

Boundary Search for Constrained Numerical

Optimization Problems with an Algorithm Inspired on the Ant Colony

Metaphor

Guillermo Leguizamón1 and Carlos A. Coello Coello2

1LIDIC - Universidad Nacional de San Luis

Ejército de los Andes 950

San Luis 5700, ARGENTINA

legui@unsl.edu.ar

2CINVESTAV-IPN

Evolutionary Computation Group (EVOCINV)

Departamento de Computación

Av. IPN No. 2508. Col. San Pedro Zacatenco

México D.F. 07300, ḾEXICO

ccoello@cs.cinvestav.mx

Abstract

This paper presents a novel boundary approach which is included as a constraint-handling technique in an

algorithm inspired on the ant colony metaphor. The necessity of approaching the boundary between the feasi-

ble and infeasible search space for many constrained optimization problems is a paramount challenge for every

constraint-handling technique. Our proposed technique precisely focuses the search on the boundary region and

can be either used alone or in combination with other constraint-handling techniques depending on the type and

number of problem constraints. For validation purposes, analgorithm inspired on the ant colony metaphor is

adopted as our search engine which works following one of theprinciples of the ant colony approach, i.e., a pop-

ulation of agents iteratively, cooperatively, and independently search for a solution. Each ant in the distributed

algorithm applies a simple mutation-like operator which explores the neighborhood region of a particular point

in the search space (individual search level). The operator is designed for exploring the boundary between the

feasible and infeasible search space. In addition, each antobtains global information from the colony in order to

1

exploit the most promising regions of the search space (cooperation level). We compare our proposed approach

with respect to a well-known constraint-handling technique that is representative of the state-of-the-art in the area,

using a set of standard test functions.

1 Introduction

Ant System (AS) [1] was the first example of an ant colony optimization algorithm to be proposed in the literature.

However, AS was not competitive with state-of-the-art algorithms for the TSP, the problem to which the original

AS was applied. Accordingly, several improvements were proposed to the original version of AS, many of which

were especially designed to deal with the TSP problem. The most important improvements are: AS with anelitist

strategyfor updating the pheromone trail levels, ASrank (a rank-based version of Ant System) [2],MAX -MIN
Ant System (MMAS) [3], and the Ant Colony System (ACS) [4]; all of them originally designed to operate on

combinatorial optimization problems. A detailed description of these versions can be found in [5].

On the other hand, it is interesting to note that several applications inspired by the ant colony metaphor, de-

scribed in the following, have been developed to operate on continuous spaces. In addition, it is worth remarking

that all of these applications fit well under the swarm intelligence framework, which includes the algorithms based

on the ACO approach. More precisely, Bilchev and Parmee [6] proposed an algorithm for continuous spaces

in which the whole search space is discretized in order to represent a finite number of search directions. This

approach was validated using a small set of constrained problems. Since then, several other researchers have pro-

posed schemes to apply algorithms inspired by the ant colonymetaphor to continuous search spaces. However,

all of these approaches only deal with unconstrained optimization problems. For example, Ling et al. [7] report a

general proposal for a continuous convex domain space without including any experimental results. The proposal

involves the application of adaptive crossover and mutation operators based on the relative fitness of the solutions.

Lei and Qidi [8, 9] also take some ideas from the ant colony metaphor to design optimization algorithms for con-

tinuous spaces by dividing the search space inton subregions —i.e., a discrete view of the search space, however,

different from the discretization initially proposed by Bilchev. Lei and Qidi’s approach was applied to a set of

one-variable multimodal functions defined on an unconstrained search space where each subregion corresponds to

a subinterval of the variable. Initially, each ant is assigned to the respective search interval. As the search process

continues, each ant shifts the middle point of its interval according to the quality of the solution found. In this way,

overlapping search regions will arise as the ants focus the search on common promising subregions of the search

space. The pheromone trail distribution on intervali is given by a unimodal functionTi (bell shaped) reaching a

higher peak as the quality of solutionxi increases. FunctionTi represents the learning experience of the algorithm

in order to explore/exploit different subregions of the search space. Thus, the interval in which an ant will deposit

its pheromone is chosen according to a probability value which is proportional to the amount of pheromone trail

on the respective intervals. Although this work is limited to a few unconstrained continuous problems, it could be

2

an interesting approach to be extended for constrained problems. Finally, it is worth remarking that this algorithm

is applied as a complementary step after a genetic algorithmhas found some promising subregions of the search

space.

More recently, Dréo and Siarry [10] proposed an alternative algorithm for continuous spaces inspired by the

ant colony metaphor which introduces the concept ofheterarchyand communication channels. The approach is

tested on only one problem (multimodal unconstrained function) and designed considering that the pheromone trail

is not the only way of applying indirect communication amongthe ants. Instead, they apply the concept of dense

heterarchy as a manner of explaining the behavior of some insect species for which the communication is achieved

through either indirect or direct communication channels with well-defined properties. The prominent characteristic

of this approach is represented by the possibility of using two complementary communication channels, either

indirect channels1 to promote exploration or direct channels to promote exploitation of the search space according

to the solutions previously evaluated. Using a similar approach, Monmarché et al. [13] presented an algorithm

called API which implements a parallel search scheme in the solution space based on the definition of hunter

sites (points in the search space), which are established based on the quality of the solutions. These sites can

be moved (translated) during the search process (exploration) by applying local search on the hunter site. The

API algorithm was applied with promising results to a set of well known unconstrained continuous functions. On

the other hand, Pourtakdoust and Nobahari [14] propose another algorithm inspired by the ant colony metaphor to

continuous optimization which is purely pheromone based. To explore the search space, the algorithm uses a normal

probability distribution to model a relationship among theparameters, the aggregation of ants around the food

source (best so far point) and the distance of a particular point from the food source. Thus, the more the distance

between the point and the food source, the less the pheromoneintensity. The pheromone update is achieved in each

iteration by updating the food source and the aggregation factor. In particular, the aggregation factor is obtained

considering the overall distance between all the points found and the food source and the corresponding objective

values. The experimental study includes the De Jong’s standard testbed functions (i.e., unconstrained problems)

and an experimental comparison with API [13] and a genetic algorithm (GA).

Finally, a recent extension of the ACO metaheuristic to continuous domains and applied to continuous and

mixed discrete-continuous problems is presented by Socha [15] and Socha and Dorigo [16] which can be considered

the first proposal that follows the original conception on the ACO approach in regards of the way the solutions are

built, i.e., incrementally. The solutions are built by using a probability density function (PDF). At stepi each

ant generates a random number according to a mixture of normal kernels of PDFsP i(xi) defined on the interval

ai ≤ xi ≤ bi. The experimental study involves a set of continuous unconstrained problems and the results are

better than other ACO inspired/based algorithms and competitive with respect to some other non-ACO algorithms.

In this paper, we introduce a novel boundary approach for solving nonlinear constrained problems, which

is also inspired by the ant colony metaphor. It is worth noting, however, that our proposal can be coupled to

1According to the authors, this concept is similar to that used with Particle Swarm Optimization in [11] and to path-relinking [12].

3

other metaheuristics (e.g., particle swarm optimization or an evolutionary algorithm), and it is expected to be

highly competitive in problems with active constraints. Our approach is mainly based on the work of Bilchev and

Parmee [6]. The reason for not adopting one of the more recentACO inspired/based approaches for continuous

search spaces is that our main aim was to emphasize the performace-related aspects of the boundary approach rather

than focusing on a possibly more advanced search engine.

The remainder of this paper is organized as follows. Section2 presents a brief description of the eariler works

on boundary search using evolutionary algorithms. Section3 describes our proposal. The ant colony inspired

(ACI) algorithm, which is the search engine used to study theapplicability of our proposed boundary approach is

presented in Section 4. The test problems and experimental results are presented and analyzed in Section 5. Finally,

our conclusions and some possible paths for future researchare provided in Section 6.

2 Constraint-Handling and Boundary Search

Michalewicz et al. [17] wrote one of the first papers on boundary search through the use of evolutionary algorithms.

The efficiency of this approach was shown by using two constrained optimization problems: Keane’s function (also

known asG02) [18] and another function with one equality constraint (also known asG03). For solvingG02 the

authors proposed two genetic operators: thegeometricalcrossover and a special mutation operator. Both operators

generate offspring lying on the boundary between the feasible and infeasible search space. Similarly forG03,

they proposed thesphericalcrossover which only generates points on the surface of the sphere given as the only

constraint.

Schoenauer and Michalewicz [19] proposed several evolutionary operators capable of exploring a general sur-

face of dimensionn − 1 (n is the number of variables). The design of these operators depends on the surface

representation: curves-based, plane-based, and parametric representation.

Wu and Simpson [20] proposed a GA for the optimization of a water distribution system, which is a highly

constrained optimization problem. The proposed approach co-evolves and self-adapts two penalty factors in order

to guide and preserve the search towards the boundary of the feasible search space.

The reduction of the search space is one of the most relevant characteristics of the boundary search approach

since the exploration considers only the boundary of the feasible search space. However, many of the test cases

considered so far by other researchers only include problems with one or two constraints (e.g.,G02 andG032,

respectively). In these cases, it is possible to definead hocgenetic operators that fit perfectly the boundary of the

feasible region. However, this sort of approach is impractical in an arbitrary problem with many constraints, and it

is therefore necessary to define a more general approach for boundary search which can be as robust as possible to

deal with different types of constraints. This was precisely the motivation for the research reported in this paper.

2Keane’s function can be considered as having one constraintsince one of them is ignored. Therefore, the search proceedsfocusing only on

the active constraint.

4

3 An Alternative Boundary Search Approach

We are interested in solving the general nonlinear programming problem whose aim is to findx so as to optimize:

f(x) x = (x1, x2, ..., xn) ∈ R
n

wherex ∈ F ⊂ S. The setS ⊂ R
n defines the search space and setsF ⊆ S andU = S−F define thefeasibleand

infeasiblesearch spaces, respectively. The search spaceS is defined as ann-dimensional rectangle inRn (domains

of variables defined by their lower and upper bounds):

l(i) ≤ xi ≤ u(i) for 1 ≤ i ≤ n

wheren is the number of decision variables, andl(i) andu(i) are, respectively, the lower and upper bounds of each

decision variablexi. The feasible setF is defined by the intersection ofS and a set of additionalm ≥ 0 constraints:

gj ≤ 0, for j = 1, . . . , q and hj = 0 for j = q + 1, . . . ,m.

At any pointx ∈ F , the constraintsgk that satisfygk(x) = 0 are called the active constraints atx. Equality

constraintshj are active at all points ofF .

In the following we first explain the main characteristics ofthe boundary operator designed to approach the

boundary of a particular constraint. Afterwards, we describe in detail the proposed technique that takes advantage

of the boundary operator to explore some specific regions of the boundary of the feasible search space.

3.1 The boundary operator

We propose here a general boundary operator which is based onthe notion that each pointb of the boundary region

can be represented by means of two different pointsx andy wherex is some feasible point andy is some infeasible

one, i.e.,(x,y) can represent one point lying on the boundary by applying a “binary search” on the straight line

connecting the pointsx andy (when considering an equality constraint,z ∈ F iff h(z) ≤ 0; otherwise,z ∈ U).

Figure 1 shows a hypothetical search space including the feasible and infeasible (shadowed area) regions. We

can identify four points lying on the boundaryb1, b2, b3, andb4 which are respectively obtained from(x1,y1),

(x2,y2), (x3,y3), and(x4,y4).

The binary search applied to each pair of points(x,y) is achieved following the steps described in function BS

(see Algorithm 1). For example, a possible application of this process can be seen in Figure 1 where we adopt the

pair of points(x3,y3) from which we obtain the pointb3, which lies on the boundary. The first step (labeled(1))

indicates that the first mid point found is infeasible. Consequently, the left side of the straight line (x3) is moved to

pointp1. In the next step (labeled(2)) we consider the pointsp1 andy3 as extreme points for which the mid point

is the feasible pointp2. Thus, the new feasible point or right extreme of the line is now the pointp2. Finally, the

last point generated isb3 which can be either lying on or close to the boundary. Condition ((dist to boundary(m)

5

≤ ξ) AND Feasible(m)) defines a threshold to stop the process of approaching the boundary. However, the second

part of this condition (i.e., “Feasible(m)”) it is only applied when considering an inequality constraint. In this

way, functionBS guarantees thatm is in the feasible side regarding the corresponding inequality constraint under

consideration. It is worth noticing that parametersx andy are local to BS, i.e., function BS behaves as a decoder of

the pair of feasible and infeasible points passed as parameters. Therefore, the number of “midpointsbetween”x

andy before approaching the boundary within a distance less thatξ is given bylog2(r) wherer = (dist(x,y)))/ξ

and functiondist represents the Euclidean distance between pointsx andy. Thus, the closer to the boundary, the

largerlog2(r).

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;

2: repeat

3: m = mid point between(x,y);

4: if Is on Boundary(m) then

5: returnm; { m is a point lying on the boundary}
6: end if

7: if Feasible(m) then

8: x = m;

9: else

10: y = m;

11: end if

12: until (dist to boundary(m)≤ ξ) AND (Feasible(m));

13: returnm; {The closest point to the boundary according toξ }

Given one feasible and one infeasible point, function BS returns either a point on the boundary or one which is

close enough to the boundary according to a parameterξ. Theuntil condition is applied as it when considering an

inequality constraint, otherwise “AND (Feasible(m))’ is dropped.

So far, we have shown how a point lying on the boundary can be represented through a pair of points. Now we

need to consider the exploration of the search space. For example, from the perspective of evolutionary algorithms,

the candidate operators are the classical crossover and mutation. However, for the ACI approach proposed in

this work we suggest the application of any specialized real-coded mutation-like operator (the particular mutation

operator proposed for our implementation will be further described in section 4). Independently of the selected

mutation operator; it should behave as follows: given a pairof points(x,y), one point feasible and the other one

infeasible, any or both of them undergo mutation. For example, we can consider the pair of points(x4,y4) in

Figure 1 (lower-right) which represents pointb4 on the boundary. In this case, the feasible pointy4 undergoes

mutation, giving as a result a pointy′
4 in the feasible search space. After this process, the new point lying on the

6

boundary is obtained by decoding(x4,y
′
4), which gives usb′

4.

3.2 The proposed method

The simplest case to apply the boundary approach is when the problem has only one constraint which could be

either an equality or an inequality constraint. For the lastcase, it is important to remember that we are assuming

active constraints at the global optimum to proceed with this method where the search is always performed on the

boundary of the space defined by any of the constraints.

For facing the typical situation in which we have more than one constraint, it is necessary to define an appro-

priate policy to explore the boundary as efficiently as possible. One possibility is to explore in turn the boundary

of each constraint. The selection of the constraints to search for can be determined using different methods. If

the problem includes at least one equality constraint, suchequality constraints are the most appropriate candidates

to be selected first. In order to show the robustness of our method in the absence of information about the active

constraints of a problem, we will show in our experimental study (see Section 5) a more general approach to apply

the boundary operators. As an illustrative example, Figure2 shows a hypothetical search space determined by

three inequality constraints. Let’s suppose that the search proceeds starting on constraintg1. If the visited points

are on the boundary ofF , these points will also satisfy the remaining problem constraints (filled line in Figure 2).

However, the application of the boundary operator with respect to constraintg1 will eventually produce points vio-

lating constraintsg2 andg3 (dotted line in Figure 2). One of the simplest methods to dealwith this situation is the

application of a penalty function for the infeasible solutions. In addition, ifg1 is active at the global optimum, the

method will focus the search on the boundary in order to restrict the explored regions of the whole search space.

Note however, that other (more sophisticated) constraint-handling techniques can also be adopted.

4 Boundary Approach in an ACI algorithm

A possible design to apply some of the principles of the ant metaphor in continuous search problems is by discretiz-

ing the continuous search space in some way. In this work we use a discrete structure to represent a set of different

points spread on the search space. These points are calleddirections, following Bilchev and Parmee’s proposal

in which the continuous search space is discretized in the so-called search directions. Each one of these search

directions was represented through a reference point in thesearch space. The discrete structure is then related to

a trail pheromone structure used in the ant algorithm proposed for representing the desirability of exploring on a

particular search direction. For further deteails see [6].In our proposal, the discrete structure is similar, except for

the way in which the directions are represented. Our discrete structure can be seen as a set{d1, d2, ..., dk}, where

k is a parameter for the number of directions. Each directiondl is represented as a pair of two realn-dimensional

vectors, i.e.,dl = (xl,yl), from which new points are generated by the ants allocated indirectionl. As an example,

7

Figure 3 shows (left) a discrete structure withk = 4 search directions and (right) the corresponding4 points on a

2-dimensional search space. The4 points are the result of the corresponding application of functionBS on the4

hypothetical directions.

A general outline of the ACI algorithm is shown in Algorithm 2. It is worth remarking that the original ACI

proposal [6] for continuous domains is used to proceed with the local exploration after a genetic algorithm has

finished with the global search. However, the algorithm proposed here, is in charge of performing the entire search

process. More precisely, our ACI algorithm starts with a setof k directionsd = (x,y) randomly generated with

x ∈ F andy ∈ U .

Algorithm 2 ACI algorithm
t = 0

initializeA(t)

evaluateA(t)

while (stop condition not met)do

t = t+ 1

updatedirs trail

allocateantsA(t)

evaluateA(t)

end while

General outline of the ACI algorithm for continuous problems. In the Appendix (see Algorithm 3) we show a more

detailed version of the algorithm adopted in this paper including its more important components.

The ACI algorithm (see Algorihm 2) works as follows:initialize A(t) generatesk random directions,

sets the initial values for the trail structure, and “distributes”Na ants on thek directions, whereNa > k in order to

allocate one or more ants to the same direction. Each ant allocated in a directionl generates a new solution through

any valid mutation-like operator applied to the pair of points (xl,yl) representing the initial reference points on

directionl; evaluate A(t) obtains the objective value for the new points generated;update dirs trail is

in charge of updating thek directions (according to the solutions found) and accumulating pheromone trail in each

direction proportionally to the quality of the objective function values found in the corresponding direction, i.e.,

τl = (1 − ρ) · τl + ∆τl where∆τl is a value proportional to the best objective value on direction l and0 ≤ ρ ≤ 1

is the pheromone trail evaporation rate;allocate ants A(t) redistributes the population of ants on thek

directions, proportionally to the accumulated pheromone trail values. Thus, the ants on directionl ∈ {1, . . . , k}
are on charge of searching in the neighborhood of the corresponding boundary feasible point on directionl. The

new reference point on directionl for the next iteration is the best solution found in direction l. Figure 4 shows a

hypothetical situation with9 ants and3 search directions.

The main characteristics of our ACI algorithm include two abstraction levels:

8

1. individual search: involves the strategy followed by each ant to search in its neighborhood. In our case, we

have chosen for our implementation a mutation-like operator ψ3, such thatψ(x,y) = (x′,y′) where (the

same applies toy′):

x′ = (x1, . . . , x
′

i, . . . , xn) wherei is a random number from{1, . . . , n}

and,

x′i =

xi + (u(i) − xi) ×R if r > 0.5

xi − (xi − l(i)) ×R otherwise

wherer is a random number in the range[0..1] and0 ≤ R ≤ 1 is considered to define the extent of the search

interval with respect to each variable. ParameterR starting at value1 will vary down to0 on each iteration

as described below.

2. cooperation: involves information exchange among the ants in order to guide the search to certain regions

of the search space. This information is represented by the pheromone trail structure (τ) whereτl represents

the accumulation of pheromone trail on directionl. The distribution of the ants on the different directions is

achieved by the formula:

Pl(t) =
τl(t)

∑k
h=1 τh(t)

(1)

The changes on the values of ratioR, involved in our mutation operator, controls the extent of the search interval

for each dimension and can be implemented as∆R(t) = R(1− r(1−t/T)) wherer is a random number in the range

[0..1] andT is the maximum number of iterations. Consequently, the value∆R(t) falls in the range[0..R] and gets

closer to0 as the elapsed number of iterationst increases.

Figure 5 represents the successive points (2-dimensional vectors) on directionl at iterationt wherept
l =

BS(dt
l), i.e., a point obtained by the application of functionBS on the pair of points represented bydl at iteration

t, in this examplet ∈ {0, 1, 2, 3, 4}. Thus, a square represents the neighborhood for a particular point. Following

the algorithm, at the first iteration a fixed number of ants aredistributed on thek directions, i.e., the ants that were

allocated to directionl at the iterationt = 0 will start the search from pointp0
l . For example, in Figure 5,p0

l is

the starting point on directionl, p1
l is the best point found by the ants allocated to directionl by using∆R(0)4.

As t increases, new regions of the search space are independently explored in each direction. For our example, the

remaining successively generated points on directionl arep2
l , p3

l , p4
l , and so on. Thus, the ACI algorithm can be

seen as a trajectory approach which simultaneously searches on different directions and exploits the past experience

to guide the search towards the most promising regions according to the quality of the results. Furthermore, the

accumulated pheromone trail will decrease on directions that produce low-quality solutions due to the effects of the

3However, other alternative mutation operators are also possible.
4It should be noticed that∆R(t) is not a monotonically decreasing value.

9

evaporation process focusing the ants’ attention on more promising regions of the feasible search space. In order

to avoid premature convergence of the algorithm, a potentially useful direction can remain as an alternative search

region by bounding with lower and upper values the amount of pheromone trail in each direction following the

principle of theMMAS algorithm.

5 Analysis of Results

The application of our approach, called ANT-Boundary (ANT-B for short) requires minimum changes when ap-

plied to the different test cases considered: the objectivefunction, number of variables, range of each variable, and

constraints. However, the policy to determine on which constraint the search should focus needs to be considered

when a problem has more than one constraint: a) we can focus the search on all the constraints, but considering one

constraint in turn by controlling the change through a particular condition (Sall), b) similar to the previous alter-

native but considering only the active constraints (Sact), or c) just considering one constraint during the whole run

(Sj wherej ∈ {1, . . . ,m}). These three ways of exploring the search space are presented first in our experimental

study in order to analyze the performance of the ANT-B on each of the considered problems. In our experiments,

the condition to produce a change on the search from one constraint to another is given by an elapsed number of

iterations and it is represented by the parametertc. In addition, for problems with more than one constraint, we

incorporate a penalty function of the form:

φ(x, µ) = f(x) + µ(t)(

q
∑

j=1

max{0, gj(x)} +

m
∑

j=q+1

|hj(x)|) (2)

whereµ(t) is a dynamic penalty factor which could change ast, the elapsed iteration, increases withµ(0) ≤
µ(1) ≤ µ(2) · · · ≤ µ(T). Alternatively, the penalty factor can be fixed throughout the run, i.e.,µ(t) = µ0 for

all 1 ≤ t ≤ T . Regardless of the penalty function adopted, it is worth remarking that each solution is always

lying on the boundary of the feasible space corresponding tothe constraint under consideration. Note that a penalty

function was adopted due to its simplicity, since our interest was to assess the advantages of our proposed approach.

However, other constraint-handling techniques are evidently possible.

The parameter setting used in this experimental study was empirically determined. More precisely, the param-

eter values are the following:Na = 50 ants (population size),k = 20 directions (number of reference points),

maximum number of iterations =30000, the evaporation rateρ = 0.5, tc > 0 is the number of iterations that

ANT-B focuses on one constraint in turn. Whentc = 0, ANT-B focuses on only one constraint throughout the

whole run. We settc = 200 for the policySact andSall. The penalty factorµ(t) was experimentally determined

for each particular problem and is shown in the corresponding tables of results. ANT-B was executed30 times with

different seeds for each parameter combination. The problems studied include a set of well-known test cases tra-

ditionally adopted in the specialized literature:G01 toG13 [21]. In addition, we consider other problems recently

10

labelled asG14, G15, G17, G21, G23, G24 [22], andG25 [23]. The whole experimental study was performed

on a Laptop with an IntelR© PentiumR© M Processor 725, running at 1.6 Ghz, and with 512 Mbytes of RAM. The

ANT-B algorithm was implemented in the C programming language running under Suse-Linux.

5.1 Study of the application of ANT-B

We have divided the presentation of the results into two groups according to the following criteria: the first group,

is displayed in Tables 1 and 2. Table 1 includes two special cases since they were the first problems on which

the boundary approach was applied (problemsG02 andG03). In addition, these problems have one and two

constraints respectively. However, the second constraintof problemG02 is not considered since it is not active

at the best known value. The columns in this table show the setting for the number of variables, the best value

found (BF), Mean, Standard Deviation (Std), Worst, number of feasible solutions out of30 runs (#Fea), and the

mean number of evaluations of functionφ(x, µ) (Eq. 2) to get the best value found (Mean(#E)). On the other hand,

Table 2 shows two problems both of which include one equalityconstraint (problemsG11 andG25). Accordingly,

no penalty values (µ) need to be applied for this first group of problems. In the remaining tables, the column “No.

of variables” is replaced by “Cnst”, indicating the criteria adopted to proceed with the boundary search, i.e.,Sj

(j ∈ {1, . . . ,m}), Sact, orSall. In addition, the best known or global optimum value for eachproblem is shown in

parenthesis.

We testedG02 setting the number of variables asn = 20, 50, and100. ANT-B succeeded in finding the best

known value forn = 20 [24]. In addition, it was able to find a better quality result than the best objective reported

in [19] wheren = 50 andf(x∗) = 0.831937. Forn = 100, we found0.8456841707 as the best value in our

experimental study. Also, it is worth remarking that all thesolutions found were feasible for alln and very similar

among themselves as can be observed in the columns Mean, Std,and Worst. With respect to problemG03, we

consideredn = 20 andn = 50 variables. ANT-B found the optimum feasible solution for both cases in all runs.

Figure 6 shows a convergence graph for problemsG02 (left) andG03 (right) with n = 20 variables. For each of

them are plotted the mean best found values out of30 runs for each generation. It can be observed for problemG03

(right) that before iteration500 the algorithm achieves a mean value close to the optimum, whereas for problem

G02 it needs about2000 iterations to approach the corresponding best known value.Similarly toG02 andG03, in

the remaining problems of this group (G11 andG25), our approach reached the optimum in all cases.

The second group of test cases is conformed by some problems having more than one constraint which have

been frequently used in the specialized literature:G01,G04,G05,G06,G07,G09,G10, andG13. We also include

problemG24 [22] in this subgroup. Only forG10, we adopted a dynamic penalty (µ(t) = 1.05 × µ(t − 1) for

t = 0, 1, · · · , T ; with µ(0) = 200000). The static penalty factors adopted for the remaining problems are (i.e.,

for t = 0, 1, · · ·T): G01, µ(t) = 1000; G04, µ(t) = 800000; G05, µ(t) = 10; G06, µ(t) = 10000; G07,

µ(t) = 20000; G09, µ(t) = 2000, G13, µ(t) = 0.2; andG24, µ(t) = 1000. The results for this group of

11

problems are displayed in Tables 3 and 4. It must be noticed that these problems include different numbers and

complexities of the equality and inequality constraints which are active at the best known or optimum solution. As

indicated in column “Cnst.”, each row shows the results whenANT-B was applied adopting one of the following

criteria: search exclusively on constraintj (Sj , j = 1, . . . ,m), on all the active constraints in turn (Sact), and

over all the constraints in turn (Sall). For example, problemG01 has 6 active constraints. Accordingly, ANT-B
performs ideally when searching on those active constraints. Similarly, the algorithm succeeded in finding the

optimal solution when using bothSact andSall. However, its performance slightly decays when searching on the

non active constraints as could be expected. This situationis more dramatic for problemG04 which has two active

constraints. In this case, ANT-B only finds high quality feasible solutions when searching with S1, S6, Sact, and

Sall. The last case deserves an additional explanation since forSall, constraints2 and5 were not considered. In

fact, for these constraints the approach was not capable of generating any pair of points(x,y) as needed to obtain

a pointb lying on the boundary (function BS in Algorithm 1). It seems that for these constraints all the solutions

are feasible on the corresponding range of values for variablesxi, i = 1, . . . , 5. Therefore, we do not have any

boundary between the feasible and the infeasible search space for constraints2 and5. Regarding constraints3

and5, ANT-B found no feasible solution at all. However, this can be explained because feasible solutions for this

problem are generally far from the boundary of these constraints. It is also important to remark that by usingS6,

ANT-B reported the optimal value forG04 (f(x∗) = 30665.359). However, for the search optionsS1 andSact,

ANT-B found feasible solutions with an objective value of30665.542 where all the constraints are feasible (in this

case constraintsgi(x) ≤ 0, for i = 1, , . . . , 5, andg6(x) = y where0 < y < 10−5).

A similar situation can be seen for problemG05 which has three equality constraints. Accordingly, ANT-B
finds a high quality solution for this problem (very near to the optimal one) when searching on the corresponding

equality constraints,Sact andSall. On the other hand, problemG06 has two inequality constraints which are active

at the optimum. ANT-B performs optimally for this problem by following any of the three applicable strategies:

S1, S2, andSact. The last problem in Table 3 has six active constraints and ANT-B performs similarly toG01 since

the best results were obtained when searching on the active constraints or by usingSact or Sall.

ProblemG09 has two active constraints for which ANT-B found the optimum value. However, searching on the

non active constraints can give results far from the expected value (seeS2 andS3). G10 constitutes one of the most

difficult test cases not only for our approach, but also for most other constraint-handling techniques. ANT-B found

feasible solutions with all the search strategies except for S5 andS6. Note the small number of feasible solutions

found for this problem, as well as the large standard deviation value produced (with respect to the deviations of

the other problems). Another interesting problem isG13 whose feasible search space is defined by three nonlinear

equality constraints. For this problem ANT-B found the optimal solution following any of the four applicable search

strategies. Finally, it can be seen that ANT-B performs optimally on problemG24 which has two active inequality

constraints where the optimal solution was found for all strategies in each run (see #Fea).

Also, it is worth remarking that ANT-B needs an important number of evaluations to reach the highest quality

12

value for each problem as can be observed in the correspondingcolumn Mean(#E). The lowest value for this variable

is obtained in most cases when usingSact as the search option. In general, the high values for Mean(#E) can be

explained due to the design of ANT-B which readily approaches the feasible region (particularly the boundary

between the feasible and infeasible search space). However, the mutation-like operator used here needs several

additional iterations to produce improved solutions in thepromising search regions.

5.2 Comparison with an state-of-the-art algorithm

In this section we compare the best quality results from ANT-B (we useSact as the most efficient search criteria)

with respect to the results of one of the best constraint-handling technique known to date: Stochastic Ranking

(SR) [21]. Table 5 shows for each problem considered, the optimum, and the corresponding Best value found (BF),

average (Mean), and Worst values respectively from ANT-B and SR5. The parameter setting used for SR was as

follows: µ = 30, λ = 200, Gaussian Mutation,ϕ = 1, Pf = 1,Gm = 1750, andδ = 0.0001 (see [21] for further

details).

The performance of ANT-B is comparable in many ways with respect to SR. From the perspective of the best

values found (BF) ANT-B reaches similar values as SR in all the problems considered.ForG02, ANT-B reached

the best known value reported in [17] by using anad hocboundary operator. On the opposite side, forG10, ANT-B
did not obtain the optimal solution. However, the results achieved in all cases are highly competitive.

5.3 Additional testbed for constrained problems

In this section we show the experimental results from the application of ANT-B and SR to some additional test

casesG14,G15, G17, G20,G21, andG23 which have been recently incorporated in [22]. Table 6 displays on its

columns, the problem names and the corresponding best knownvalue. On the rows we show, the optimum (or best

known value), best value found (BF), Mean, Worst, and the number of feasible solutions found (out of30 runs) for

ANT-B and SR respectively. The symbol∗ means that no feasible solutions were found. The penalty values used

in ANT-B were as follows:G14, µ(0) = 150.8; G15; µ = 9.5;G17, µ(0) = 400; G21, µ(0) = 1500; andG23,

µ(0) = 13500. All of them, except for problemG15, used dynamic penalty values as indicated at the beginning of

this section. The parameter setting for SR was as described above.

For problemG15, both algorithms performed very well, achieving a value that is slightly better than the best

value previously known. SR had the best performance for thisproblem and all the solutions that it obtained were

feasible. The following corresponds to the best solution found by the ANT-B : x∗ = (3.50883921, 0.21725025,

3.55539723). In addition, we show for this problem four plots (see Figure7) corresponding to the20 directions

on the search interval at iterations1, 10000, 20000, and30000. It can be observed that at iteration1 the search

5SR was run by the authors using Thomas Runarsson’s code, which is available at:

http://cerium.raunvis.hi.is/˜tpr/software/sres/inde x.html .

13

directions are fairly spread on the corresponding search interval. However, at iteration10000 the ANT-B starts

to converge towards a suboptimal region. This situation changes at iteration20000 where the distribution of the

directions is more spread on a different area. Finally, at iteration30000, almost all search directions have converged

to a tightly clustered region where the best value known so far is located.

With respect to the quality of results, something similar happened inG17 where ANT-B and SR achieved an

objective value very close to the best known value recently reported in [22] (SR marginally outperformed our ap-

proach). The best solution found by ANT-B is: x∗ = (203.25057161,98.51080589,383.16031685,419.98475072,

−11.21762319, 0.07194439). However, ANT-B only obtained3 feasible solutions (in 30 runs) whereas SR ob-

tained30. Nevertheless, it is remarkable that the final violation of the constraints was very small for our approach

as can be observed in Figure 8 which displays the mean value (in logarithmic scale) of constraints’ violations

(Mean(V)) out of30 runs for the problems in Table 6 with respect to the best so farsolution during the30000

iterations—we have only plotted the first3000 iterations since after that, the constraints violations are insignificant

with respect to the earlier iterations.

On the other hand, the performance of SR for the other problems is not as good as for problemsG15 andG17.

Although SR obtained30 feasible solutions for problemG14, its best value is far from the best known. However,

ANT-B converged15 times to a feasible solution (out of30 runs), achieving a very good performance taking into

account BF, Mean, and Worst values. For the remaining problems (G21 andG23), SR was not able to find any

feasible solutions, whereas ANT-B performed well for these two problems. The best found valuesare very close

to the best known. However, forG23 there is an important distance between the best and the worstvalues found.

The best solution obtained by ANT-B for problemG21 is: x∗ = (193.78298439, 0.00000000, 17.32778946,

100.01064200, 6.68460537, 5.99149380, 6.21459710) whereas the best solution for problemG23 is: x∗ =

(0.00000000, 99.99979243, 0.00000000, 99.99979275, 0.01530904, 0.01531166, 100.00000000, 199.99979277,

0.01000000).

Finally, we show in Table 7 a comparison on the number of solution evaluations regarding ANT-B and SR.

ColumnsēANT-B and ēSR represent, respectively, the average number of evaluations to obtain the best solution

for ANT-B and SR. It can be observed that for problemsG01, G02, G03, G04, G06, G07, G09, G13, G24, and

G25; ēANT-B is less than̄eSRwhere the difference between these two values is remarkablefor some of them. On

the other hand, for problemsG10,G11,G14,G15, andG17; ēSRis less than̄eANT-B. However, forG10, ANT-B
outperforms SR considering the quality of the solutions found. For the remaining problems (G21 andG23), it can

be observed a large number of evaluations for ANT-B. Nevertheless, ANT-B was the only algorithm able to find

an acceptable number of good quality feasible solutions forthese two problems. It is also worth remarking that SR

was run with a larger number of generations on problemsG21 andG23, more preciselyGm = 3500 (i.e., 700000

evaluations). In spite of that, SR was not capable of finding any feasible solution for these two problems, despite

performing a much larger number of evaluations than before.From the above situation, it is not possible to claim

that ANT-B outperforms SR. As a matter of fact, on average, SR outperforms ANT-B over the set of test problems

14

(taken as a whole), if we take into account the number of function evaluations (from Table 7, we can obtain187428

and107450, respectively, as the average number of function evaluations for ANT-B and SR on the whole test set,

excludingG21 andG23). However, if the results are analyzed per test problem, ANT-B is more consistent in

terms of performing less evaluations, since ANT-B requires less evaluations in 9 problems, and SR requires less

evaluations only in 6 problems, and is not able to reach a feasible solution in two more problems).

6 Conclusions and Future Work

In this paper we presented an alternative approach to reach the boundary between the feasible and infeasible search

space which could be useful when facing problems with activeconstraints. For the initial testing of this method we

have used an ACI algorithm as a search engine (ANT-B) and a penalty function as a complementary mechanism

for problems with more than one constraint. The overall performance of ANT-B was satisfactory for all of the

problems considered. The comparison with a state-of-the-art algorithm shows the potential of this method as an

alternative or complementary approach for constrained optimization problems. In fact, for some problems, ANT-B
was able to improve the corresponding best known solutions (e.g.,G02 (with n = 50 variables),G15, andG17).

It is clear that further improvements should be considered.First, it is necessary to incorporate some mechanism

aiming at reducing the number of evaluations. In addition, it would be desirable to implement self-adaptation

mechanisms and alternative exploration operators. Also, trying a different search engine could be more suitable for

the boundary approach. For example, the ACO algorithm proposed by Socha [15] could act as a more appropriate

ACO-based search engine. Furthermore, differential evolution [25] and evolution strategies [26] are also highly

recommended candidates to be tried as search engines, due tothe good performance that they have shown in

numerical optimization problems.

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments which greatly helped to improve the

contents of this paper.

The first author acknowledges support from Universidad Nacional de San Luis and the ANPCYT (National

Agency for Promotion of Science and Technology). The secondauthor acknowledges support from CONACyT

project no. 45683-Y.

15

References

[1] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents,”

IEEE Trans. on Systems, Man, and Cybernetics–Part B, vol. 26, no. 1, pp. 29–41, 1996.

[2] B. Bullnheimer, G. Kotsis, and C. Strauss,Kluwer Series on Applied Optmization, 1997, ch. Parallelization

Strategies for the Ant System, pp. 87–100.

[3] T. Sttzle and H. Hoos, “MAX-MIN Ant System,”Future Generation Computer Systems, vol. 16, no. 8, pp.

889–914, 2000.

[4] M. Dorigo and L. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the Traveling

Salesman Problem,”IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[5] M. Dorigo and T. Stützle,Ant Colony Optimization. Mit-Press, 2004.

[6] G. Bilchev and I. Parmee, “The Ant Colony Metaphor for Searching Continuous Design Spaces,” inEvolu-

tionary Computing. AISB Workshop, T. C. Fogarty, Ed. Sheffield, UK: Springer, April 1995, pp. 25–39.

[7] C. Ling, S. Jie, Q. Ling, and C. Hongjian, “A Method for Solving Optimization Problems in Continuous Space

Using Ant Colony Algorithm,” inProceedings of the Third International Workshop, (ANTS’2002), M. Dorigo,

G. D. Caro, and M. Sampels, Eds. Brussels, Belgium: SpringerVerlag. Lecture Notes in Computer Science

Vol. 2463, 2002, pp. 288–289.

[8] W. Lei and W. Qidi, “Ant System Algorithm for Optimization in Continuous Space,” inProceedings of the

2001 IEEE International Conference on Control Applications, Mexico City, Mexico, September 2001, pp.

395–400.

[9] ——, “Further Example Study on Ant System Algorithm basedContinuous Space Optimization,” inProceed-

ings of the 4th Congress on Intelligent and Automation, Shangai, P.R. China, June 2002, pp. 2541–2545.

[10] J. Dréo and P. Siarry, “A new ant colony algorithm usingthe heterarchical concept aimed at optimization of

multiminima continuous functions,” inProceedings of the Third international Workshop on Ant Algorithms

- ANTS 2002, M. Dorigo, G. Di Caro, and M. Sampels, Eds. Brussels, Belgium: Springer-Verlag. Lecture

Notes in Computer Science Vol. 2463, September 2002, pp. 216–221.

[11] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of the 1995 IEEE International

Conference on Neural Networks, vol. IV. Perth, Australia: IEEE Service Center, 1995, pp. 1942–1948.

[12] F. Glover and M. Laguna,Tabu Search. Boston/Dordrecht/London: Kluwer Academic Publishers, 1997.

[13] N. Monmarché, G. Venturini, and M. Slimane, “On how pachycondyla apicalis ants suggest a new search

algoritm,” Future Generation Computer Systems, vol. 16, pp. 937–946, 2000.

16

[14] S. Pourtakdoust and H. Nobahari, “An Extension of Ant Colony Systems to Continuos Optimization Prob-

lems,” inProceedings of Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS

Workshop 2004, M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, Eds.

Brussels, Belgium: Springer-Verlag, 2004, pp. 294–301. Lecture Notes in Computer Science Vol. 3172.

[15] K. Socha, “ACO for Continuos and Mixed-Variable Optimization,” inProceedings of Ant Colony Optimiza-

tion and Swarm Intelligence, 4th International Workshop, ANTS Workshop 2004, M. Dorigo, M. Birattari,

C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, Eds.Brussels, Belgium: Springer-Verlag. Lecture

Notes in Computer Science Vol. 3172, 2004, pp. 25–36.

[16] K. Socha and M. Dorigo, “Ant Colony Optimization for Continuous Domains,”European Journal of Opera-

tional Research, vol. 185, no. 3, pp. 1115–1173, March 2008.

[17] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, “A Note on Usefulness of Geometrical Crossover for

Numerical Optimization Problems,” inEvolutionary Programming V: Proceedings of the Fifth Annual Con-

ference on Evolutionary Programming, L. J. Fogel, P. J. Angeline, and T. Bäck, Eds. Cambridge, MA: The

MIT Press, 1996, pp. 305–311.

[18] A. J. Keane, “Experiences with optimizers in structural design,” inProceedings of the Conference on Adaptive

Computing in Engineering Design and Control, I. C. Parmee, Ed. Plymouth, UK: University of Plymouth,

1994, pp. 14–27.

[19] M. Schoenauer and Z. Michalewicz, “Evolutionary Computation at the Edge of Feasibility,” inParallel Prob-

lem Solving from Nature – PPSN IV, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds.

Berlin: Springer, 1996, pp. 245–254.

[20] Z. Wu and A. Simpson, “A self-adaptive boundary search genetic algorithm and its application to water dis-

tribution systems,”Journal of Hydraulic Research, vol. 40, no. 2, pp. 191–203, 2002.

[21] T. P. Runarsson and X. Yao, “Stochastic Ranking for Constrained Evolutionary optimization,”IEEE Transac-

tions on Evolutionary Computation, vol. 4, no. 3, pp. 284–294, 2000.

[22] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan, C. C. Coello, and

K. Deb. (2006). Problem Definitions and Evaluation Criteriafor the CEC Special Session on Con-

strained Real-Parameter Optimization, Nanyang Technological University, Singapore. [Online]. Available:

http://www.ntu.edu.sg/home/EPNSugan/indexfiles/CEC-06/cec2006.zip

[23] C. A. Floudas and P. M. Pardalos,A collection of test problems for constrained global optimization algorithms.

Berlin: Springer-Verlag. Lecture Notes in Computer Science Vol. 453, June 1990.

17

[24] S. Hamida and M. Schoenauer, “ASCHEA: New Results UsingAdaptive Segregational Constraint Handling,”

in Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC’2002), vol. 1. Piscataway,

New Jersey: IEEE Service Center, May 2002, pp. 884–889.

[25] K. V. Price, R. M. Storn, and J. A. Lampinen,Differential Evolution. A Practical Approach to Global Opti-

mization. Berlin: Springer, 2005.

[26] H. Schwefel,Evolution and Optimum Seeking. New York: John Wiley & Sons, 1995.

[27] D. Himmelblau,Applied Nonlinear Programming. New York: McGraw-Hill, 1972.

[28] W. Hock and K. Schittkowski,Test Examples for Nonlinear Programming Codes. Berlin, Germany: Springer-

Verlag. Lecture Notes in Economics and Mathematical Systems Vol. 187, 1981.

[29] S. Koziel and Z. Michalewicz, “Evolutionary Algorithms, Homomorphous Mappings, and Constrained Pa-

rameter Optimization,”Evolutionary Computation, vol. 7, no. 1, pp. 19–44, 1999.

[30] T. G. W. Epperly and R. Swaney. (1996). Global optimization test problems with solutions. [Online]. Avail-

able: http://citeseer.ist.psu.edu/147308.html

[31] Q. Xia. (1996). Global optimization test problems. [Online]. Available:

http://www.mat.univie.ac.at/˜neum/glopt/xia.txt

18

Appendix: Problems

• G01 [23]

Minimize:

f(x) = 5 ·
4

∑

i=1

xi − 5 ·
4

∑

i=1

x2
i −

13
∑

i=5

xi

subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are0 ≤ xi ≤ 1 (i = 1, ..., 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and0 ≤ x13 ≤ 1. The global

minimum is atx∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), where six constraints are active (g1, g2, g3, g7, g8, and

g9) andf(x∗) = −15.

• G02 [18]

Maximize:

f(x) = |
∑n

i=1 cos
4(xi) − 2

∏n
i=1 cos

2(xi)
√

∑n
i=1 ix

2
i

|

subject to:

g1(x) = 0.75 − ∏n
i=1 xi ≤ 0

g2(x) =
∑n

i=1 −7.5n ≤ 0

wheren = 20 and0 ≤ xi ≤ 10. The best known solution is at

x∗ = (3.16237443645701, 3.12819975856112, 3.09481384891456, 3.06140284777302,

3.02793443337239, 2.99385691314995, 2.95870651588255, 2.92182183591092,

0.49455118612682, 0.48849305858571, 0.48250798063845, 0.47695629293225,

0.47108462715587, 0.46594074852233, 0.46157984137635, 0.45721400967989,

0.45237696886802, 0.44805875597713, 0.44435772435707, 0.44019839654132) where

f(x∗) = 0.80619 and constraintg1 is close to being active.

19

• G03 [17]

Maximize:

f(x) = (
√
n)n ·

n
∏

i=1

xi

subject to:
n

∑

i=1

x2
i = 1

where0 ≤ xi ≤ 1 (i = 1, ..., n). The global optimum wheren = 10 is atx∗ = (1/
√
n, ..., 1/

√
n) where

f(x∗) = 1.

• G04 [27]

Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4−
0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4+

0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 − 0.0029955x1x2+

0.0021813x2
3 − 100 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 + 0.0029955x1x2−
0.0021813x2

3 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3+

0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3−
0.0019085x3x4 ≤ 0

where78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is at

x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) wheref(x∗) = −30665.539. Two constraints are

active (g1 andg6).

• G05 [28]

Minimize:

f(x) = 3x1 + 0.000001x2
1 + 2x2 + (0.000002/3)x3

2

subject to:

20

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000sin(x3 − 0.25) + 1000sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(x) = 1000sin(x3 − 0.25) + 1000sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h5(x) = 1000sin(x4 − 0.25) + 1000sin(x4 − x3 − 0.25) + 1294.8 = 0

where0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and−0.55 ≤ x4 ≤ 0.55. The best known

solution [29] isx∗ = (679.94453, 1026.067, 0.1188764,−0.3962336) wheref(x) = 5126.4981.

• G06 [23]

Maximize:

f(x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(x) = (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0,

g2(x) = −(x1 − 6)2 − (x2 − 5)2 + 82.81 ≥ 0,

where13 ≤ x1 ≤ 100 and0 ≤ x2 ≤ 100. The optimum solution isx∗ = (14.095, 0.84296), f(x∗) =

−6961.81381. Both constraints are active atx∗ (see Figure 10).

• G07 [28]

Minimize:

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+29x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x110 − 7)2 + 45

subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 − 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

21

where −10 ≤ xi ≤ 10 (i = 1, ..., 10). The optimum solution isx∗=(2.171996, 2.363683,

8.773926,5.095984,0.9906548,1.430574,1.3221644, 9.828726, 8.280092, 8.375927)wheref(x∗) = 24.306209.

Six constraints are active atx∗: g1, g2, g3, g4, g5, andg6.

• G09 [28]

Minimize:
f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(x) = −127 +2 x
2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where−10 ≤ xi ≤ 10 (i = 1, ..., 7). The optimum solution isx∗= (2.330499, 1.951372, -0.47775414,

4.365726, -0.6244870, 1.038131, 1.594227) wheref(x∗) = 680.6300573. The active constraints at this point

are:g1 andg4.

• G10 [28]

Minimize:

f(x) = x1 + x2 + x3

subject to:

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x3x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x2x5 − 2500x5 ≤ 0

where100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3) and10 ≤ xi ≤ 1000 (i = 4, ..., 8). The best

known solution isx∗ = (584.3282028010, 1354.1644876700, 5110.7156493300, 182.4326280510,

295.5675740820, 217.5673719490, 286.8650539690, 395.5675740820), wheref(x∗) = 7049.20833986.

6See http://www.mat.univie.ac.at/˜neum/glopt/coconut/Benchmark/Library2new v1.html, where problemG10 can be found ash106.

22

• G11 [29]

Minimize:

f(x) = x2
1 + (x2 − 1)2

subject to:

h(x) = x2 − x2
1 = 0

where−1 ≤ x1 ≤ 1 and−1 ≤ x2 ≤ 1. The optimum solution isx∗ = (+ − 1/
√

2, 1/2) andf(x) = 0.75.

• G13 [28]

Minimize:

f(x) = ex1x2x3x4x5

subject to:

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x2
1 + x3

2 + 1 = 0

where−2.3 ≤ xi ≤ 2.3 (i = 1, 2) and 3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is

x∗ = (−1.777143, 1.595709, 1.827247, 0.7636413,−0.763645) andf(x∗) = 0.0539498.

• G14 [27]

Minimize:

f(x) =

10
∑

i=1

xi(ci+ ln
xi

∑10
j=1 xj

)

subject to:

h1(x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

where the bounds are0 < xi ≤ 10 (i = 1, . . . , 10), andc1 = −6.089, c2 = −17.164, c3 = −34.054,

c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708, c9 = −26.662, c10 = −22.179.

The best known solution is atx∗ = (0.036002, 0.151412, 0.783686,

0.001725, 0.484752, 0.000695, 0.028175, 0.017604, 0.038714, 0.093207) wheref(x∗) = −47.764411.

23

• G15 [27]:

Minimize:

f(x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

subject to:

h1(x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are0 ≤ xi ≤ 10 (i = 1, 2, 3). The best known solution is atx∗ = (3.51211626026935,

0.216988345475683, 3.55217615445509) wheref(x∗) = 961.715172.

• G17 [27]

Minimize:

f(x) = f(x1) + f(x2)

where

f1(x1) =

30x1 0 ≤ x1 < 300

31x1 300 ≤ x1 < 400

f2(x2) =

28x2 0 ≤ x2 < 100

29x2 100 ≤ x2 < 200

30x2 200 ≤ x2 < 1000

subject to:

h1(x) = −x1 + 300 − x3x4

131.078cos(1.48477− x6) +
0.90798x2

3

131.078 cos(1.47588)

h2(x) = −x2 − x3x4

131.078cos(1.48477 + x6) +
0.90798x2

4

131.078 cos(1.47588)

h3(x) = −x5 − x3x4

131.078sin(1.48477 + x6) +
0.90798x2

4

131.078 sin(1.47588)

h4(x) = 200 − x3x4

131.078sin(1.48477− x6) +
0.90798x2

3

131.078 sin(1.47588)

24

where the bounds are0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤ 420, −1000 ≤ x5 ≤
1000 and0 ≤ x6 ≤ 0.5236. The best known solution is atx∗ = (201.784467214523659, 99.9999999999999005,

383.071034852773266, 420,−10.9076584514292652, 0.0731482312084287128) where

f(x∗) = 8853.53967480648.

• G21 [30]

Minimize:

f(x) = x1

subject to:

g1(x) = −x1 + 35x0.6
2 + 35x0.6

3 ≤ 0

h1(x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h3(x) = −x5 + ln(−x4 + 900) = 0

h4(x) = −x6 + ln(x4 + 300) = 0

h5(x) = −x7 + ln(−2x4 + 700) = 0

where the bounds are0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4

and4.5 ≤ x7 ≤ 6.25. The best known solution is atx∗ = (193.783493, 0, 17.3272116, 100.0156586,

6.684592154, 5.991503693, 6.214545462) wheref(x∗) = 193.7783493.

• G23 [31]

Minimize:

f(x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)

subject to:

g1(x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

h1(x) = x1 + x2 − x3 − x4 = 0

h2(x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(x) = x3 + x6 − x5 = 0

h4(x) = x4 + x7 − x8 = 0

25

where the bounds are0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200 and0.01 ≤ x9 ≤ 0.03.

The best known solution is atx∗ = (0, 99.9999000001, 5.58738477217701e−026, 100, 0.000099999999, 0,

100, 200, 0.01) wheref(x∗) = −400.002500.

• G24 [23]:

Maximize:

f(x) = −x1 − x2

subject to:

x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36,

where the bounds are,0 ≤ x1 ≤ 3 and0 ≤ x2 ≤ 4. The best known solution is atx∗ = (2.3295, 3.1783)

wheref(x∗) = −5.5079. Figure 11 shows the feasible search space determined by thetwo inequelity

constraints and the approximate position ofx∗ which lies on the boundary.

• G25 [23]:

Minimize:

f(x) = −12x1 − 7x2 + x2
2

subject to:

−2x4
1 + 2 − x2 = 0

where the bounds are0 ≤ x1 ≤ 2 and0 ≤ x2 ≤ 3. The best known solution is atx∗ = (0.71751, 1.470)

wheref(x∗) = −16.73889. Figure 12 shows pointx∗ which lies on the boundary (in this case the boundary

is equivalent toF).

26

Algorithm 3 A pseudo-code for the ANT-B algorithm

// updatetrail: lays a pheromone trail on the respective directions
updatetrail(Trail: real vector)
1: for l in 1 : k do

2: Trail[l] = (1 − ρ)∗Trail[l] + ∆Trail[l] // see Section 4

3: end for

// updatedirections: the new reference points on each direction
updatedirections(Dirs: directions)
1: for l in 1 : k do

2: Dirs[l] =bestpair of points found on direction(l)

3: end for

// allocateants: sends the ants to search on different directions
allocateants(A: colony, Trail:real vector, Dirs: directions, ctr: integer)
1: for i in 1 : Na do

2: d = choosedir(Trail) // a direction probabilistically chosen according to the pheromone trail (Eq. 1)

3: anti applies mutation (regarding ’ctr’) on the pair ofn-dimensional points represented by Dirs[d] = (xd,yd)

4: anti saves the new pairs of points as (A.xi, A.yi) = (x′

d
, y′

d
)

5: end for

// evaluate: obtains the objective value for the solutions found and the set the best solution on each direction
evaluate(A: colony)
1: for i in 1 : Na do

2: A.bi = BS(A.xi, A.yi) // obtains the respective point on the boundary (see Algorithm 1)

3: A.evali = F (A.bi) // evaluation of pointbi

4: end for

// main program
main()
1: t = 0

2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration

3: init d(Dirs,ctr) // generatesk randomn-dimensional pair of points regarding ‘ctr’

4: init t(Trail) // set thek initial values for the pheromonte trail structure

5: allocateants(A(t), Trail, Dirs, ctr);

6: evaluate(A(t))

7: while (stop condition not met)do

8: t = t + 1

9: if (change constraint)then

10: ctr= getnext ctr(ctr) // The search continues considering another problem constraint following a

11: // Rendez-Vouspolicy using either Sall, Sact, or Sj (see at the beginning of section 5).

12: newdirections(Dirs,ctr) // similar to ‘updatedirections’ except that it could be necessary the generation

13: // of new points according to the new ‘ctr’

14: else

15: updatedirections(Dirs,ctr)

16: end if

17: updatetrail(Trail)

18: allocateants(A(t),Trail,Dirs,ctr);

19: evaluate(A(t))

20: end while

27

Figure Captions

Figure 1: Given one feasible and one infeasible point, the corresponding point lying on the boundary can be easily

reached by using a simple binary search. On the right side it is shown the application of a hypothetical mutation-like

operator on points(x4,y4).

Figure 2: Feasible search space defined by3 inequality constraints. The search proceeds on the boundary of

constraintg1. It can be observed that the second and fifth points on the boundary of g1 (from left to right) are

infeasible.

Figure 3: A discrete structure withk = 4 search directions (left) and the corresponding4 points on a 2-dimensional

search space (right) obtained through the application of functionBS from the4 hypothetical search directions.

Figure 4: Nine ants are distributed on three search directions;2, 4, and3 ants respectively allocated on directions

1, 2, and3. CR, NP, and NR stand respectively for “current reference point”, “new points obtained through a valid

mutation operator”, and “new reference point (the best of the newest generated points on a particular direction)”.

Figure 5: Sequence of points generated in the search space and limited to the extent of values in each dimension.

Each pointpt
l is obtained by the application of functionBS on the pair of points represented bydl at iterationt.

Figure 6: Convergence of the best average values in each iteration for problemG02 (left) andG03 (right). It can

be obsereved a fast convergence to the best known (G02) and optimal (G03) values before iteration500.

Figure 7: 20 search directions at different stage of the ANT-B running for problemG15: (a) fairly sparse at the

beginning, (b) search concentrated on a suboptimal region,(c) moving to another the region, and (d) converging to

the best knwon solution.

Figure 8: Mean(V) values (in log scale) of out30 run for problemsG14,G15,G17,G21, andG23 during the first

3000 interations. It can be observed a rapidly decreasing value of constraint violation for all these problems.

Figure 9: Keane’s function withn = 2.

Figure 10: Problem G6. Floudas-Pardalos’ function.

Figure 11: Approximate position of the best known value on the boundary of the feasible search space regarding

constraintsg1 andg2.

Figure 12: Best known solution and the feasible search spacedetermined by equality constrainth.

28

Figures on Individual Pages

29

b′4
y′

4

x1

x2

x3

x4

y1

y2

y3

y4

b1

b2

b3

b4

p1

p2

(1)

(2)

(3)

U

F

Figure 1:

30

F

U

g1

g2

g3

Figure 2:

31

x

y

x1 y1 x2 y2 x3 y3 x4 y4

d1 d2 d3 d4

BS(d1)

BS(d2)

BS(d3)

BS(d4)

Figure 3:

32

BS(d1)

BS(d2)

BS(d3)

Boundary
CR
NP
NR

Figure 4:

33

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

p
0

l
p

1

l

p
2

l

p
3

l

p
4

l

∆
R

(
0
)

∆
R

(
1
)

∆
R

(
2
)

∆
R

(
3
)

Figure 5:

34

 0.1

 1

 1 100 10000

x

Iterations

f
(x

)

Best Value

Best Known

 1

 1 10 100 1000

Iterations

f
(x

)

Best Value

Best Known

Figure 6:

35

 0
 1

 2
 3

 4

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

x
1

x
2

x
3

x
3

(a
)
A

ti
te

ra
tio

n
1

 0
 1

 2
 3

 4

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

x
1

x
2

x
3

x
3

(b
)

A
ti

te
ra

tio
n
1
0
0
0
0

 0
 1

 2
 3

 4

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

x
1

x
2

x
3

x
3

(c
)

A
ti

te
ra

tio
n
2
0
0
0
0

 0
 1

 2
 3

 4

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

x
1

x
2

x
3

x
3

(d
)

A
ti

te
ra

tio
n
3
0
0
0
0

F
ig

u
re

7
:

3
6

 1
e
-0

5

 1
e
-0

4

 0
.0

0
1

 0
.0

1

 0
.1 1

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

x1

It
er

at
io

n
s

Mean(V)

G
1
4

 1
e
-0

5

 1
e
-0

4

 0
.0

0
1

 0
.0

1

 0
.1

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

It
er

at
io

n
s

Mean(V)

G
1
5

 0
.0

0
1

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

(d

It
er

at
io

n
s

Mean(V)

G
1
7

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

It
er

at
io

n
s

Mean(V)
G

2
1

 0
.0

1

 0
.1 1

 1
0

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

It
er

at
io

n
s

Mean(V)

G
2
3

F
ig

u
re

8
:

3
7

Figure 9:

38

Feasible point
according tog1

Feasible Space

Boundary ofg1

Boundary ofg2

Infeasible point
according tog2

Figure 10:

39

−1

0

2

3

4

5

0 0.5 1.5 2 2.5 31

1

g1

g2

F F

x∗

x1

x2

Figure 11:

40

0
0

h

x2

x1

Boundary= F

U

U
1.47

0.71751

x∗

Figure 12:

41

Table Captions

Table 1: The results for problemsG02 (Keane’s function) andG03 show a robust behavior of ANT-B (see Std

values) for all the instances tested of these problems.

Table 2: For problems G11 and G25 it is unnecessary to use a penalty factor.

Table 3: Results for problemsG01,G04,G05,G06, andG07. For each problem, we show the different alternatives

of using ANT-B , i.e.,Sj (for j = 1 . . .m), Sact, andSall. For some of these problems, ANT-B fails to find any

feasible solution:G4 with optionsS2 andS4, andG05 with optionsS1 andS2.

Table 4: Results for problemsG09, G10, G13, andG24. For each problem, we show the different alternatives of

using ANT-B , i.e.,Sj (for j = 1 . . .m), Sact, andSall. ANT-B fails to find any feasible solution for problemG10

with optionsS5 andS6. Also forG10, one of the hardest problems considered, we can observe a large standard

deviation values.

Table 5: Comparison of ANT-B with respect to one of the best constraint-handling technique known to date:

stochastic ranking (SR). Both algorithms perform similarly on all the problems with respect to the BF value. How-

ever, ANT-B is more robust that SR when considering the Mean and Worst values. Boldface is used to indicate

cases in which an algorithm was able to reach the optimum (or best known value) for a problem.

Table 6: Comparison of ANT-B with SR for a set of additional test cases. With respect to thequality of the results,

ANT-B performs better than SR on problemG14, similarly onG17, and almost the same onG15. However, SR

(by doubling the value of parameterGm) was not capable of achieving any feasible solution for problemsG21 and

G23. On the contrary, SR obtained a larger number of feasible solutions on problemsG14 andG17.

Table 7: Average number of evaluations to obtain the best solution for ANT-B and SR on the test problems consid-

ered (* means ‘not available’). Clearly, there is no clear trend on the performace of the two algorithms with respect

to the number of evaluations as can be seen thatēANT-B < ēSR for about half of the problems considered and

ēANT-B > ēSRfor the remaining half of the set.

42

Tables on Individual Pages

43

No. of BF Mean Std Worst # Fea Mean(#E)

Variables (n)

Problem G02

20 0.8036190867 0.8025656939 0.0032 0.7930839658 30 29500

50 0.8352618814 0.8339309692 0.0021 0.8259508014 30 35900

100 0.8456841707 0.8446936011 0.0007 0.8423509002 30 46700

Problem G03

20 1.0 1.0 0.0 1.0 30 140000

50 1.0 1.0 0.0 1.0 30 389500

Table 1:

44

Cnst. BF Mean Std Worst # Fea. Mean(#E)

Problem G11 (0.75)

S1 0.75 0.75 0.0 0.75 30 70400

Problem G25 (16.73889)

S1 -16.73889 -16.73889 0.0 -16.73889 30 10600

Table 2:

45

Cnst. BF Mean Std Worst # Fea. Mean(#E)

Problem G01 (-15.00)

S1 -15.00 -14.99 0.001 -14.996 30 274800

S2 -15.00 -14.96 0.012 -14.995 30 159720

S3 -15.00 -14.99 0.001 -14.965 30 381800

S4 -14.27 -13.54 .38 -13.18 29 544400

S5 -13.84 -13.48 0.32 -13.04 25 433800

S6 -14.22 -13.39 0.47 -13.00 26 407200

S7 -15.00 -14.78 0.2 -14.65 26 213400

S8 -15.00 -14.74 0.49 -14.46 27 723400

S9 -15.00 -14.67 0.76 -13.08 30 454800

Sact -15.00 -15.00 0 -15.00 30 81400

Sall -15.00 -15.00 0 -15.00 30 104000

Problem G04 (-30655.539)

S1 -30665.542 -30665.357 0.04 -30665.279 30 20433

S2 - - - - - -

S3 -23131.630 -23131.630 0.0 -23131.630 0 23204

S4 - - - - - -

S5 -26469.496 -26469.496 0.0 -26469.496 0 20608

S6 -30665.539 -30665.523 0.014 -30665.087 30 22985

Sact -30655.542 -30665.542 0.0 -30655.542 30 21457

Sall -30665.119 -30661.330 2.7847685814 -30654.114 30 22139

Problem G05 (5126.49)

S1 - - - - - -

S2 - - - - - -

S3 5126.50 5133.29 9.284 5147.81 6 100800

S4 5126.51 5134.70 11.219 5164.91 11 340000

S5 5126.68 5130.55 3.656 5136.08 11 180000

Sact 5126.50 5138.37 8.20 5132.14 6 94000

Sall 5126.50 5143.77 10.60 5163.56 5 135800

Problem G06 (-6961.81)

S1 -6961.79 -6961.71 0.075 -6169.54 11 122600

S2 -6961.81 -6961.72 0.097 -6961.34 25 103000

Sact -6961.81 -6961.74 0.070 -6961.71 25 80000

Table 3:

46

Cnst. BF Mean Std Worst # Fea. Mean(#E)

Problem G07 (24.306)

S1 24.37 29.59 4.83 42.97 30 70000

S2 24.51 35.10 23.02 121.56 30 133600

S3 24.56 28.31 5.54 50.83 30 83600

S4 24.79 54.17 70.46 380.03 30 83600

S5 24.52 34.52 16.39 77.19 30 85000

S6 24.79 31.12 6.46 48.40 30 720800

S7 33.08 38.86 4.01 46.53 30 71200

S8 41.03 46.86 20.92 127.06 30 260200

Sact 24.37 24.64 0.15 24.92 30 35600

Sall 24.38 24.76 0.16 25.22 30 56000

Problem G09 (680.63)

S1 680.63 680.66 0.10 681,29 30 80400

S2 1664.00 1890.01 119.92 1982.72 5 108000

S3 840.00 880.82 15.06 890.56 29 22200

S4 680.63 680.96 0.96 681.95 29 43000

Sact 680.63 680.67 0.026 680.72 30 7400

Sall 680.65 680.75 0.056 680.89 30 19400

Problem G10 (7049.2083)

S1 7101.50 7346.61 202.15 7682.20 9 147700

S2 7063.02 8169.68 1866.32 10325.00 3 131600

S3 7057.27 7406.51 148.60 7518.91 9 148600

S4 7095.27 7349.83 360.00 7604.39 2 128200

S5 - - - - - -

S6 - - - - - -

Sact 7052.30 7199.01 175.01 7943.15 30 42800

Sall 7068.04 7141.87 52.27 7239.54 30 9800

Problem G13 (0.053950)

S1 0.053950 0.054908 0.00054 0.055386 6 29800

S2 0.053950 0.054372 0.00044 0.054968 4 7400

S3 0.053950 0.054637 0.00017 0.054394 6 7200

Sact 0.053950 0.054736 0.001 0.058462 15 19800

Problem G24 (-5.508013)

S1 -5.508013 -5.508013 0.0 -5.508013 30 5800

S2 -5.508013 -5.508013 0.0 -5.508013 30 24000

Sact -5.508013 -5.508013 0.0 -5.508013 30 21400

Table 4:

47

BF Mean Worst

Prob. Opt7 ANT-B SR ANT-B SR ANT-B SR

G01 -15.000 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000

G02 0.803619 0.803619 0.803515 0.802656 0.781975 0.793083 0.726288

G03 1.000 1.000 1.000 1.000 1.000 1.000 1.000

G04 -30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30666.539 −30665.539

G05 5126.498 5126.50 5126.497 5138.37 5128.881 5132.14 5142.472

G06 -6961.814 −6961.81 −6981.814 -6961.74 -6875.940 -6961.71 -6350.262

G07 24.306 24.37 24.307 24.64 24.374 24.92 24.642

G09 680.630 680.63 680.63 680.67 680.56 680.72 680.763

G10 7049.2083 7052.30 7054.316 7199.01 7559.192 7943.15 8835.655

G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75

G13 0.053950 0.053950 0.053957 0.054908 0.057006 0.055386 0.216915

G24 -5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508013

G25 -16.73819 −16.73819 −16.73819 −16.73819 −16.73819 −16.73819 −16.73819

Table 5:

48

G14 G15 G17 G21 G23

(−47.764411) (961.715172) (8853.539674) (193.778349) (−400.002500)

BF
ANT-B −47.760268 961.715099 8855.819335 193.782989 −399.984877

SR −39.412791 961.715022 8856.136000 ∗ ∗

Mean
ANT-B −47.651929 961.715636 8937.446289 194.345108 −249.007506

SR −36.526091 961.715496 8893.396000 ∗ ∗

Worst
ANT-B −46.723707 961.717224 8952.621093 202.067779 −28.448352

SR −33.003904 961.725354 8951.007000 ∗ ∗

#Fea
ANT-B 15 30 3 19 16

SR 30 30 30 ∗ ∗

Table 6:

49

Problem ēANT-B ēSR

G01 81400 149600

G02 29500 233400

G03 140000 212000

G04 21457 77600

G05 94000 52400

G06 80000 111600

G07 35600 141400

G09 7400 111000

G10 42800 17200

G11 70400 10400

G13 7200 67200

G14 1250000 349600

G15 695600 73200

G17 411500 74000

G21 760000 *

G23 763100 *

G24 21400 23400

G25 10600 15200

Table 7:

50

Authors’ Biographies

Guillermo Leguizamón is an Assistant Professor of Computer Science at the National Univer-

sity of San Luis, Argentina. He received a PhD (2004) in metaheuristics for constrained optimization problems.

His current research interests involve the design and application of ant colony optimization, evolutionary algo-

rithms, differential evolution and other metaheuristics to continuous and combinatorial problems. He has published

book chapters, journal papers, and around 55 conference papers. He is part of theResearch and Development Lab

on Computational Intelligenceas responsible of the “Metaheuristics Research Group”. Currently, he is holding

collaborations (joint publications, visits, and exchanges) with some national and international universities.

51

Carlos A. Coello Coelloreceived the B.Sc. degree in civil engineering from the Universidad

Autónoma de Chiapas, México, and the M.Sc. and the PhD degrees in computer science from Tulane University,

USA, in 1991, 1993, and 1996, respectively.

He is currently professor (CINVESTAV-3D Researcher) at thecomputer science department of CINVESTAV-IPN,

in Mexico City, México. Dr. Coello has authored and co-authored over 180 technical papers and several book

chapters. He has also co-authored the bookEvolutionary Algorithms for Solving Multi-Objective Problems(Sec-

ond Edition, Springer, 2007). Currently, Dr. Coello is associate editor of theIEEE Transactions on Evolutionary

Computationand serves in the editorial board of 7 other international journals. He also chairs theIEEE Computa-

tionally Intelligent Society Task Force on Multi-Objective Evolutionary Algorithms. He received the2007 National

Research Awardfrom the Mexican Academy of Sciences in the area ofExact Sciences. He is a member of the

IEEE, the ACM, Sigma Xi, and the Mexican Academy of Sciences.

His major research interests are: evolutionary multi-objective optimization and constraint-handling techniques for

evolutionary algorithms.

52

