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Abstract- The succesf the Particle Swarm Optimiza-
tion (PSO) algorithm as a single-objective optimizer
(mainly when dealing with continuous search spaces)
has motivated reseachersto extend the useof this bio-
inspiredtechniqueto other areas.One of them is multi-
objective optimization. Despite the fact that the first
proposalof a Multi-Objecti veParticle Swarm Optimizer
(MOPSO) is over six years old, a considerable num-
ber of other algorithms have beenproposedsincethen.
This paper presentsa comprehensve review of the var-
ious MOPSOsreported in the specializedliteratur e. As
part of this review, we include a classificationof the ap-
proachesand we identify the main featuresof eachpro-
posal. In the last part of the paper, we list someof the
topicswithin this field that we consideraspromising ar-
easof futur ereseach.

1 Intr oduction

Optimization problemsthat have more that one objectve
functionarerathercommonin every field or areaof knowl-
edge.In suchproblemsthe objectivesto be optimizedare
normallyin conflictwith respecto eachother whichmeans
thatthereis no singlesolutionfor theseproblems.Instead,
we aimto find good“trade-off” solutionsthatrepresenthe
bestpossiblecompromiseamongthe objectives.

Particle Swarm Optimization(PSO)is a heuristicsearch
technigugwhichis consideredsanevolutionaryalgorithm
by its authorg18]) thatsimulateghe movementf a flock
of birds which aim to find food. The relative simplicity
of PSOand the fact thatis a population-basedechnique
have madeit a naturalcandidateto be extendedfor multi-
objective optimization.

Moore andChapmarproposedhefirst extensionof the
PSO strateyy for solving multi-objective problemsin an
unpublishedmanuscriptrom 1999 [41]. After this early
attempt, a greatinterestto extend PSO aroseamongre-
searchershut interestingly the next proposalwasnot pub-
lished until 2002. Neverthelessthere are currently over
twenty five differentproposalsof MOPSOsreportedin the
specializediterature. This paperprovidesthe first surey
of this work, attemptingto classifytheseproposalsandto
delineatesomeof the potentialresearctpathsthatcouldbe
followedin thefuture by researcheri thisarea.

The remainderof this paperis organizedasfollows. In
Section2, we provide some basic conceptsfrom multi-

1This paper may be found in the EMOO repository located at:
http://delta.cs.cinvestav.mx/ccoello/EMOO/

objective optimization requiredto make the paper self-
contained. Section3 presentsan introductionto the PSO
stratgyy andSection4 presents brief discussioraboutex-
tendingthe PSOstratay for solving multi-objectve prob-
lems.A completereview of the MOPSOapproachess pro-
videdin Section5. We provide a brief discussioraboutthe
convergencepropertiesof PSOand MOPSOQOin Section6.
In Section7, possiblepathsof futureresearclarediscussed
and,finally, we presenbur conclusionsn Section8.

2 BasicConcepts

We areinterestedn solving problemsof thetype?:

-

minimize f(£) := [f1(Z), f2(Z), ..., fx(Z)] (1)
subjectto:

9:(®) <0 i=1,2,...,m (2

hi(®) =0 i=1,2,...,p (3)

where ¥ = [xl,mQ,...,wn]T is the vector of decision

variables,f; : R — R, i = 1,...,k arethe objectve
functionsandg;,h; : R" - R,i =1,...m,j =1,...,p
arethe constrainffunctionsof the problem.

To describethe conceptof optimality in which we are
interestedye will introducenext afew definitions.

Definition 1. Giventwo vectorsz,7 € R*, we saythat
Z < gif z; <y;fori =1,.. k, andthat# dominatesy
(denotedvy & < @) if £ < gy and¥ # §.

Figure 1 shows a particular case of the dominance
relation in the presencef two objective functions.

Definition 2. We say that a vector of decision vari-
ables € X ¢ R™ is nondominatedwith respecto X, if

- -

theredoesnotexistanother#’ € X suchthat f(Z') < f(F).
Definition 3. We say that a vector of decisionvariables
7* € F Cc R" (F isthefeasibleregion)is Pareto-optimal
if it is nondominatedvith respecto F.

Definition 4. The Pareto Optimal SetP* is definedby:

P* = {& € F|Z is Pareto-optima}

2Without loss of generality we will assumeonly minimization prob-
lems.
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Figurel: Dominanceelationin a bi-objective space.
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Figure 2: The Paretofront of a setof solutionsin a two
objective space.

Definition 5. The Pareto Front PF* is definedby:

PF* = {f(Z) € R*|7 € P*}

Figure 2 shavs a particularcaseof the Pareto front in
the presencef two objectie functions.
We thuswish to determinethe Paretooptimal setfrom the
set F of all the decisionvariable vectorsthat satisfy (2)
and (3). Note however thatin practice,not all the Pareto
optimal setis normally desirable(e.g.,it may not be desir
ableto have differentsolutionsthat mapto the samevalues
in objective functionspace)r achievable.

3 Particle Swarm Optimization

JamesKennedyand Russell C. Eberhart[30] originally
proposedthe PSO algorithm for optimization. PSOis a
population-basedearchalgorithmbasedon the simulation
of the social behavior of birds within a flock. Although
originally adoptedor balancingwveightsin neuralnetworks
[17], PSOsoonbecamea very popularglobal optimizer,
mainly in problemsin which the decisionvariablesarereal
numbers$ [32, 19].

Accordingto Angeline[3], we canmalke two maindis-
tinctionsbetweerPSOandanevolutionaryalgorithm:

3|t is worth noting that there have beenproposalsto use alternatie
encodingswith PSO(e.g.,binary[31] andinteger [26]), but noneof them
hasbeenaspopularastheoriginal proposaln whichthealgorithmoperates
usingvectorsof realnumbers.

1. Evolutionaryalgorithmsrely onthreemechanismn
their processing:parentrepresentationselectionof
individualsandthefine tuningof their parametersin
contrast,PSOonly relieson two mechanismssince
PSO doesnot adopt an explicit selectionfunction.
Theabsencef aselectiormechanisnin PSOis com-
pensatedy the useof leadersto guide the search.
However, thereis no notion of offspring generation
in PSOaswith evolutionaryalgorithms.

2. A secondlifferencebetweerevolutionaryalgorithms
and PSOhasto do with the way in which the indi-
viduals are manipulated.PSOusesan operatorthat
setsthevelocity of a particleto a particulardirection.
This canbe seemasa directionalmutationoperatoiin
which the directionis definedby both the particle’s
personabestandthe global best(of the swarm). If
the directionof the personabestis similar to the di-
rectionof theglobalbesttheangleof potentialdirec-
tionswill be small, whereasa larger anglewill pro-
vide alargerrangeof exploration.In contrastevolu-
tionary algorithmsusean mutationoperatorthatcan
setan individual in ary direction (althoughthe rel-
ative probabilitiesfor eachdirection may be differ-
ent). In fact, the limitations exhibited by the direc-
tional mutationof PSOhasled to the useof mutation
operatorssimilar to thoseadoptedn evolutionaryal-
gorithms.

Two arethe key aspectdy which we believe that PSO
hasbecomesopopular:

1. The main algorithm of PSO is relatively simple
(since in its original version, it only adoptsone
operator for creating new solutions, unlike most
evolutionary algorithms) and its implementa-
tion is, therefore, straightforvard. Additionally,
there is plenty of source code of PSO avail-
able in the public domain (see for example:
http://www.swarmintelligence.org/
codes.php ).

2. PSOhasbeenfoundto bevery effectivein awideva-
riety of applicationspeingableto producevery good
resultsataverylow computationatost[32, 20].

In orderto establisha commonterminology in the fol-
lowing we provide some definitions of several technical
termscommonlyused:

e Swarm: Populationof thealgorithm.

e Particle: Member(individual) of the swarm. Each
particlerepresents potentialsolutionto the problem
beingsolved. The positionof a particleis determined
by the solutionit currentlyrepresents.

e pbest (personal bes): Personalbest position of a
given particle, so far. That is, the position of the
particlethat hasprovided the greatessuccesgmea-
suredin termsof a scalarvalueanalogougo the fit-
nessadoptedn evolutionaryalgorithms).



e |best (local bes): Positionof the bestparticlemem-
berof theneighborhoodf a givenparticle.

e gbest (globalbes): Positionof thebestparticleof the
entireswarm.

e Leader: Particlethatis usedto guideanotheparticle
towardsbetterregionsof the searchspace.

e Velocity (vector): Thisvectordrivestheoptimization
processthatis, it determineshedirectionin whicha
particleneeddo “fly” (move),in orderto improveits
currentposition.

¢ Inertia weight: Denotedby W, theinertiaweightis
employed to control the impactof the previous his-
tory of velocitieson the currentvelocity of a given
particle.

e Learning factor: Representtheattractionthatapar
ticle hastoward eitherits own succes®r that of its
neighborsTwo arethelearningfactorsused:C; and
C>. C; isthecognitivelearningfactorandrepresents
the attractionthat a particle hastoward its own suc-
cess. (s is the social learningfactorandrepresents
theattractionthata particlehastowardthe succes®f
its neighbors.Both, C; and C-, areusually defined
asconstants.

e Neighborhoodtopology: Determinegshe setof par
ticles that contribute to the calculationof the Ibest
valueof agivenparticle.

In PSO,particlesare“flown” throughhyperdimensional
searctspace Changeso thepositionof theparticleswithin
the searchspacearebasedon the social-psychologicaien-
deng of individualsto emulatethe successf otherindivid-
uals.

The positionof eachparticleis changedaccordingto its
own experienceandthatof its neighbors.Let #;(t) denote
the position of particle p;, at time stept. The position of
p; is thenchangedy addinga velocity @; (t) to the current
position,i.e.:

Ti(t) = &t — 1) + 6i(t) (4)
Thevelocity vectorreflectsthesociallyexchangednfor-
mationand,in generaljs definedin thefollowing way:

Ti(t) = W (t — 1) + C1r1(Zppest; — Fi(t))

+Cary (fleader - fi(t)) (5)

whereandry,rs € [0, 1] arerandomvalues.

Particlestendto beinfluencedby the succes®f anyone
they areconnectedo. Theseneighborsarenot necessarily
particleswhich are closeto eachotherin parameteldeci-
sionvariable)space put insteadare particlesthatare close
to eachotherbasednaneighborhoodopologythatdefines
thesocialstructureof theswarm[32].

Particlescanbe connectedo eachotherin ary kind of
neighborhoodopologyrepresente@sa graph. In the fol-
lowing, list sometypical neighborhoodyraphsusedin PSO.

Figure 3: Thering neighborhoodopologythat represents
thelocal bestschemewhenk = 2. In thiscommonlocal
bestcase gachparticleis affectedonly by its two immediate
adjacenneighbors Eachcircle represents particle.

Figure 4: The fully connectedgraph representghe fully
connectedeighborhoodopology(eachcircle represents
particle). All membersof the swarm are connectedo one
another

e Empty graph: In this topology particlesare iso-
lated. Each particle is connectedonly with itself,
andit comparests currentpositiononly to its own
bestpositionfound so far (pbes} [19]. In this case,
C> = 0 in Equation5.

e Local best: In thistopology eachparticleis affected
by thebestperformancef its k immediateneighbors.
Particles are influencedby the bestposition within
their neighborhoodlbes), aswell astheir own past
experiencgpbes) [19]. Whenk = 2, thisstructurds
equivalentto a ring topology suchasthe oneshavn
in Figure3. In this case)eader=Ibestin Equation5.

e Fully connectedgraph: Thistopologyis the oppo-
siteof theemptygraph Thefully connectedopology
connectsall membersof the swarm to one another
Eachparticleusesits history of experiencesn terms
of its own bestsolutionsofar (pbesj but, in addition,
theparticleusesthe positionof the bestparticlefrom
theentireswarm (gbesj. This structureis alsocalled
star topologyin the PSOcommunity[19]. SeeFig-
ure4. In this case)eader=gbestn Equation5.

e Star network: In this topology, one particleis con-
nectedto all othersandthey are connectedo only
that one (called focal particle) [19]. SeeFigure 5.
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Figure5: Thestarnetwork topology(eachcircle represents
a particle). Tnefocal particleis connectedo all the other
particlesandthey areconnectedo only thatone.

VOV

Figure6: Thetreenetwork topology(eachcircle represents
a particle). All particlesarearrangedn atree. A particle
is influencedby its own bestpositionsofar (pbes} andby
the bestpositionof the particlethatis directly above in the
tree. Here,we shav anexampleof atopologydefinedby a
regulartreewith aheightequalto 3, degreeequalto 4 anda
total of 21 particles.

Particlesareisolatedfrom one anothey asall infor-

mationhasto becommunicatedhroughthefocal par

ticle. Thefocal particlecompareperformancesf all

particlesin the swarm and adjustsits trajectoryto-

wardsthe bestof them. That performances even-
tually communicatedo the restof the swarm. This
structureis also called wheeltopology in the PSO
community In this case,leader=focalin Equation
5.

e Treenetwork: In thistopology all particlesarear
rangedin a tree and eachnode of the tree contains
exactly one particle [28]. SeeFigure 6. A particle
is influencedby its own bestpositionso far (pbes}
andby the bestpositionof the particlethatis directly
abovein thetree(parent).If aparticleata child node
hasfound a solutionthatis betterthanthe bestsofar
solutionof the particleat the parentnode,both parti-
clesareexchangedIn thisway, thistopologyoffersa
dynamicneighborhood.This structureis alsocalled
hierarchical topologyin the PSOcommunity In this
case/eader=pbesfqrent iN Equations.

The neighborhoodopology s likely to affect the rate
fo corvergenceasit determinesow muchtime it takesto
the particlesto find out aboutthe location of good (better)
regionsof the searchspace.For example,sincein the fully
connectedopologyall particlesareconnectedo eachother,

Begin
Initialize swarm
Locateleader
g=20
While g < gmaz
For eachparticle
UpdatePosition(Flight)
Evaluation
Updatepbest
EndFor
Updateleader
gt+
EndWhile
End

Figure7: Pseudocodef the generalPSOalgorithm.

all particlesrecevvetheinformationof thebestsolutionfrom
the entireswarm at the sametime. Thus,whenusingsuch
topology, the swarm tendsto corverge more rapidly than
whenusinglocal besttopologies sincein this case thein-
formationof the bestposition of the swarm takesa longer
time to be transferred.However, for the samereasonthe
fully connectedopologyis alsomore susceptibleo suffer
prematurecorvergence(i.e., to corverge to local optima)
[20].

Figure 7 shaws the way in which the general(single-
optimization) PSO algorithm works. First, the swarm is
initialized. This initialization includesboth positionsand
velocities. The correspondingbestof eachparticleis ini-
tializedandtheleaderis located(usuallythe gbestsolution
is selectedasthe leader). Then,for amaximumnumberof
iterations eachparticlefliesthroughthesearchspaceaipdat-
ing its position(using(4) and(5)) andits pbestand,finally,
theleaderis updatedoo.

4 Particle Swarm Optimization for Multi-
Objective Problems

In order to apply the PSO stratgy for solving multi-

objective optimizationproblemsit is obviousthatthe orig-

inal schemehasto be modified. As we sawv in Section2,

the solutionsetof a problemwith multiple objectvesdoes
not consistof a single solution(asin global optimization).
Insteadjn multi-objective optimization we aimto find aset
of differentsolutions(the so-calledParetooptimal set). In

generalwhensolving a multi-objective problem,threeare
themaingoalsto achieve [73]:

1. Maximizethe numberof elementf the Paretoopti-
mal setfound.

2. Minimize thedistanceof theParetofront producedy
our algorithmwith respecto thetrue (global) Pareto
front (assumingve know its location).

3. Maximize the spreadof solutionsfound, so thatwe
canhave a distribution of vectorsassmoothanduni-
form aspossible.



Giventhepopulation-basedatureof PSQO,it is desirable
to produceseveral (different)nondominatedolutionswith
asinglerun. So,aswith ary otherevolutionaryalgorithm,
thethreemainissuego be consideredvhenextendingPSO
to multi-objective optimizationare[13]:

1. How to selectparticles(to be usedasleaders)n or-
derto give preferenceéo nondominatedolutionsover
thosethataredominated?

2. How to retainthenondominatedolutionsfound dur-
ing the searchprocessin order to report solutions
that are nondominatedwith respectto all the past
populationsand not only with respecto the current
one?Also, it is desirablehatthesesolutionsarewell
spreadalongthe Paretofront.

3. How to maintaindiversity in the swarm in orderto
avoid corvergenceto a singlesolution?

As we could seein the previous section,whensolving
single-objectie optimizationproblemstheleaderthateach
particleusego updateits positionis completelydetermined
oncea neighborhoodopologyis stablished. However, in
thecaseof multi-objective optimizationproblemsgachpar
ticle might have a setof differentleadersfrom which just
one can be selectedn orderto updateits position. Such
setof leaderss usuallystoredin a differentplacefrom the
swarm, thatwe will call externalarchive*: Thisis arepos-
itory in which the nondominatedolutionsfound sofar are
stored. The solutionscontainedn the externalarchie are
usedas leaderswhen the positionsof the particlesof the
swarm have to be updated Furthermorethe contentof the
externalarchive is alsousually reportedasthe final output
of thealgorithm.

Figure 8 shaws the way in which a generaMOPSOal-
gorithmworks. We have marked with italics the processes
thatmalke this algorithmdifferentfrom the generalPSOal-
gorithmfor singleobjective optimization.

First, the swarm is initialized. Then, a setof leaders
is alsoinitialized with the nondominategbarticlesfrom the
swarm. As we mentionedbefore,the setof leaderss usu-
ally storedin an externalarchive. Later on, somesort of
guality measuras calculatedfor all theleadersin orderto
select(usually) oneleaderfor eachparticle of the swarm.
At eachgenerationfor eachparticle, a leaderis selected
andtheflight is performed.Most of the existing MOPSOs
apply somesortof mutationoperato? after performingthe
flight. Then,the particleis evaluatedandits corresponding
pbest is updated.A new particlereplacests pbest particle
usually whenthis particle is dominatedor if both arein-
comparabldi.e., they areboth nondominatedvith respect
to eachother). After all the particleshave beenupdatedthe
setof leaderss updatedtoo. Finally, thequality measuref
the setof leaderds re-calculated.This procesds repeated
for a certain(usuallyfixed) numberof iterations.

4This externalarchiveis alsousedby mary Multi-Objective Evolution-
ary Algorihtms (MOEAS).

5The mutationoperatorsadoptedn the PSOliteraturehave alsobeen
calledturbulenceoperators.

Begin
Initialize swarm
Initialize leaders in an externalarchive
Quality(leaders)
g=20
While g < gmaz
For eachparticle
Selecteader
UpdatePosition(Flight)
Mutation
Evaluation
Updatepbest
EndFor
Updateleadessin theexternalarchive
Quality(leaders)
g+t
EndWhile
Reportresultsin the externalarchive
End

Figure8: Pseudocodef ageneraMOPSOalgorithm.

As we cansee,andgiventhe characteristicef the PSO
algorithm, the issuesthat arise when dealingwith multi-
objective problemsare relatedwith two main algorithmic
designaspect$64]:

1. Selectionandupdatingof leaders:

e How to selecta singleleaderout of setof non-
dominatedsolutionswhichareall equallygood?
Shouldwe selectthis leaderin arandomway or
shouldwe use an additional criterion (to pro-
motediversity, for example)?

e How to selectthe particlesthat shouldremain
in the externalarchive from oneiterationto an-
other?

2. Creationof new solutions:

¢ How to promotediversitythroughthe two main
mechanismgo createnew solutions: updating
of positions(Equations4 and5) and mutation
(turbulence)operator

Thesdssuesarediscussed moredetailin thenext sub-
sections.

4.1 Leadersin Multi-Objecti ve Optimization

Sincethe solutionof a multi-objective problemconsistof a
setof equallygoodsolutions,it is evidentthatthe concept
of leadertraditionallyadoptedn PSOhasto be changed.

A few researchebave avoidedthe problemof defining
a new conceptof leaderfor multi-objective problemsby
adoptingaggrayatingfunctions(i.e., weightedsumsof the
objectives)or approacheghat optimize eachobjectie sep-
arately We will briefly discusgheseapproachem Section
5.
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Figure9: Thenearesnheighbordensityestimatorfor anex-
amplewith two objective functions. Particleswith alarger
valueof this estimatorarepreferred.

However, it is importantto indicate that the majority
of the currentlyproposediIOPSOapproachesedefinethe
concepibf leader

Aswe mentionedefore theselectiorof aleaderis akey
componentwhendesigninga MOPSOapproachThe most
straightforwardapproachs to considereverynondominated
solutionasa new leaderandthen,just oneleaderhasto be
selected.In this way, a quality measurghatindicateshow
goodis aleaderis very important. Obviously, suchfeature
can be definedin several differentways. As we will see
in Sectionb5, thereexist alreadydifferentproposalgo deal
with thisissue.

One posibleway of defining suchquality measurecan
berelatedto densitymeasuresPromotingdiversitymay be
donethroughthis processby meansof mechanismbased
on somequality measureshatindicatethe closenessf the
particleswithin the swarm.

Several authorshave proposedleader selectiontech-
niguesthatarebasedon densitymeasuresln orderto help
understandinghe specificapproacheshat are going to be
describedater on, we presentheretwo of the mostimpor-
tantdensitymeasuresisedin theareaof multi-objective op-
timization:

e Nearestneighbor density estimator [16]. Thenear
estneighbordensityestimatoigivesusanideaof how
crowdedarethe closesieighborsof a givenparticle,
in objectie function space. This measuresstimates
the perimeterf the cuboidformedby usingthenear
estneighborsasthevertices.SeeFigure9.

e Kernel density estimator [22, 15]: Whena particle
is sharingresourcesvith othersijts fitnessis degraded
in proportionto thenumberandcloseness$o particles
that surroundit within a certainperimeter A neigh-
borhoodof a particleis definedin termsof a parame-
tercalledo s, thatindicategheradiusof theneigh-
borhood.Suchneighborhoodsrecalledniches See
Figurel0.

Figure 10: For eachparticle, a nicheis defined. Particles
whosenicheis lesscrovdedarepreferred.

4.2 Retaining and SpreadingNondominated Solutions

As we mentionedbefore, it is importantto retainthe non-
dominatedsolutionsfound alongall the searchprocessso
that we canreportat the endthosesolutionsthat are non-
dominatedvith respecto all the previouspopulations This
isimportantnotonly for pragmatiaeasonsbut alsofor the-
oreticalones[54].

Themoststraightforvardway of retainingsolutionsthat
are nondominatedvith respectto all the previous popula-
tions (or swarms)is to usean external archive. Suchan
archive will allow theentranceof asolutiononlyif: (a)it is
nondominatedvith respecto the contentsof thearchive or
(b) it dominatesary of the solutionswithin the archive (in
this case the dominatedsolutionshave to be deletedfrom
thearchive).

This approacthas,however, the drawbackof increasing
the size of the archive very quickly. This is animportant
issuebecausehe archive hasto be updatedat eachgenera-
tion. Thus,this updatemay becomevery expensve, com-
putationallyspeaking,f the size of the archive grows too
much. In the worst case,all membersof the swarm may
wishto enterinto thearchive, at eachgenerationThus,the
correspondingipdatingprocessat eachgenerationhasa
compleity of O(kN?2), whereN is the sizeof the swarm
and k is the numberof objectives. In this way, the com-
plexity of the updatingprocessfor the completerun is of
O(kM N?), whereM is thetotal numberof iterations.

Thus, mainly dueto practicalreasonsarchivestendto
be bounded13], which makesnecessaryhe useof anad-
ditional criterion to decidewhich nondominatedsolutions
to retain, oncethe archive is full. In evolutionary multi-
objective optimization, researcherfiave adopteddifferent
techniquego prunethe archive (e.g., clustering[74] and
geographical-basesichemeghat place the nondominated
solutionsin cellsin orderto favor lesscrowdedcellswhen
deletingin-excessnondominatedolutions[34]). However,
the useof an archive introducesadditionalissues:for ex-
ample,do we imposeadditionalcriteriato enterthearchive
insteadof just usingnondominancée.g., usethe distribu-
tion of solutionsasanadditionalcriterion)?

Note that, strictly speaking,three archives should be
usedwhenextendingPSOfor multi-objective optimization:
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Figurel12: An exampleof the useof e-dominancen anex-
ternalarchive. Solution1 dominatessolution2, therefore
solutionl is preferred.Solutions3 and4 areincomparable.
However, solution3 is preferredover solution4, sincesolu-
tion 4 is the closerto the lower lefthandcornerrepresented
by point (2¢,2¢). Solution5 dominatessolution6, therefore
solution5 is preferred.Solution7 is not acceptedsinceits
box, representedby point (2¢,3¢) is dominatedby the box
representedly point (2z,2¢).

one for storing the global bestsolutions,one for the per
sonalbestvaluesanda third onefor storingthe local best
(if applicable).However, in practice few authorsreportthe
useof morethanonearchiein theirMOPSOs.

Besidesthe useof anexternalfile, it is alsopossibleto
usea plus selectionin which parentscompetewith their
childrenandthosewhich are nondominatedand possibly
comply with someadditionalcriterion suchas providing a
betterdistribution of solutions)are selectedor the follow-
ing generationln thecaseof PSO,aplusselectionnvolves
selectingfrom a memgeof two consecutie swarms.

More recently otherresearcherbave proposedhe use
of relaxed forms of dominance.The main one adoptedin
PSOhasbeens-dominancg36], whichis illustratedin Fig-
urell. Themainuseof thisconcepin multi-objectve PSO
hasbeento filter solutionsin the externalarchive. By using
e-dominancewe defineasetof boxesof sizes andonly one

nondominatedolutionis retainedor eachbox (e.g.,theone
closestto the lower lefthandcorner). This is illustratedin
Figure12,for abi-objective case.The useof e-dominance,
asproposedn [36] andillustratedin Figure12, guarantees
thattheretainedsolutionsarenondominatedavith respecto
all solutionsgeneratediuring the run. It is worth noting,
however, that,whenusinge-dominancethesizeof thefinal
externalarchive depend®n the e-value,which is normally
a userdefinedparametef36]. Mostaghimand Teich [43]
have found that when comparinge-dominanceagainstex-
isting clusteringtechniquedor fixing the archie size, the
e-dominancemethodcanfind solutionsmuchfaster(com-
putationallyspeaking)thanthe clusteringtechniquewith a
comparable(and even betterin some cases)corvergence
anddiversity.

4.3 Promoting Diversity while Creating New Solutions

It is well-known that one of the mostimportantfeaturesof
the PSOalgorithmis its fastcorvergence. This is a posi-
tivefeatureaslongaswe don't have prematurecorvergence
(i.e.,convergenceto alocal optimum).

Prematureorvergencds causedy therapidlossof di-
versitywithin the swarm. So,the appropriatgpromotionof
diversityin PSOis averyimportantissuein orderto control
its (normallyfast)convergence.

As we mentionedin Section4.1, when adoptingPSO
for solvingmulti-objective optimizationproblemsit is pos-
sibleto promotediversity throughthe selectionof leaders.
However, this canbealsodonethroughthetwo mainmech-
anismsusedfor creatingnew solutions:

1. Updating of positions. As we mentionedn Section
3, theuseof differentneighborhoodopologiesdeter
mineshow fastis the processof transferingthe in-
formationthroughthe swarm (sincea neighborhood
determinesvho the leaderparticleis in Equation5).
Sincein a fully connectedopology all particlesare
connectedwvith eachother, the informationis trans-
ferredfasterthanin the caseof alocal bestor atree
topology sincein thesecasegarticleshave smaller
neighborhoods.Underthe sameargument,a speci-
fied neighborhoodopologyalsodeterminesow fast
is diversity lost within the swarm. Sincein a fully
connectedopology thetranferof informationis fast,
whenusingthis topology diversitywithin the swarm
is alsolostrapidly. In thisway, topologieshatdefine
neighborhoodsmallerthantheentireswarmfor each
particlecanalsopresere diversity within the swarm
alongertime.

Ontheotherhand,diversity canalsobe promotedby
meansof the inertia weight (W in Equation5). As
it wasdefinedin Section3, the inertiaweightis em-
ployed to control the impactof the previous history
of velocitieson the currentvelocity. Thus,theinertia
weightinfluenceghetrade-of betweerglobal (wide-
ranging)andlocal (nearby)explorationabilities[58].
A large inertia weight facilitatesglobal exploration
(searchingnew areas)while a smallerinertiaweight



tendsto facilitate local exploration to fine-tunethe
currentsearcharea. The value of the inertiaweight
may vary during the optimizationprocess. Shi [59]
assertedhatby linearly decreasingheinertiaweight
from a relatively large valueto a small onethrough
the courseof the PSOrun, the PSOtendsto have
moreglobalsearchability atthe beginningof therun
andhave morelocal searchability nearthe endof the
run. Onthe otherhand,Zhengetal. [72] arguethat
eitherglobal or local searchability associatesvith a
smallinertiaandthata large inertiaweight provides
the algorithm more chancedo be stabilized. In this
way, inspiredon the procesof the simulatedanneal-
ing algorithm,theauthorsproposedo useanincreas-
ing inertiaweightthroughthe PSOrun.

Theadditionof velocityto thecurrentpositionto gen-
eratethe next positionis similar to the mutationop-
eratorin evolutionaryalgorithms,exceptthat“muta-
tion” in PSOis guidedby the experienceof a patrticle
andthat of its neighbors. In otherwords, PSOper
forms“mutation” with a“conscience’[58].

. Throughthe useof a mutation (or turb ulence)op-
erator.

As mentionedin the previous section,whena parti-
cle updatests position,a mutationwith “conscience”
occurs. Sometimeshowever, SOmeunconciousness
or “craziness” ascalledby KennedyandEberhartin
the original proposalof PSO[30], is needed.Crazi-
ness,alsoreferredasturbulence,reflectsthe change
in aparticlesflight whichis out of its control[21].

In general,when a swarm stagnatesthat is, when
the velocitiesof the particlesare almostzero, it be-
comesunableto generataew solutionswhich might
lead the swarm out of this state. This behaior can
leadto thewhole swarm beingtrappedin alocal op-
timum from which it becomesmpossibleto escape.
Sincethe global bestindividual attractsall members
of the swarm, it is possibleto leadthe swarm away
from a currentlocationby mutatinga singleparticle
if the mutatedparticlebecomeghe new global best.
This mechanisnpotentiallyprovidesameansothof
escapindocal optimaandof speedingup the search
[62].

In this way, theuseof a mutationoperatoiis veryim-
portantin orderto escapd&rom local optimaand to
improve the exploratory capabilitiesof PSO.When
a solutionis chosento be mutatedeachcomponent
is thenmutated(randomlychanged)r not with cer
tain probability. Actually, differentmutationopera-
tors have beenproposedhat mutatecomponentf
eitherthe positionor thevelocity of a particle.

In our experiencethe choiceof a goodmutationop-
eratoris a difficult taskthat hasa significantimpact
on performance. On the other hand,oncewe have
selecteda specificmutationoperatoranotherdifficult
taskis to decidehow muchmutationto apply: with

how muchprobability, in which momentsof the pro-
cess,n which specificcomponentf a particle,etc.

Severalproposedapproachebave useddifferentmu-
tation operatorshowever, thereare also approaches
which do not useary kind of mutationoperatorand
that showv good performance. So, the use of muta-
tion is anissuethatcertainlydeseresa morecareful
study

5 A Taxonomyof Approaches

Thetaxonomythatwe proposeo classifythe currentMOP-
SOsis thefollowing:

Aggregatingapproaches
Lexicographicordering
Sub-Populatiompproaches
Pareto-basedpproaches
Combinedapproaches

Otherapproaches

We will discussnext eachof thesetypesof approaches.

Also,

Table 1 summarizeall the differentapproachesnd

indicatesheir mostimportantfeatures.

5.1 AggregatingApproaches

Underthis cateyory we considerapproacheshat combine
(or “aggregate”) all the objectives of the probleminto a
singleone. In otherwords,the multi-objective problemis
transformednto a single-objectie one. This is not a new
idea, sinceaggreating functionscan be derived from the
well-known Kuhn-Tucker conditionsfor nondominatedo-
lutions[35].

ParsopoulosindVrahatis[50]: Thisalgorithmadopts
threetypesof aggreyating functions: (1) a corven-
tional linear aggreyating function (were weightsare
fixedduringtherun), (2) adynamicaggreyatingfunc-
tion (wereweightsaregraduallymodifiedduring the
run) and(3) the bangbangweightedaggreyationap-
proach (were weights are abruptly modified during
therun)® [29]. In all casestheauthorsadoptthefully
connectedopology

Baumgartneret al. [6]: This approach,basedon

thefully connectedopology, useslinear aggreyating
functions. In this case,the swarm is equally parti-

tionedinto n subsvarms,eachof which usesa differ-

entsetof weightsandevolvesinto thedirectionof its

own swarm leader The approachadoptsa gradient
techniqueo identify the Paretooptimalsolutions.

6This approachhasthe peculiarity of beingableto generatenoncon-
vex portionsof the Paretofront, which is somethinghattraditionallinear
aggreatingfunctionscannotdo [14].



5.2 Lexicographic Ordering

In this method,the useris aslked to rank the objectvesin

orderof importance The optimumsolutionis thenobtained
by minimizing the objective functions separatelystarting
with the mostimportantone and proceedingaccordingto

the assignedorder of importanceof the objectves [40].

Lexicographicorderingtendsto be useful only whenfew

objectie functionsare used(two or three),andit may be
sensitie to the orderingof the objectives[10].

e HuandEberhar{24]: In thisalgorithm,only oneob-
jective is optimizedat a time usinga schemesimilar
to lexicographicordering[13]. This approactadopts
the ring (local bes) topology No external archive
is adoptedin this case. However, in a further ver
sionof this approacH25], theauthorsincorporatean
externalarchive (called“extendedmemory”) andin-
troducesomefurtherimprovementgo their dynamic
neighborhoodSOapproach.

5.3 Sub-Population Approaches

Theseapproacheswolve the useof severalsubpopulations
as single-objectie optimizers. Then, the subpopulations
somehav exchangeanformationor recombineamongthem-
selvesaimingto producetrade-ofs amongthe differentso-
lutions previously generatedor the objectives that were
separatelypptimized.

e Parsopouloset al. [49] studieda parallel version
of the Vector Evaluated Particle Swarm (VEPSO)
methodfor multi-objective problems. VEPSOis a
multi-swarm variant of PSO, which is inspired on
the Vector Evaluated Genetic Algorithm (VEGA)
[56, 57]. In VEPSO,eachswarmis evaluatedusing
only oneof theobjective functionsof theproblemun-
derconsiderationandtheinformationit possesse®r
this objective functionis communicatedo the other
swarmsthroughtheexchangeof theirbestexperience
(gbestparticle). The authorsargue that this process
canleadto Paretooptimalsolutions.

e Chow andTsui[8]: InthispapertheauthorausePSO
asanautonomousgentresponsdearningalgorithm.
For that sale, the authorsproposeto decomposehe
awardfunction of theautonomousgentinto a setof
local award functionsand, in this way, to modelthe
responseaxtraction processas a multi-objective op-
timization problem. A modified PSOcalled “Multi-
SpeciesPSO”is introducedby consideringeachob-
jective function asa speciesswarm. A communica-
tion channelis establishebetweenthe neighboring
swarmsfor transmittingthe information of the best
particles,in orderto provide guidancefor improving
their objective values.Also, theauthorsusetheflight
formula of the fully connectedopology, but include
a neighborswarmrefelencevelocity Suchvelocity
is directly relatedwith the bestparticle within each
subsvarm (similarto Ibes).

5.4 Pareto-BasedApproaches

Theseapproachesiseleaderselectiontechniquedasedon
ParetodominanceThebasicideaof all theapproacheson-
sideredhereis to selectasleadersto the particlesthat are
nondominatedvith respectto the swarm. Note however,
that several variationsof the leaderselectionschemeare
possiblesincemostauthorsadoptadditionalinformationto
selectleaderqe.g.,informationprovided by a densityesti-
mator)in orderto avoid arandomselectiorof aleaderfrom
thecurrentsetof nondominatedolutions.

e Moore and Chapman41]: This algorithmwas pre-
sentedn anunpublishedlocumentandit is basedn
ParetodominanceTheauthorsemphasizéheimpor-
tanceof performingboth an individual and a group
search(a cognitive componentand a social compo-
nent). In this approachthe personalbest(pbes} of
a particleis alist of all the nondominatedsolutions
it hasfoundin its trajectory Whenselectinga pbest
a particlefrom thelist is randomlychosen Sincethe
ring topologyis usedwhenselectinghebestparticle
of the neighborhoodthe solutionscontainedin the
pbestlists are compared,and a nondominatedsolu-
tion with respecto the neighborhoods chosen.The
authorsdon't indicatehow they choosethe Ibestpar
ticle when more that one nondominatedsolution is
foundin thenneigborhood.

e RayandLiew [53]: This algorithm(basedon afully
connectedopology)usesParetodominanceandcom-
bines conceptsof evolutionary techniqueswith the
particle swarm. The approachusesa nearesheigh-
bor densityestimatorto promotediversity (by means
of arouletteselectiorschemeof leaderdasednthis
value)andamultilevel sieve to handleconstraintgfor
this, the authorsadoptthe constraintand objective
matricesproposedn someof their previousresearch
[52]). The setof leadersmaintainedby the authors
canbeconsiderednexternalarchive.

e FieldsendandSingh[21]: This approachusesanun-
constrainecklite externalarchie (in which a special
datastructurecalled“dominatedtree” is adopted}o
storethe nondominatedndividuals found along the
searctprocessThearchiveinteractswith theprimary
populationin orderto defineleaders Theselectionof
the gbestfor a particlein the swarmis basedon the
structuredefinedby thedominatedree.First,acom-
positepoint of thetreeis locatedbasedndominance
relations,andthenthe closestmember(in objective
function space)of the compositepoint is chosenas
theleader On the otherhand,a setof personabest
particlesfound(nondominatedis alsomaintainedor
eachswarm member andthe selectionis performed
uniformly. Thisapproactalsousesa“turbulence”op-
eratorthatis basicallyamutationoperatoithatactson
thevelocity valueusedby the PSOalgorithm.

e Coelloetal. [11, 12): This proposalis basedon
theideaof having anexternalarchive in which every



particlewill depositits flight experiencesafter each
flight cycle. The updatego the externalarchve are
performedconsideringa geographically-basedys-
tem definedin termsof the objective function val-

uesof eachparticle. The searchspaceexploredis

divided on hypercubes.Eachhypercubereceves a
fitnessvaluebasedon the numberof particlesit con-
tains. Thus,in orderto selecta leaderfor eachpar

ticle of the swarm, a roulette-wheelselectionusing
thesefitnessvaluesis first applied,to selectthe hy-

percubgrom which theleaderwill betaken. Oncea
hypercubehasbeenselectedthe leaderis randomly
chosen.This approachalsousesa mutationoperator
that actsboth on the particlesof the swarm, andon

therangeof eachdesignvariableof theproblemto be
solved.

In morerecentwork, ToscanandCoello[66] usethe
conceptof Paretodominanceo determinethe flight
direction of a particle. The authorsadoptclustering
techniquego divide the populationof particlesinto
severalswarms. This aimsto provide a betterdistri-
bution of solutionsin decisionvariablespace.Each
sub-svarm hasits own setof leaders(nondominated
particles).In eachsub-swarm,a PSOalgorithmis ex-
ecuted(leadersare randomly chosen)and, at some
point, the different sub-svarms exchangeinforma-
tion: theleadersof eachswarmaremigratedto a dif-
ferentswarmin orderto variatetheselectiorpressure.
Also, this approachdoesnot usean externalarchive
sinceelitism in this caseis an emegentprocesse-
rivedfrom the migrationof leaders.

SrinivasanandHou [61]: This approachgcalled Par

ticle Swarm Inspired Evolutionary Algorithm (PS-
EA), is a hybrid betweenPSO and an evolutionary
algorithm.Themainaimis to useEA operatorgmu-

tation, for example)to emulatethe workingsof PSO
mechanismshasedon a fully connectedtopology.

Sincethe authorsmentionthat the final swarm con-
stitutesthefinal solution(Paretofront), we conclude
thata plus selectionis performedat eachiterationof

thealgorithm. Also, theauthorauseanichecountand
a Paretorankingapproachn orderto assigna fitness
valueto the particlesof the swarm. However, the se-
lectiontechniqueusedis not describedn the paper

Mostaghimand Teich [44]: They proposea sigma
methodin which the leaderfor eachparticle is se-
lectedin orderto improve the corvergenceanddiver-
sity of a MOPSOapproach. The idea of the sigma
methodis similar to compromisgprogramming13].
In orderto selecta leaderfor eachparticle of the
swarm, a sigmavalueis assignedo eachparticle of
the swarm andof the externalarchive. Eachparticle
of theswarmselectsasits leadertheparticleof theex-
ternalarchivewith theclosessigmavalue. Theuseof
thesigmavaluesmakestheselectiorpressuref PSO
evenhigher whichmaycauserematureornvergence
in somecases. The authorsalsousea “turbulence”

operatoywhichis appliedondecisionvariablespace.
This approachhasbeensuccessfullyappliedto the
molecularforcefield parametrizatioproblem[42].

In further work, Mostaghimand Teich [43] studied
theinfluenceof e-dominancg36] on MOPSOmeth-
ods. e-dominancds comparedwith existing cluster
ing techniquedor fixing theexternalarchive sizeand
the solutionsarecomparedn termsof computational
time, corvergenceand diversity. The resultsshov
thatthe e-dominancemethodcanfind solutionsmuch
fasterthanthe clusteringtechniquewith a compara-
ble (andeven betterin somecases)ornvergenceand
diversity The authorssuggesta new density mea-
sure(sigmamethod)inspiredon their previous work
[44]. Also, basedon the ideathat the initial exter-
nal archive from which the particleshave to selecta
leaderhasinfluenceon the diversity of solutions,the
authorsproposethe useof successie improvements
adoptinga previous externalarchive of solutions.In
this way, in morerecentwork, MostaghimandTeich
[45] proposea new methodcalled coveringlOPSO
(cvMOPSO)which retales this idea. This method
works in two phases.In phasel, a MOPSOalgo-
rithm is run with an externalarchive with restricted
sizeandthegoalis to obtainagoodapproximatiorof
the Pareto-front. In the phase2, the non-dominated
solutionsobtainedfrom the phasel are considered
asthe input external archive of the cvMOPSO.The
particlesin the swarm of the cvMOPSOare divided
into subsvarmsaroundeachnon-dominatedolution
afterthefirst generation.The taskof the subsvarms
is to cover the gapsbetweenthe non-dominatedso-
lutions obtainedfrom the phasel. No restrictionson
thearchive sizeareimposedn thephase?.

Bartzetal. [5]: This approachstartsfrom the idea
of introducingelitism (throughthe use of an exter-

nal archive) into PSO.Differentmethodsfor select-
ing anddeletingparticles(leaders)from the archive

areanalyzedo generatea satishictoryapproximation
of the Paretofront. The deletionmethodsanalyzed
are basedon the contribution of eachparticleto the
diversity of the Paretofront. Selectingmethodsare
eitherinverselyrelatedto the fithessvalue or based
ontheprevioussucces®f eachparticle. Theauthors
provide somestatisticalanalysisn orderto assesthe
impact of eachof the parametersisedby their ap-
proach.

Li [37]: This approachis basedon a fully connected
topology and incorporateshe main mechanismsf
the NSGA-II [16] to the PSOalgorithm. In this ap-
proach,oncea particle hasupdatedits position, in-
steadof comparingthe new positiononly againstthe
pbestposition of the particle, all the pbestpositions
of the swarm and all the new positionsrecentlyob-
tainedare combinedin just one set(given a total of
2N solutions,where N is the size of the swarm).
Then, the approactselectsthe bestsolutionsamong



them to conform the next swarm (by meansof a
nondominatedsorting). The authordoesnt specify
whichvaluesareassignedo thevelocity of pbestpo-
sitions, in orderto considerthemas particles. This
approachalsoselectsthe leadersrandomlyfrom the
leadersset(storedin an externalarchive) amongthe
bestof them, basedon two differentmechanismsa
niche countand a nearestneighbordensity estima-
tor. Thisapproachusesamutationoperatothatis ap-
pliedateachiterationsteponly to theparticlewith the
smallestdensityestimatorvalue (or the largestniche
count).

Reyes and Coello [6Q]: This approachis basedon
Pareto dominanceand the use of a nearestneigh-
bor densityestimatorfor the selectionof leaders(by
meansof a binary tournament). This proposaluses
two externalarchives:onefor storingtheleadersur-
rently usedfor performingthe flight andanotherfor
storingthefinal solutions.The densityestimatorfac-
tor is usedoto filter out the list of leaderswhenever
themaximumlimit imposedon suchlist is exceeded.
Only the leaderswith the bestdensityestimatorval-
uesare retained. On the other hand,the conceptof
e-dominanceis usedto selectthe particlesthat will
remainin the archive of final solutions.Additionally,
theauthorgproposeaschemen whichthey subdvide
thepopulation(or swarm)into threedifferentsubsets.
A differentmutationoperatoris appliedto eachsub-
set.Notehowever, thatfor all otherpurposesasingle
swarmis considerede.g.,for selectingeaders)This
approacthis basedn a fully connectedopology

Alvarez-Benitertal. [2]: Theauthorgroposameth-
odsbased:xclusively onParetodominancdor select-
ing leaderdrom anunconstrainetdiondominatedex-
ternal)archive. Threedifferentselectiontechniques
arepresentedOnetechniquehatexplicitly promotes
diversity (called Roundsby the authors),one tech-
nique that explicitly promotescornvergence(called
Random andfinally onetechniquehatis aweighted
probabilisticmethod(called Prob) andformsa com-
promise betweenRandomand Rounds Also, the
authorsproposeand evaluate four mechanismsgor
confining particlesto the feasible region, that is,
constraint-handlingnethods. The authorsshav that
probabilisticselectionfavoring archival particlesthat
dominatefew particlesprovidesgoodcorvergenceo-
wardsthe Paretofront while properly coveringit at
thesametime. Also, they concludethatallowing par
ticlesto exploreregionscloseto theconstrainbound-
ariesis importantto ensurecorvergenceo the Pareto
front. This approachusesa turbulencefactor that
is addedto the position of the particleswith certain
probability.

Ho etal. [23]: Theauthorsproposea novel formula
for updatingvelocity andpositionparticles,basedon
threemain modificationsto the known flight formula

for the fully connectedopology First, sincethe au-
thorsamuethattherandomfactorss; andrs in Equa-
tion 5 arenot completelyindependentthey propose
touse:r, = 1 — r;. Second,they proposeto in-
corporatetheterm (1 — W) in the secondandthird
termsof Equation5, whereW = rnd(0,1). Third
(andlast), underthe argumentof allowing a particle
to fly sometimedack, the authorsproposeto allow
thefirst termof Equations beingnegative with a50%
probability. Onthe otherhand,the authorsintroduce
a “craziness”operatorin orderto promotediversity
within the swarm. This “craziness”operatoris ap-
plied (with certainprobability) to the velocity vector
beforeupdatingthe positionof a particle.Finally, the
authorsintroduceone external archive for eachpar
ticle and one global external archive for the whole
swarm. The archive of eachparticlestoresthe latest
Paretosolutionsfound by the particleandthe global
archive storesthe currentParetooptimal set. Every
time a particle updatedts position, it selectsts per
sonalbestfrom its own archive and the global best
from the global archive. In both casesthe authors
usea rouletteselectionmechanisnbasedon the fit-
nessvaluesof the particles(assignedisingthe mech-
anismoriginally proposedby Zitzler etal. [74], for
theSPEAalgorithm)andonan“age” variablethatthe
authorsintroduceandthatis increasedht eachgener
ation.

Villalobos-Arias et al. [68]: The authorspropose
a nev mechanismto promote diversity in multi-
objective optimization problems. Although the ap-
proachis independenbf the searchengineadopted,
they incorporatat into the MOPSOproposedn [12].
The new approachs basedon the useof stripesthat
areappliedontheobjective functionspace Basedon
ananalysisfor a bi-objective problem,the mainidea
of the approachis that the Paretofront of the prob-
lem is “similar” to the line determinedby the min-
imal points of the objective functions. In this way,
severalpoints(thatthe authorscall stripecentersyare
distributed uniformly alongsuchline, andthe parti-
cles of the swarm are assignedo the neareststripe
center Whenusingthis approachfor solving multi-
objectve problemswith PSO,oneleaderis usedin
eachstripe. Suchleaderis selectedminimizing a
weightedsumof the minimal points of the objective
functions.Theauthorsshaw thattheirapproachover
comesthe drawbackson other popularmechanisms
suchase-dominancd36] andthe sigmamethodpro-
posedn [44].

SalazailL.echugaand Rowe [55]: The main idea of

this approachis to usePSOto guidethe searchwith

the help of niche counts(appliedon objective func-
tion space)[22] to spreadthe particles along the
Paretofront. The approachusesan externalarchive
to store the best particles (nondominatedparticles)
found by the algorithm. Sincethis externalarchive



helpsto guidethesearchthenichecountis calculated
for eachof the particlesin the archive andthe lead-
ersarechoserfrom this setby meanof anstochastic
samplingmethod(roulette wheel). Also, the niche
countis usedas a criterion to updatethe external
archive. Eachtime the archiveis full anda new par
ticle wantsto getin, its nichecountis comparedvith
thenichecountof theworstsolutionof thearchive. If
thenew particleis betterthanthe worstparticle,then
the new particleentersinto the archive andthe worst
particleis deleted. Niche countsare updatedwhen
insertingor deletinga particlefrom thearchie.

RaquelandNaval [51]: As in [60], this approachn-

corporatesheconcepbf nearesheighbordensityes-
timatorfor selectingthe global bestparticleandalso
for deletingparticlesfrom theexternalarchive of non-
dominatedsolutions. When selectinga leader the
archive of nondominatedsolutionsis sortedin de-
scendingorderwith respecto the densityestimator
anda particleis randomlychoserfrom thetop partof

thelist. Onthe otherhand,whenthe externalarchive
is full, it is againsortedin descendingrderwith re-
spectto the densityestimatorvalueanda particleis

randomlychosento be deletedfrom the bottompart
of thelist. This approachusesthe mutationopera-
tor proposedn [12] in sucha way thatit is applied
only during a certain numberof generationsat the
beginning of the process.Finally, the authorsadopt
the constraint-handlingechniquefrom the NSGA-II

[16].

ZhaoandCao[71]: This approachs very similar to
the proposalof Coello andLechuga[11]. However,
the authorsindicate that they maintaintwo external
archives,but oneof themis actuallya list thatkeeps
thepbestparticlefor eachmembetrof theswarm. The
anotherexternalarchie storesthe nondominatedo-
lutions found along the evolutionary process. This
truncatedarchive is similar to the adaptve grid of
PAES[34]. Theauthorsapplytheirapproacto solve
the economicload dispatchproblem. With this aim,
they employ afuzzy-basednechanisnto extractthe
bestcompromisesolution,in which they incorporate
the preferencesf the decisionmaker. The approach
adoptsa linear membershigunctionto representhe
goalsof eachobjective function. This membership
functionis adoptedo modify therankingof thenon-
dominatedsolutionsasto focusthesearctonthesin-
gle solutionthatattainsthe maximummembershipn
thefuzzy set.

Jansonand Merkle [27] proposeda hybrid particle
swarmoptimizationalgorithmfor multi-objective op-
timization,calledClustMPSO ClustMPSCcombines
the PSOalgorithmwith clusteringtechniquego di-
vide all particlesinto several subsvarms. For this
aim, the authorsusethe K-meansalgorithm. Each
subsvarmhasits own nondominatedront andtheto-
tal nondominatedront is obtainedfrom the union of

the fronts of all the subsvarms. Eachparticle ran-
domly selectsits neighborhoodest (lbest) particle
from the nondominatedront of the swarmto which

it belongs. Also, a particleonly selectsa new lbest

particle when the currentis no longer a nondomi-
natedsolution. On the otherhand,the personabest
(pbest) of eachparticle is updatedbasedon domi-

nancerelations.Finally, theauthorsdefinethata sub-
swarm is dominatedwhen none of its particlesbe-
longsto the total nondominatedront. In this way,

when a subwarm is dominatedfor a certain num-
ber of consecutie generationsthe subsvarmis re-

located. The proposedalgorithmis testedon an ar

tificial multi-objective optimizationfunction andon

a real-world problemfrom biochemistry called the
moleculardockingproblem.Theauthorsreformulate
the moleculardocking problemas a multi-objective
optimizationproblemand, in this case the updating
of the pbest particleis also basedon the weighted
sum of the objectivesof the problem. ClustMPSO
outperformsawell-known LamarckianGeneticAlgo-

rithm thathadbeenpreviously adoptedo solve such
problem.

5.5 Combined Approaches
e Mahfoufetal. [39]: TheauthorgproposeanAdaptive

WeightedPSO(AWPSO)algorithm,in which theve-
locity is modified by including an acceleratiorterm
thatincreasesasthe numberof iterationsincreases.
This aimsto enhancehe global searchability at the
endof run andto help the algorithmto jump out of
local optima. Also, a weightedaggreatingfunction
is introducedwithin the algorithm for performance
evaluationandto guidethe selectionof the personal
and global bests. The authorsuse dynamicweights
to generateéParetooptimal solutions. Whenthe pop-
ulationis losing diversity, a mutationoperatorns ap-
plied to the positionsof certainparticlesandthe best
of them areretained. Finally, the authorsinclude a
nondominatedortingalgorithmto selecttheparticles
from oneiterationto the next. Sinceplusselectionis
adopted,an external archive is not necessaryn this
case.This approachis appliedin the optimal design
of heat-treate@lloy steels.

Xiao-huaetal. [69]: Theauthorsproposean Intelli-
gentParticle Swarm Optimization (IPSO)algorithm
for multi-objective problemsbasedon an Agent-
Environment-Rule§AER) modelto provide an ap-
propriateselectionpressureo propelthe swarmpop-
ulation towards the Pareto optimal front. In this
model, the authorsmodify the fully connectedlight
formulaincluding the Ibestpositionof the neighbor
hood of eachparticle. The neighborhoodf a parti-
cle is determinedby a lattice-like topology On the
other hand,eachparticleis taken as an agentparti-
cle with the ability of memory communicationre-
sponsecooperatiorand self-learning. Eachparticle



hasits position,velocity andenegy, whichis related
to its fitness. All particleslive in a latticelike ervi-
ronment,which is called an agentlattice, and each
particleis fixed on a lattice-point. In orderto sur
vive in the system,they competeor cooperatewith
their neighborsso thatthey cangain moreresources
(increaseenepies). Eachparticle hasthe ability of
cloningitself, andthe numberof clonesproducedie-
pendsof the enegy of the particle. Generalagent
particlesandlateny agentparticles(thosewho have
smallerenegy but containcertainfeatures—e.gfa-
voring diversity—thatmake themgoodcandidateso
be cloned)will becloned. The aim of the clonal op-
erator(which is modeledin the clonal selectionthe-
ory alsoadoptedwith artificial immunesystemg46])
is to increasethe competitionamongparticles,main-
taindiversityof theswarmandimproving thecorver
genceof theprocessAlso, aclonalmutationoperator
isused.Leadersareselectedbasedntheenegy val-
uesof the particles. Finally, this approachadoptsan
externalarchive in orderto storethe nondominated
solutionsfoundthroughoutherunandto provide the
final solutionset.

5.6 Other Approaches

Here,we considerthe approacheshat could not fit any of
themain categoriespreviously described.

e Li [38]: This author proposesthe maximinPSQ
which usesa fitnessfunction derived from the max-
imin stratgyy proposedby Balling [4] to determine
Pareto-dominationTheauthorshavsthatoneadvan-
tageof this approachs that no additionalclustering
or nichingtechniquds neededsincethe maximinfit-
nessof a solution cantell us not only if a solution
is dominatedor not, but alsoif it is clusteredwith
othersolutionsj.e.,theapproactalsoprovidesdiver
sity information. In this approachfor eachpatrticle,
a differentleaderis selectedor eachof the decision
variablesto conform a single global best. Leaders
(storedin anexternalarchive) arerandomlyselected
basedn the maximinfitness.

e Zhangetal. [70]: This approach(basedon a fully
connectedopology) attemptsto improve the selec-
tion of gbest and pbest when the velocity of each
particleis updated For eachobjective function,there
exists both a gbest anda pbest for eachparticle. In
orderto updatethe velocity of a particle, the algo-
rithm definesthe gbest of a particleasthe averageof
the completesetof gbest particles.Analogously the
pbest is computedisingeitherarandomchoiceor the
averagefrom the completesetof pbest values. This
choicedepend®n thedispersiordegreebetweerthe
gbest andpbest valuesof eachpatrticle.

6 ConvergencePropertiesof PSOand MOPSO

Recently sometheoreticalstudiesaboutthe corvergence
propertiesof PSOhave beenpublished. As in the caseof
mary evolutionaryalgorithms thesestudieshave concluded
thatthe performanceof the PSOis sensitve to control pa-
rameterchoiceq20].

Most of the theoreticalstudiesare basedon simplified
PSOmodels,in which a swarm consistingof one particle
of onedimensionis studied. The pbestandgbestparticles
areassumedo be constantthroughoutthe process.Also,
theterms¢; = cir1, g2 = coro (Usedin Equation5) are
assumedo be constant. Under theseconditions, particle
trajectoriesand corvergenceof the swarm have beenana-
lyzed.

In the theoreticalstudiesdevelopedaboutPSO,corver
gencehasbeendefinedasfollows:

Definition 6. Consideringthe sequencef global best
solutions{gbest, }:2,,, we saythatthe swarm convergesiff

lim ;_gbesty =p

wherep is anarbitrarypositionin the searchspace.

Sincep refersto anarbitrarysolution,Definition 6 does
notmeancorvergenceto alocal or globaloptimum.

The first studieson the corvergencepropertiesof PSO
weredevelopedby OzcanandMohan[47, 48]. Ozcanand
Mohanstudieda PSOunderthe conditionspreviously de-
scribedbut, in addition, their model did not considerthe
inertia weight. They concludedthat, when0 < ¢ < 4,
where¢ = ¢1 + ¢, the trajectoryof a particleis a si-
nusoidalwave wherethe initial conditionsand parameter
choicegdetermingheamplitudeandfrequeng of thewave.
Also, they concludedthatthe periodicnatureof the trajec-
tory maycausea particleto repeatedlysearchregionsof the
searchspacealreadyvisited, unlessanotherparticlein its
neighborhoodinds a bettersolution.

In [67], vandenBergh developeda modelof PSOunder
thesameconditions put consideringheinertiaweight. Van
denBerg provedthat,whenw > % (c1 +¢;) —1, theparticle
corvergesto thepoint

¢1pbest + pogbest
¢1+ P2

In thisway, if ¢; = ¢2, theparticlecorvergesto the point

pbest + gbest
5 .

Sincetheseconclusionswere obtainedunderthe assump-
tion of ¢ and¢- beingconstantsyan denBergh general-
ized his model consideringthe stochastimatureof ¢, and
¢-. In this case he concludedassuminguniform distribu-

tions)thatthe particlethenconvergesto the position:

(1 — a)pbest + agbest

wherea = 611262 . In this way, van denBergh shavedthat
a particlecorvergesto a weightedaveragebetweerits per

sonalbestandits neighborhoodestposition.




neighborhood leadersselection | external dynamic mutation
topology basedn archive w operator
Aggregatingapproaches
ParsopolousandVrahatis[50] fully connected single-objectie no yes no
(1.0 — 0.4)
Baumgartneetal. [6] fully connected single-objectie no no no
Lexicographic ordering
Hu andEberhar{24] ring single-objectie no yes no
rnd(0.5,1.0)
Hu etal. [25] ring single-objectie yes yes no
rnd(0.5,1.0)
Sub-Population approaches
Parsopoulogtal. [49] fully connected single-objectie yes no no
Chow andTsui[8] fully connected single-objectie no no no
Pareto-Basedapproaches
MooreandChapmari41] ring dominance no no no
RayandLiew [53] fully connected densityestimator yes no no
FieldsendandSingh[21] fully connected dominanceX yes no yes
closeness
Coelloetal. [11,17] fully connected | densityof solutions yes no yes
ToscanaandCoello[66] fully connected randomly no no no
SrinivasanandHou [61] fully connected nichecount& no no yes
dominance
MostaghimandTeich[44] fully connected sigmavalue yes no yes
MostaghimandTeich[43] fully connected sigmavalue yes no yes
MostaghimandTeich[45] fully connected sigmavalue yes no yes
Bartzetal. [5] fully connected | densityof solutions; yes no no
success
Li [37] fully connected nichecount; yes yes yes
densityestimator (1.0 —» 0.4)
ReyesandCoello[60] fully connected densityestimator yes yes yes
rnd(0.1,0.5)
Alvarez-Beniteztal. [2] fully connected dominance yes no yes
Ho etal. [23] fully connected fitness& age yes yes yes
proposed
Villalobos-Ariasetal. [68] fully connected stripes yes no yes
SalazailLechugaandRowe [55] | fully connected nichecount yes no no
RaquelandNaval [51] fully connected densityestimator yes no yes
ZhaoandCao[71] fully connected | fuzzy membership yes no no
JansorandMerkle [27] fully connected random yes no no
Combined approaches
Mahfoufetal. [39] fully connected single-objectie no yes yes
rnd(0.15, 1.0)
Xiao-huaetal. [69] fully connected enegyvalue yes yes yes
lattice (0.6 = 0.2)
Other approaches
Li [38] fully connected maximinfitness yes yes no
(1.0 = 0.4)
Zhangetal. [70] fully connected compositdeader no yes no
(0.8 —0.4)

Tablel: Completdist of the MOPSOproposalseviewed. For eachproposalwe indicatethe correspondingneighborhood
topology adopted leaderselectionschemeusedand whetherthe approachincorporatessomedynamic schemefor the
inertiaweight (1), anexternalarchive anda mutationoperator



As we said before,in orderto ensurecorvergence the
conditionw > %(c1 + ¢2) — 1 musthold. However, it is
possibleto choosevaluesof ¢;, ¢; andw suchthatthe con-
dition is violated,andthe swarmstill corverges[67]: if

¢c7‘it
c1 + Co

¢ratz’o -

is closeto 1.0, whereg.,s = sup {¢ | 0.5¢ — 1 < w},
¢ € (0,c1 + ¢2], theswarm hascorvergentbehaior. This
impliesthatthetrajectoryof theparticlewill cornvergemost
of thetime, occasionallytaking divergentsteps.

Thestudiedevelopedby OzcanandMohan,andvander
Bemgh, considertrajectorieghatarenot constricted.In [9],
ClercandKennedyprovide atheoreticabnalysisof particle
behavior in which they introducea constrictioncoeficient
whoseobjectiveis to preventthe velocity from growing out
of bounds.

As we could see, the corvergenceof PSO has been
proved. However, we canonly ensurethe corvergenceof
PSOto the bestpositionvisited by all the particlesof the
swarm. In orderto ensurecorvergenceto thelocal or global
optimum,two conditionsarenecessary:

1. The gbest;; solution can be no worse than the
gbest; solution(monotoniccondition).

2. Thealgorithmmustbe ableto generate solutionin
theneighborhooaf the optimumwith nonzergoprob-
ability, from ary solutionz of the searchspace.

In [67], vandenBergh providesa proofto show thatthe
basicPSOis not a local (neitherglobal) optimizer Thisis
dueto the fact that, althoughPSO satisfiesthe monotonic
conditionindicatedabove, oncethe algorithmreacheghe
statewherex = pbest = gbest for all particlesin the
swarm, no further progresswill be made. The problemis
thatthis statemay be reachedeforegbest reaches mini-
mum,whethetbelocal or global. ThebasicPSOis therefore
saidto prematurelycorverge. In this way, the basicPSO
algorithmis not a local (global) searchalgorithm, sinceit
hasno guaranteedornvergenceo alocal (global)minimum
from anarbitraryinitial state.

Also, van den Bergh suggestdwo ways of extending
PSOin orderto make it a global searchalgorithm. The
first is relatedto the generationof new randomsolutions.
In generaltheintroductionof a mutationoperatoiis useful.
Neverthelessforcing PSOto performa randomsearchin
an areasurroundingthe global bestposition, that s, forc-
ing the global bestpositionto changein orderto prevent
stagnation(by meansof a hill-climbing search for exam-
ple), is alsoa suitablemechanisnj20]. Onthe otherhand,
vandenBergh alsoproposego usea “multi-start PSO”,in
whichwhenthealgorithmhasconverged(undersomecrite-
ria), it recordsthe bestsolutionfound andthe particlesare
randomlyreinitialized.

To the bestof our knowledge, until this date,thereare
no studiesaboutthe corvergencepropertiesof MOPSOs.
Fromthe discussiomreviously provided,we canconclude
thatit is possibleto ensureconvergencepy correctlysetting
the parameterf the flight formula. But, asin the case

of single-optimization,such property doesnot ensurethe
convergenceto the true Paretofront, in this case. In the
caseof multi-objective optimization,we may concludethat
we still needconditions(1) and(2), to ensurecorvergence.
However, in this case condition(1) maychangeto:

1. Thesolutionscontainedn theexternalarchiveatiter-
ationt+1 shouldbenondominateavith respecto the
solutionsgeneratedn all iterationst, 0 <t <t + 1,
sofar (monotoniccondition).

Theuseof thee-dominancébasedarchiing asproposed
in [36] ensureghis condition, but the normal dominance-
basedstratgiesdo not. In this way, givena MOPSOap-
proachandassumingt satisfiescondition(1), it remaingto
exploreif it satisfiescondition(2), to ensureglobal corver
genceto thetrue Paretofront.

7 Futur e Research Paths

As we have seen,despitethe fact that MOPSOsstartedto
be developedlessthanten yearsago, the growth of this
field hasexceededeven the most optimistic expectations.
By looking at the papersthat we reviewed, the core of the
work on MOPSOshasfocusedon algorithmicaspectsput
thereis muchmoreto doin thisarea.In this sectionwe will
provide someinsightsregardingsometopicsthatwe believe
thatareworth investigatingwithin the next few years:

e Emphasison Efficiency: The currentMOPSOsare
notalgorithmsparticularlycomplex (in termsof their
datastructuresmnemorymanagemerandsoon),and
are quite effective (more than state-of-the-artnulti-
objective evolutionaryalgorithmsin somecases)So,
why to makethingsmorecomplicatedegardingalgo-
rithmic design?Is thereroomfor new developments
in this regard? We believe thatthereis, but we have
to focusour work in a new direction. For example,
few peoplehavetriedto exploit thevery high corver
genceratecommonlyassociatedvith PSOto design
an“ultra-efficient” MOPSO.It would be very useful
(for real-world applications)}o have a MOPSOthat
couldproducereasonablyoodapproximation®f the
Paretofront of multi-objective optimizationproblems
with 20 or 30 decisionvariableswith lessthan5000
fitnessfunction evaluations.A first attemptto design
sucha type of MOPSOis reportedin [64] but more
work in thatdirectionis certainlyexpectedsincethis
topic hasbeenrecentlyexploredwith othertypesof
multi-objective evolutionaryalgorithmsaswell [33].

e Self-Adaptation of Parametersin MOPSOs: The
design of MOPSOswith no parameterghat have
to be fine-tunedby the useris anothertopic that is
worth studying. In evolutionarymulti-objective opti-
mizationin generalthe useof self-adaptatioror on-
line adaptatiormechanismss scarce(seefor exam-
ple [63, 1, 7]), andwe are only aware of one multi-
objectie evolutionaryalgorithmwhich wasdesigned
to be parameterlesshe microGA? [65]. Thedesign



of a parameterlesMOPSOrequiresa careful study
of the velocity updateformula adoptedin PSO,and
an assessmertf the impact of eachof its compo-
nentsin theperformancef aMOPSO Eventheiner-
tia andlearningfactorswhich are normally assumed
constantsn PSOmay benefitfrom an on-line adap-
tation mechanisnwhendealingwith multi-objective
optimizationproblems’

e Theoretical Developments: Thereis notmuchtheo-
reticalwork on PSOin general(seefor example[9])
and,therefore the lack of researcton theoreticalas-
pectsof MOPSOsis, by no means,surprising. It
would beinterestingto performatheoreticaktudyof
therun-timeandcornvergencepropertief aMOPSO
(seeSectionB). Otheraspectsuchasthefithesdand-
scapesanddynamicsof a MOPSOarealsovery at-
tractive theoreticakesearchopics.

¢ Applications: Evidently, no algorithmwill ever be
useful if we cannotfind a good applicationfor it.
MOPSOshave beenusedin a few applications(see
Section5), but not so extensiely as other multi-
objectiveevolutionaryalgorithms.Thereasormaybe
that MOPSOsare youngerandlessknown than, for
example, multi-objective geneticalgorithms. How-
ever, awell-designedMOPSOmay be quite usefulin
real-world applications,mainly if, aswe mentioned
before,its very fastcorvergencerateis properly ex-
ploited. At somepointin the nearfuture, we believe
thattherewill be animportantgrowth in the number
of applicationghatadoptMOPSOsastheirsearcten-
gine.

8 Conclusions

We have reviewed the state-of-the-artegardingextensions
of PSOto handlemultiple objectves. We have startedby
providing ashortintroductionto PSQOin whichwedescribed
its basicalgorithmandits main topologies. We have also
indicatedthe main issuesthat have to be consideredvhen
extendingP SOto multi-objective optimization,andthenwe
have analyzedeachof themin moredetail.

We have also proposeda taxonomyto classifythe cur-
renttechniqueseportedn thespecializediterature andwe
have provided a suney of approachebasedon sucha tax-
onomy.

Finally, we have provided sometopicsthat seem(from
theauthors’perspectie) asvery promisingpathsfor future
researclin thisarea.Consideringhe currentrateof growth
of thisarea,we expectalot of moreactiity within thenext
few years.However, the switchto new areadifferentfrom
purealgorithmdevelopmentmay attractnencomersto this
field and may contribute to keepit alive for several more
years.

’Readers interested in  this
in looking at the work of
http://clerc.maurice.free.fr/pso/

topic may be interested
Maurice Clerc, available at:
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