column-2, so s5 is
compared with respect to L1

2 (i.e., with respect to s8). When s5 is compared with
respect to s8, then s5 is compared based on only the first objective of s8 because
the comparison set of s8 has only the first objective. As s5 is non-dominated
with respect to s8 so the rank of s5 is also 1. Once the rank is assigned to s5, it
is added to L1

2 as s5 is ranked based on the second objective and its rank is 1.
All these four solutions {s1, s8, s2, s5} are ranked using the FindRank()

procedure explained in Algorithm 4. Next, the solutions in row-3 are ranked if
they have not already been ranked. First, solution s3 is ranked. When solution
s3 needs to be ranked, then it is not compared with respect to any other solution.
As s3 is the same as s2, so the rank of s2 is directly assigned to s3. Thus,
the rank of s3 is also 1. Once the rank is assigned to s3, s3 is added to L1

1 as
it is ranked based on the first objective and its rank is 1. Now, solution s6 is
ranked. As s6 is found in column-2, so s6 is compared with respect to L1

2 (i.e.,
with respect to {s8, s5}). When s6 is compared with respect to {s8, s5}, then s6
is compared based on only the first objective of {s8, s5} because the comparison
sets of these two solutions have only the first objective. As s6 is dominated
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by s5, so s6 cannot have the same rank as {s8, s5}. There is no solution with
rank two which had been ranked based on the second objective, so the rank of s6
becomes 2. Once the rank is assigned to s6, it is added to L2

2 as s6 is ranked
based on the second objective and its rank is 2.

In the same manner, solutions s4, s7 are ranked using the FindRank() pro-
cedure. The complete process of assigning rank to all the eight solutions is shown
in Figure 1(e).

Algorithm 6 FindRankBinary

// New in GBOS: Not considered in BOS

Input: Solution s and List number j
Output: Rank of s

1: if sameAs(s) 6= Φ then // Same solution as s is previously ranked
2: R(s)← R(sameAs(s))

3: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

4: else // Current solution is different than previous solution
5: min← 1, max← RC, mid←

⌊
min+max

2

⌋
6: while True do // Position of s is not identified
7: check← False // s is non-dominated
8: for t ∈ Lmid

j do // for all solutions in Lmid
j

9: check← Domination-Check(s, t)
10: if check = True then // s is dominated
11: Break

12: if check = False then // s is non-dominated
13: if mid = min then // The front at leaf is explored
14: R(s)← mid // Assign rank to s

15: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

16: Break

17: else
18: max← mid− 1, mid←

⌊
min+max

2

⌋
// Explore left sub-tree

19: else
20: if min = RC then // Right most leaf is explored
21: RC← RC + 1 // Update rank count
22: R(s)← RC // Assign rank to s

23: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

24: Break

25: else if mid = max then
26: R(s)← max + 1 // Assign rank to s

27: L
R(s)
j ← L

R(s)
j ∪ {s} // Include s to L

R(s)
j

28: Break

29: else
30: min← mid + 1, mid←

⌊
min+max

2

⌋
// Explore right sub-tree

In the FindRank() procedure, the rank of a solution is obtained by com-
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paring it with respect to previously ranked solutions in a sequential manner. As
all the ranked solutions are arranged in decreasing order of their dominance in
L, so the binary search based technique can be used to find the rank of a solu-
tion. The binary search based technique is also used in some of the previously
proposed approaches like [9], [11], [15]. We have used a binary search based
technique because the time complexity can be reduced in some of the cases us-
ing this technique [9]. Although this technique is a bit more complicated than
the FindRank() procedure, its computational efficiency led us to adopt it, as
explained in the following subsection.

3.5. Illustration of FindRankBinary() procedure

As the ranked solutions are arranged in decreasing order of dominance, if a
solution which needs to be ranked (say s) based on a particular objective (say
the jth) is dominated by the solution (which have been ranked based on the jth

objective) of a particular front, then there is no need to compare s with respect
to the solutions of higher dominance fronts. This is because if a solution is
dominated by the solution of a particular front, then the same solution will also
be dominated by at least one of the solutions in all the higher dominance fronts.
Similarly, if a solution which needs to be ranked (say s) based on a particular
objective (say the jth) is non-dominated with respect to all the solutions of a
particular front which have been ranked based on the jth objective, then there
is no need to compare s with respect to the solutions of the lower dominance
fronts. This is because if a solution is non-dominated with respect to all the
solutions of a particular front, then the same solution can also be non-dominated
with respect to the solutions in the higher dominance fronts. In this way, as
a solution is compared with respect to the solutions of a particular front, we
discard half of the fronts. So, the solution s is compared with respect to only
dlog(RC + 1)e fronts. The procedure to assign the rank to a solution using the
binary search based technique is summarized in Algorithm 6.

The procedure to find the rank of a solution is based on binary search and
therefore, a tree structure is used. Here, the tree is not explicitly created, but
instead the set of ranked solutions which are inserted in L are visualized as a
tree. As the tree structure is used, we are considering two variables min and
max to follow the tree structure. Initially, min is set to 1 and max is set to
RC as the obtained number of fronts is RC. The solution which needs to be
ranked is first compared with respect to Lmid

j where mid =
⌊
min+max

2

⌋
. If the

solution s is not dominated by any other solution of Lmid
j that means that s

cannot have a rank worse than mid. However, it can have a better rank than
mid. As s is non-dominated with respect to all the solutions of Lmid

j so it can
also be non-dominated by better ranked solutions. So, if s is non-dominated
with respect to all the solutions of Lmid

j , then there are two possibilities:

• If leaf of the tree is reached (i.e., mid = min), then the rank of s is mid
and s is inserted into Lmid

j .

• Otherwise, the root of the left sub-tree is checked.
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s is domi-

nated by

s is domi-

nated by

s is domi-

nated by

F1 F2 F4 F6 F7F5F3

s is domi-

nated by

Figure 2: Example showing the binary search based technique to find the rank of a solution.

If s is dominated by any of the solutions of Lmid
j , i.e., s cannot have a better

rank than mid, then there are three possibilities:

• If the rightmost node of the tree is reached (i.e., min = RC), then s is
dominated by all the existing ranked solutions and the rank of s is RC+1.

• If s is dominated by the leaf node, (i.e., mid = max), then the rank of s
is max + 1.

• Otherwise, the root of the right sub-tree is checked.

Example 3. Let’s assume that we have seven non-dominated fronts and the
solutions in these fronts are ranked based on a particular objective (say the jth).
Let’s assume a new solution s needs to be ranked based on the jth objective.
In the FindRank() procedure, s needs to be compared with respect to the solu-
tions of all the seven fronts sequentially. However, in the FindRankBinary()
procedure, the tree-based structure is followed.

Here, s is first compared with respect to the solutions of F4. Let s be domi-
nated by one of the solutions of F4. So, now s is compared with respect to the
solutions of F6. Let s be dominated by one of the solutions of F6. So, now s is
compared with respect to the solutions of F7. Let’s consider that s is dominated
by one of the solutions of F7. Hence, s is dominated by the solutions of all the
fronts so, s will make a new front F8. This process is shown in Figure 2.

Depending on the search technique used for assigning rank to a solution,
there are two variants of GBOS. The first one is GBOS with sequential search
(GBOS-SS) and the second one is GBOS with binary search (GBOS-BS).

4. Complexity Analysis

In the first phase of GBOS, solutions are sorted based on each objective
using heap sort [22] as in [3]. The auxiliary space required by heap sort is
O(1). In GBOS, M sorted lists, each of size N , are used to store the sorted
solutions based on each of the M objectives. This requires O(MN) space. Also,
N ×M sets are considered which also require O(MN) space. Thus, the space
complexity of GBOS is O(MN).

The time complexity of GBOS, T (N,M) depends on the time complexities
of its three main steps: (1) sorting of the solutions based on each objective
individually, Tpresort(N,M), (2) checking for duplicate solutions (lines 1 − 3 of
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Algorithm 2), Tduplicate(N,M) and (3) assigning rank to the solutions (rank
assignment), Tassign(N,M).

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M) (1)

Let’s assume that heap sort [22] be used in the first phase to sort the so-
lutions based on each objective. Heap sort is also used in [9], [11] to sort the
solutions based on the first objective. The worst case time complexity to sort
the solutions based on the first objective is O(MN logN) because in this case
all the objective values of the solutions can be considered for lexicographic sort-
ing. The time complexity to sort the solutions based on other objectives except
the first is O(N logN) because in this case the sorted order based on the first
objective is considered when the solutions have the same value for a particular
objective. Thus, the time complexity of the first phase of the algorithm, i.e.,
Tpresort(N,M), is given by Eq. (2).

Tpresort(N,M) = O(MN logN) + (M − 1)O(N logN) = O(MN logN) (2)

In GBOS, after sorting the solutions based on all the objectives, duplicate so-
lutions are checked in lines 1 − 3 of Algorithm 2. The number of dominance
comparisons required to check for duplicate solutions is given by Eq. (3) as
the ith solution is compared with respect to only the i − 1th solution in the
sorted list Q1 where 2 ≤ i ≤ N . When duplicate solutions are checked, then in
the worst case all the objective values between the solutions can be considered.
Hence, the maximum number of objective value comparisons required to check
for duplicate solutions is given by Eq. (4). So, the worst case time complexity
of checking for duplicate solutions, i.e., Tduplicate(N,M), is given by Eq. (5).

#dcmpduplicate = N − 1 (3)

#cmpduplicate = M(N − 1) (4)

Tduplicate(N,M) = O(MN) (5)

In the first phase of GBOS, solutions are sorted based on each objective
individually. Two solutions are compared in the first phase based on one of the
objectives. However, when the solutions are sorted based on the first objec-
tive, then all the objective values of the solutions can be considered when the
solutions are identical. The number of objective value comparisons performed
in the first phase by ENS-SS [9], ENS-BS [9], BOS, BOS∗ and GBOS depends
on the sorting algorithm used and also on the objective values of the solutions.
In the first phase, BOS, BOS∗ and GBOS sort the solutions based on each of
the M objectives. So, the first phase of these three approaches is the same.
Thus, if the same sorting algorithm is used in the first phase of BOS, BOS∗ and
GBOS to sort the solutions, then the number of objective value comparisons
performed by these three algorithms in the first phase will also be the same.
So, we theoretically calculate the number of objective value comparisons per-
formed by GBOS in checking duplicate solutions and in assigning rank to the
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solutions. The number of objective value comparisons performed by BOS∗ is
also calculated in the rank assignment phase.

The total number of dominance comparisons performed by GBOS corre-
sponds to the sum of the number of dominance comparisons required to check
the duplicate solutions and the number of dominance comparisons required for
rank assignment. Similarly, the number of objective value comparisons is the
sum of the number of objective value comparisons required to check for dupli-
cate solutions and the number of objective value comparisons needed for rank
assignment. Let #dcmpassign be the number of dominance comparisons for rank
assignment and #cmpassign be the number of objective value comparisons for
rank assignment. Thus, the total number of dominance comparisons is given by
Eq. (6) and the total number of objective value comparisons is given by Eq. (7).

#dcmp = #dcmpduplicate + #dcmpassign (6)

#cmp = #cmpduplicate + #cmpassign (7)

In subsequent sections, we discuss the time complexities of GBOS-SS and GBOS-
BS in different scenarios. Some of the examples of the behavior of GBOS-SS
and GBOS-BS in different scenarios are illustrated in the Appendix.

4.1. All solutions are in a single front

The time complexity of GBOS when all the solutions are non-dominated
with respect to each other, is discussed in this section. In case of having a single
front, GBOS-SS and GBOS-BS perform the same.

4.1.1. All the solutions are duplicate

In this case, the order of the solutions in all Qj after pre-sorting is the same.
So, each column of a particular row of the sorted matrix has the same solution.
Thus, the rank is assigned to a solution when it is explored in the first column
of the sorted matrix, i.e., in Q1. When a solution is explored in other columns
of the sorted matrix, then its comparison set is reduced and is added to the set
L.

Initially, solution Q1(1) is assigned rank 1 without comparing with any other
solution. When other solutions are ranked, then, in the FindRank() procedure,
only lines 1 − 3 are used because the kth solution which needs to be ranked is
always the same as the k − 1th ranked solution in Q1. These three lines take
constant time for rank assignment. Thus, there is no dominance comparison
between the solutions in the FindRank() procedure. Hence, the total number
of dominance comparisons is the same as the number of dominance comparisons
required to check the duplicate solutions and it is obtained by Eq. (3). Hence,
the number of objective value comparisons is obtained by Eq. (4).

The FindRank() procedure takes constant time when it is used to assign
rank to a solution. When an already ranked solution is explored in the sorted
matrix, then the solution is added to L which also takes constant time. Thus,
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the time complexity of the rank assignment step is O(MN). Hence, the time
complexity of GBOS-SS and GBOS-BS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(MN) = O(MN logN) (8)

ENS-NDT [15] also performs N − 1 number of dominance comparisons in this
case. However, the time complexity of ENS-NDT in this case is O(MN logN)+
O(N log2N) + O(MN) = O(MN logN + N log2N) because of pre-sorting,

split phase and the rank assignment phase. BOS∗ performs
∑N

i=1(i − 1) =
1
2N(N − 1) dominance comparisons in this case and the number of objective
value comparisons is 1

2MN(N − 1). ENS-SS [9] and ENS-BS [9] also perform
1
2N(N − 1) dominance comparisons when this type of case arises. T-ENS [13]
is not able to handle this case.

4.1.2. Worst case

The dominance nature between two solutions can be decided with the help
of only two objectives also. If all the solutions are in a single front, then the
maximum number of dominance comparisons occurs when the 1st to the M−2th

objective values of each of the solutions are the same. The last two objective
values of each of the solutions should be such that they are able to declare all
the solutions as non-dominated.

In this case, the order of the solutions in the initial M − 1 objective lists are
the same and in the last list, it is just reverse. This means that for a particular
row of the sorted matrix, the initial M − 1 columns have the same solution and
the last column has a different solution. Thus, a solution is ranked when it
is explored either in the first column (objective list Q1) or in the last column
(objective list QM ) of the sorted matrix. When a solution is explored in the 2nd

to the M−1th column, then it will not be ranked because the same solution has
already been ranked when it was explored in the first column. In each row of the
sorted matrix, only two solutions are ranked (if not already ranked): one from
the first column and another from the last column and there are N solutions.
Thus, all the solutions are explored for rank assignment in the initial N/2 rows
of the sorted matrix. Let a solution s be explored the first time in the ith row
and the jth(j ∈ {1,M}) column of the sorted matrix. For rank assignment,
this solution is compared with respect to the solutions of the previous i − 1
rows which have been ranked based on the jth objective. Thus, the number of
dominance comparisons is given by Eq. (9).

When a solution is explored in the first objective list, then it is ranked and
the first objective is removed from its comparison set. When the same solution
is explored in the 2nd to M − 1th objective lists, then the 2nd to the M − 1th

objectives are removed from the comparison set. So, next time, when a solution
is ranked based on the first objective, then the solution is compared based only
on the last objective as only the last objective remains in the comparison set
of the solutions which have already been ranked based on the first objective.
Similarly, when a solution is explored in the last objective, then it is ranked

18



and the last objective is removed from its comparison set. Therefore, next
time, when a solution is ranked based on the last objective, then the solution is
compared based on the 1st to the M − 1th objectives as only the last objective
is removed from the comparison set of solutions which have been ranked based
on the last objective. Thus, the number of objective value comparisons is given
by Eq. (10).

#dcmp = #dcmpduplicate + #dcmpassign

= N − 1 +
∑N/2

i=1
(i− 1) + (i− 1) = N − 1 +

1

4
N(N − 2) (9)

#cmp = #cmpduplicate + #cmpassign

= M(N − 1) +
∑N/2

i=1
(i−1)(1) + (i−1)(M−1)

= M(N − 1) +
1

8
MN(N − 2) (10)

Thus, the time complexity of rank assignment, i.e., Tassign(N,M), is O(MN2).
Hence, the time complexity of GBOS-SS and GBOS-BS in this case is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(MN2) = O(MN2) (11)

ENS-NDT performs N − 1 + 1
2N(N − 1) dominance comparisons in this case

with a bucket size of one and M ≥ logN + 2 [15]. The number of objective
value comparisons performed by ENS-NDT in the rank assignment phase in this
case is 1

2 (M − 1)N(N − 1). So, the time complexity of ENS-NDT in this case

is O(MN logN) +O(N log2N) +O(MN2) = O(MN2) because of pre-sorting,
split phase and the rank assignment phase. As explained in [15], this is the worst

case for ENS-NDT. BOS∗ performs
∑N/2

i=1(i− 1) + (i− 1) = 1
4N(N − 2) domi-

nance comparisons in this case and the number of objective value comparisons is
1
4MN(N−2). In this case, the number of dominance comparisons performed by
GBOS-SS and GBOS-BS is N −1 more than those performed by BOS∗ because
of the checking of duplicate solutions in GBOS-SS and GBOS-BS. However, the
number of objective value comparisons performed by GBOS-SS and GBOS-BS
is less than those performed by BOS∗ because of the use of the comparison set
concept in GBOS-SS and GBOS-BS.

4.1.3. Best case

When all the solutions are in a single front, then best case of GBOS occurs
if the row-wise traversal of the solutions in the sorted matrix follows a specific
pattern. The traversal should be such that before the second occurrence of
a solution, all the solutions must be traversed at least once. Without loss of
generality, let us assume N = 2a and M = 2b where a, b ≥ 1.

Here, before the second occurrence of a solution, all the solutions should had
been traversed at least once. So, in each row of the sorted matrix, M solutions
are ranked and there are N solutions. So, the solutions are explored for rank
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assignment in the initial N/M rows (in case M > N , only the solutions in the
first row are explored). The solution which is explored in the ith row and the jth

column of the sorted matrix is compared with the solutions in the previous i−1
rows of the sorted matrix which have been ranked based on the jth objective.
Thus, the number of dominance comparisons is given by Eq. (12). In this case,
as the number of objectives increases, the number of dominance comparisons
decreases. When M ≥ N , then the number of dominance comparisons becomes
zero, because of the rank assignment.

In the best case, before the second occurrence of a solution, all the solutions
should had been traversed at least once. So, each time a solution is ranked,
its comparison set is reduced by one objective and before a solution occurs a
second time, the process of rank assignment completes. So, whenever a solution
is compared with respect to other solutions, a maximum of M − 1 objectives
can be considered regardless of M . Thus, the maximum number of objective
value comparisons is given by Eq. (13).

#dcmp = #dcmpduplicate + #dcmpassign

= N − 1 +
∑N/M

i=1
M(i− 1) = N − 1 +

1

2M
N (N −M) (12)

#cmp = #cmpduplicate + #cmpassign

= M(N − 1) +
∑N/M

i=1
M(i− 1)(M − 1)

= M(N − 1) +
1

2M
N(M − 1)(N −M) (13)

WhenM ≥ N , the solutions in the first row of the sorted matrix are explored and
ranked. Thus, the time complexity of the rank assignment when M ≥ N , i.e.,
Tassign(N,M) is O(N). Hence, the time complexity of GBOS-SS and GBOS-BS
in this case is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N) = O(MN logN) (14)

BOS∗ performs
∑N/M

i=1 M(i − 1) = 1
2MN(N − M) dominance comparisons in

this case and the number of objective value comparisons is 1
2N(N −M). In this

case, the number of dominance comparisons performed by GBOS is N −1 more
than BOS∗ because of the checking of duplicate solutions in GBOS.

4.2. All solutions are in separate fronts

The time complexity when all the solutions are in separate fronts is analyzed
here. GBOS-SS and GBOS-BS perform differently for this scenario.

In this scenario, the order of the solutions in all Qj after pre-sorting is
the same, i.e., each column in a particular row of the sorted matrix has the
same solution. So, each of the solutions is ranked when it is explored in the
first column of a particular row. When the same solution is explored in other
columns, its comparison set reduces and finally it becomes empty after exploring
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the solution in all the columns. As the comparison set of ranked solutions
is empty, when the solutions are compared for rank assignment, there is no
objective value comparison. So, the solutions are compared for rank assignment
in O(1) time.

4.2.1. GBOS-SS

The rank of the ith solution is obtained by comparing it with respect to the
i− 1 previously ranked solutions which have been assigned ranks based on the
first objective. However, two solutions are compared for rank assignment in
O(1) time because of the empty comparison set of the already ranked solutions.
Thus, the total number of dominance comparisons is the same as the number of
dominance comparisons required to check for duplicate solutions which is given
by Eq. (3). The number of objective value comparisons is given by Eq. (4).

In the rank assignment process, there is no dominance comparison. How-
ever, for rank assignment, the ith solution is compared with respect to all the
previously ranked i − 1 solutions. So, the time taken by the rank assignment
process is obtained by Eq. (15).

Tassign(N,M) =
∑N

i=1
(i−1) =

1

2
N(N−1) = O(N2) (15)

The time complexity of GBOS-SS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N2) = O(MN logN +N2) (16)

4.2.2. GBOS-BS

The rank of the ith solution is obtained by comparing it with respect to the
dlog ie previously ranked solutions which have been ranked based on the first ob-
jective. However, two solutions are compared for rank assignment in O(1) time
because of the empty comparison sets of the already ranked solutions. Thus,
the total number of dominance comparisons is the same as the number of domi-
nance comparisons required to check for duplicate solutions. The corresponding
expression is given by Eq. (3). The number of objective value comparisons is
given by Eq. (4).

In the rank assignment process, there is no dominance comparison. However,
for rank assignment, the ith solution is compared with respect to the dlog ie
previously ranked solutions. So, the time taken by the rank assignment process
is obtained by Eq. (17).

Tassign(N,M) =
∑N

i=1
dlog ie = N logN − (N − 1) = O(N logN) (17)

The time complexity of GBOS-BS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N logN) = O(MN logN) (18)
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The time complexity of ENS-BS is O(MN logN) and for ENS-SS is O(MN2)
in this case. ENS-SS [9] performs 1

2N(N−1) dominance comparisons and ENS-
BS performs N logN − (N − 1) dominance comparisons. T-ENS [13] requires
1
2N(N − 1) dominance comparisons in this case. ENS-NDT performs N logN
dominance comparisons and its time complexity is O(MN logN) if M ≥ logN ;
otherwise, it isO(N log2N). BOS∗ performs 1

2N(N−1) dominance comparisons
in this case and the number of objective value comparisons is 1

2MN(N − 1).
The time complexity of BOS∗ in this case is O(MN2).

4.3. N solutions are equally divided into
√
N fronts

We analyze the time complexity when there is an equal division of N so-
lutions into

√
N fronts such that each solution in a front dominates all the

solutions in its succeeding fronts. Here, GBOS-SS and GBOS-BS perform dif-
ferently as the number of fronts is

√
N . When the sorted matrix is traversed in

a row-wise manner, then before the occurrence of a solution in the kth front, all
the solutions of the (k− 1)th front have been traversed in all the columns. This
is because each solution in a front dominates all the solutions in its succeeding
front. Thus, before exploring the solutions of the kth front, the comparison set
of all the solutions of the (k − 1)th front is empty. Thus, when a solution of
the kth front is compared with the solutions of the previous fronts, then there
is no objective value comparison and the comparison between the solutions of
different fronts takes O(1) time.

Let us assume that a solution s be first explored in the mth column (mth

objective list) of the sorted matrix. This solution is assigned a rank k in two
steps – step (a) and step (b) which are discussed as follows.

(a) In case of GBOS-SS, s is dominated by one of the solutions in each of the
previous k− 1 fronts which have been ranked based on the mth objective.
In the case of GBOS-BS, it is dominated by one of the solutions in only the
dlog ke previous fronts which have been ranked based on the mth objective.
s is compared with only one solution in its previous fronts and s is also
dominated by that particular solution. This is because, each solution in a
front is dominated by all the solutions in its preceding fronts.

(b) s is non-dominated with respect to all the previous solutions in the kth

front which have been ranked based on the mth objective for GBOS-SS
and GBOS-BS.

In this situation, BOS and BOS∗ also assign the rank to a solution in the
aforementioned two steps. Without loss of generality, let us assume N = 22a

and M = 2b where a, b ≥ 1.

4.3.1. Solutions in the fronts are the same

Here, all the solutions in a particular front are the same. In this case, the
order of the solutions in all Qj after pre-sorting is the same. So, each column
of a particular row of the sorted matrix has the same solution. Thus, the rank
is assigned to a solution when it is explored in the first column of the sorted
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matrix, i.e., in Q1. When a solution in explored in other columns of the sorted
matrix, then its comparison set is reduced and the solution is added to the set,
L.

In this case, as all the solutions in a particular front are the same, only the
first solution of each front is compared with respect to one of the solutions of
the previous fronts. The rest of the solutions of that particular front are not
compared with respect to the solutions of the previous fronts. This is because,
in the FindRank() or FindRankBinary() procedures when the rest of the
solutions of a front are considered for rank assignment, only lines 1− 3 are used
to check for duplicate solutions.

There are
√
N fronts, so the first solution of the kth front is compared with

one solution of all the previous k − 1 fronts in case of GBOS-SS. In the case of
GBOS-BS, the first solution of the kth front is compared with respect to one
solution of the previous dlog ke fronts. The comparison between the solutions
of two different fronts takes O(1) time. Thus, the time complexity of GBOS-SS
and GBOS-BS, because of step (a), is given by Eqs. (19) and (20), respectively.

TaSS
=
∑√

N

k=1
(k − 1) =

1

2

√
N(
√
N − 1) = O(N) (19)

TaBS
=
∑√

N

k=1
dlog ke =

√
N log

√
N − (

√
N − 1) = O(

√
N logN) (20)

When a solution, which is explored in the first column of the sorted matrix is
assigned to the kth front, then it should be compared with respect to all the
previous solutions of the kth front which have been ranked based on the first
objective. As all the solutions in a front are the same, so when the FindRank()
or FindRankBinary() procedures are adopted, then lines 1−3 are used. Thus,
the FindRank() or FindRankBinary() procedures take constant time. Hence,
the time complexity of GBOS-SS and GBOS-BS, because of step (b), is given
by Eq. (21).

Tb =
∑√

N

k=1

[∑√
N

i=2
1

]
=
√
N(
√
N − 1) = O(N) (21)

Thus, the time taken by the rank assignment process using GBOS-SS is obtained
by Eq. (22).

Tassign(N,M) = TaSS + Tb = O(N) +O(N) = O(N) (22)

Hence, the time complexity of GBOS-SS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N) = O(MN logN) (23)

The time taken by the rank assignment process using GBOS-BS is obtained by
Eq. (24).

Tassign(N,M) = TaBS + Tb = O(
√
N logN) +O(N) = O(N) (24)
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Hence, the time complexity of GBOS-BS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N) = O(MN logN) (25)

ENS-NDT requires N − 1 + 1
2

√
N logN − (

√
N − 1) dominance comparisons

in this case. However, the number of dominance comparisons performed by
GBOS-SS and GBOS-BS is N−1 which is used to check for duplicate solutions.

When all the solutions in a particular front are the same, then the order of
the solutions in all the sorted lists is the same. Thus, the rank is assigned to
a solution when it is explored in the first column of the sorted matrix. Here,
in step (a), a solution which needs to be assigned a rank k is compared and
dominated by one solution of each of the previous k − 1 fronts, so the num-
ber of dominance comparisons performed by BOS∗, because of step (a), is∑√N

i=1

√
N(i − 1) = 1

2N(
√
N − 1). The solution is compared and dominated

by only one solution, because each solution in the kth front is dominated by all
the solutions in its preceding front. In step (b), the solution is compared and
non-dominated with respect to all the solutions which have been assigned the
rank k. So, the number of dominance comparisons performed by BOS∗, because

of step (b), is
√
N
∑√N

i=1 (i−1) = 1
2N(
√
N −1). Thus, the number of dominance

comparisons performed by BOS∗ is N(
√
N − 1) and the number of objective

value comparisons is MN(
√
N − 1).

The number of dominance comparisons, because of step (a), remains the
same regardless of the objective value of the solutions, because each solution
in a front is dominated by all the solutions in its preceding front. However,
in step (b), as all the solutions need to be ranked based on the first objective,
a solution which needs to be assigned a rank k, is compared with respect to
all the solutions which have been already assigned the rank k. Thus, when
all the solutions in a particular front are the same, then BOS∗ performs the
maximum number of dominance comparisons in this particuar situation. The
number of dominance comparions performed by ENS-SS in the same situation
is also N(

√
N − 1) [9] so, the number of dominance comparisons in this case, is

the same as those performed by ESN-SS.

4.3.2. Worst case

The maximum number of dominance comparisons occurs when the 1st to
the (M − 2)th objective values of all the solutions in a particular front are the
same. The last two objective values of the solutions in a particular front should
be such that they are able to declare all the solutions in a particular front as
non-dominated.

In this case, the order of the solutions in the initial M − 1 objective lists for
each of the fronts is the same and in the last list it is just the opposite. This
means that the initial M − 1 columns of a particular row of the sorted matrix
have the same solution and the last column has a different solution. Thus, a
solution is ranked when it is explored either in the first column or in the last
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column of the sorted matrix. When a solution is explored in the 2nd to the
(M − 1)th columns, then it will not be ranked because the same solution has
already been ranked when it was explored in the first column. Thus, from each
row, only two solutions are ranked (if not already ranked): one from the first
column and another one from the last column.

The initial
√
N rows of the sorted matrix have the solutions of the first front.

So, all the solutions of the first front are explored for rank assignment in the

initial
√
N/2 rows. The (

√
N + 1)th to the (2

√
N

th
) rows of the sorted matrix

have the solutions of the second front. So, all the solutions of the second front
are explored for rank assignment in the initial

√
N/2 rows after

√
N rows where

the solutions of the first front are present. In the same manner, all the solutions
of the third front are explored for rank assignment in the initial

√
N/2 rows after

2
√
N rows where the solutions of the first and second fronts are present. At

last, all the solutions of the
√
N

th
front are explored for rank assignment in

the initial
√
N/2 rows after (

√
N − 1)

√
N rows where the solutions of the first

to the (
√
N − 1)th fronts are present. In general, the solutions of the kth front

are explored for rank assignment in the initial
√
N/2 rows after the (k − 1)

√
N

rows where the solutions of the first to the (k − 1)th fronts are present. Thus,
the number of dominance comparisons performed by GBOS-SS and GBOS-BS
is given by Eq. (26).

When a solution is explored in the first objective list, then it is ranked and
the first objective is removed from its comparison set. When the same solution is
explored in the 2nd to the (M−1)th objective lists, then the 2nd to the (M−1)th

objectives are removed from the comparison set. So, next time, when a solution
is ranked based on the first objective, then the solution is compared based only
on the last objective, as only the last objective remains in the comparison set
of the solutions which have already been ranked based on the first objective.
Similarly, when a solution is explored in the last objective, then it is ranked
and the last objective is removed from its comparison set. So, next time, when
a solution is ranked based on the last objective, then the solution is compared
based on the 1st to the (M−1)th objectives as only the last objective is removed
from the comparison set of solutions which have been ranked based on the last
objective. Thus, the actual number of objective value comparisons performed
by GBOS-SS and GBOS-BS is given by Eq. (27).

#dcmp = #dcmpduplicate + #dcmpassign

= N − 1 +
√
N

[∑√
N/2

i=1
(i− 1) + (i− 1)

]
= N − 1 +

1

4
N(
√
N − 2) (26)

#cmp = #cmpduplicate + #dcmpassign

= M(N − 1) +
√
N

[∑√
N/2

i=1
(i− 1)(1) + (i− 1)(M − 1)

]
= M(N − 1) +

1

8
MN(

√
N − 2) (27)
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So, the time complexity of GBOS-SS and GBOS-BS, because of step (b), is given
by Eq. (28).

Tb =
1

8
MN(

√
N − 2) = O(MN

√
N) (28)

When a solution needs to be assigned a rank k, then the solution is compared
with respect to only one solution of all the previous k − 1 fronts in the case of
GBOS-SS and dominated by all of them. There are

√
N solutions in each front

so all the solutions of the kth front are compared with respect to one solution of
all the previous k − 1 fronts. Thus, the time complexity of GBOS-SS, because
of step (a), is given by Eq. (29). Similarly, all the solutions of the kth front are
compared with respect to one solution of the previous dlog ke fronts in the case
of GBOS-BS. Specifically, the first solution of the kth front is compared with
the one solution of the previous dlog ke fronts and dominated by each of them.
After the insertion of the first solution in the kth front, the structure of the tree
changes, i.e., the position of the nodes inside the tree changes. So, the remaining
solution of the kth front is compared with respect to one solution of the previous
dlog ke− 1 fronts and dominated by each of them. However, this is not the case
with all the fronts. The remaining solutions of the kth(k ∈ {2, 4, . . . ,

√
N}) front

is also compared with respect to one solution of the previous dlog ke fronts and
dominated by each of them. The reason for this is that when the first solution
of these fronts is inserted into the tree, then the position of the existing nodes
does not change. Thus, the time complexity of GBOS-BS, because of step (a),
is given by Eq. (30).

TaSS =
∑√

N

k=1

√
N(k − 1) =

√
N
∑√

N

k=1
(k − 1)

=
1

2
N(
√
N − 1) = O(N

√
N) (29)

TaBS =

[∑√
N

k=2
dlog ke+

(√
N − 1

)
(dlog ke − 1)

]
+
(√

N − 1
)

log
√
N

=
1

2

(
N +

√
N − 1

)
logN − 2N + 3

√
N − 1 = O(N logN) (30)

The time taken by the rank assignment process using GBOS-SS is obtained by
Eq. (31).

Tassign(N,M) = TaSS + Tb = O(N
√
N) +O(MN

√
N) = O(MN

√
N) (31)

Hence, the time complexity of GBOS-SS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(MN
√
N) = O(MN

√
N) (32)

The time taken by the rank assignment process using GBOS-BS is obtained by
Eq. (33).

Tassign(N,M) = TaBS + Tb = O(N logN) +O(MN
√
N)

= O(MN
√
N) (33)
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Hence, the time complexity of GBOS-BS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(MN
√
N) = O(MN

√
N) (34)

ENS-NDT requires N−1+ 1
2N(
√
N−1)+ 1

2 (N+
√
N−1) logN−2N+3

√
N−1

dominance comparisons. The number of dominance comparisons performed by

BOS∗ because of step (a) is
∑√N

i=1

√
N(i − 1) = 1

2N(
√
N − 1) and because of

step (b) is
√
N
[∑√

N/2
i=1 (i− 1) + (i− 1)

]
= 1

4N(
√
N − 2). Thus, the number of

dominance comparisons performed by BOS∗ is 1
2N(
√
N − 1) + 1

4N(
√
N − 2) =

3
4N
√
N−N and the number of objective value comparisons is 3

4MN
√
N−MN .

4.3.3. Best case

When N solutions are equally divided into
√
N fronts, then the best case

of GBOS occurs if the traversal of the solutions in the sorted matrix follows a
specific pattern. The traversal should be such that before the second occurrence
of a solution in a front, all the solutions of that particular front must be traversed
at least once.

Here, while traversing the sorted matrix, before the second occurrence of a
solution in a front, all the solutions of that particular front must be traversed
at least once. So, in each row of the sorted matrix, M solutions are ranked and
there are

√
N solutions in each front. So, the solutions of the first front are

ranked in the initial
√
N/M rows. The solutions of the second front are ranked

in the initial
√
N/M rows after

√
N rows. The solutions of the third front are

ranked in the initial
√
N/M rows after 2

√
N rows. At the end, the solutions of

the last front are ranked in the initial
√
N/M rows after (

√
N − 1)

√
N rows. In

general, the solutions of the kth front are ranked in the initial
√
N/M rows after

(k − 1)
√
N rows. Thus, the number of dominance comparisons performed by

GBOS-SS and GBOS-BS is given by Eq. (35). From this equation, it is clear
that as the number of objective increases, the value of

√
N/M decreases and the

number of dominance comparisons decreases. When M ≥
√
N , then the number

of dominance comparisons is fixed to N − 1 which is required for checking for
duplicate solutions.

Here, each time a solution of a particular front is ranked, its comparison set
is reduced by one objective and before the same solution occurs a second time,
all the solutions of that particular front are ranked. So, whenever a solution is
compared with respect to other solutions of the same front, a maximum M − 1
number of objectives is considered. Thus, the maximum number of objective
value comparisons performed by GBOS-SS and GBOS-BS is given by Eq. (36).

#dcmp = #dcmpduplicate + #dcmpassign

= N − 1 +
√
N

[∑√
N/M

k=1
M(k − 1)

]
= N − 1 +

1

2M
N(
√
N −M) (35)
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#dcmp = #dcmpduplicate + #dcmpassign

= M(N − 1) +
√
N

[∑√
N/M

k=1
M(k − 1)(M − 1)

]
= M(N − 1) +

1

2M
N(M − 1)(

√
N −M) (36)

When M ≥
√
N , then the solutions in the

√
N(
√
N−1)+1 rows of the sorted

matrix are explored and ranked if they had not been already ranked. Also, there
is no dominance comparison between the solutions of the same front except for
checking for duplicate solutions when M ≥

√
N . So, only the sorted matrix is

traversed once until all the solutions are ranked. Thus, the time complexity of
GBOS-SS and GBOS-BS, because of step (b), is given by Eq. (37).

Tb = M
[√

N(
√
N − 1) + 1

]
= O(MN) (37)

In this case, the time complexity of GBOS-SS, because of step (a), is given by
Eq. (29) and the time complexity of GBOS-BS, because of step (a), is given by
Eq. (30). The time taken by the rank assignment process using GBOS-SS is
obtained by Eq. (38).

Tassign(N,M) = TaSS + Tb = O(N
√
N) +O(MN) = O(MN +N

√
N) (38)

Hence, the time complexity of GBOS-SS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(MN +N
√
N)

= O(MN logN) as M ≥
√
N (39)

The time taken by the rank assignment process using GBOS-BS is obtained by
Eq. (40).

Tassign(N,M) = TaBS
+ Tb = O(N logN) +O(MN)

= O(N logN +MN) (40)

Hence, the time complexity of GBOS-BS is

T (N,M) = Tpresort(N,M) + Tduplicate(N,M) + Tassign(N,M)

= O(MN logN) +O(MN) +O(N logN +MN)

= O(MN logN) (41)

When N solutions are equally divided into
√
N fronts, then the best case

of BOS∗ occurs if the traversal of the solutions in the sorted matrix follows a
specific pattern. The traversal should be such that before the second occurrence
of a solution in a front, all the solutions of that particular front must be traversed
at least once.
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Here, while traversing the sorted matrix, before the second occurrence of a
solution in a front, all the solutions of that particular front must be traversed
at least once. So, in each row of the sorted matrix, M solutions are ranked and
there are

√
N solutions in each front. So, the solutions of the first front are

ranked in the initial
√
N/M rows. The solutions of the second front are ranked

in the initial
√
N/M rows after

√
N rows. The solutions of the third front are

ranked in the initial
√
N/M rows after 2

√
N rows. At the end, the solutions of

the last front are ranked in the initial
√
N/M rows after (

√
N − 1)

√
N rows. In

general, the solutions of the kth front are ranked in the initial
√
N/M rows after

(k − 1)
√
N rows.

The number of dominance comparisons performed by BOS∗ because of step

(a) is
∑√N

i=1

√
N(i−1) = 1

2N(
√
N−1) and because of step (b) is

√
N [
∑√

N/M
i=1 M(i−

1)] = 1
2MN(

√
N −M). Thus, the number of dominance comparisons performed

by BOS∗ is 1
2N(
√
N − 1) + 1

2MN(
√
N −M) and the number of objective value

comparisons is 1
2MN(

√
N − 1) + 1

2N(
√
N −M). Hence, as the number of ob-

jectives increases, the number of dominance comparisons performed by BOS∗

decreases. When M ≥
√
N , the number of dominance comparisons, because of

step (b), becomes 0 and the total number of dominance comparisons is equal
to the number of dominance comparisons because of step (a). Thus, when
M ≥

√
N , the number of dominance comparisons performed by BOS∗ remains

fixed and is equal to 1
2N(
√
N − 1).

Table 2 shows the number of dominance comparisons performed by some of
the non-dominated sorting approaches in different scenarios. From this table
it is clear that the number of dominance comparisons performed by GBOS-SS
and GBOS-BS is less as compared to other approaches. The time and space
complexities of several non-dominated sorting approaches are given in Table 3.

4.4. Number of Dominance Comparisons

Let N = 216 solutions be non-dominated. Consider the number of objec-
tives M = 2i(1 ≤ i ≤ 15). The number of dominance comparisons performed
by ENS-SS, ENS-BS, BOS∗ and GBOS (GBOS-SS and GBOS-BS) are shown
in Figure 3(a). The number of dominance comparisons performed by GBOS
when all the solutions are duplicated is shown in this figure. The number of
dominance comparisons performed by GBOS in this situation, in the best and
the worst case, are also shown in the figure. From this figure, it is clear that
the number of dominance comparisons when all the solutions are duplicated
remains fixed irrespectively of the number of objectives and it is N − 1 for N
solutions. The number of dominance comparisons in the worst case also remains
fixed, irrespectively of the number of objectives. However, in the best case, as
the number of objectives increases, the number of dominance comparisons de-
creases. The worst case of BOS∗ occurs when all the solutions in a front are
the same. The number of dominance comparisons performed in this case by
BOS∗ is 1

2N(N−1) which is the same as the number of dominance comparisons
performed by ENS. In the best case, the number of dominance comparisons
performed by BOS∗ is N − 1 less than those performed by GBOS.
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Table 2: Number of dominance comparisons performed by several non-dominated sorting
approaches in different scenarios.

Approach

Number of Dominance Comparisons

N solutions N solutions in Equal division of N

in single front N fronts solutions in
√
N fronts

FNDS [1] N(N−1)
2

N(N−1)
2

N(N−1)
2

Deductive Sort [10] N(N−1)
2

N(N−1)
2

1
2 (N−1)(

√
N+1)a

ENS-SS [9] N(N−1)
2

N(N−1)
2 N(

√
N−1)

ENS-BS [9] N(N−1)
2

N logN−(N−1)

N(
√
N−1)
2 + (N+

√
N−1)
2 logN−

2N + 3
√
N − 1

ENS-NDT [15]

N−1b

N logN

N−1 + 1
2

√
N logN − (

√
N−1)b

N−1 + N(N−1)
2

c
N(
√
N−1)
2 + (N+

√
N−1)
2 logN−

N + 3
√
N − 2

c

BOS∗

N(N−1)
2

b

N(N−1)
2

N(
√
N−1)b

N(N−2)
4

c N(
√
N−1)
2 + N(

√
N−2)
4

c

N(N−M)
2M

d N(
√
N−1)
2 + N(

√
N−M)
2M

d

GBOS-SS
GBOS-BS

N−1b

N−1

N−1b

N−1 + N(N−2)
4

c
N−1 + N(

√
N−2)
4

c

N−1 + N(N−M)
2M

d
N−1 + N(

√
N−M)
2M

d

aAssumption: First solution selected in each iteration is in the current front [10].

bAll the solutions in a front are the same.

cWorst case of GBOS-SS and GBOS-BS.

dBest case of GBOS-SS and GBOS-BS.

Let N = 2i(1 ≤ i ≤ 16) solutions be in different fronts. The number
of dominance comparisons performed by ENS-SS, ENS-BS, BOS∗ and GBOS
(GBOS-SS and GBOS-BS) are shown in Figure 3(b). The number of dominance
comparisons performed by GBOS is less than those performed by ENS-SS, ENS-
BS and BOS∗. ENS-SS and BOS∗ perform the same number of dominance
comparisons. The number of dominance comparisons performed by GBOS is
N − 1, which occurs due to the checking of duplicate solutions.

Let N = 216 solutions be equally divided into
√
N = 28 fronts such that

each solution in a front dominates all the solutions in its succeeding front. Con-
sider the number of objectives M = 2i(1 ≤ i ≤ 16). The number of dominance
comparisons performed by ENS-SS, ENS-BS, BOS∗ and GBOS (GBOS-SS and
GBOS-BS) are shown in Figure 3(c). The number of dominance comparisons
performed by GBOS is lower than those performed by ENS-SS and ENS-BS.
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Approach
Space Time Complexity

Complexity Best Case Worst Case

Naive approach O(N) O(MN2) O(MN3)

FNDS [1] O(N2) O(MN2) O(MN2)

Jensen [5] O(MN) O(N logN)§ O(N logM−1N)

Deductive Sort [10] O(N) O(MN
√
N) O(MN2)

ENS-SS [9] O(1) O(MN
√
N) O(MN2)

ENS-BS [9] O(1) O(MN logN) O(MN2)

BOS∗ O(MN) O(MN logN) O(MN2)

T-ENS†[13] O(MN) O(MN logN/ logM) O(MN2)

ENS-NDT[15] O(N logN)‡ O(MN logN) O(MN2)

GBOS-SS O(MN) O(MN logN) O(MN2)

GBOS-BS O(MN) O(MN logN) O(MN2)
§Best case time complexity when M = 2.
†Not suitable when solutions share identical values for any of the objectives [15].
‡Worst case: O(N logN), Best case: O(logN), Average case: O(N).

Table 3: Space and Time complexities of different non-dominated sorting approaches.

When the solutions in a front are duplicated, then the number of dominance
comparisons is fixed irrespectively of the number of objectives. Similarly, in the
worst case of GBOS, the number of dominance comparisons does not change
when modifying the number of objectives. However, in the best case of GBOS,
the dominance comparisons decreases with an increase in the number of ob-
jectives. As M ≥

√
N , the number of dominance comparisons remains fixed

(see Eq. (35)). In this situation, the worst case of BOS∗ occurs when all the
solutions in a particular front are the same. In the worst case, BOS∗ performs
the same number of dominance comparisons as required by ENS-SS. However,
in the best case of BOS∗, the number of dominance comparisons decreases with
an increase in the number of objectives and when M ≥

√
N , the number of

dominance comparisons remains fixed.

5. Experimental Evaluation

In this section, generalized BOS is compared with some of the existing ap-
proaches. We have compared GBOS with Fast non-dominated sort (FNDS), De-
ductive sort (DS), ENS-SS and ENS-BS. The corresponding experiments were
carried out on a Windows 7 PC with a 3.30 GHz Intel i5 processor and 4 GB
of RAM.

5.1. Fixed Front Dataset

In the fixed front dataset, the solutions are equally divided into k fronts and
the division is such that each solution in a front is dominated by all the solutions
in its preceding front. For the experiments reported next, the population size
was set to 10000. We have considered four different numbers of objectives – 5,
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Figure 3: Number of dominance comparisons performed by several non-dominated sorting
approaches in different scenarios (log based y-axis). GBOS corresponds to both GBOS-SS
and GBOS-BS.

10, 15 and 20. The number of fronts is varied from 2 to 20 with a step size
of 1. The population size, number of objectives and the number of fronts are
the same as in [3]. The number of objective value comparisons and the running
times required by different approaches for the fixed front dataset are shown in
Figure 4. The number of objective value comparisons is shown in Figures 4(a)–
4(d). The running time is shown in Figures 4(e)–4(h). From these figures it
is clear that the number of objective value comparisons performed by FNDS
is maximum as in FNDS each solution is compared with all other solutions.
The running time of FNDS is also maximum as compared to other approaches
because it performs the maximum number of objective value comparisons. In
this dataset, the objective value comparisons performed by FNDS, Deductive
Sort, ESN-SS and ENS-BS remains the same irrespectively of the change in
the number of objectives because the number of solutions is the same and also
the dominance relationship between the solutions is also the same. With an
increase in the number of fronts, the number of objective value comparisons
performed by ENS-BS is less than those performed by ENS-SS because ENS-BS
uses a binary search based strategy and such a strategy performs better than
a sequential search based strategy when the number of fronts is large [9]. The
number of objective value comparisons performed by GBOS-SS and GBOS-BS
is the same regardless of the number of objectives.

In this dataset, each solution in a front is dominated by all the solutions
in its preceding front, so when the sorted matrix is traversed in a row-wise
manner, then before the second occurrence of a solution in the kth fronts, all
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Figure 4: Performance of non-dominated sorting approaches for the fixed front dataset in terms
of the number of objective value comparisons performed and the execution time required. log
based y-axis.
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Figure 5: Performance of non-dominated sorting approaches for the cloud dataset in terms of
the number of objective value comparisons performed and the execution time required. log
based y-axis.

34



the solutions in the (k − 1)th front have been traversed in all the columns. So,
the comparison set of the (k − 1)th front becomes empty when the solutions of
the kth front are ranked. So, the solutions are compared based on the objective
values with respect to the solutions of the same front. Hence, the number of
objective value comparisons performed by GBOS-SS and GBOS-BS is the same.
The number of dominance comparisons performed by GBOS-SS and GBOS-
BS is much lower than those performed by other approaches. The running
time required by GBOS-SS and GBOS-BS is less as compared to that of other
approaches.

5.2. Cloud Dataset

In the cloud dataset, the solutions are randomly generated where the ob-
jective values vary between 0 and 1. So, the number of fronts and the number
of solutions in a particular front is also random. This kind of dataset mimics
the initial stages of evolutionary algorithms. Here, we have varied the popu-
lation size from 500 to 10000 with an increment of 500. We have considered
four different numbers of objectives: 5, 10, 15 and 20. The population size
and the number of objectives is the same as in [3]. The number of objective
value comparisons is shown in Figures 5(a)–5(d). The running time is shown in
Figures 5(e)–5(h).

From Figures 5(a)–5(d) it is clear that the number of objective value com-
parisons performed by FNDS is maximum as in FNDS each solution is compared
with respect to all other solutions. The running time of FNDS is also maximum
as compared to that of the other approaches because it performs the maximum
number of objective value comparisons. With an increase in the number of
objectives, the objective value comparisons performed by ENS-SS and ENS-BS
are nearly the same because as the number of objective increases, the number
of fronts decreases in the cloud dataset and with a small number of fronts, both
sequential and binary search based approaches perform almost the same. The
number of objective value comparisons performed by GBOS-SS and GBOS-BS
are much lower as compared to those of the other approaches. Regarding run-
ning time, GBOS-SS and GBOS-BS require less time as compared to that of
the other approaches.

5.3. Incorporation into NSGA-II

Our proposed approach along with other non-dominated sorting approaches
are incorporated in NSGA-II [1] for solving four test problems: DTLZ1, DTLZ2,
DTLZ3 and DTLZ4. We have considered four different numbers of objectives
for these test problems: 5, 10, 15 and 20. The number of generations was set
to 200 and the population size was set to 800 as in [3]. We have used simu-
lated binary crossover (SBX) and polynomial-based mutation [23] as in [1] in
our experiments. The crossover probability pc was set to 0.9 and the mutation
probability pm was set to 1/n where n is the number of decision variables. The
distribution index [23] for crossover was adopted as ηc = 20 and the distribution
index for mutation ηm was set to 20. The number of objective value compar-
isons performed by the different non-dominated sorting approaches as well as
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their corresponding running times are reported in Table 4. From this table, it
is evident that our proposed approach is more efficient than the non-dominated
sorting approaches with respect to which it was compared, in terms of both the
number of objective value comparisons and the running time required. FNDS
performs the maximum number of objective value comparisons and it also re-
quires the maximum running time. GBOS-SS and GBOS-BS performs less
objective value comparisons because of the sorting of solutions based on each
objective and also because, few objectives are considered while comparing two
solutions.

In case of FNDS, the number of objective value comparison remains the same
for all the test problems and for all the objectives. This is because, in FNDS
each solution is compared with respect to all the solutions irrespectively of the
objective values of the solutions. However, in other approaches, this is not the
case as the number of objective value comparisons depends on the dominance
relationship between the solutions.

6. Conclusions and Future Work

In the current paper, an efficient approach for non-dominated sorting known
as Best Order Sort was generalized to overcome its main limitations. Gener-
alized BOS is also efficient in terms of the number of dominance comparisons.
The comparison set concept is retained in the generalized BOS which further
reduces the number of objective value comparisons required when two solutions
are compared. Generalized BOS does not change its best and worst case time
complexity, nor its space complexity.

As part of our future work, we are interested in extending our Generalized
BOS to parallel architectures, with the aim of improving its efficiency even more.
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are discussed.

Appendix A. Examples

In this section, some of the examples showing the behavior of GBOS (GBOS-
SS and GBOS-BS) in three different scenarios are discussed.
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Appendix A.1. All Solutions are Non-Dominated

Here, we discuss the examples where all the solutions are non-dominated,
i.e., in a single front.

Appendix A.1.1. Duplicate solutions

Figure A.6 shows eight solutions in a 4-dimensional space which are identical.
Here, the sorted solutions based on different objectives have the same ordering
of solutions.

Sol
Objective

O1 O2 O3 O4

s1 1 2 3 4
s2 1 2 3 4
s3 1 2 3 4
s4 1 2 3 4
s5 1 2 3 4
s6 1 2 3 4
s7 1 2 3 4
s8 1 2 3 4

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3
s4 s4 s4 s4
s5 s5 s5 s5
s6 s6 s6 s6
s7 s7 s7 s7
s8 s8 s8 s8

(b) Sorted list

Figure A.6: Eight solutions in a 4-dimensional space which are identical.

Appendix A.1.2. Worst case

Figure A.7 shows the worst case scenario for eight solutions when the number
of objectives is 4. In this case, the first two objective values of each of the
solutions are the same. The last two objective values of the solutions are such
that we can declare that all the solutions are non-dominated.

Sol
Objective

O1 O2 O3 O4

s1 1 1 1 8
s2 1 1 2 7
s3 1 1 3 6
s4 1 1 4 5
s5 1 1 5 4
s6 1 1 6 3
s7 1 1 7 2
s8 1 1 8 1

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s8
s2 s2 s2 s7
s3 s3 s3 s6
s4 s4 s4 s5
s5 s5 s5 s4
s6 s6 s6 s3
s7 s7 s7 s2
s8 s8 s8 s1

(b) Sorted list

Figure A.7: Eight solutions in a 4-dimensional space which are in a single front (Worst case
scenario).

40



Appendix A.1.3. Best Case

Figure A.8 shows the best case scenario for eight solutions when the number
of objectives is 4. Here, when the sorted list based on each objective is traversed
in a row-wise manner, then before the second occurrence of a solution, all the
solutions must be traversed at least once.

Sol
Objective

O1 O2 O3 O4

s1 1 8 X X
s2 8 1 X X
s3 3 6 1 X
s4 6 3 X 1
s5 2 7 X X
s6 7 2 X X
s7 4 5 2 X
s8 5 4 X 2

(a) Objective values

Q1 Q2 Q3 Q4

s1 s2 s3 s4
s5 s6 s7 s8
s3 s4 NA NA
s7 s8 NA NA
s8 s7 NA NA
s4 s3 NA NA
s6 s5 NA NA
s2 s1 NA NA

(b) Sorted list

Figure A.8: Eight solutions in a 4-dimensional space which are in a single front (Best case
scenario). NA = {s1, s2, s3, s4, s5, s6, s7, s8} but in each sorted list a solution occurs exactly
once.

In Figure A.8, the first two objective values of the solutions allow us to
declare that all these solutions are non-dominated with respect to each other.
So, X in Figure A.8 represents any integer value greater than 2, i.e., X > 2. The
value of X is chosen such that when the sorted list based on each objective is
traversed in a row-wise manner, then before the second occurrence of a solution,
all the solutions are traversed at least once.

Appendix A.2. Solutions are in different fronts

An example in which all the solutions are in different fronts is discussed.
Figure A.9 shows eight solutions when the number of objectives is 4.

Appendix A.3. N Solutions in
√
N Fronts

Here, N solutions are equally divided into
√
N fronts such that each solution

in a front is dominated by all the solutions in its preceding front. In this case,
when the sorted list based on each objective is traversed in a row-wise manner,
then before the occurrence of a solution in the kth front all the solutions of the
(k − 1)th front are traversed in each of the objectives lists.

Appendix A.3.1. Solutions in a front are identical

Figure A.10 shows the scenario for sixteen solutions in a 4-dimensional space
where all the solutions in a particular front are the same.
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Sol
Objective

O1 O2 O3 O4

s1 1 1 1 1
s2 2 2 2 2
s3 3 3 3 3
s4 4 4 4 4
s5 5 5 5 5
s6 6 6 6 6
s7 7 7 7 7
s8 8 8 8 8

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3
s4 s4 s4 s4
s5 s5 s5 s5
s6 s6 s6 s6
s7 s7 s7 s7
s8 s8 s8 s8

(b) Sorted list

Figure A.9: Eight solutions in a 4-dimensional space which are in eight different fronts.

Sol
Objective

O1 O2 O3 O4

s1 1 2 3 4
s2 1 2 3 4
s3 1 2 3 4
s4 1 2 3 4
s5 5 6 7 8
s6 5 6 7 8
s7 5 6 7 8
s8 5 6 7 8
s9 9 10 11 12
s10 9 10 11 12
s11 9 10 11 12
s12 9 10 11 12
s13 13 14 15 16
s14 13 14 15 16
s15 13 14 15 16
s16 13 14 15 16

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3
s4 s4 s4 s4
s5 s5 s5 s5
s6 s6 s6 s6
s7 s7 s7 s7
s8 s8 s8 s8
s9 s9 s9 s9
s10 s10 s10 s10
s11 s11 s11 s11
s12 s12 s12 s12
s13 s13 s13 s13
s14 s14 s14 s14
s15 s15 s15 s15
s16 s16 s16 s16

(b) Sorted list

Figure A.10: Sixteen solutions in a 4-dimensional space which are in 4 front (Solutions in a
front are duplicate).

Appendix A.3.2. Worst Case

Figure A.11 shows the worst case scenario for sixteen solutions when the
number of objectives is 4. In this case, the first two objective values of each of
the solutions in a particular front are the same. The last two objective values
of the solutions in a front are such that we can declare that all the solutions in
a particular front are non-dominated.
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Sol
Objective

O1 O2 O3 O4

s1 1 1 1 4
s2 1 1 2 3
s3 1 1 3 2
s4 1 1 4 1
s5 5 5 5 8
s6 5 5 6 7
s7 5 5 7 6
s8 5 5 8 5
s9 9 9 9 12
s10 9 9 10 11
s11 9 9 11 10
s12 9 9 12 9
s13 13 13 13 16
s14 13 13 14 15
s15 13 13 15 14
s16 13 13 16 13

(a) Objective values

Q1 Q2 Q3 Q4

s1 s1 s1 s4
s2 s2 s2 s3
s3 s3 s3 s2
s4 s4 s4 s1
s5 s5 s5 s8
s6 s6 s6 s7
s7 s7 s7 s6
s8 s8 s8 s5
s9 s9 s9 s12
s10 s10 s10 s11
s11 s11 s11 s10
s12 s12 s12 s9
s13 s13 s13 s16
s14 s14 s14 s15
s15 s15 s15 s14
s16 s16 s16 s13

(b) Sorted list

Figure A.11: Sixteen solutions in a 4-dimensional space which are in 4 front (Worst case
scenario).

Appendix A.3.3. Best Case

Figure A.12 shows the best case scenario for sixteen solutions when the
number of objectives is 4. In this case, when the sorted list based on each
objective is traversed in a row-wise manner, then before the second occurrence
of a solution of a particular front, all the solutions of that front are traversed at
least once. In Figure A.12, the first two objective values of the solutions allow
us to declare that all the solutions in a particular front are non-dominated with
each other. So 1 < X1 ≤ 4, 5 < X2 ≤ 8, 9 < X3 ≤ 12 and 13 < X4 ≤ 16.
The values of X1,X2,X3,X4 are chosen such that the each solution in a front
dominates all the solutions in its succeeding front.
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Sol
Objective

O1 O2 O3 O4

s1 1 4 X1 X1

s2 4 1 X1 X1

s3 2 3 1 X1

s4 3 2 X1 1
s5 5 8 X2 X2

s6 8 5 X2 X2

s7 6 7 5 X2

s8 7 6 X2 5
s9 9 12 X3 X3

s10 12 9 X3 X3

s11 10 11 9 X3

s12 11 10 X3 9
s13 13 16 X4 X4

s14 16 13 X4 X4

s15 14 15 13 X4

s16 15 14 X4 13

(a) Objective values

Q1 Q2 Q3 Q4

s1 s2 s3 s4
s3 s4 NA1 NA1

s4 s3 NA1 NA1

s2 s1 NA1 NA1

s5 s6 s7 s8
s7 s8 NA2 NA2

s8 s7 NA2 NA2

s6 s5 NA2 NA2

s9 s10 s11 s12
s11 s12 NA3 NA3

s12 s11 NA3 NA3

s10 s9 NA3 NA3

s13 s14 s15 s16
s15 s16 NA4 NA4

s16 s15 NA4 NA4

s14 s13 NA4 NA4

(b) Sorted list

Figure A.12: Sixteen solutions in a 4-dimensional space which are in the 4 front (Best case
scenario). 1 < X1 ≤ 4, 5 < X2 ≤ 8, 9 < X3 ≤ 12 and 13 < X4 ≤ 16. NA1 = {s1, s2, s3, s4},
NA2 = {s5, s6, s7, s8}, NA3 = {s9, s10, s11, s12}, NA4 = {s13, s14, s15, s16} but in each sorted
list, a solution occurs exactly once.
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