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In recent years, surrogate-assisted evolutionary algorithms (SAEAs) have been sufficiently studied for tackling computationally expensive 

multiobjective optimization problems (EMOPs), as they can quickly estimate the qualities of solutions by using surrogate models to 

substitute for expensive evaluations. However, most existing SAEAs only show promising performance for solving EMOPs with no more 

than 10 dimensions, and become less efficient for tackling EMOPs with higher dimensionality. Thus, this article proposes a new SAEA 

with a simplified helper task for tackling high-dimensional EMOPs. In each generation, one simplified task will be generated artificially 

by using random dimension reduction on the target task (i.e., the target EMOPs). Then, two surrogate models are trained for the helper 

task and the target task, respectively. Based on the trained surrogate models, evolutionary multitasking optimization is run to solve these 

two tasks, so that the experiences of solving the helper task can be transferred to speed up the convergence of tackling the target task. 

Moreover, an effective model management strategy is designed to select new promising samples for training the surrogate models. When 

compared to five competitive SAEAs on four well-known benchmark suites, the experiments validate the advantages of the proposed 

algorithm on most test cases.  

CCS CONCEPTS • Computing methodologies ~ Artificial intelligence ~ Search methodologies ~ Continuous space 

search; 

Additional Keywords and Phrases: Surrogate-assisted evolutionary algorithm, expensive multiobjective optimization 

problem, evolutionary multitasking, model management 

1 INTRODUCTION 

Multiobjective optimization problems (MOPs) widely exist in many real-world applications, such as water distribution 

system design [Mala-Jetmarova et al. 2017], robot gripper optimization [Saravanan et al. 2009], and vehicle routing 

[Jozefowiez et al. 2021; Jiang et al. 2021], which have to optimize multiple (often conflicting) objectives simultaneously. 

Mathematically, an MOP can be defined as: 

 
This work was supported by the National Natural Science Foundation of China under Grant 62173236; in part by the Guangdong Regional Joint Foundation 

Key Project under Grant 2022B1515120076; in part by the Shenzhen Science and Technology Program under Grant JCYJ20220531101411027; in part by 

the Guangdong “Pearl River Talent Recruitment Program” under Grant 2019ZT08X603; and in part by the Guangdong “Pearl River Talent Plan” under Grant 

2019JC01X235. Prof. Carlos A. Coello Coello was partially supported by CONACyT grant no. 2016-01-1920. 

Author’s addresses: X. Wu, Q. Lin (corresponding author), and S. Liu are with the College of Computer Science and Software Engineering, Shenzhen 

University, Shenzhen 518060, China (e-mail of Q. Lin: qiuzhlin@szu.edu.cn); J. Zhou is with the School of Computer Science and Artificial Intelligence, 

Wuhan University of Technology, Wuhan 430070, China. Victor C. M. Leung is with the College of Computer Science and Software Engineering, Shenzhen 

University, Shenzhen 518060, China, and also with the Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, 

BC V6T 1Z4, Canada. Carlos A. Coello Coello is with the Department of Computer Science, CINVESTAV-IPN (Evolutionary Computation Group), Mexico 

City 07300, Mexico. 



2 

1 2minimize  ( ) ( ( ), ( ),..., ( ))T

mF x f x f x f x=  

1

subject to  [ , ]
d

i i

i

x a b
=

                                                                            (1) 

where 1 2( , ,..., )T

dx x x x= is a solution with d decision variables, 1 2( ), ( ),..., ( )mf x f x f x are m objective functions, and [ , ]i ia b  

for all i = 1, 2, …, d represent the box constraints of the search space. Due to the conflicting nature among the objectives, 

no single solution is able to minimize all objectives at the same time. Instead, a set of trade-off optimal solutions called the 

Pareto-optimal set (PS) will be found, and the mapping of PS in the objective space is called the Pareto-optimal front (PF). 

Multiobjective evolutionary algorithms (MOEAs) are the mainstream methods for tackling MOPs, as they can search out 

a set of solutions that are evenly distributed and close to the PF by evolving a population of solutions. In recent decades, a 

large number of MOEAs have been proposed for solving MOPs, which can be classified into three main types: Pareto-

based [Zitzler et al. 2001; Deb et al. 2002], indicator-based [Zitzler and Künzli 2004; Beume et al. 2007], and 

decomposition-based MOEAs [Zhang and Li 2007; Liu et al. 2014; Li et al. 2014]. 

However, in some real-world applications, the evaluation of solutions in MOPs may need a high computational cost for 

its experiments [Guo et al. 2016; Chugh et al. 2017] or simulations [Ding et al. 2018; Lu et al. 2019]. These types of 

problems are often called expensive MOPs (EMOPs). Traditional MOEAs will encounter difficulties when tackling 

EMOPs, as the number of function evaluations is very limited [Jin 2011]. To address this problem, surrogate-assisted 

evolutionary algorithms (SAEAs) [Sun et al. 2020] have been proposed, which adopt surrogate models (also known as 

meta-models [Emmerich et al. 2002]) in MOEAs to substitute for expensive evaluations. Thus, even under limited 

computational resources, SAEAs can still obtain a good solution set to approximate the PF with the help of computationally 

efficient surrogate models for solving EMOPs. Many machine learning methods, such as Kriging or Gaussian processes 

[Chugh et al. 2018; Ath et al. 2021; Binois and Wycoff 2022], radial basis function networks (RBFNs) [Sun et al. 2017; 

[Lin et al. 2022], the polynomial response surface method (RSM) [Zhou et al. 2005], support vector machines (SVMs) 

[Kong et al. 2013; Herrera et al. 2014], random forests [Sun et al. 2020], and artificial neural networks [Jin and Sendhoff 

2004], have been used as surrogate models, which are trained by truly evaluated samples. In existing SAEAs [Jin et al. 

2018], surrogate models are often trained to estimate the quality of solutions by predicting their objective values [Chugh 

et al. 2019], their aggregated function values [Knowles 2006; Zhang et al. 2010; Tabatabaei et al. 2019], their hypervolume 

values [Rahat et al. 2017], or their classification [Loshchilov et al. 2010; Pan et al. 2019]. At each generation, some of the 

solutions will be selected and truly evaluated for further training the surrogate models to improve their prediction accuracy. 

As the Kriging model can provide uncertainty information, several model management strategies have been proposed, 

including probability of improvement (PoI) [Emmerich et al. 2006], lower confidence bound (LCB) [Torczon and Trosset 

1998], and expected improvement (ExI) [Jones et al. 1998], which try to strike a balance between exploitation and 

exploration when selecting solutions for true function evaluations. Thus, the performance of these SAEAs highly depends 

on the selection of surrogate models to replace expensive evaluation and surrogate management strategies to select truly 

evaluated samples for improving the prediction accuracy. A detailed introduction of existing SAEAs is given in Section 

2.1. 

Although there are a number of SAEAs proposed with different surrogate models and surrogate management strategies, 

most of them only show promising performance for tackling EMOPs with no more than 10 dimensions (decision variables) 

and become less effective for tackling EMOPs with higher dimensionality. Therefore, this article suggests a new SAEA 

with a simplified helper task for tackling high-dimensional EMOPs, called SAEA-SHT. At each generation, one simplified 

helper task is artificially constructed from the target task (the target EMOPs), so that this helper task can be easily solved 

due to its low dimensionality, and then its search experiences are transferred to speed up the solution of the target task 
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through a surrogate-assisted evolutionary multitasking optimizer. Here, the main contributions of SAEA-SHT are the 

following:  

1) One simplified helper task is generated artificially from the target task based on the random dimensionality reduction 

at each generation. Thus, these helper tasks are different at each generation but are all similar to the target task, 

which can be easily tackled. Then, surrogate models are trained by using the truly evaluated samples to assist in the 

solution of both the helper task and the target task. 

2) A surrogate-assisted evolutionary multitasking optimizer is presented to simultaneously solve the helper task and 

the target task through knowledge transfer. In this way, the search experiences of the helper task are transferred to 

solve the target task, thus speeding up its convergence. 

3) An effective model management strategy is proposed to identify promising samples for true expensive evaluations, 

which are used to train the surrogate models. In this way, the trained surrogate models gradually become accurate 

in estimating the objective values of EMOPs. 

Four well-known benchmark suites (the DTLZ [Deb et al. 2002], WFG [Huband et al. 2006], UF [Zhang et al. 2008] 

and MaF [Cheng et al. 2017] test suites) are used to evaluate the performance of SAEA-SHT. The experimental results 

indicate that SAEA-SHT performs best on most instances of the test problems when compared to five competitive SAEAs 

(MOEA/D-EGO [Zhang et al. 2010], K-RVEA [Chugh et al. 2018], HeE-MOEA [Guo et al. 2019], ESF-RVEA [Lin et al. 

2021], and KTA2 [Song et al. 2021]). 

The remainder of this paper is organized as follows. Section 2 introduces some previous related work and our 

motivations. Section 3 presents the details of SAEA-SHT. The experimental results of SAEA-SHT with respect to five 

competitive SAEAs are given in Section 4. Finally, Section 5 concludes this article with some remarks for future work. 

2 RELATED WORK AND MOTIVATIONS 

Next, Section 2.1 first introduces several state-of-the-art SAEAs for solving EMOPs. Then, the motivations to design 

SAEA-SHT are presented in Section 2.2. 

2.1 SAEAs for Solving EMOPs 

As mentioned in Section 1, since SAEAs are able to significantly reduce the computational cost of the optimization process 

by approximating expensive objective functions, they have been the most popular choice for dealing with EMOPs. This 

section briefly introduces some state-of-the-art SAEAs for tackling EMOPs in terms of how to use surrogate models to 

replace expensive evaluations. Table 1 summarizes several representative SAEAs with the adopted surrogate models, the 

approximation of the surrogate models, and the dimensionality of the test EMOPs. 

Most SAEAs apply surrogate models to approximate the objective function values, which is a straightforward method 

to replace expensive function evaluations. K-RVEA [Chugh et al. 2018] and ESF-RVEA [Lin et al. 2021] adopt the 

reference vector guided EA (RVEA) [Cheng et al. 2016] as the underlying optimizer and use surrogate models to 

approximate each objective function to reduce the computational cost. K-RVEA trains a Kriging model, while ESF-RVEA 

builds an ensemble surrogate model, which includes a global Kriging model trained under the entire search space and 

several Kriging submodels trained under different search subspaces. Moreover, to manage the surrogate models, K-RVEA 

exploits a set of reference vectors together with the uncertainty information about the approximate objective values given 

by the Kriging models. Then, solutions with the minimum angle penalized distance are selected if a satisfactory degree of 

diversity has already been maintained, while those with the maximum uncertainty are selected otherwise. ESF-RVEA 

proposes an effective model management strategy based on a set of reference vectors to identify new samples. First,  
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Table 1: Summary of Some State-of-the-art Surrogate-assisted Evolutionary Algorithms 

Algorithms Surrogate models Approximation Dimensions of test EMOPs 

K-RVEA Kriging Objective function 10 

ESF-RVEA Ensemble surrogate Objective function 10, 20, 30 

HSEMA 
Multiple surrogates 

(Kriging, RSM1, RSM2) 
Objective function 10 

He-MOEA 
Heterogeneous ensemble 
(RBF1, RBF2, LSSVM) 

Objective function 10, 20, 40, 80 

KTA2 Influential point-insensitive Kriging Objective function 10 

EDN-ARMOEA Efficient dropout neural network Objective functions 20, 40, 60, 100 

ParEGO Kriging Scalarization function 2, 3, 6, 8 

MOEA/D-EGO Kriging Scalarization function 2, 6, 8 

MCEA/D Multiple local SVM-based classifiers Scalarization function 50, 100, 150 

SMS-EGO Kriging Hypervolume value 3, 6 

CSEA Feedforward neural network Pareto dominance 10 

solutions with the approximate objective values dominated by truly evaluated samples are removed to ensure convergence, 

and then the remaining ones closest to some randomly selected reference vectors with good diversity are selected to train 

the surrogate models. HSMEA [Habib et al. 2019] and HeE-MOEA [Guo et al. 2019] also use multiple surrogate models 

to approximate expensive objective functions. To enhance the generalization ability of the approximation, HSMEA trains 

multiple types of surrogate models (Kriging, RSM with polynomial degrees of 1 and 2 (RSM1 and RSM2)) and then uses 

one model with the minimum root mean-square error. Moreover, HSMEA adopts two sets of reference vectors, one 

originating from the ideal point and the other emerging from the nadir point, to first identify several solutions as candidates 

and then designs a local improvement scheme to improve these candidate solutions according to the Euclidean distances. 

HeE-MOEA proposes a heterogeneous ensemble surrogate model that can also estimate the uncertainty in approximating 

the objective values. This ensemble is constructed by using both feature selection and extraction to manipulate the inputs 

and different kinds of machine learning models (RBFN using the least squares method called RBFN1, RBFN using 

backpropagation method called RBFN2, and the least squares SVM called LSSVM). KTA2 [Song et al. 2021] presents an 

influential point-insensitive Kriging model to improve the prediction accuracy, which can reduce the negative impact of 

influential points without completely losing their useful information. Moreover, two sampling strategies are adaptively 

used in KTA2 to identify several new samples for running true expensive evaluations. More recently, EDN-ARMOEA 

[Guo et al. 2022] employs an efficient dropout neural network as a computationally scalable alternative of the Kriging 

model to approximate objective function values. In addition, a model management strategy for choosing new samples and 

training data is designed into an indicator-based MOEA with reference point adaptation (AR-MOEA) [Tian et al. 2018] to 

achieve a better balance between exploration and exploitation during the evolutionary search. 

Some SAEAs use surrogate models to approximate the scalarization function values. ParEGO [Knowles 2006] extends 

the efficient global optimization (EGO) [Jones et al. 1998] algorithm that was originally designed for expensive single-

objective optimization to tackle EMOPs. Using a randomly selected weight vector, a set of objective function values of a 

solution are converted to a scalarization function value, which is approximated with a trained Kriging model. MOEA/D-

EGO [Zhang et al. 2010] also decomposes an EMOP into a set of single-objective optimization subproblems using weight 

vectors and then constructs a Kriging model to approximate the scalarization function values of each subproblem. More 
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recently, it was proposed MCEA/D [Sonoda and Nakata 2022] which employs multiple local SVM-based classifiers to 

build robust surrogate models for new samples of high-dimensional training inputs, where each local classifier is trained 

for a corresponding subproblem defined in decomposition-based MOEAs. In addition, MCEA/D enhances the prescreening 

capacity with a screening mechanism, which identifies the candidate solution closest to a region of a defined “good” 

category if none of them belong to this category. 

Moreover, a few SAEAs train surrogate models for other purposes, such as the approximation of hypervolume values 

in SMS-EGO [Ponweiser et al. 2008] and the classification of solutions based on their objective values in CSEA [Pan et 

al. 2019]. SMS-EGO constructs a Kriging model to estimate the S-metric [Emmerich et al. 2005] of candidate solutions 

and then selects solutions with low S-metric values for running true expensive evaluations. CSEA first divides solutions 

evaluated by expensive objection functions into two categories and then trains a feedforward neural network as a surrogate 

model to learn the classification criterion, which is used to predict the dominance relationship between candidate solutions 

and reference solutions, i.e., the category of candidate solutions. In addition, CSEA splits the objective space into three 

regions of uncertainty by estimating a degree of reliability with a validation dataset and then picks up potentially well-

converged offspring solutions based on the three regions of uncertainty. 

2.2 Motivations 

The abovementioned SAEAs are only suitable for dealing with EMOPs with no more than 10 decision variables. 

Nevertheless, some EMOPs modelled from real-world applications may have more than 10 decision variables, which 

should be properly addressed. Here, the dimensionality of the test EMOPs solved in most existing SAEAs (K-RVEA 

[Chugh et al. 2018], ESF-RVEA [Lin et al. 2021], HSMEA [Habib et al. 2019], HeE-MOEA [Guo et al. 2019], KTA2 

[Song et al. 2021], EDN-ARMOEA [Guo et al. 2022], ParEGO [Knowles 2006], MOEA/D-EGO [Zhang et al. 2010], 

MCEA/D [Sonoda and Nakata 2022], SMS-EGO [Ponweiser et al. 2008], and CSEA [Pan et al. 2019]) is summarized in 

Table 1. According to Table 1, among these SAEAs, only HeE-MOEA, ESF-RVEA, EDN-ARMOEA, and MCEA/D are 

proposed for tackling EMOPs with more than 10 dimensions. However, when tackling EMOPs with higher dimensionality, 

such as 100 dimensions, these SAEAs do not perform as well, as shown by our experimental studies in Section 4. Therefore, 

further study of SAEAs is still required to address this challenge for solving high-dimensional EMOPs. 

Evolutionary multitasking, as a new search paradigm in the realm of evolutionary computation, carries out evolutionary 

search concurrently on multiple search spaces or optimization problems [Gupta et al. 2015; Gupta et al. 2016; Ong and 

Gupta 2016]. Although the evolutionary multitasking paradigm was originally designed for tackling multiple optimization 

tasks simultaneously, some recent studies [Feng et al. 2021; Chen et al. 2021; Qiao et al. 2022; Yang et al. 2019] have 

shown that this paradigm is also effective for tackling complex single-tasks independently, which artificially constructs 

similar subtasks to speed up the convergence of tackling the original single-tasks. In [Feng et al. 2021], high-dimensional 

MOPs are embedded into multiple low-dimensional subspaces by using different random embeddings, where knowledge 

transfer is performed through a multifactorial evolutionary search in a multitask environment. In [Chen et al. 2021], several 

low-dimensional related tasks for feature selection are adaptively generated from a high-dimensional feature selection 

problem, where the crossover operator is run on the particle’s position as the knowledge transfer method to share useful 

information among different tasks. In [Qiao et al. 2022], a dynamic auxiliary task is created by gradually relaxing the 

constraints to help tackle difficult constrained MOPs, where the exchange of offspring solutions between the auxiliary task 

and the main task is regarded as a method of knowledge transfer. Recently, in [Yang et al. 2019], a coarse surrogate was 

trained in a subspace of the original search space when solving off-line data-driven EMOPs, which can perform a coarse- 
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Figure 1: A flowchart of SAEA-SHT 

ALGORITHM 1: The Overall Framework 

1. Initialize ns solutions that are truly evaluated and added into the training dataset TD and set ntes = ns, t = 0 

2. Set I = Ø and ntes = ns 

3. Construct an incremental surrogate model tsm for the target task by TD 

4. while ntes < nmes do 

5.         (tsm, hsm, ind) ← Surrogate Training for the Tasks (TD, tsm, I)    //Algorithm 2 

6.         P ← SEMO (TD, tsm, hsm, ind)    //Algorithm 3 

7.         I ← Model Management Strategy (TD, P, I, t)    //Algorithm 4 

8.         Evaluate solutions in I using true objective functions and added them into TD 

9.         Set ntes = ntes + | I | and t = t + 1 

10. end while 

11. return nondominated solutions in TD 

grained search to find the promising regions of the search space. Then, a fine-grained search is further conducted to find 

promising solutions by exploiting the knowledge transferred from the coarse-grained search. 

Inspired by the success of using the evolutionary multitasking paradigm for solving complex single-tasks, this article 

also applies this paradigm and suggests a new SAEA with a simplified helper task (called SAEA-SHT) for tackling EMOPs 

with up to 100 dimensions. In each generation of SAEA-SHT, one simplified helper task, which can be tackled more easily, 

is artificially generated by randomly selecting a part of the decision variables of high-dimensional EMOPs. Then, a 

crossover-based transfer method is designed to exploit the optimization knowledge from the helper task to speed up the 

solution of high-dimensional EMOPs. 

3 THE DETAILS OF OUR PROPOSED ALGORITHM 

In this section, the details of our proposed SAEA-SHT for tackling EMOPs are introduced.  In order to provide an overview 

of SAEA-SHT, Figure 1 illustrates the running of SAEA-SHT, which consists of four main components: 1) initialization; 
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2) surrogate training for the tasks; 3) surrogate-assisted evolutionary multitasking optimizer (SEMO); and 4) model 

management strategy. After the initialization, SAEA-SHT will iteratively run surrogate training for the tasks, SEMO, and 

the model management strategy until the maximum allowable number of true function evaluations is reached. Finally, the 

final nondominated solutions in the training data are the output of SAEA-SHT. 

To clarify the running of SAEA-SHT, its pseudocode is also provided in Algorithm 1.  

1) Initialization: The initialization process is run in line 1, which generates ns solutions using the Latin hypercube 

sampling method [Mckay et al. 2000]. These solutions are stored in the training data TD after evaluation by a true expensive 

function. Then, in line 2, the infill solution set I is initialized as the empty set, the current number of true function 

evaluations ntes is set to ns, and the current number of generations t is set to zero. In line 3, an incremental surrogate model 

tsm for the target task is constructed using the initial samples in TD.  

2) Stopping criterion: After the above initialization process, the evolutionary loop is run in lines 4-10 until the stopping 

criterion (ntes < nmes) is satisfied in line 2. 

3) Surrogate training for the tasks: At the beginning of the evolutionary loop, one simplified helper task is generated 

in line 5, which is a similar EMOP with some of the decision variables of the target task. Moreover, an incremental 

surrogate model is trained for the target task when the infill solution set I is not an empty set, while another surrogate 

model is trained for the helper task. 

4) Surrogate-assisted evolutionary multitasking optimizer: The surrogate-assisted evolutionary multitasking optimizer 

is run in line 6, in which two populations for the target task and helper task are evolved simultaneously with the help of 

surrogate models. Moreover, the search experiences from the helper task are utilized to assist in tackling the target task via 

knowledge transfer. 

5) Model management strategy: In line 7, the population P generated as an output from the surrogate-assisted 

evolutionary multitasking optimizer is adopted to perform the model management strategy. In this strategy, several 

promising new samples are chosen for updating the surrogate model for the target task. 

In the following subsections, the details of the above surrogate training for the tasks, of SEMO, and of the model 

management strategy will be introduced, respectively.  

3.1 Surrogate Training for the Tasks 

In our method, a simplified helper task is randomly generated at each generation, which only includes some of the decision 

variables in high-dimensional EMOPs (the target task). Since the random dimension reduction technique is used to select 

some important variables and remove some useless variables, the helper tasks will be simplified and easier to solve. The 

helper task can be described as follows: 

1 2minimize  ( ) ( ( ), ( ),..., ( ))h h h h T

mF x f x f x f x=                                                            (2) 

where 
1 2( , ,..., )

d

T

nx x x x= is a solution with nd decision variables partly selected from the original search space in (1), and 

1 2( ), ( ),..., ( )h h h

mf x f x f x are m simplified objective functions. Then, surrogate models are respectively trained for the target 

task and for the helper task. Since the Kriging model is able to provide uncertainty estimation, it is adopted as the surrogate 

model in our method. However, a general Kriging model needs a high training cost for dealing with high-dimensional 

EMOPs. Thus, an incremental Kriging model [Zhan and Xing 2021] is used to reduce the training cost for the target task, 

as it can gradually update the surrogate model by new coming samples instead of training from scratch in each generation. 

For the helper task, since its decision variables are selected randomly at each generation, the incremental Kriging model is 

inapplicable for the helper tasks, and thus, a general Kriging model is used for the helper task. In this way, diverse Kriging  
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ALGORITHM 2: Surrogate Training for the tasks (TD, tsm, I) 

1. Initialize the dimensionality of the helper task nd 

2. Randomly select nd decision variables with their indexes saved in ind 

3. Generate a helper task using the selected nd decision variables 

4. if I ≠ Ø then 

5.     Update the incremental surrogate model tsm for the target task by I 

6. end if 

7. TDh = TD(:, ind) 

8. Construct a surrogate model hsm for the helper task by TDh 

9. return tsm, hsm, ind 

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

Training Data

Target 

Task

Training Datah

Helper 

Task

x1 x2 x3 x4 x5 x6 x7 x8 x1 x4 x7

Incremental Kriging

General Kriging

Incremental learning method

New 

Sampes

 

Figure 2: An example of surrogate training for the target task and helper task 

models are trained for the helper tasks in the evolutionary process, which enhances the diversity of knowledge transfer 

from the helper tasks to the target task. 

To clarify the running of the surrogate training of the target task and helper task, its pseudocode is provided in Algorithm 

2 with the input training data TD. In line 1 of Algorithm 2, the dimensionality of the helper task nd is initialized. Then, in 

line 2, nd decision variables are randomly selected from the original variable vectors in TD, and their indexes are saved in 

an index array (ind). Then, a helper task is constructed with the selected nd decision variables in line 3. Next, in lines 4-6, 

for the target task, the incremental surrogate model tsm is updated using the new samples in I when I is not an empty set. 

In line 7, the training data TDh for the helper task are sampled from the original training data by using the array ind. Note 

that if the training data for the helper task contains the same solution multiple times, only one solution from among them  
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is randomly selected. Afterwards, for the helper task, another surrogate model hsm is constructed using all the samples of 

TDh in line 8. Finally, in line 9, two trained surrogate models tsm, hsm and the array ind are returned as the output of 

Algorithm 2. 

Figure 2 shows an example to illustrate the surrogate training for the target task and helper task, in which the dimensions 

of the target task and helper task are eight and three, respectively. According to Figure 2, for the helper task, only some of 

the decision variables in the original problem are randomly selected, i.e., x1, x4, and x7 are selected in this case. After that, 

an incremental Kriging model is trained for the target task using the new samples in I, while a Kriging model is trained for 

the helper task using the low-dimensional training data TDh. Note that although random dimensionality reduction is 

adopted to generate the helper task in our approach, other dimensionality reduction techniques, such as random embedding 

[Feng et al. 2021] and random projection [Guo et al. 2000], can also be employed. 

3.2 Surrogate-assisted Evolutionary Multitasking Optimizer 

Using the above constructed surrogate models, SEMO is further run to tackle the helper and target tasks with knowledge 

transfer between them. In SEMO, surrogate models are used to replace the true expensive functions for calculating the 

objective values of solutions. 

The SEMO procedure is presented in Algorithm 3. First, in line 1, the maximum number of iterations gmax is initialized, 

and the generation counter g is set to zero. Then, a main population P for the target task is created by choosing 

nondominated solutions from the training data TD in line 2. Next, in line 3, a helper population Ph with the same number 

of solutions as P is randomly initialized for the helper task. After that, the main loop is carried out in lines 4-15, in which 

two populations P and Ph are optimized simultaneously and knowledge transfer is performed among them. In line 5, the 

offspring populations O and Oh for the main population P and the helper population Ph, respectively, are generated using 

simulated binary crossover [Deb and Agrawal 1995] and polynomial-based mutation [Deb and Goyal 1996]. In lines 6-10, 

another offspring population C for the main population P is generated through the knowledge transfer method in order to 

transfer the knowledge information from solutions of the helper task to the target task. Specifically, a crossover-based 

transfer method is used, in which the search experiences are transferred by means of a crossover operator. Different forms 

of crossover can be used to transfer knowledge from two solutions. In our method, simulated binary crossover is employed. 

To be more specific, for each solution s in the target task, in line 7, one solution p is obtained from s by only selecting 

decision variables in the index array ind, and a randomly selected solution q in the helper task is applied to deliver 

knowledge information to p. In line 8, knowledge transfer is performed between solutions p and q in the following way: 

( ) 0.5 [(1 ) ( ) (1 ) ( )]c i p i q i =  +  + −                                                              (3) 

where c(i), p(i), and q(i) represent the ith decision variable of the transferred solutions c, p, and q, respectively, i = 1, 2, …, 

nd (nd is the dimension of the helper task), and β is defined as 

1 (1 )

1 (1 )

( 2)              0.5

(1 (1 2))    otherwise

rand rand

rand






+

+

  
= 

− 
                                                              (4) 

where η is the distribution index and rand is a random number between 0 and 1. In line 9, solution s is updated by replacing 

the selected ind decision variables by the decision variables of the transferred solution c, and then the updated solution s is 

saved in C. Afterwards, in line 11, two offspring populations O and C are evaluated using their corresponding surrogate 

model tsm, while the offspring population Oh is evaluated using its corresponding surrogate model hsm. Then, the 

environmental selection of RVEA [Cheng et al. 2016] is performed in line 12 on the union population of P, O and C to 

select a new population P for the target task and in line 13 on the union population of Ph and Oh to form a new population  
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ALGORITHM 3: SEMO (TD, tsm, hsm, ind) 

1. Initialize the maximum number of iterations gmax and set generation counter g = 0, Q = Ø 

2. P ← Select nondominated solutions in TD for the target task 

3. Ph ← Initialize the same number of solutions as P for the helper task 

4. while g ≤ gmax do 

5.         O ← Offspring-reproduction (P) and Oh ← Offspring-reproduction (Ph) 

6.         for each solution s in P do 

7.               p = s(:, ind) and q ← Select a solution in Ph randomly 

8.               Obtain c from p and q using (3) and (4) 

9.               s(:, ind) = c and C = C ∪ s 

10.         end for 

11.         Evaluate solutions in O and C using tsm, and evaluate solutions in Oh using hsm 

12.         P ← Environmental-selection (P ∪ O ∪ C) 

13.         Ph ← Environmental-selection (Ph ∪ Oh) 

14.         g = g + 1 

15. end while 

16. return P 
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Figure 3: Process of the surrogate-assisted evolutionary multitasking optimizer 

Ph for the helper task. The SEMO procedures are shown in Figure 3. 

3.3 Model Management Strategy 

When SAEAs adopt a model management strategy to select solutions for updating the training data, two types of solutions 

(promising solutions and uncertain solutions) bring different improvements to the surrogate models [Jin et al. 2018]. 

Sampling promising solutions can enhance the local approximation accuracy of surrogate models in promising areas, 

while sampling uncertain solutions can enhance the global approximation accuracy of surrogate models in search spaces  
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ALGORITHM 4: Model Management Strategy (TD, P, I, t) 

1. Initialize the maximum number of new samples u and set C = Ø, I = Ø 

2. for s in P do 

3.       if s is nondominated with samples in TD then 

4.           C ← C ∪ s 

5.       end if 

6. end for 

7. (C1, C2, …, Cu) ← k-means (C) 

8. CMt ← Calculate the convergence metric of TD 

9. if CMt ≤ CMt-1 then 

10.     for i = 1 to u do 

11.           c ← identify the solution in Ci with the minimum Euclidean distance 

12.           I = I ∪ c 

13.     end for 

14. else 

15.     for i = 1 to u do 

16.           c ← identify the solution in Ci with the maximum uncertainty 

17.           I = I ∪ c 

18.     end for 

19. end if 

20. return I 

that have not been fully explored. Therefore, to take full advantage of the limited number of expensive function evaluations, 

an effective model management strategy is designed to identify infill solutions for updating training data, the details of 

which can be found in Algorithm 4. In line 1 of Algorithm 4, the maximum number of new samples u is initialized, an 

offspring population C is initialized as the empty set, and an infill solution set I is reset to empty. Then, in lines 2-6, 

solutions in P that are not dominated by the samples in TD are stored in C. Next, k-means clustering [MacQueen 1967] is 

performed in C to obtain u clusters (C1, C2, …, Cu) in line 7. After that, in line 8, a convergence metric (CM) is adopted to 

assess the convergence of the training data TD. CM is defined as follows: 

1

1
( ) ( )

n

ii
CM f s

n =
= TD                                                                         (5) 

where n is the size of TD and si is the ith solution in TD. Please note that the CM values before and after the last TD update 

are denoted by CMt and CMt-1, respectively. When CMt ≤ CMt-1, which indicates that solutions in TD are gradually 

converging; the convergence of solutions should be prioritized in this case. Thus, one solution with the minimum Euclidean 

distance in each cluster is identified as the new sample in line 11. Otherwise, in case that CMt > CMt-1, the convergence of 

solutions in TD is not the major concern, so the priority will be moved to considering the diversity and one solution with 

the maximum uncertainty provided by the Kriging models in each cluster is chosen as the new sample in line 16. All the 

newly sampled samples are stored in I. Finally, I is returned as the output of Algorithm 4. 
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3.4 Computational Complexity 

The computational complexity of SAEA-SHT is determined by the computational cost for function evaluations, training 

the surrogate models, running the surrogate-assisted evolutionary multitasking optimizer, and managing the surrogate 

model. More specifically, Algorithm 1 requires a time complexity of O(n2) to construct an incremental Kriging model and 

O(n3) to construct a general Kriging model in line 5. In line 6, it needs a time complexity of O(gmax n) to run the SEMO. In 

line 7, it is has a time complexity of O(n) to identify the infill solutions. Therefore, the overall worst time complexity of 

SAEA-SHT is O(n3) in one generation, as O(n3) is more complex than O(n2), O(gmax n) and O(n). 

4 NUMERICAL EXPERIMENTAL STUDY 

4.1 Benchmark Problems and Performance Indicator 

In our numerical experiments, the performance of the proposed SAEA-SHT is investigated for tackling the DTLZ test suite 

[Deb et al. 2002], the WFG test suite [Huband et al. 2006], the UF test suite [Zhang et al. 2008] and the MaF test suite 

[Cheng et al. 2017]. Only UF1-UF7 have two optimization objectives, while all the others have three optimization 

objectives. Each test problem has four sizes (d) of decision variables (d = 30, 50, 70, 100). The main features of the DTLZ, 

WFG, UF, and MaF test suites are summarized in Table A.1 of Appendix A. 

The inverted generational distance (IGD) [Coello and Sierra 2004] is adopted to provide an overall assessment of all 

the compared algorithms. Let P be a set of evenly distributed points along the PF in the objective space. Let S be an 

approximate set obtained by the compared algorithms to the PF. Thus, IGD can be defined as the average distance from P 

to S, as follows: 

( , )
( , ) x

dist x
IGD =

 P
S

S P
P

                                                                   (6) 

where dist(x, S) indicates the minimum Euclidean distance between x and the points in S, and |P| represents the size of P. 

If P is large enough to represent the PF very well, IGD(S, P) is able to measure both the convergence and diversity of S in 

a sense. To have a low IGD(S, P), the set S must be very close to the PF and cannot miss any part of the PF. 

4.2 Parameters Settings 

In our experimental study, SAEA-SHT is compared with five competitive SAEAs (MOEA/D-EGO [Zhang et al. 2010], 

K-RVEA [Chugh et al. 2018], HeE-MOEA [Guo et al. 2019], ESF-RVEA [Lin et al. 2021], and KTA2 [Song et al. 2021]). 

The parameters of the five compared algorithms are set as suggested in their original papers, while the parameters of our 

proposed SAEA-SHT algorithm are summarized as follows: 

1) Initialization: The Latin hypercube sampling method is adopted to generate ns = 11d-1 samples for the training 

dataset, where d is the dimensionality of the test problems. 

2) Termination condition: The maximum number of function evaluations nmes is employed as the termination condition, 

which is set to 11d+120. 

3) Number of independent runs: Each compared algorithm is independently run 30 times for each test problem. 

4) Parameters settings in SAEA-SHT: The dimensionality of the helper task nd is set to 10, the number of maximal 

generations gmax in SEMO is set to 20, and the number of infill solutions u is set to 5. 
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4.3 Comparisons with Five Competitive SAEAs 

In this section, to investigate the optimization performance of SAEA-SHT, five competitive SAEAs (MOEA/D-EGO, K-

RVEA, HeE-MOEA, ESF-RVEA, and KTA2) are used for performance comparison. In the following tables (Tables 2 and 

3), the best result for each test instance is highlighted for easy observation. Furthermore, to obtain a statistically sound 

Table 2: Comparisons of SAEA-SHT with Five Algorithms on the DTLZ and WFG Test Suites 

Problem D ESF-RVEA MOEA/D-EGO K-RVEA HeE-MOEA KTA2 SAEA-SHT 

DTLZ1 

30 6.2705e+2 (4.96e+1) - 5.9924e+2 (1.07e+2) - 5.7863e+2 (5.47e+1) = 6.3110e+2 (3.76e+1) - 6.1831e+2 (6.34e+1) - 5.4085e+2 (8.11e+1) 
50 1.1714e+3 (5.21e+1) - 1.1543e+3 (8.90e+1) - 1.1756e+3 (6.02e+1) - 1.1748e+3 (3.78e+1) - 1.1686e+3 (7.24e+1) - 1.0306e+3 (7.90e+1) 
70 1.7538e+3 (6.02e+1) - 1.7205e+3 (8.41e+1) - 1.7216e+3 (6.62e+1) - 1.7059e+3 (6.45e+1) - 1.7428e+3 (6.13e+1) - 1.5739e+3 (1.31e+2) 
100 2.5765e+3 (7.82e+1) - 2.5817e+3 (1.59e+2) - 2.5846e+3 (8.09e+1) - 2.4434e+3 (1.99e+2) = 2.6114e+3 (6.61e+1) - 2.3110e+3 (1.16e+2) 

DTLZ2 

30 1.4674e+0 (1.03e-1) - 8.0864e-1 (1.09e-1) - 1.1166e+0 (1.50e-1) - 5.3893e-1 (7.36e-2) = 1.3588e+0 (9.40e-2) - 4.4340e-1 (2.32e-1) 
50 2.6691e+0 (1.29e-1) - 2.5465e+0 (3.19e-1) - 2.5410e+0 (2.10e-1) - 1.2337e+0 (7.88e-2) = 2.6233e+0 (2.72e-1) - 9.2952e-1 (2.57e-1) 
70 4.0536e+0 (1.61e-1) - 3.7270e+0 (5.15e-1) - 3.9747e+0 (2.00e-1) - 1.5304e+0 (2.63e-1) = 3.9238e+0 (1.69e-1) - 1.7304e+0 (2.64e-1) 
100 6.1108e+0 (1.41e-1) - 5.9218e+0 (6.34e-1) - 6.0198e+0 (2.51e-1) - 2.7361e+0 (1.69e-1) = 5.9419e+0 (1.87e-1) - 3.1497e+0 (3.49e-1) 

DTLZ3 

30 1.7992e+3 (1.56e+2) - 1.3589e+3 (4.30e+2) = 1.7641e+3 (1.60e+2) - 1.7913e+3 (9.45e+1) - 1.7276e+3 (1.52e+2) - 1.6083e+3 (1.92e+2) 
50 3.6433e+3 (1.94e+2) - 3.5646e+3 (2.35e+2) - 3.5362e+3 (2.35e+2) - 3.4737e+3 (4.57e+2) - 3.1896e+3 (2.59e+2) + 3.3588e+3 (1.92e+2) 
70 5.5095e+3 (1.48e+2) - 5.5281e+3 (1.43e+2) - 5.4422e+3 (2.54e+2) - 5.3791e+3 (3.55e+2) - 5.1208e+3 (2.76e+2) = 5.0377e+3 (2.96e+2) 
100 8.2740e+3 (2.04e+2) - 7.7728e+3 (7.66e+2) = 8.1407e+3 (3.17e+2) - 8.1653e+3 (1.85e+2) - 8.0708e+3 (4.19e+2) - 7.6024e+3 (4.42e+2) 

DTLZ4 

30 1.6727e+0 (1.26e-1) - 1.6734e+0 (2.16e-1) - 1.6685e+0 (1.60e-1) - 1.0310e+0 (4.79e-2) = 9.1702e-1 (2.17e-1) = 9.9598e-1 (3.82e-1) 
50 3.0485e+0 (1.49e-1) - 3.0026e+0 (2.56e-1) - 3.0668e+0 (1.36e-1) - 1.4346e+0 (7.86e-2) - 2.8903e+0 (2.87e-1) - 1.1237e+0 (2.89e-1) 
70 4.3079e+0 (2.30e-1) - 4.0098e+0 (8.17e-1) - 4.3053e+0 (1.94e-1) - 1.9926e+0 (8.03e-2) = 4.1844e+0 (2.29e-1) - 1.8195e+0 (4.00e-1) 
100 6.2813e+0 (2.23e-1) - 5.9922e+0 (7.66e-1) - 6.3622e+0 (2.34e-1) - 3.2193e+0 (2.92e-1) = 6.0237e+0 (2.27e-1) - 3.4526e+0 (8.98e-1) 

DTLZ5 

30 1.3363e+0 (1.29e-1) - 7.2838e-1 (1.05e-1) - 1.0090e+0 (1.52e-1) - 4.0426e-1 (2.84e-2) - 1.2731e+0 (1.30e-1) - 2.8718e-1 (1.27e-1) 
50 2.6320e+0 (9.86e-2) - 2.5772e+0 (2.80e-1) - 2.4252e+0 (4.26e-1) - 9.9698e-1 (7.39e-2) = 2.5056e+0 (2.08e-1) - 7.5162e-1 (2.20e-1) 
70 3.8966e+0 (1.72e-1) - 3.5791e+0 (5.71e-1) - 3.8555e+0 (2.07e-1) - 1.4005e+0 (1.87e-1) = 3.8740e+0 (1.49e-1) - 1.5436e+0 (3.09e-1) 
100 6.0155e+0 (2.28e-1) - 5.9585e+0 (4.68e-1) - 5.9360e+0 (1.76e-1) - 2.4331e+0 (4.85e-1) + 5.8165e+0 (4.79e-1) - 2.7704e+0 (3.83e-1) 

DTLZ6 

30 1.7473e+1 (8.88e-1) + 1.6046e+1 (2.64e+0) + 2.0919e+1 (7.10e-1) - 2.3710e+1 (5.41e-1) - 2.2781e+1 (6.48e-1) - 1.8758e+1 (1.02e+0) 
50 4.1889e+1 (2.09e-1) - 3.6028e+1 (3.59e+0) = 4.1206e+1 (8.20e-1) - 4.1539e+1 (3.67e-1) - 4.1395e+1 (1.03e+0) - 3.6657e+1 (1.01e+0) 
70 5.9570e+1 (3.92e-1) - 5.3512e+1 (4.24e+0) = 5.9492e+1 (3.31e-1) - 5.9151e+1 (5.12e-1) - 5.9522e+1 (2.76e-1) - 5.4904e+1 (1.06e+0) 
100 8.6411e+1 (2.86e-1) - 7.6307e+1 (5.92e+0) + 8.6044e+1 (5.21e-1) - 8.5196e+1 (1.10e+0) - 8.6252e+1 (4.42e-1) - 8.1151e+1 (1.35e+0) 

DTLZ7 

30 6.7371e-1 (1.12e-1) + 7.5217e+0 (1.32e+0) - 3.9536e+0 (3.33e+0) - 5.5832e+0 (7.81e-1) - 8.0330e+0 (6.96e-1) - 1.2860e+0 (6.87e-1) 
50 9.4700e+0 (4.35e-1) - 8.8591e+0 (1.93e+0) - 8.2685e+0 (2.07e+0) - 7.4483e+0 (2.36e-1) - 9.3107e+0 (3.94e-1) - 1.2331e+0 (6.12e-1) 
70 9.6985e+0 (3.82e-1) - 9.4573e+0 (6.02e-1) - 9.5336e+0 (3.78e-1) - 8.2305e+0 (5.44e-1) - 9.8086e+0 (3.17e-1) - 2.1932e+0 (9.25e-1) 
100 9.9196e+0 (2.91e-1) - 9.8696e+0 (4.50e-1) - 9.9235e+0 (3.20e-1) - 9.2965e+0 (9.92e-2) - 9.9034e+0 (3.31e-1) - 3.7728e+0 (4.81e-1) 

WFG1 

30 1.8148e+0 (7.91e-2) = 2.2111e+0 (5.21e-2) - 2.0189e+0 (1.46e-1) - 1.9801e+0 (5.26e-2) - 1.8286e+0 (8.74e-2) = 1.8363e+0 (8.59e-2) 
50 2.2513e+0 (3.20e-2) - 2.1968e+0 (7.23e-2) - 2.1955e+0 (1.44e-1) - 1.9938e+0 (1.47e-1) - 2.0989e+0 (1.17e-1) - 1.7708e+0 (7.15e-2) 
70 2.2416e+0 (6.13e-2) - 2.1881e+0 (4.88e-2) - 2.2425e+0 (3.98e-2) - 1.9692e+0 (9.33e-2) - 2.1870e+0 (1.16e-1) - 1.7808e+0 (6.60e-2) 
100 2.2276e+0 (5.60e-2) - 2.1943e+0 (5.38e-2) - 2.2299e+0 (4.96e-2) - 1.9911e+0 (1.25e-1) - 2.2120e+0 (7.83e-2) - 1.7543e+0 (7.15e-2) 

WFG2 

30 8.1644e-1 (1.91e-2) - 7.9077e-1 (5.45e-2) - 7.3281e-1 (2.99e-2) - 7.0746e-1 (2.48e-2) - 8.4518e-1 (2.78e-2) - 6.0967e-1 (5.79e-2) 
50 8.2628e-1 (2.35e-2) - 8.2543e-1 (1.64e-2) - 8.1120e-1 (3.35e-2) - 7.3401e-1 (2.66e-2) - 8.2561e-1 (2.34e-2) - 6.8105e-1 (4.12e-2) 
70 8.2469e-1 (1.72e-2) - 8.1193e-1 (1.08e-2) - 8.1661e-1 (1.43e-2) - 7.5572e-1 (1.41e-2) - 8.2482e-1 (2.35e-2) - 7.2173e-1 (3.56e-2) 
100 8.1026e-1 (1.79e-2) - 8.0844e-1 (1.19e-2) - 8.0436e-1 (1.15e-2) - 7.4055e-1 (2.07e-2) = 8.1033e-1 (1.17e-2) - 7.6164e-1 (1.77e-2) 

WFG3 

30 7.5424e-1 (1.40e-2) - 6.5009e-1 (2.40e-2) - 7.0973e-1 (2.44e-2) - 6.0957e-1 (2.48e-2) - 7.5072e-1 (1.47e-2) - 5.0284e-1 (9.79e-2) 
50 7.7242e-1 (1.19e-2) - 7.7121e-1 (8.21e-3) - 7.6904e-1 (1.76e-2) - 6.7082e-1 (1.03e-2) - 7.5771e-1 (1.32e-2) - 5.0478e-1 (6.15e-2) 
70 7.8453e-1 (9.31e-3) - 7.8401e-1 (1.02e-2) - 7.8392e-1 (7.71e-3) - 6.6544e-1 (2.29e-2) - 7.7551e-1 (1.27e-2) - 5.6249e-1 (3.49e-2) 
100 7.9786e-1 (5.09e-3) - 7.9822e-1 (6.43e-3) - 7.9849e-1 (6.51e-3) - 6.8872e-1 (8.87e-3) - 7.9469e-1 (1.15e-2) - 6.3212e-1 (4.26e-2) 

WFG4 

30 5.6822e-1 (1.22e-2) - 5.8525e-1 (4.61e-2) - 5.1804e-1 (1.35e-2) - 5.0608e-1 (2.67e-2) - 5.9795e-1 (4.78e-2) - 4.7311e-1 (2.02e-2) 
50 6.0020e-1 (2.02e-2) - 5.7670e-1 (2.13e-2) - 5.6651e-1 (2.72e-2) - 4.9447e-1 (1.15e-2) = 6.0435e-1 (2.31e-2) - 4.7816e-1 (2.14e-2) 
70 5.8376e-1 (1.89e-2) - 5.6570e-1 (1.31e-2) - 5.7682e-1 (1.49e-2) - 4.8542e-1 (1.95e-2) = 5.8137e-1 (1.43e-2) - 4.8230e-1 (1.75e-2) 
100 5.7149e-1 (1.89e-2) - 5.5158e-1 (1.06e-2) - 5.6903e-1 (2.09e-2) - 5.0069e-1 (9.17e-3) = 5.7837e-1 (2.20e-2) - 4.8860e-1 (1.36e-2) 

WFG5 

30 6.1600e-1 (1.89e-2) + 7.1551e-1 (1.59e-2) - 6.6635e-1 (1.87e-2) = 7.2837e-1 (1.29e-2) - 7.0290e-1 (3.60e-2) - 6.5469e-1 (2.54e-2) 
50 7.4762e-1 (6.26e-3) - 7.2099e-1 (1.36e-2) - 7.4218e-1 (1.00e-2) - 7.2340e-1 (6.03e-3) - 7.3044e-1 (1.29e-2) - 6.7682e-1 (1.62e-2) 
70 7.5013e-1 (3.81e-3) - 7.3466e-1 (8.24e-3) - 7.4748e-1 (6.37e-3) - 7.4008e-1 (6.48e-3) - 7.3970e-1 (9.08e-3) - 7.0512e-1 (1.37e-2) 
100 7.4981e-1 (3.27e-3) - 7.3359e-1 (7.10e-3) - 7.5004e-1 (4.89e-3) - 7.4835e-1 (5.35e-3) - 7.4530e-1 (3.83e-3) - 7.1593e-1 (9.11e-3) 

WFG6 

30 8.8460e-1 (4.03e-2) - 8.7469e-1 (2.23e-2) - 8.6146e-1 (1.07e-2) - 8.0717e-1 (9.30e-3) = 8.7366e-1 (1.87e-2) - 7.9990e-1 (4.53e-2) 
50 9.2031e-1 (8.96e-3) - 9.2417e-1 (3.09e-2) - 9.0562e-1 (1.47e-2) - 8.3932e-1 (1.23e-2) + 9.0025e-1 (1.42e-2) - 8.6371e-1 (1.48e-2) 
70 9.2447e-1 (9.00e-3) - 9.2098e-1 (4.57e-3) - 9.2324e-1 (6.36e-3) - 8.4228e-1 (1.23e-2) + 9.1252e-1 (7.80e-3) - 8.7887e-1 (2.10e-2) 
100 9.2914e-1 (4.53e-3) - 9.2756e-1 (6.06e-3) - 9.2664e-1 (5.18e-3) - 8.5282e-1 (1.50e-2) + 9.2369e-1 (8.69e-3) - 9.0535e-1 (1.06e-2) 

WFG7 

30 6.8820e-1 (1.28e-2) - 6.6805e-1 (1.43e-2) - 6.6283e-1 (1.04e-2) = 6.5873e-1 (6.71e-3) = 6.9969e-1 (1.47e-2) - 6.5825e-1 (1.36e-2) 
50 6.9738e-1 (6.33e-3) - 7.0058e-1 (7.13e-3) - 6.8835e-1 (8.48e-3) - 6.5131e-1 (1.31e-2) = 6.8690e-1 (1.17e-2) - 6.7769e-1 (9.01e-3) 
70 6.9864e-1 (5.69e-3) - 6.9881e-1 (8.08e-3) - 6.9424e-1 (5.54e-3) - 6.5538e-1 (9.06e-3) + 6.9285e-1 (9.78e-3) - 6.8041e-1 (5.36e-3) 
100 6.9643e-1 (5.06e-3) - 6.9680e-1 (3.49e-3) - 6.9454e-1 (4.92e-3) - 6.5843e-1 (8.15e-3) + 6.9305e-1 (5.15e-3) - 6.8568e-1 (5.04e-3) 

WFG8 

30 7.7615e-1 (1.22e-2) - 8.0805e-1 (2.11e-2) - 7.1549e-1 (1.78e-2) + 7.4059e-1 (2.48e-2) = 8.1468e-1 (2.08e-2) - 7.5029e-1 (3.28e-2) 
50 7.9517e-1 (8.52e-3) - 7.9507e-1 (1.40e-2) - 7.7380e-1 (2.23e-2) - 7.0791e-1 (1.19e-2) + 7.8498e-1 (1.83e-2) - 7.3381e-1 (1.32e-2) 
70 7.7689e-1 (1.05e-2) - 7.7778e-1 (7.89e-3) - 7.6569e-1 (8.46e-3) - 7.0574e-1 (1.02e-2) + 7.6746e-1 (1.12e-2) - 7.3430e-1 (1.04e-2) 
100 7.6223e-1 (1.03e-2) - 7.6365e-1 (1.07e-2) - 7.5772e-1 (9.72e-3) - 6.9467e-1 (5.68e-3) + 7.5775e-1 (8.11e-3) - 7.2573e-1 (9.05e-3) 

WFG9 

30 9.2192e-1 (3.67e-2) - 9.2263e-1 (4.57e-2) - 8.8111e-1 (3.67e-2) - 8.6834e-1 (5.65e-2) - 8.5730e-1 (4.75e-2) - 7.6479e-1 (6.14e-2) 
50 9.5073e-1 (1.62e-2) - 9.5243e-1 (2.61e-2) - 9.3835e-1 (2.54e-2) - 9.1322e-1 (1.28e-2) - 9.1210e-1 (2.83e-2) - 8.3944e-1 (4.06e-2) 
70 9.5696e-1 (1.40e-2) - 9.5944e-1 (1.35e-2) - 9.4860e-1 (1.66e-2) - 9.2153e-1 (6.83e-3) - 9.2193e-1 (2.65e-2) - 8.6149e-1 (3.71e-2) 
100 9.6266e-1 (1.08e-2) - 9.6292e-1 (8.62e-3) - 9.5801e-1 (9.21e-3) - 9.4421e-1 (2.24e-2) - 9.4942e-1 (1.51e-2) - 8.8618e-1 (3.38e-2) 

+/-/= 3/60/1 2/58/4 1/60/3 9/37/18 1/60/3  
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conclusion, the Wilcoxon rank-sum test is run with a significance level of α = 0.05, showing the statistically significant 

difference in the IGD results of SAEA-SHT and the other compared algorithms. In Tables 2 and 3, the symbols “+”, “-”, 

and “=” represent that the IGD results of other compared algorithms are significantly better than, worse than, and similar 

to those of SAEA-SHT, respectively, as indicated by the Wilcoxon rank-sum statistical test. 

4.3.1 Comparison Results on the DTLZ and WFG Problems 

The performance of all the compared algorithms is validated on all the DTLZ and WFG test problems. The IGD mean 

values under 30 independent runs on the DTLZ and WFG test problems with 30, 50, 70, and 100 decision variables are 

provided in Table 2. 

As observed from Table 2, SAEA-SHT performs best in 39 out of 64 cases, while MOEA/D-EGO, K-RVEA, HeE-

MOEA, ESF-RVEA, and KTA2 perform best in 5, 1, 14, 3, and 2 cases, respectively. From the pairwise comparison of 

 

 

 

 
Figure 4: Convergence profiles of all the compared algorithms on the DTLZ and WFG test problems with d = 70 
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SAEA-SHT with MOEA/D-EGO, K-RVEA, HeE-MOEA, ESF-RVEA, and KTA2, SAEA-SHT performs significantly 

better in 58, 60, 37, 60, and 60 cases, respectively. Specifically, for the DTLZ test problems, SAEA-SHT is outperformed 

by MOEA/D-EGO on 30-D and 100-D DTLZ6, by HeE-MOEA on 100-D DTLZ5, by EAF-RVEA on 30-D DTLZ7, and 

by KTA2 on 50-D DTLZ3, while K-RVEA fails to perform better than SAEA-SHT on any DTLZ test problem. For the 

WFG test problems, SAEA-SHT achieves superior performance in most WFG cases, including 50-D, 70-D, 100-D WFG1, 

30-D, 50-D, 70-D WFG2, 50-D, 70-D, 100-D WFG5, 30-D WFG6, 30-D, 50-D WFG7, and in all instances of WFG3, 

WFG4, WFG9. MOEA/D-EGO obtains statistically better IGD results than SAEA-SHT only on 30-D WFG5. K-RVEA 

only achieves a significantly better IGD result on 30-D WFG8. HeE-MOEA is able to show significantly better 

performance on 50-D, 70-D, 100-D WFG6, 70-D, 100-D WFG7, and 50-D, 70-D, 100-D WFG8.  

To further study the performance of SAEA-SHT, the convergence profiles of all the compared algorithms are depicted 

in Figure 4 for the DTLZ and WFG cases with 70 decision variables. It should be noted that all the IGD values in Figure 

4 are calculated using all the current solutions that have been truly evaluated. From these profiles, SAEA-SHT outperforms 

MOEA/D-EGO, K-RVEA, HeE-MOEA, ESF-RVEA, and KTA2 in most cases. More specifically, SAEA-SHT is the best 

algorithm to achieve the smallest mean IGD results, except on DTLZ2, DTLZ5, DTLZ6, WFG6, WFG7, and WFG8. 

SAEA-SHT achieves significantly better performance on DTLZ1, DTLZ3, DTLZ4, DTLZ7, WFG1-WFG5, and WFG9, 

while it is able to show competitive performance on DTLZ2, DTLZ5, DTLZ6, WFG6, WFG7, and WFG8 according to its 

convergence trends in Figure 4. 

In addition, the final nondominated solutions achieved by each compared algorithm are also plotted in Figure A.1 of 

Appendix A when solving the DTLZ and WFG problems with 70 decision variables in the run associated with the 15th best 

IGD value. As observed from Figure A.1 of Appendix A, only HeE-MOEA and SAEA-SHT are capable of accurately 

approximating the true PF of DTLZ4, while the final solutions yielded by MOEA/D-EGO, K-RVEA, ESF-RVEA, and 

KTA2 are far from the true PF. For DTLZ7, SAEA-SHT obtains the final solutions with better convergence, while the 

other compared algorithms show poor approximation performance. With respect to WFG9, which is a difficult problem to 

tackle, all the algorithms can only find solutions with poor convergence in the objective space. Nevertheless, SAEA-SHT 

still performs better in terms of convergence towards the PF. 

4.3.2 Comparison Results on the UF and MaF Problems 

Here, the performance of all the algorithms is also compared on all the UF and MaF test problems. Their IGD values under 

30 independent runs on the UF and MaF test problems are given in Table 3. As observed from Table 3, SAEA-SHT 

performs significantly better than MOEA/D-EGO, K-RVEA, HeE-MOEA, ESF-RVEA, and KTA2 in 59/64 ≈ 92%, 52/64 

≈ 81%, 51/64 ≈ 80%, 46/64 ≈ 72%, and 60/64 ≈ 94% of the UF and MaF test problems, respectively. The smallest and 

largest percentages are 72% and 94%, respectively. From these IGD results, we can see that SAEA-SHT achieves the best 

results in 54 cases, followed by ESF-RVEA which obtains the best results in 6 cases. Therefore, it is reasonable to conclude 

that our SAEA-SHT algorithm performs best in most cases of the UF and MaF test problems. 

For the UF test suite, our proposed algorithm SAEA-SHT is only defeated by K-RVEA in some cases, while the other 

compared algorithms can only achieve some similar cases with SAEA-SHT. K-RVEA performs better than SAEA-SHT 

on 30-D UF9 and similarly to SAEA-SHT on 30-D UF1-UF3 and UF6-UF8. When compared to SAEA-SHT, MOEA/D-

EGO performs similarly on 30-D UF4, HeE-MOEA performs similarly on 100-D UF3, ESF-SAEA performs similarly on 

30-D UF1- UF3, UF5-UF9, and 50-D,70-D UF5, and KTA2 performs similarly on 30-D UF3. From the IGD results of 

Table 3, we can also observe that our proposed algorithm SAEA-SHT shows absolute superiority over its five competitors 

when solving the WFG test suite. When compared with MOEA/D-EGO, except for 30-D MaF4, SAEA-SHT performs 
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better on the remaining cases. HeE-MOEA can only achieve significantly better IGD results on 100-D MaF. In addition, 

K-RVEA, ESF-RVEA, and KTA2 are unable to show significantly better performance on any test case. 

In order to examine the convergence speed of the compared algorithms, their mean IGD values versus the function 

evaluation numbers over 30 independent runs are plotted in Figure 5, where the UF and MaF test problems with 70 decision 

variables are used as the representative cases. It can be observed from Figure 5 that the convergence curve of the mean 

Table 3: Comparisons of SAEA-SHT with Five Algorithms on the UF and MaF Test Suites 

Problem D ESF-RVEA MOEA/D-EGO K-RVEA HeE-MOEA KTA2 SAEA-SHT 

UF1 

30 8.1323e-1 (1.08e-1) = 1.1827e+0 (1.16e-1) - 8.5522e-1 (1.85e-1) = 1.1576e+0 (8.73e-2) - 1.0429e+0 (1.63e-1) - 7.5239e-1 (1.04e-1) 
50 1.2156e+0 (1.52e-1) - 1.4000e+0 (8.76e-2) - 1.3496e+0 (1.24e-1) - 1.3211e+0 (1.21e-1) - 1.3350e+0 (1.08e-1) - 1.0632e+0 (1.17e-1) 
70 1.3671e+0 (1.33e-1) - 1.5347e+0 (7.78e-2) - 1.4967e+0 (7.98e-2) - 1.4526e+0 (7.15e-2) - 1.4840e+0 (7.61e-2) - 1.1534e+0 (1.30e-1) 
100 1.5125e+0 (8.25e-2) - 1.5997e+0 (5.88e-2) - 1.6265e+0 (5.92e-2) - 1.5430e+0 (6.08e-2) - 1.5871e+0 (6.92e-2) - 1.3029e+0 (1.33e-1) 

UF2 

30 1.7861e-1 (2.45e-2) = 4.0388e-1 (1.19e-1) - 1.7177e-1 (1.31e-2) = 2.3752e-1 (4.11e-2) - 4.5843e-1 (6.80e-2) - 1.7488e-1 (1.61e-2) 
50 5.6076e-1 (1.03e-1) - 6.7117e-1 (3.08e-2) - 5.9238e-1 (1.23e-1) - 4.0217e-1 (3.86e-2) - 6.4641e-1 (3.16e-2) - 2.1792e-1 (1.69e-2) 
70 6.3404e-1 (5.75e-2) - 7.0410e-1 (3.05e-2) - 6.9988e-1 (2.77e-2) - 4.1328e-1 (7.09e-2) - 6.9267e-1 (1.92e-2) - 2.5505e-1 (3.08e-2) 
100 6.6568e-1 (4.42e-2) - 7.4549e-1 (1.80e-2) - 7.3977e-1 (1.98e-2) - 4.6805e-1 (2.98e-2) - 7.3451e-1 (2.44e-2) - 2.8910e-1 (2.05e-2) 

UF3 

30 5.7617e-1 (1.52e-1) = 9.6293e-1 (1.39e-1) - 5.6243e-1 (2.88e-2) = 6.6134e-1 (2.52e-2) - 6.2540e-1 (1.75e-1) = 5.4848e-1 (2.42e-2) 
50 8.5095e-1 (1.57e-1) - 9.9277e-1 (6.39e-2) - 9.8126e-1 (4.95e-2) - 6.5419e-1 (1.77e-2) - 9.5446e-1 (1.45e-1) - 5.2924e-1 (3.81e-2) 
70 8.8879e-1 (8.54e-2) - 1.0042e+0 (3.29e-2) - 9.4552e-1 (4.36e-2) - 6.3771e-1 (4.93e-2) - 9.8653e-1 (5.31e-2) - 5.5071e-1 (4.27e-2) 
100 9.0911e-1 (5.90e-2) - 9.7933e-1 (3.61e-2) - 9.6608e-1 (4.75e-2) - 7.0755e-1 (4.85e-2) = 9.4588e-1 (5.23e-2) - 6.0890e-1 (4.80e-2) 

UF4 

30 1.5719e-1 (9.03e-3) - 1.4368e-1 (1.15e-2) = 1.6122e-1 (7.01e-3) - 1.7609e-1 (5.28e-3) - 1.7308e-1 (4.51e-3) - 1.4198e-1 (8.38e-3) 
50 1.8707e-1 (2.75e-3) - 1.8370e-1 (3.64e-3) - 1.8902e-1 (4.69e-3) - 1.8613e-1 (1.01e-3) - 1.8318e-1 (7.59e-3) - 1.7111e-1 (6.38e-3) 
70 1.9259e-1 (2.37e-3) - 1.9166e-1 (3.55e-3) - 1.9590e-1 (1.74e-3) - 1.9321e-1 (1.51e-3) - 1.9196e-1 (4.67e-3) - 1.8202e-1 (4.82e-3) 
100 1.9685e-1 (1.96e-3) - 1.9705e-1 (2.35e-3) - 1.9963e-1 (1.80e-3) - 1.9764e-1 (1.66e-3) - 1.9516e-1 (2.84e-3) - 1.9259e-1 (2.44e-3) 

UF5 

30 3.7071e+0 (5.85e-1) = 4.8256e+0 (2.84e-1) - 4.4210e+0 (3.75e-1) - 4.8578e+0 (1.63e-1) - 4.6999e+0 (3.05e-1) - 4.0302e+0 (4.15e-1) 
50 4.8642e+0 (4.07e-1) = 5.4749e+0 (1.08e-1) - 5.3638e+0 (1.56e-1) - 5.4219e+0 (1.06e-1) - 5.1640e+0 (3.24e-1) - 4.6321e+0 (4.68e-1) 
70 5.1778e+0 (1.58e-1) = 5.7517e+0 (1.87e-1) - 5.7250e+0 (1.66e-1) - 5.6173e+0 (1.90e-1) - 5.6214e+0 (2.42e-1) - 4.9570e+0 (3.30e-1) 
100 5.7485e+0 (2.06e-1) - 5.8768e+0 (2.16e-1) - 6.0618e+0 (1.55e-1) - 5.7953e+0 (1.22e-1) - 5.9692e+0 (1.52e-1) - 5.3280e+0 (3.03e-1) 

UF6 

30 3.7027e+0 (8.18e-1) = 5.1808e+0 (5.98e-1) - 4.1460e+0 (7.30e-1) = 4.9152e+0 (5.39e-1) - 4.8268e+0 (5.51e-1) - 3.4377e+0 (9.19e-1) 
50 5.4036e+0 (5.57e-1) - 5.6604e+0 (4.16e-1) - 5.8037e+0 (5.75e-1) - 5.4199e+0 (2.44e-1) - 6.0253e+0 (4.20e-1) - 4.1321e+0 (7.49e-1) 
70 5.4699e+0 (4.08e-1) - 6.2370e+0 (4.31e-1) - 6.3011e+0 (3.49e-1) - 5.8918e+0 (2.54e-1) - 6.1732e+0 (2.52e-1) - 4.6443e+0 (6.85e-1) 
100 6.1905e+0 (3.71e-1) - 6.6300e+0 (3.28e-1) - 6.6689e+0 (3.55e-1) - 6.0061e+0 (2.42e-1) - 6.4164e+0 (3.32e-1) - 5.3640e+0 (4.54e-1) 

UF7 

30 8.2892e-1 (1.63e-1) = 1.2301e+0 (9.31e-2) - 1.0200e+0 (2.27e-1) = 1.2518e+0 (5.03e-2) - 1.0674e+0 (2.42e-1) - 8.6801e-1 (1.46e-1) 
50 1.3493e+0 (9.07e-2) - 1.4225e+0 (7.45e-2) - 1.4271e+0 (1.08e-1) - 1.3357e+0 (8.91e-2) - 1.3618e+0 (1.24e-1) - 1.1737e+0 (9.11e-2) 
70 1.4350e+0 (9.15e-2) - 1.5783e+0 (6.21e-2) - 1.5673e+0 (5.85e-2) - 1.4571e+0 (6.71e-2) - 1.5441e+0 (6.08e-2) - 1.2565e+0 (1.51e-1) 
100 1.5038e+0 (9.44e-2) - 1.6598e+0 (6.27e-2) - 1.7141e+0 (4.45e-2) - 1.5858e+0 (2.51e-2) - 1.6355e+0 (7.50e-2) - 1.3223e+0 (8.96e-2) 

UF8 

30 3.5530e-1 (4.43e-2) = 1.0607e+0 (2.72e-1) - 3.9478e-1 (2.25e-2) = 7.6149e-1 (6.18e-2) - 9.6572e-1 (4.43e-1) - 3.6567e-1 (3.91e-2) 
50 2.3594e+0 (6.85e-1) - 3.1104e+0 (1.51e-1) - 3.0064e+0 (5.02e-1) - 1.3964e+0 (1.67e-1) - 3.1590e+0 (2.71e-1) - 4.4216e-1 (5.41e-2) 
70 2.9164e+0 (3.49e-1) - 3.4534e+0 (1.82e-1) - 3.3481e+0 (1.53e-1) - 1.6153e+0 (2.10e-1) - 3.2812e+0 (1.53e-1) - 4.5163e-1 (2.30e-2) 
100 3.1322e+0 (3.06e-1) - 3.4897e+0 (1.69e-1) - 3.5893e+0 (1.25e-1) - 2.0228e+0 (3.46e-1) - 3.5116e+0 (1.59e-1) - 5.5226e-1 (5.38e-2) 

UF9 

30 8.4365e-1 (4.17e-2) = 1.1358e+0 (2.19e-1) - 7.5258e-1 (6.31e-2) + 1.0795e+0 (1.42e-1) - 1.3157e+0 (8.60e-1) - 8.4367e-1 (2.16e-2) 
50 2.5051e+0 (7.71e-1) - 3.1280e+0 (4.31e-1) - 2.9989e+0 (7.18e-1) - 1.2332e+0 (2.63e-1) - 3.2526e+0 (2.29e-1) - 8.7750e-1 (1.30e-2) 
70 2.9139e+0 (3.08e-1) - 3.4978e+0 (1.65e-1) - 3.3717e+0 (1.80e-1) - 1.6837e+0 (1.50e-1) - 3.3328e+0 (2.39e-1) - 8.7486e-1 (1.57e-2) 
100 3.1881e+0 (2.72e-1) - 3.6452e+0 (1.15e-1) - 3.6681e+0 (1.22e-1) - 2.0393e+0 (2.36e-1) - 3.7383e+0 (9.14e-2) - 8.8572e-1 (1.48e-2) 

MaF1 

30 1.4595e-1 (1.90e-2) - 6.8729e-1 (5.35e-2) - 2.3197e-1 (2.92e-2) - 4.0123e-1 (3.23e-2) - 8.6181e-1 (2.89e-1) - 9.4963e-2 (1.94e-2) 
50 2.3283e+0 (3.53e-1) - 2.8252e+0 (5.03e-1) - 2.7151e+0 (3.63e-1) - 9.7500e-1 (1.53e-1) - 3.0011e+0 (2.65e-1) - 2.0126e-1 (6.19e-2) 
70 3.4332e+0 (4.87e-1) - 3.6044e+0 (1.17e+0) - 4.7443e+0 (3.28e-1) - 2.0461e+0 (2.53e-1) - 4.4697e+0 (4.20e-1) - 3.9776e-1 (1.21e-1) 
100 5.9599e+0 (7.35e-1) - 6.9358e+0 (5.24e-1) - 7.0252e+0 (2.95e-1) - 3.0450e+0 (1.53e-1) - 6.8168e+0 (3.83e-1) - 9.0010e-1 (2.46e-1) 

MaF2 

30 7.1502e-2 (6.77e-3) = 1.1493e-1 (1.43e-2) - 9.6309e-2 (6.47e-3) - 8.8665e-2 (2.03e-3) = 1.4184e-1 (3.41e-3) - 7.6100e-2 (1.92e-2) 
50 2.1507e-1 (1.13e-2) - 2.3752e-1 (6.05e-3) - 2.3332e-1 (8.50e-3) - 1.3612e-1 (7.25e-3) - 2.3771e-1 (8.27e-3) - 9.9196e-2 (1.28e-2) 
70 3.1320e-1 (1.51e-2) - 3.4352e-1 (1.20e-2) - 3.4678e-1 (9.13e-3) - 1.9653e-1 (3.80e-3) - 3.4587e-1 (7.96e-3) - 1.1752e-1 (1.91e-2) 
100 4.8651e-1 (1.89e-2) - 5.0762e-1 (1.89e-2) - 5.0537e-1 (1.66e-2) - 2.8713e-1 (8.58e-4) - 5.0581e-1 (1.76e-2) - 1.8808e-1 (2.81e-2) 

MaF3 

30 3.5258e+6 (7.17e+5) = 4.3157e+6 (1.15e+6) - 5.9072e+6 (1.42e+6) - 4.7645e+6 (7.34e+5) - 3.4844e+6 (5.37e+5) = 3.3657e+6 (3.67e+5) 
50 1.7687e+7 (3.39e+6) - 2.1395e+7 (3.04e+6) - 2.2766e+7 (2.44e+6) - 1.7216e+7 (1.51e+6) - 2.2075e+7 (2.99e+6) - 1.2841e+7 (1.37e+6) 
70 4.0193e+7 (7.89e+6) - 3.9885e+7 (6.25e+6) - 4.4230e+7 (5.60e+6) - 3.6489e+7 (4.24e+6) - 4.1501e+7 (3.43e+6) - 2.9315e+7 (1.92e+6) 
100 7.9285e+7 (1.65e+7) - 9.3876e+7 (1.02e+7) - 9.4426e+7 (7.06e+6) - 7.5574e+7 (5.17e+6) - 9.5815e+7 (8.97e+6) - 6.5479e+7 (4.96e+6) 

MaF4 

30 5.1074e+3 (6.76e+2) = 4.4160e+3 (9.22e+2) + 6.1768e+3 (5.64e+2) = 6.3698e+3 (5.80e+2) = 6.5418e+3 (2.45e+2) - 5.5648e+3 (8.45e+2) 
50 1.0333e+4 (1.10e+3) = 1.1667e+4 (9.09e+2) - 1.1183e+4 (7.14e+2) = 1.1860e+4 (6.64e+2) - 1.1480e+4 (7.53e+2) - 1.0708e+4 (6.29e+2) 
70 1.6451e+4 (1.57e+3) = 1.6987e+4 (9.87e+2) = 1.7050e+4 (8.03e+2) = 1.7142e+4 (7.51e+2) - 1.7770e+4 (7.98e+2) - 1.6295e+4 (9.27e+2) 
100 2.4059e+4 (1.60e+3) = 2.5266e+4 (1.68e+3) = 2.5557e+4 (6.18e+2) = 2.6472e+4 (3.73e+2) - 2.5695e+4 (1.20e+3) = 2.4665e+4 (1.66e+3) 

MaF5 

30 3.7279e+0 (7.37e-1) = 5.9333e+0 (8.74e-1) - 4.3918e+0 (1.19e+0) - 6.2462e+0 (3.92e-1) - 3.8345e+0 (9.75e-1) = 3.2530e+0 (7.86e-1) 
50 8.1020e+0 (1.09e+0) - 9.5831e+0 (8.70e-1) - 9.0525e+0 (1.08e+0) - 7.9982e+0 (1.90e+0) - 9.3524e+0 (1.55e+0) - 5.1353e+0 (1.11e+0) 
70 1.1325e+1 (2.00e+0) - 1.2773e+1 (9.36e-1) - 1.2648e+1 (1.38e+0) - 1.1405e+1 (1.80e+0) - 1.2498e+1 (1.10e+0) - 7.3261e+0 (8.73e-1) 
100 1.4776e+1 (1.14e+0) - 1.7543e+1 (1.46e+0) - 1.7837e+1 (1.30e+0) - 1.7377e+1 (1.43e+0) - 1.6943e+1 (6.33e-1) - 9.6278e+0 (1.18e+0) 

MaF6 

30 1.2513e+1 (4.31e+0) - 4.2496e+1 (1.43e+1) - 2.4254e+1 (5.64e+0) - 2.4081e+1 (7.26e+0) - 6.8371e+1 (9.18e+0) - 8.7198e+0 (4.57e+0) 
50 1.8812e+2 (3.34e+1) - 2.5929e+2 (1.78e+1) - 2.4115e+2 (2.56e+1) - 6.4983e+1 (1.34e+1) - 2.3791e+2 (1.69e+1) - 3.8636e+1 (1.32e+1) 
70 3.1343e+2 (2.43e+1) - 3.6376e+2 (3.14e+1) - 3.6685e+2 (2.35e+1) - 1.6604e+2 (6.02e+0) - 3.6223e+2 (2.60e+1) - 1.0348e+2 (2.66e+1) 
100 4.9744e+2 (5.68e+1) - 5.6636e+2 (6.00e+1) - 5.7406e+2 (3.26e+1) - 1.8845e+2 (4.46e+1) + 5.5927e+2 (5.59e+1) - 2.1881e+2 (2.93e+1) 

MaF7 

30 9.6262e-1 (3.92e-1) = 1.2384e+0 (2.18e+0) = 1.0549e+0 (3.54e-1) = 5.8984e+0 (9.69e-1) - 7.8552e+0 (1.06e+0) - 8.5116e-1 (3.68e-1) 
50 8.4142e+0 (7.89e-1) - 9.2743e+0 (6.98e-1) - 8.3600e+0 (1.32e+0) - 7.0490e+0 (6.83e-1) - 9.1401e+0 (5.97e-1) - 1.6273e+0 (7.28e-1) 
70 8.9116e+0 (8.58e-1) - 9.5072e+0 (4.59e-1) - 9.6951e+0 (3.64e-1) - 8.1832e+0 (5.62e-1) - 9.6435e+0 (4.89e-1) - 1.6543e+0 (1.03e+0) 
100 9.5902e+0 (3.70e-1) - 9.7683e+0 (3.04e-1) - 9.8039e+0 (3.15e-1) - 9.0127e+0 (5.92e-1) - 1.0021e+1 (4.46e-1) - 3.8288e+0 (7.07e-1) 

+/-/= 0/46/18 1/59/4 1/52/11 1/51/3 0/60/4  
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IGD values achieved by SAEA-SHT shows the fastest convergence speed on all 70-D UF and MaF test problems. The 

promising convergence speed of SAEA-SHT is mainly attributed to the generation of the helper task and the adopted 

SEMO. 

To visually show the optimization performance, Figure A.2 of Appendix A plots the final nondominated solutions 

obtained by each compared algorithm with the median IGD values over 30 independent runs on several representative 70-

D UF and MaF test problems. Figure A.2 of Appendix A shows that the final solutions of UF6 obtained by all the compared 

algorithms do not have good convergence to the true PF, while SAEA-SHT can achieve a better approximation than the 

other algorithms. For UF2 and UF4, which are plotted in Figure A.2 of Appendix A, the final solutions obtained by all the 

algorithms have good convergence but cannot be evenly spread over the whole PF. However, the final solutions obtained 

by SAEA-SHT still show better diversity than the other algorithms. When solving MaF2 in Figure A.2 of Appendix A,  

 

 

 

 

Figure 5: Convergence profiles of all the compared algorithms on the UF and MaF test problems with d = 70 
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Figure 6: Average running times of all the compared algorithms on the UF and MaF test problems with d = 70 

SAEA-SHT also outperforms MOEA/D-EGO, K-RVEA, HeE-MOEA, ESF-RVEA, and KTA2 in terms of both 

convergence and diversity according to their final solutions. 

4.4 More Discussions 

4.4.1 Computational Time 

To further evaluate the actual runtime of the six above SAEAs adopted in our comparative study, their average running 

times (in seconds: s) are plotted in Figure 6, where the UF and MaF test problems with 70 decision values are used as the 

representative cases. According to Figure 6, our proposed algorithm SAEA-SHT has a much lower computational 

complexity, mainly because SAEA-SHT adopts an incremental Kriging model as its surrogate model. HeE-MOEA and 

MOEA/D-EGO are ranked second and third, respectively, and their computational times are smaller than those of the other 

algorithms by at least one order of magnitude except for SAEA-SHT. In addition, the computational times of K-RVEA, 

ESF-RVEA, and KTA2 are considerably greater than those of SAEA-SHT, HeE-MOEA, and MOEA/D-EGO, which can 

be attributed to the use of Kriging models in these algorithms. The high computational cost restricts them from tackling 

high-dimensional optimization problems. Thus, our proposed algorithm SAEA-SHT not only achieves superior 

optimization performance, but also reduces the computational cost. 

4.4.2 Comparisons with More State-of-the-art SAEAs 

More recently, there have been several state-of-the-art SAEAs designed for tackling high-dimensional EMOPs. In this 

section, two SAEAs (i.e., EDN-ARMOEA [Guo et al. 2022] and MCEA/D [Sonoda and Nakata 2022]) are included for 

performance comparison with SAEA-SHT for solving all the UF and MaF test problems. Due to page limitations, their 

IGD results are provided in Table A.2 of Appendix A. Table 4 summarizes their pairwise comparison results based on the 

IGD results in Table A.2 of Appendix A. Note that in Table 4, “Better”, “Worse”, and “Similar” indicate respectively the 

number of test problems in which the performance of SAEA-SHT is better than, worse than, and similar to those of EDN-

ARMOEA and MCEA/D, while “Best” indicates the number of test problems in which the corresponding algorithm 

performs best. 

As observed from Table 4, SAEA-SHT shows advantages for tackling the 30-D, 50-D, 70-D, 100-D UF and MaF test 

problems. To be specific, the performance of SAEA-SHT is better than that of EDN-ARMOEA and MCEA/D on 57 and  
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Table 4: Summary of Comparison of SAEA-SHT with EDN-ARMOEA and MCEA/D 

SAEA-SHT vs. EDN-ARMOEA MCEA/D 

UF and MaF 
(d = 30, 50, 70, 100) 

Better 57 48 
Worse 0 8 
Similar 7 8 

Best 52 0 12 

Table 5: Summary of Comparison of SAEA-SHT with Different nd Values 

SAEA-SHT (nd = 10) vs. nd = 5 nd = 15 nd = 20 

UF and MaF 
(d = 30, 50, 70, 100) 

Better 14 18 11 

Worse 7 4 10 

Similar 43 42 43 

Best 31 7 8 18 

48 out of 64 cases, respectively, while EDN-ARMOEA and MCEA/D significantly outperform or are competitive with 

SAEA-SHT on only 7 and 16 cases, respectively. Moreover, EDN-ARMOEA even fails to achieve significantly better 

IGD results than SAEA-SHT on any of 64 cases. Therefore, the advantages of our proposed algorithm over other state-of-

the-art SAEAs are validated for solving high-dimensional test EMOPs. 

4.4.3 Sensitivity Analysis of Parameter nd 

To analyze the sensitivity of the parameter nd (the dimension of the helper task) in SAEA-SHT, some experiments are run 

in this section. Four SAEA-SHT variants with different nd values from {5, 10, 15, 20} are experimentally compared with 

other parameters settings in Section 4.2. The IGD results on all the UF and MaF test problems with 30, 50, 70, and 100 

decision variables are provided in Table A.3 of Appendix A. Table 5 summarizes the comparison of the IGD results of 

SAEA-SHT with different nd values based on their IGD results. 

As observed from Table 5, SAEA-SHT using nd =10 has statistically similar IGD results with respect to those using nd 

= 5, nd = 15, and nd = 20 on 43, 42, and 43 out of 64 cases, respectively. It seems that SAEA-SHT is not as sensitive to the 

setting of parameter nd when changing from 5 to 20. Nevertheless, SAEA-SHT using nd = 10 is the best among the four 

compared variants since it achieves the best IGD results on the largest number of test cases, i.e., 31 out of 64 cases. The 

other three compared variants using nd = 5, nd = 15, and nd = 20 achieve the best IGD results on 7, 8, and 18 cases, 

respectively. Furthermore, SAEA-SHT using nd = 10 performs better than that using nd = 5, nd = 15, and nd = 20 on 14, 18, 

and 11 cases. Therefore, in this article, the value of parameter nd is set as 10. 

In addition, to further study the effect of different settings of parameter nd for helper task generation in Section 3.1, 

SAEA-SHT is also compared to its variants with four different settings of nd (i.e., nd = 0.2  d, nd = 0.4  d, nd = 0.6  d, 

and nd = 0.8  d). Due to page limitations, the comparison results are provided in Table A.4 of Appendix A and Table 6 

summarizes their pairwise comparison results. The results reported in Table 6 show that SAEA-SHT with nd = 10 obtains 

the best results on 36 out of 64 cases, while other SAEA-SHT variants with different nd values achieve the best results on 

the remaining 28 cases. As indicated by Wilcoxon’s rank-sum test, SAEA-SHT with nd = 10 can perform significantly 

better than or similarly to SAEA-SHT with nd = 0.2  d, nd = 0.4  d, nd = 0.6  d, and nd = 0.8  d on 59, 60, 60, and 63 

cases, respectively. Furthermore, SAEA-SHT with nd = 10 is outperformed by that with nd = 0.2  d, nd = 0.4  d, nd = 0.6 

 d, and nd = 0.8  d only on 5, 4, 4, and 1 cases, respectively. In addition, nd = 0.2  d is the best algorithm among four 

variants, since it is able to show similar performance to nd = 10 on 51 out of 64 cases. Nevertheless, SAEA-SHT with nd = 

0.2  d performs significantly better than that with nd =10 on only 5 out of 64 cases. Furthermore, Figure 7 plots the average 

computational time consumed to complete one trial for all the UF and MaF test problems with d = 100. From the table, it  
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Table 6: Summary of Comparison of SAEA-SHT with Different nd Values 

SAEA-SHT (nd = 10) vs. nd = 0.2  d nd = 0.4  d nd = 0.6  d nd = 0.8  d 

UF and MaF 
(d = 30, 50, 70, 100) 

Better 8 16 28 32 

Worse 5 4 4 1 

Similar 51 44 32 31 

Best 36 14 8 4 2 

 

Figure 7: Average running times of five compared algorithms on the UF and MaF test problems with d = 100 

is evident that nd =10 performs much faster than the other four variants, as it builds computationally efficient Kriging 

models. It can be also observed that the computational time of SAEA-SHT is highly dependent on the increase of nd, since 

the computational complexity of the employed Kriging models mainly depends on the dimensionality of the training 

samples. As a consequence, in consideration of the optimization performance and computational efficiency, nd = 10 is 

recommended as the value of parameter nd. 

4.4.4 Effectiveness of the Helper Task Generation 

To study the effectiveness of the helper task generation introduced in Section 3.1, more experiments are executed to 

compare SAEA-SHT with its variant without using the helper task generation (called SAEA-SHT-I). Thus, SAEA-SHT-I 

only performs a general SAEA without the assistance of the helper task, which does not use the evolutionary multitasking 

optimizer. Their IGD results are presented in Table A.5 of Appendix A. Table 7 summarizes their pairwise comparison 

results. It can be observed from Table 7 that SAEA-SHT shows distinct advantages when tackling 30-D, 50-D, 70-D, and 

100-D UF and MaF test problems. In addition, SAEA-SHT performs significantly better than or similarly to SAEA-SHT-

I on 50 out of 64 cases, while SAEA-SHT-I only performs better on 14 cases. Therefore, the proposed helper task 

generation is validated to have a significant contribution to the performance of the SAEA-SHT. 

Moreover, in order to observe the effectiveness of the knowledge transfer between two tasks more clearly, the average 

transfer successful rate from the helper task to the target task on DTLZ3, WFG9, and MaF3 with 70 decision variables on 

30 runs is plotted in Figure 8. Note that for test problems with d = 70, there are 11d+119 = 889 function evaluations that 

can be used for evolutionary optimization, and 11d-1=769 function evaluations are consumed to generate training samples. 

Thus, the knowledge transfer from the helper task to the target task takes place from 770 to 889 function evaluations (in a 

total of 120 function evaluations). As shown from Figure 8, for DTLZ3, the average transfer successful rate is maintained  

at low and high levels in the former 80 function evaluations and the latter 40 function evaluations, respectively. Since  
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Table 7: Summary of Comparison of SAEA-SHT with Six Variants 

SAEA-SHT vs. SAEA-SHT-I ExI LCB PoI SAEA-SHT-E SAEA-SHT-U 

UF and MaF 
(d = 30, 50, 70, 100) 

Better 42 43 45 49 38 44 
Worse 14 4 1 0 11 5 
Similar 8 17 18 15 15 15 

Best 44 9 2 1 0 6 2 

     

Figure 8: Average transfer successful rate form the helper task to the target task on DTLZ3, WFG9, MaF3 with d = 70 

population in the helper task may be far away from the true PF of the target problem, the transferred solutions generated 

from knowledge transfer are discarded by the target task. Nevertheless, after the transferred population converges to the 

true PF, the knowledge transfer is capable of assisting the optimization of the target task. Thus, since the search experiences 

of the helper task are helpful for the target task, the successful rate of knowledge transfer is maintained at high level. As 

for WFG9, the successful transfer rate is maintained at around 0.4 during the entire evolutionary process, which indicates  

that the helper task is able to provide beneficial knowledge for the target task from beginning to end. With respect to MaF3, 

the successful transfer rate is maintained at a very low level in the later evolutionary process, however, it is always larger 

than 0. Although the auxiliary efficiency is very low, the target task can take advantage of the successfully transferred 

solutions to generate more nondominated solutions. Therefore, the above experimental results fully demonstrate the 

effectiveness of the knowledge transfer from the helper task to the target task. 

4.4.5 Effectiveness of the Model Management Strategy 

To further verify the effectiveness of the proposed model management strategy introduced in Section 3.4, three popular 

model management strategies (ExI, LCB, PoI) are embedded into SAEA-SHT, giving rise to three SAEA-SHT variants 

identified as ExI, LCB, and PoI in this article for the sake of simplicity. Their IGD results are presented in Table A.5 of 

Appendix A for tackling 30-D, 50-D, 70-D, and 100-D UF and MaF test problems. Table 7 summarizes the pairwise 

comparison results of SAEA-SHT with ExI, LCB, and PoI. As observed from Table 7, our model management strategy in 

SAEA-SHT shows superior optimization performance over other strategies, as SAEA-SHT is better than ExI, LCB, and 

PoI on 43, 45, and 49 out of 64 cases, respectively, while only ExI and LCB perform better than our strategy on 4 and 1 

cases, respectively. Since the three model management strategies were originally designed for solving expensive single-

objective optimization problems, it is reasonable that they cannot perform as well in SAEA-SHT because SAEA-SHT does 

not decompose high-dimensional EMOPs into single-objective optimization problems. Thus, the model management 

strategy proposed in SAEA-SHT is more effective, as validated by these experiments. 

Moreover, since the proposed model management strategy selects new samples with the minimum Euclidean distance 

or maximum uncertainty, SAEA-SHT is further compared with the other two variants: 

 SAEA-SHT-E only selects solutions with the minimum Euclidean distance. 
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 SAEA-SHT-U only selects solutions with the maximum uncertainty. 

The experiments are conducted on UF and MaF test problems with 30, 50, 70, and 100 decision variables. Table A.5 

of Appendix A provides the IGD results yielded by SAEA-SHT, SAEA-SHT-E, and SAEA-SHT-U over 30 independent 

runs. Table 7 gives the pairwise comparison results of SAEA-SHT, SAEA-SHT-E, and SAEA-SHT-U. As observed from 

Table 7, SAEA-SHT obtains the best IGD results on more than half of the cases, i.e., on 44 out of 64 cases, which confirms 

that SAEA-SHT is the best one in the comparison. The two variants SAEA-SHT-E and SAEA-SHT-U obtain the best IGD 

results on 6 and 2 test cases, respectively. Thus, the above experimental results and analyses validate the effectiveness of 

the proposed model management strategy.  

5 CONCLUSIONS AND FUTURE WORK 

In this article, we have proposed a novel surrogate-assisted evolutionary algorithm with a simplified helper task, called 

SAEA-SHT, for high-dimensional expensive multiobjective optimization. SAEA-SHT consists of three main components, 

i.e., surrogate training for the tasks, a surrogate-assisted evolutionary multitasking optimizer, and a model management 

strategy. In surrogate training for the tasks, a helper task including only some of the decision variables is constructed to 

help tackle the target task (the target EMOPs). After that, one incremental surrogate model is trained with gradually 

evaluated samples for the target task, and one general surrogate model is trained at each generation for the helper task to 

enhance the diversity of knowledge transfer. Then, a surrogate-assisted evolutionary multitasking optimizer is designed to 

optimize the target task with the assistance of a simplified helper task. Finally, an effective model management strategy is 

proposed to identify a few new samples to improve the prediction accuracy of surrogate models by ensuring both the 

convergence and diversity of the training data. When compared with five competitive SAEAs, the experiments on four test 

suites (DTLZ, WFG, UF, and MaF) with up to 100 dimensions have confirmed the advantages of our algorithm in most 

cases. Moreover, the sensitivity analysis of parameters, the effectiveness of the helper task generation, and the effectiveness 

of the model management strategy are experimentally studied.  

In this paper, although the random dimensionality reduction technique is successfully used to generate a simplified 

helper task in an artificial way, its theoretical analysis is not included in this paper, but we plan to undertake this task as 

part of our future work. In addition, the performance of SAEA-SHT on EMOPs with more than 100 dimensions will be 

further studied. Moreover, the application of SAEA-SHT to some real-world applications will also be considered in our 

future work. 
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Table A.1: Features of the DTLZ, WFG, UF, and MaF test problems 

Test Problems m (Objectives) D (Dimension) Features 

DTLZ1 3 30, 50, 70, 100 Linear, Multi-modal 

DTLZ2 3 30, 50, 70, 100 Concave, Uni-modal 

DTLZ3 3 30, 50, 70, 100 Concave, Multi-modal 

DTLZ4 3 30, 50, 70, 100 Concave, Uni-modal 

DTLZ5 3 30, 50, 70, 100 Degenerate 

DTLZ6 3 30, 50, 70, 100 Degenerate 

DTLZ7 3 30, 50, 70, 100 Mixed, Disconnected 

WFG1 3 30, 50, 70, 100 Convex, Mixed 

WFG2 3 30, 50, 70, 100 Convex, Disconnected, Mixed 

WFG3 3 30, 50, 70, 100 Linear, Uni-modal 

WFG4 3 30, 50, 70, 100 Concave, Deceptive 

WFG5 3 30, 50, 70, 100 Concave, Multi-modal 

WFG6 3 30, 50, 70, 100 Concave, Uni-modal 

WFG7 3 30, 50, 70, 100 Concave, Uni-modal 

WFG8 3 30, 50, 70, 100 Concave, Uni-modal 

WFG9 3 30, 50, 70, 100 Concave, Multi-modal, Deceptive 

UF1 2 30, 50, 70, 100 Convex, Multi-modal 

UF2 2 30, 50, 70, 100 Convex, Multi-modal 

UF3 2 30, 50, 70, 100 Convex, Multi-modal 

UF4 2 30, 50, 70, 100 Concave, Multi-modal 

UF5 2 30, 50, 70, 100 Linear, Disconnected  

UF6 2 30, 50, 70, 100 Linear, Disconnected 

UF7 2 30, 50, 70, 100 Linear, Multi-modal 

UF8 3 30, 50, 70, 100 Concave, Multi-modal 

UF9 3 30, 50, 70, 100 Mixed, Disconnected 

MaF1 3 30, 50, 70, 100 Linear, Inverted 

MaF2 3 30, 50, 70, 100 Concave 

MaF3 3 30, 50, 70, 100 Convex, Multi-modal 

MaF4 3 30, 50, 70, 100 Concave, Multi-modal, Inverted, Badly-scaled 

MaF5 3 30, 50, 70, 100 Convex, Biased, Badly-scaled 

MaF6 3 30, 50, 70, 100 Concave, Degenerate 

MaF7 3 30, 50, 70, 100 Mixed, Disconnected, Multi-modal 
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Table A.2: Comparisons of SAEA-SHT with MCEA/D on the UF and MaF Test Suites 

Problem D EDN-ARMOEA MCEA/D SAEA-SHT 

UF1 

30 1.1609e+0 (1.18e-1) - 1.0762e+0 (1.24e-1) - 7.5239e-1 (1.04e-1) 
50 1.3201e+0 (1.36e-1) = 1.3194e+0 (4.63e-2) - 1.0632e+0 (1.17e-1) 
70 1.5152e+0 (5.79e-2) - 1.3961e+0 (7.62e-2) - 1.1534e+0 (1.30e-1) 
100 1.6208e+0 (4.64e-2) - 1.4661e+0 (3.97e-2) - 1.3029e+0 (1.33e-1) 

UF2 

30 4.4068e-1 (6.08e-2) - 2.6963e-1 (1.30e-2) - 1.7488e-1 (1.61e-2) 
50 6.2392e-1 (1.67e-2) - 3.0128e-1 (1.92e-2) - 2.1792e-1 (1.69e-2) 
70 6.7565e-1 (2.94e-2) - 2.8590e-1 (1.36e-2) = 2.5505e-1 (3.08e-2) 
100 7.3251e-1 (1.04e-2) - 3.4223e-1 (1.89e-2) - 2.8910e-1 (2.05e-2) 

UF3 

30 9.3479e-1 (3.51e-2) - 7.1282e-1 (3.29e-2) - 5.4848e-1 (2.42e-2) 
50 9.0738e-1 (8.23e-2) - 6.2204e-1 (4.61e-2) - 5.2924e-1 (3.81e-2) 
70 8.8870e-1 (8.46e-2) - 5.5385e-1 (4.11e-2) = 5.5071e-1 (4.27e-2) 
100 9.6256e-1 (3.17e-2) - 5.3112e-1 (2.83e-2) + 6.0890e-1 (4.80e-2) 

UF4 

30 1.7785e-1 (5.14e-3) - 1.6901e-1 (5.79e-3) - 1.4198e-1 (8.38e-3) 
50 1.9061e-1 (5.51e-4) - 1.7994e-1 (5.05e-3) - 1.7111e-1 (6.38e-3) 
70 1.9505e-1 (2.81e-3) - 1.8892e-1 (4.58e-3) - 1.8202e-1 (4.82e-3) 
100 1.9881e-1 (1.68e-3) - 1.9014e-1 (5.72e-3) = 1.9259e-1 (2.44e-3) 

UF5 

30 4.7600e+0 (4.60e-1) = 4.9738e+0 (1.60e-1) - 4.0302e+0 (4.15e-1) 
50 5.4284e+0 (1.35e-1) - 5.3788e+0 (3.28e-1) - 4.6321e+0 (4.68e-1) 
70 5.7742e+0 (2.51e-1) - 5.7130e+0 (1.21e-1) - 4.9570e+0 (3.30e-1) 
100 5.8048e+0 (2.16e-1) - 5.5730e+0 (1.33e-1) - 5.3280e+0 (3.03e-1) 

UF6 

30 5.1010e+0 (5.09e-1) - 5.1045e+0 (3.80e-1) - 3.4377e+0 (9.19e-1) 
50 5.8289e+0 (2.77e-1) - 5.6412e+0 (3.79e-1) - 4.1321e+0 (7.49e-1) 
70 6.0304e+0 (4.15e-1) - 5.9510e+0 (3.78e-1) - 4.6443e+0 (6.85e-1) 
100 6.7577e+0 (3.49e-1) - 6.1764e+0 (2.72e-1) - 5.3640e+0 (4.54e-1) 

UF7 

30 1.1683e+0 (8.00e-2) - 1.1342e+0 (1.29e-1) - 8.6801e-1 (1.46e-1) 
50 1.4102e+0 (5.96e-2) - 1.3933e+0 (9.36e-2) - 1.1737e+0 (9.11e-2) 
70 1.4606e+0 (1.83e-1) = 1.4335e+0 (8.78e-2) = 1.2565e+0 (1.51e-1) 
100 1.6266e+0 (8.36e-2) - 1.5557e+0 (4.56e-2) - 1.3223e+0 (8.96e-2) 

UF8 

30 2.6218e+0 (1.90e-1) - 1.1595e+0 (2.15e-1) - 3.6567e-1 (3.91e-2) 
50 3.2529e+0 (1.23e-1) - 1.3082e+0 (1.71e-1) - 4.4216e-1 (5.41e-2) 
70 3.2892e+0 (2.01e-1) - 1.2742e+0 (1.47e-1) - 4.5163e-1 (2.30e-2) 
100 3.6366e+0 (1.22e-2) - 1.2670e+0 (1.71e-1) - 5.5226e-1 (5.38e-2) 

UF9 

30 2.5468e+0 (3.14e-1) - 1.1671e+0 (1.41e-1) - 8.4367e-1 (2.16e-2) 
50 3.0290e+0 (2.33e-1) - 1.1654e+0 (1.90e-1) - 8.7750e-1 (1.30e-2) 
70 3.2277e+0 (7.37e-2) - 1.1201e+0 (1.32e-1) - 8.7486e-1 (1.57e-2) 
100 3.6373e+0 (2.12e-1) - 1.3733e+0 (1.77e-1) - 8.8572e-1 (1.48e-2) 

MaF1 

30 1.5719e+0 (7.50e-2) - 4.7100e-1 (4.02e-2) - 9.4963e-2 (1.94e-2) 
50 2.9414e+0 (2.75e-1) - 6.2049e-1 (7.80e-2) - 2.0126e-1 (6.19e-2) 
70 4.6870e+0 (2.61e-1) - 8.7291e-1 (2.21e-1) - 3.9776e-1 (1.21e-1) 
100 7.1228e+0 (1.47e-1) - 1.4268e+0 (3.78e-1) - 9.0010e-1 (2.46e-1) 

MaF2 

30 1.4267e-1 (2.80e-3) - 9.4208e-2 (5.45e-3) - 7.6100e-2 (1.92e-2) 
50 2.4279e-1 (1.86e-3) - 1.4946e-1 (1.07e-2) - 9.9196e-2 (1.28e-2) 
70 3.5006e-1 (7.09e-3) - 1.7074e-1 (9.54e-3) - 1.1752e-1 (1.91e-2) 
100 5.0837e-1 (2.68e-3) - 2.2652e-1 (2.84e-2) - 1.8808e-1 (2.81e-2) 

MaF3 

30 6.3246e+6 (1.35e+6) - 1.4987e+6 (9.35e+5) + 3.3657e+6 (3.67e+5) 
50 2.0906e+7 (1.89e+6) - 4.5716e+6 (2.69e+6) + 1.2841e+7 (1.37e+6) 
70 4.3402e+7 (1.65e+6) - 1.5190e+7 (7.75e+6) + 2.9315e+7 (1.92e+6) 
100 9.8471e+7 (5.97e+6) - 3.0566e+7 (1.63e+7) + 6.5479e+7 (4.96e+6) 

MaF4 

30 6.1969e+3 (6.06e+2) = 4.7405e+3 (1.22e+3) = 5.5648e+3 (8.45e+2) 
50 1.1216e+4 (2.41e+2) = 9.0050e+3 (2.33e+3) = 1.0708e+4 (6.29e+2) 
70 1.7000e+4 (3.63e+2) = 1.4045e+4 (1.03e+3) + 1.6295e+4 (9.27e+2) 
100 2.5513e+4 (9.10e+2) = 1.9333e+4 (4.08e+3) + 2.4665e+4 (1.66e+3) 

MaF5 

30 5.6079e+0 (7.58e-1) - 5.1763e+0 (4.01e-1) - 3.2530e+0 (7.86e-1) 
50 9.3950e+0 (9.60e-1) - 7.1047e+0 (5.73e-1) - 5.1353e+0 (1.11e+0) 
70 1.2259e+1 (8.61e-1) - 8.6541e+0 (8.63e-1) - 7.3261e+0 (8.73e-1) 
100 1.7307e+1 (1.75e-1) - 1.2158e+1 (1.54e+0) - 9.6278e+0 (1.18e+0) 

MaF6 

30 1.2072e+2 (8.16e+0) - 2.6491e+1 (5.32e+0) - 8.7198e+0 (4.57e+0) 
50 2.3511e+2 (1.51e+1) - 5.1405e+1 (1.74e+1) = 3.8636e+1 (1.32e+1) 
70 3.8724e+2 (1.39e+1) - 6.3287e+1 (8.37e+0) = 1.0348e+2 (2.66e+1) 
100 5.8685e+2 (2.22e+1) - 1.0565e+2 (3.72e+1) + 2.1881e+2 (2.93e+1) 

MaF7 

30 3.6111e+0 (5.98e-1) - 8.1958e+0 (6.22e-1) - 8.5116e-1 (3.68e-1) 
50 4.8522e+0 (1.36e+0) - 9.3018e+0 (4.00e-1) - 1.6273e+0 (7.28e-1) 
70 5.7721e+0 (4.37e-1) - 9.3716e+0 (5.06e-1) - 1.6543e+0 (1.03e+0) 
100 6.6904e+0 (5.49e-1) - 9.8899e+0 (1.87e-1) - 3.8288e+0 (7.07e-1) 

+/-/= 0/57/7 8/48/8  
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Table A.3: Comparisons of SAEA-SHT with Different nd Values on the UF and MaF Test Suites 

Problem D nd = 5 nd = 15 nd = 20 SAEA-SHT (nd = 10) 

UF1 

30 7.0046e-1 (1.56e-1) + 7.4930e-1 (1.00e-1) = 7.0239e-1 (1.24e-1) + 7.5239e-1 (1.04e-1) 
50 9.7608e-1 (1.32e-1) + 9.9771e-1 (1.11e-1) = 9.8910e-1 (9.61e-2) + 1.0632e+0 (1.17e-1) 
70 1.0502e+0 (1.87e-1) = 1.0434e+0 (9.59e-2) = 9.9154e-1 (9.77e-2) + 1.1534e+0 (1.30e-1) 
100 9.8692e-1 (1.26e-1) + 1.0923e+0 (1.22e-1) + 1.0022e+0 (1.03e-1) + 1.3029e+0 (1.33e-1) 

UF2 

30 1.7408e-1 (1.60e-2) = 1.6025e-1 (1.61e-2) + 1.7108e-1 (1.11e-2) = 1.7488e-1 (1.61e-2) 
50 2.294e-1 (2.04e-2) = 1.8992e-1 (2.22e-2) + 2.0052e-1 (1.69e-2) = 2.1792e-1 (1.69e-2) 
70 2.6894e-1 (3.11e-2) = 2.4578e-1 (3.18e-2) = 2.5905e-1 (2.98e-2) = 2.5505e-1 (3.08e-2) 
100 2.8033e-1 (2.77e-2) = 2.5676e-1 (2.17e-2) + 2.9920e-1 (2.15e-2) = 2.8910e-1 (2.05e-2) 

UF3 

30 5.2886e-1 (2.13e-2) = 5.5048e-1 (2.12e-2) = 5.5840e-1 (1.22e-2) = 5.4848e-1 (2.42e-2) 
50 5.3324e-1 (3.29e-2) = 5.1194e-1 (3.01e-2) = 5.3304e-1 (2.91e-2) = 5.2924e-1 (3.81e-2) 
70 5.5631e-1 (4.28e-2) = 5.5291e-1 (3.37e-2) = 5.5471e-1 (4.01e-2) = 5.5071e-1 (4.27e-2) 
100 6.1667e-1 (4.00e-2) = 6.1890e-1 (4.08e-2) = 6.0903e-1 (2.00e-2) = 6.0890e-1 (4.80e-2) 

UF4 

30 1.4288e-1 (8.73e-3) = 1.5177e-1 (8.08e-3) - 1.4008e-1 (9.08e-3) = 1.4198e-1 (8.38e-3) 
50 1.8811e-1 (5.58e-3) = 1.9911e-1 (6.22e-3) - 1.7011e-1 (5.28e-3) = 1.7111e-1 (6.38e-3) 
70 1.9782e-1 (4.83e-3) - 1.9202e-1 (5.42e-3) - 1.8331e-1 (4.81e-3) = 1.8202e-1 (4.82e-3) 
100 2.3802e-1 (2.36e-3) - 2.2997e-1 (2.64e-3) - 1.9400e-1 (2.22e-3) = 1.9259e-1 (2.44e-3) 

UF5 

30 4.3318e+0 (4.53e-1) - 4.3345e+0 (4.48e-1) - 4.1892e+0 (4.25e-1) = 4.0302e+0 (4.15e-1) 
50 4.7873e+0 (4.55e-1) - 4.7754e+0 (4.44e-1) - 4.9921e+0 (4.00e-1) - 4.6321e+0 (4.68e-1) 
70 5.6898e+0 (3.20e-1) - 5.4570e+0 (3.30e-1) - 5.4290e+0 (3.20e-1) - 4.9570e+0 (3.30e-1) 
100 5.5306e+0 (2.87e-1) - 5.5580e+0 (2.03e-1) - 5.3680e+0 (3.88e-1) = 5.3280e+0 (3.03e-1) 

UF6 

30 3.1307e+0 (9.22e-1) + 3.4382e+0 (9.32e-1) = 3.0031e+0 (7.01e-1) + 3.4377e+0 (9.19e-1) 
50 4.0883e+0 (6.99e-1) = 4.2019e+0 (7.33e-1) = 4.0129e+0 (6.98e-1) = 4.1321e+0 (7.49e-1) 
70 4.1127e+0 (4.95e-1) + 4.4894e+0 (5.63e-1) = 4.3503e+0 (6.02e-1) + 4.6443e+0 (6.85e-1) 
100 5.0129e+0 (3.34e-1) + 5.3311e+0 (5.25e-1) = 5.0412e+0 (4.50e-1) + 5.3640e+0 (4.54e-1) 

UF7 

30 8.7001e-1 (1.26e-1) = 8.9833e-1 (1.22e-1) - 8.6901e-1 (1.06e-1) = 8.6801e-1 (1.46e-1) 
50 1.4712e+0 (9.81e-2) - 1.4030e+0 (9.29e-2) - 1.0701e+0 (9.01e-2) = 1.1737e+0 (9.11e-2) 
70 1.5522e+0 (1.52e-1) - 1.5021e+0 (1.44e-1) - 1.2905e+0 (1.00e-1) = 1.2565e+0 (1.51e-1) 
100 1.3799e+0 (8.72e-2) = 1.6423e+0 (7.26e-2) - 1.3338e+0 (8.99e-2) = 1.3223e+0 (8.96e-2) 

UF8 

30 3.6902e-1 (3.40e-2) = 3.6697e-1 (3.33e-2) = 3.5500e-1 (3.91e-2) = 3.6567e-1 (3.91e-2) 
50 4.6156e-1 (5.11e-2) = 4.5526e-1 (5.02e-2) = 4.5006e-1 (5.00e-2) = 4.4216e-1 (5.41e-2) 
70 4.7863e-1 (2.30e-2) = 4.7023e-1 (3.99e-2) = 4.5363e-1 (2.00e-2) = 4.5163e-1 (2.30e-2) 
100 5.6362e-1 (5.18e-2) = 5.6628e-1 (4.89e-2) = 5.5208e-1 (4.44e-2) = 5.5226e-1 (5.38e-2) 

UF9 

30 8.5367e-1 (2.29e-2) = 8.5067e-1 (2.66e-2) = 8.4722e-1 (1.82e-2) = 8.4367e-1 (2.16e-2) 
50 8.7701e-1 (1.32e-2) = 8.7050e-1 (1.38e-2) = 8.7956e-1 (1.78e-2) = 8.7750e-1 (1.30e-2) 
70 8.6982e-1 (1.55e-2) = 8.6657e-1 (1.22e-2) = 8.7406e-1 (1.51e-2) = 8.7486e-1 (1.57e-2) 
100 8.9702e-1 (1.33e-2) = 8.9903e-1 (1.83e-2) = 8.8662e-1 (1.98e-2) = 8.8572e-1 (1.48e-2) 

MaF1 

30 9.7136e-2 (1.34e-2) = 9.6102e-2 (2.20e-2) = 9.5191e-2 (1.88e-2) = 9.4963e-2 (1.94e-2) 
50 1.7948e-1 (5.69e-2) + 2.0226e-1 (6.10e-2) = 1.7706e-1 (5.55e-2) + 2.0126e-1 (6.19e-2) 
70 3.9776e-1 (1.81e-1) = 3.9006e-1 (1.13e-1) = 3.8876e-1 (1.21e-1) = 3.9776e-1 (1.21e-1) 
100 9.2258e-1 (2.62e-1) = 9.2210e-1 (2.16e-1) = 9.1189e-1 (2.02e-1) = 9.0010e-1 (2.46e-1) 

MaF2 

30 7.8956e-2 (1.88e-2) = 7.7755e-2 (1.23e-2) = 7.9120e-2 (1.90e-2) = 7.6100e-2 (1.92e-2) 
50 8.3401e-2 (1.35e-2) = 9.9656e-2 (1.33e-2) = 8.6196e-2 (2.21e-2) = 9.9196e-2 (1.28e-2) 
70 1.3354e-1 (1.92e-2) = 1.3002e-1 (1.05e-2) = 1.0752e-1 (2.19e-2) = 1.1752e-1 (1.91e-2) 
100 1.9848e-1 (3.34e-2) = 2.3088e-1 (2.36e-2) = 2.3408e-1 (2.77e-2) - 1.8808e-1 (2.81e-2) 

MaF3 

30 3.4575e+6 (3.12e+5) = 3.6632e+6 (4.47e+5) = 3.0471e+6 (2.97e+5) = 3.3657e+6 (3.67e+5) 
50 1.2928e+7 (1.07e+6) = 1.3819e+7 (1.97e+6) = 1.0811e+7 (1.07e+6) = 1.2841e+7 (1.37e+6) 
70 3.0515e+7 (2.96e+6) = 3.2105e+7 (1.77e+6) = 3.2108e+7 (1.99e+6) - 2.9315e+7 (1.92e+6) 
100 7.1797e+7 (4.88e+6) = 7.7794e+7 (4.62e+6) = 7.6011e+7 (4.55e+6) - 6.5479e+7 (4.96e+6) 

MaF4 

30 5.5648e+3 (8.22e+2) = 5.7707e+3 (8.35e+2) = 5.9624e+3 (7.87e+2) = 5.5648e+3 (8.45e+2) 
50 1.3708e+4 (6.10e+2) - 1.3378e+4 (7.59e+2) - 1.2722e+4 (6.33e+2) - 1.0708e+4 (6.29e+2) 
70 1.9295e+4 (8.71e+2) - 1.9975e+4 (7.47e+2) - 1.9711e+4 (8.28e+2) - 1.6295e+4 (9.27e+2) 
100 2.4665e+4 (1.79e+3) = 2.7054e+4 (2.05e+3) = 2.6625e+4 (1.73e+3) = 2.4665e+4 (1.66e+3) 

MaF5 

30 3.2790e+0 (7.34e-1) = 3.0534e+0 (7.09e-1) = 3.0032e+0 (5.26e-1) = 3.2530e+0 (7.86e-1) 
50 5.6307e+0 (1.23e+0) = 5.7722e+0 (1.79e+0) = 5.7353e+0 (2.18e+0) = 5.1353e+0 (1.11e+0) 
70 7.3579e+0 (8.85e-1) = 7.2789e+0 (8.38e-1) = 7.4422e+0 (9.23e-1) = 7.3261e+0 (8.73e-1) 
100 9.9838e+0 (1.30e+0) = 9.826e+0 (1.27e+0) = 9.9713e+0 (2.82e+0) = 9.6278e+0 (1.18e+0) 

MaF6 

30 8.4448e+0 (5.29e+0) = 8.5689e+0 (5.43e+0) = 8.3332e+0 (5.50e+0) = 8.7198e+0 (4.57e+0) 
50 3.5366e+1 (1.56e+1) = 3.6369e+1 (2.17e+1) = 3.4033e+1 (1.77e+1) = 3.8636e+1 (1.32e+1) 
70 1.1311e+2 (3.39e+1) =  1.1778e+2 (2.59e+1) = 9.5508e+1 (2.12e+1) + 1.0348e+2 (2.66e+1) 
100 2.3881e+2 (2.62e+1) = 2.2329e+2 (2.98e+1) = 1.7872e+2 (2.60e+1) + 2.1881e+2 (2.93e+1) 

MaF7 

30 1.3386e+0 (4.64e-1) - 1.5858e+0 (2.98e-1) - 1.5213e+0 (4.63e-1) - 8.5116e-1 (3.68e-1) 
50 2.4303e+0 (7.37e-1) - 2.5650e+0 (7.08e-1) - 2.3303e+0 (5.11e-1) - 1.6273e+0 (7.28e-1) 
70 3.8832e+0 (1.22e+0) - 4.1284e+0 (2.89e+0) - 3.1028e+0 (1.47e+0) - 1.6543e+0 (1.03e+0) 
100 6.1218e+0 (6.66e-1) - 5.9908e+0 (7.32e-1) - 5.0292e+0 (7.11e-1) - 3.8288e+0 (7.07e-1) 

+/-/= 7/14/43 4/18/42 10/11/43  
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Table A.4: Comparisons of SAEA-SHT with Different nd Values on the UF and MaF Test Suites 

Problem D nd = 0.2  d nd = 0.4  d nd = 0.6  d nd = 0.8  d SAEA-SHT (nd = 10) 

UF1 

30 7.0164e-1 (1.57e-1) + 7.4273e-1 (1.14e-1) = 7.6841e-1 (9.39e-2) = 7.7753e-1 (1.64e-1) = 7.5239e-1 (1.04e-1) 
50 1.0444e+0 (1.60e-1) = 9.8097e-1 (8.34e-2) + 9.7772e-1 (1.26e-1) + 9.9988e-1 (1.46e-1) = 1.0632e+0 (1.17e-1) 
70 1.1247e+0 (1.45e-1) = 9.8618e-1 (1.41e-1) + 9.7468e-1 (8.31e-2) + 1.2280e+0 (9.32e-2) = 1.1534e+0 (1.30e-1) 
100 1.0257e+0 (1.10e-1) + 1.3021e+0 (1.45e-1) = 1.3266e+0 (1.47e-1) = 1.3901e+0 (1.20e-1) = 1.3029e+0 (1.33e-1) 

UF2 

30 1.7979e-1 (1.81e-2) = 1.6130e-1 (1.49e-2) + 1.6362e-1 (2.35e-2) + 1.8831e-1 (4.34e-2) - 1.7488e-1 (1.61e-2) 
50 2.1725e-1 (4.57e-2) = 2.2152e-1 (3.24e-2) = 2.2558e-1 (2.00e-2) = 2.7724e-1 (2.37e-2) - 2.1792e-1 (1.69e-2) 
70 2.5197e-1 (3.22e-2) = 2.5345e-1 (2.68e-2) = 2.9038e-1 (3.32e-2) - 3.3517e-1 (2.01e-2) - 2.5505e-1 (3.08e-2) 
100 3.0023e-1 (3.97e-2) = 3.0801e-1 (3.47e-2) = 3.0933e-1 (3.93e-2) = 3.1199e-1 (2.54e-2) = 2.8910e-1 (2.05e-2) 

UF3 

30 5.5194e-1 (2.17e-2) = 5.4897e-1 (2.52e-2) = 5.5622e-1 (2.24e-2) = 5.5530e-1 (1.79e-2) = 5.4848e-1 (2.42e-2) 
50 5.2343e-1 (3.27e-2) = 5.3470e-1 (4.53e-2) = 5.7054e-1 (5.51e-2) - 5.8262e-1 (3.28e-2) - 5.2924e-1 (3.81e-2) 
70 5.5801e-1 (4.80e-2) = 5.5178e-1 (7.38e-2) = 5.6621e-1 (5.97e-2) = 6.1754e-1 (6.48e-2) - 5.5071e-1 (4.27e-2) 
100 6.0984e-1 (4.71e-2) = 6.2062e-1 (3.99e-2) = 6.6248e-1 (3.57e-2) - 6.6933e-1 (6.29e-2) - 6.0890e-1 (4.80e-2) 

UF4 

30 1.4366e-1 (8.60e-3) = 1.5636e-1 (9.79e-3) - 1.5329e-1 (5.80e-3) - 1.4435e-1 (5.40e-3) = 1.4198e-1 (8.38e-3) 
50 1.7116e-1 (7.50e-3) = 1.7282e-1 (6.45e-3) = 1.7471e-1 (6.25e-3) = 1.7714e-1 (5.54e-3) = 1.7111e-1 (6.38e-3) 
70 1.9216e-1 (5.67e-3) - 1.8340e-1 (3.77e-3) = 1.8413e-1 (4.22e-3) = 1.9054e-1 (4.60e-3) = 1.8202e-1 (4.82e-3) 
100 1.9594e-1 (3.09e-3) = 2.3303e-1 (2.64e-3) - 2.3904e-1 (2.98e-3) - 2.4477e-1 (1.59e-3) - 1.9259e-1 (2.44e-3) 

UF5 

30 4.4486e+0 (4.60e-1) - 4.4632e+0 (5.25e-1) - 4.1110e+0 (4.54e-1) = 4.0750e+0 (4.86e-1) = 4.0302e+0 (4.15e-1) 
50 4.6771e+0 (4.73e-1) = 4.9744e+0 (3.91e-1) - 5.1982e+0 (4.58e-1) - 5.5532e+0 (3.85e-1) - 4.6321e+0 (4.68e-1) 
70 5.4601e+0 (5.03e-1) - 5.4031e+0 (4.25e-1) - 5.7797e+0 (3.88e-1) - 5.9045e+0 (3.82e-1) - 4.9570e+0 (3.30e-1) 
100 5.3708e+0 (3.57e-1) = 5.5233e+0 (3.10e-1) = 5.9807e+0 (3.16e-1) - 6.3421e+0 (2.80e-1) - 5.3280e+0 (3.03e-1) 

UF6 

30 3.1769e+0 (5.38e-1) + 3.4567e+0 (5.59e-1) = 4.3717e+0 (8.10e-1) - 3.0582e+0 (7.82e-1) + 3.4377e+0 (9.19e-1) 
50 4.1531e+0 (6.55e-1) = 4.0647e+0 (5.56e-1) = 4.1452e+0 (8.45e-1) = 4.2225e+0 (5.59e-1) = 4.1321e+0 (7.49e-1) 
70 4.4266e+0 (6.52e-1) = 4.3203e+0 (6.17e-1) = 4.6088e+0 (7.59e-1) = 4.8408e+0 (7.95e-1) - 4.6443e+0 (6.85e-1) 
100 5.0072e+0 (3.32e-1) + 5.4290e+0 (5.06e-1) = 5.7759e+0 (6.55e-1) - 6.0638e+0 (4.35e-1) - 5.3640e+0 (4.54e-1) 

UF7 

30 8.8024e-1 (1.24e-1) = 9.4785e-1 (1.50e-1) - 8.8933e-1 (1.51e-1) - 8.6867e-1 (1.41e-1) = 8.6801e-1 (1.46e-1) 
50 1.1872e+0 (9.32e-2) = 1.1092e+0 (7.28e-2) = 1.6355e+0 (1.33e-1) - 1.8907e+0 (1.18e-1) - 1.1737e+0 (9.11e-2) 
70 1.5201e+0 (1.07e-1) - 1.2965e+0 (1.33e-1) = 1.2854e+0 (1.55e-1) = 1.3466e+0 (1.07e-1) = 1.2565e+0 (1.51e-1) 
100 1.3446e+0 (9.91e-2) = 1.5784e+0 (7.24e-2) - 1.7716e+0 (1.30e-1) - 1.9868e+0 (9.51e-2) - 1.3223e+0 (8.96e-2) 

UF8 

30 3.6810e-1 (4.03e-2) = 3.7192e-1 (3.55e-2) = 3.6776e-1 (4.11e-2) = 3.6698e-1 (1.85e-2) = 3.6567e-1 (3.91e-2) 
50 4.4309e-1 (3.55e-2) = 4.5028e-1 (4.14e-2) = 4.8369e-1 (3.46e-2) - 4.8719e-1 (4.81e-2) - 4.4216e-1 (5.41e-2) 
70 4.7365e-1 (2.73e-2) = 4.5295e-1 (3.57e-2) = 4.5716e-1 (3.41e-2) = 4.8892e-1 (3.62e-2) - 4.5163e-1 (2.30e-2) 
100 5.5156e-1 (4.33e-2) = 5.6017e-1 (3.22e-2) = 5.9836e-1 (4.01e-2) - 6.2829e-1 (3.81e-2) - 5.5226e-1 (5.38e-2) 

UF9 

30 8.5075e-1 (3.14e-2) = 8.5169e-1 (6.82e-2) = 8.5059e-1 (2.35e-2) = 8.4404e-1 (3.88e-2) = 8.4367e-1 (2.16e-2) 
50 8.7778e-1 (8.41e-3) = 8.8007e-1 (1.34e-2) = 8.8907e-1 (1.37e-2) = 8.9675e-1 (1.10e-2) - 8.7750e-1 (1.30e-2) 
70 8.6895e-1 (1.25e-2) = 8.7388e-1 (1.81e-2) = 8.9791e-1 (1.57e-2) - 9.2164e-1 (1.49e-2) - 8.7486e-1 (1.57e-2) 
100 8.8605e-1 (1.88e-2) = 8.9036e-1 (2.34e-2) = 8.9476e-1 (1.85e-2) = 9.2333e-1 (1.41e-2) - 8.8572e-1 (1.48e-2) 

MaF1 

30 9.7104e-2 (2.46e-2) = 9.5869e-2 (1.68e-2) = 9.5800e-2 (2.06e-2) = 9.5290e-1 (2.31e-2) = 9.4963e-2 (1.94e-2) 
50 1.9888e-1 (5.62e-2) = 1.7558e-1 (6.45e-2) + 1.7232e-1 (7.66e-2) + 2.1007e-1 (7.36e-2) = 2.0126e-1 (6.19e-2) 
70 3.9300e-1 (9.46e-2) = 3.7773e-1 (1.23e-1) = 3.8632e-1 (1.31e-1) = 4.1021e-1 (1.64e-1) = 3.9776e-1 (1.21e-1) 
100 9.1686e-1 (2.65e-1) = 9.4291e-1 (2.66e-1) - 1.0050e+0 (2.60e-1) - 1.1362e+0 (1.95e-1) - 9.0010e-1 (2.46e-1) 

MaF2 

30 7.8712e-2 (2.15e-2) = 7.7855e-2 (1.48e-2) = 7.8580e-2 (8.17e-3) = 7.9049e-2 (1.32e-2) = 7.6100e-2 (1.92e-2) 
50 8.9318e-2 (1.73e-2) = 9.3992e-2 (1.52e-2) = 9.8968e-2 (1.38e-2) = 9.0956e-2 (1.83e-2) + 9.9196e-2 (1.28e-2) 
70 1.0134e-1 (2.36e-2) = 1.2068e-1 (1.64e-2) = 1.2153e-1 (1.63e-2) = 1.2261e-1 (1.87e-2) = 1.1752e-1 (1.91e-2) 
100 2.3762e-1 (2.65e-2) - 2.8609e-1 (2.44e-2) - 2.9525e-1 (2.56e-2) - 2.9162e-1 (2.10e-2) - 1.8808e-1 (2.81e-2) 

MaF3 

30 3.5450e+6 (8.46e+5) = 3.4622e+6 (6.12e+5) = 3.6572e+6 (5.88e+5) = 3.4773e+6 (6.23e+5) = 3.3657e+6 (3.67e+5) 
50 1.2357e+7 (2.14e+6) = 1.2553e+7 (1.48e+6) = 1.2256e+7 (1.62e+6) = 1.2715e+7 (1.03e+6) = 1.2841e+7 (1.37e+6) 
70 2.9380e+7 (2.72e+6) = 2.9507e+7 (1.85e+6) = 3.7639e+7 (3.32e+6) - 3.9171e+7 (2.40e+6) - 2.9315e+7 (1.92e+6) 
100 7.5861e+7 (4.38e+6) - 7.6695e+7 (2.03e+6) - 8.3108e+7 (3.02e+6) - 8.8108e+7 (3.91e+6) - 6.5479e+7 (4.96e+6) 

MaF4 

30 5.4854e+3 (9.36e+2) = 5.4701e+3 (6.55e+2) = 5.5005e+3 (7.89e+2) = 5.5197e+3 (3.70e+2) = 5.5648e+3 (8.45e+2) 
50 1.0573e+4 (5.75e+2) = 1.2625e+4 (8.43e+2) - 1.4800e+4 (8.65e+2) - 1.5177e+4 (6.20e+2) - 1.0708e+4 (6.29e+2) 
70 1.9902e+4 (6.91e+2) - 1.9492e+4 (8.62e+2) - 2.0538e+4 (1.32e+3) - 2.6328e+4 (9.34e+2) - 1.6295e+4 (9.27e+2) 
100 2.6804e+4 (1.16e+3) = 2.7681e+4 (1.29e+3) = 2.8050e+4 (1.33e+3) - 2.9401e+4 (1.33e+3) - 2.4665e+4 (1.66e+3) 

MaF5 

30 3.2664e+0 (8.28e-1) = 3.1495e+0 (1.17e+0) = 3.1242e+0 (1.33e+0) = 3.1012e+0 (8.51e-1) = 3.2530e+0 (7.86e-1) 
50 5.0050e+0 (9.13e-1) = 5.3148e+0 (8.96e-1) = 5.7126e+0 (7.91e-1) = 5.9004e+0 (1.44e+0) = 5.1353e+0 (1.11e+0) 
70 7.3467e+0 (1.10e+0) = 7.4882e+0 (1.69e+0) = 7.7235e+0 (1.28e+0) = 7.9052e+0 (1.60e+0) = 7.3261e+0 (8.73e-1) 
100 9.9119e+0 (1.47e+0) = 1.0305e+1 (1.46e+0) = 1.0119e+1 (1.04e+0) = 9.8280e+0 (1.57e+0) = 9.6278e+0 (1.18e+0) 

MaF6 

30 7.8508e+0 (1.73e+0) = 8.3266e+0 (1.90e+0) = 8.3194e+0 (4.61e+0) = 7.9752e+0 (4.69e+0) = 8.7198e+0 (4.57e+0) 
50 3.6619e+1 (1.86e+1) = 3.3735e+1 (1.73e+1) = 3.8843e+1 (1.38e+1) = 4.4109e+1 (1.43e+1) = 3.8636e+1 (1.32e+1) 
70 1.1294e+2 (4.32e+1) = 1.0133e+2 (2.39e+1) = 1.4794e+1 (2.15e+1) - 1.8929e+2 (1.70e+1) - 1.0348e+2 (2.66e+1) 
100 1.7182e+2 (3.17e+1) + 1.8930e+2 (3.39e+1) = 1.9126e+2 (5.15e+1) = 2.2385e+2 (4.10e+1) = 2.1881e+2 (2.93e+1) 

MaF7 

30 1.3145e+0 (2.17e-1) - 1.5436e+0 (3.48e-1) - 1.4108e+0 (3.42e-1) - 1.4702e+0 (3.72e-1) - 8.5116e-1 (3.68e-1) 
50 1.6399e+0 (6.64e-1) = 2.3934e+0 (6.92e-1) - 2.4815e+0 (7.67e-1) - 2.5443e+0 (6.14e-1) - 1.6273e+0 (7.28e-1) 
70 4.2512e+0 (1.26e+0) - 3.3526e+0 (9.96e-1) - 3.4353e+0 (8.44e-1) - 4.4556e+0 (6.32e-1) - 1.6543e+0 (1.03e+0) 
100 5.1679e+0 (6.90e-1) - 5.1070e+0 (5.21e-1) - 5.7788e+0 (5.35e-1) - 5.6507e+0 (1.13e+0) - 3.8288e+0 (7.07e-1) 

+/-/= 5/8/51 4/16/44 4/28/32 1/32/31  
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Table A.5: Comparisons of SAEA-SHT with Five Algorithms on the UF and MaF Test Suites 

Problem D SAEA-SHT-I ExI LCB PoI SAEA-SHT-E SAEA-SHT-U SAEA-SHT 

UF1 

30 9.39e-1 (1.38e-1) - 8.13e-1 (1.08e-1) = 1.18e+0 (1.16e-1) - 8.55e-1 (1.85e-1) = 1.15e+0 (8.73e-2) - 1.04e+0 (1.63e-1) - 7.52e-1 (1.04e-1) 
50 1.21e+0 (1.12e-1) - 1.21e+0 (1.52e-1) - 1.00e+0 (8.76e-2) = 1.34e+0 (1.24e-1) - 1.32e+0 (1.21e-1) - 1.33e+0 (1.08e-1) - 1.06e+0 (1.17e-1) 
70 1.36e+0 (1.93e-1) - 1.36e+0 (1.33e-1) - 1.13e+0 (7.78e-2) = 1.49e+0 (7.98e-2) - 1.45e+0 (7.15e-2) - 1.48e+0 (7.61e-2) - 1.15e+0 (1.30e-1) 
100 1.51e+0 (8.05e-2) - 1.51e+0 (8.25e-2) - 1.49e+0 (5.88e-2) = 1.62e+0 (5.92e-2) - 1.54e+0 (6.08e-2) - 1.58e+0 (6.92e-2) - 1.30e+0 (1.33e-1) 

UF2 

30 1.50e-1 (2.11e-2) + 1.78e-1 (2.45e-2) = 4.03e-1 (1.19e-1) - 1.75e-1 (1.31e-2) = 2.37e-1 (4.11e-2) - 1.52e-1 (1.22e-2) + 1.74e-1 (1.61e-2) 
50 1.77e-1 (1.22e-1) + 5.60e-1 (1.03e-1) - 6.71e-1 (3.08e-2) - 5.92e-1 (1.23e-1) - 4.02e-1 (3.86e-2) - 1.73e-1 (1.10e-2) + 2.17e-1 (1.69e-2) 
70 2.15e-1 (5.35e-2) + 6.34e-1 (5.75e-2) - 7.04e-1 (3.05e-2) - 6.99e-1 (2.77e-2) - 4.13e-1 (7.09e-2) - 2.20e-1 (2.87e-2) + 2.55e-1 (3.08e-2) 
100 2.55e-1 (4.10e-2) + 6.65e-1 (4.42e-2) - 7.45e-1 (1.80e-2) - 7.39e-1 (1.98e-2) - 4.68e-1 (2.98e-2) - 2.66e-1 (1.73e-2) + 2.89e-1 (2.05e-2) 

UF3 

30 5.76e-1 (1.10e-1) = 5.76e-1 (1.52e-1) = 9.62e-1 (1.39e-1) - 5.62e-1 (2.88e-2) = 5.20e-1 (2.52e-2) + 6.25e-1 (1.75e-1) = 5.48e-1 (2.42e-2) 
50 6.50e-1 (1.89e-1) - 8.50e-1 (1.57e-1) - 9.92e-1 (6.39e-2) - 9.81e-1 (4.95e-2) - 4.94e-1 (1.77e-2) + 6.54e-1 (1.45e-1) = 5.29e-1 (3.81e-2) 
70 5.10e-1 (8.16e-2) + 8.88e-1 (8.54e-2) - 1.00e+0 (3.29e-2) - 9.45e-1 (4.36e-2) - 5.37e-1 (4.93e-2) + 5.86e-1 (5.31e-2) = 5.50e-1 (4.27e-2) 
100 6.55e-1 (6.00e-2) + 9.09e-1 (5.90e-2) - 9.79e-1 (3.61e-2) - 9.66e-1 (4.75e-2) - 6.87e-1 (4.85e-2) + 6.45e-1 (5.23e-2) = 6.08e-1 (4.80e-2) 

UF4 

30 1.57e-1 (9.33e-3) - 1.57e-1 (9.03e-3) - 1.43e-1 (1.15e-2) = 1.61e-1 (7.01e-3) - 1.46e-1 (5.28e-3) = 1.73e-1 (4.51e-3) - 1.41e-1 (8.38e-3) 
50 1.87e-1 (2.91e-3) - 1.87e-1 (2.75e-3) - 1.73e-1 (3.64e-3) = 1.89e-1 (4.69e-3) - 1.76e-1 (1.01e-3) = 1.83e-1 (7.59e-3) - 1.71e-1 (6.38e-3) 
70 1.92e-1 (2.44e-3) - 1.92e-1 (2.37e-3) - 1.83e-1 (3.55e-3) = 1.95e-1 (1.74e-3) - 1.83e-1 (1.51e-3) = 1.91e-1 (4.67e-3) - 1.82e-1 (4.82e-3) 
100 1.96e-1 (1.76e-3) - 1.96e-1 (1.96e-3) - 1.93e-1 (2.35e-3) = 1.99e-1 (1.80e-3) - 2.14e-1 (1.66e-3) = 1.95e-1 (2.84e-3) - 1.92e-1 (2.44e-3) 

UF5 

30 3.62e+0 (5.01e-1) + 3.60e+0 (5.85e-1) + 4.82e+0 (2.84e-1) - 4.42e+0 (3.75e-1) - 4.15e+0 (1.63e-1) = 4.09e+0 (3.05e-1) = 4.03e+0 (4.15e-1) 
50 4.76e+0 (3.87e-1) = 4.86e+0 (4.07e-1) = 5.47e+0 (1.08e-1) - 5.36e+0 (1.56e-1) - 4.42e+0 (1.06e-1) = 4.66e+0 (3.24e-1) = 4.63e+0 (4.68e-1) 
70 5.03e+0 (1.28e-1) = 5.17e+0 (1.58e-1) = 5.75e+0 (1.87e-1) - 5.72e+0 (1.66e-1) - 4.88e+0 (1.90e-1) = 4.82e+0 (2.42e-1) = 4.95e+0 (3.30e-1) 
100 5.01e+0 (1.85e-1) + 5.04e+0 (2.06e-1) + 5.87e+0 (2.16e-1) - 6.06e+0 (1.55e-1) - 5.45e+0 (1.22e-1) = 5.46e+0 (1.52e-1) = 5.32e+0 (3.03e-1) 

UF6 

30 3.70e+0 (8.01e-1) = 3.70e+0 (8.18e-1) = 3.48e+0 (5.98e-1) = 4.14e+0 (7.30e-1) = 3.01e+0 (5.39e-1) + 4.82e+0 (5.51e-1) - 3.43e+0 (9.19e-1) 
50 5.40e+0 (5.23e-1) - 5.40e+0 (5.57e-1) - 4.16e+0 (4.16e-1) = 4.15e+0 (5.75e-1) = 5.41e+0 (2.44e-1) - 6.02e+0 (4.20e-1) - 4.13e+0 (7.49e-1) 
70 5.46e+0 (4.38e-1) - 5.46e+0 (4.08e-1) - 4.43e+0 (4.31e-1) = 4.66e+0 (3.49e-1) = 5.89e+0 (2.54e-1) - 6.17e+0 (2.52e-1) - 4.64e+0 (6.85e-1) 
100 6.19e+0 (3.17e-1) - 6.19e+0 (3.71e-1) - 5.33e+0 (3.28e-1) = 5.30e+0 (3.55e-1) = 5.02e+0 (2.42e-1) + 6.41e+0 (3.32e-1) - 5.36e+0 (4.54e-1) 

UF7 

30 8.94e-1 (1.26e-1) - 8.68e-1 (1.63e-1) = 1.23e+0 (9.31e-2) - 1.02e+0 (2.27e-1) = 1.25e+0 (5.03e-2) - 1.06e+0 (2.42e-1) - 8.68e-1 (1.46e-1) 
50 1.94e+0 (9.37e-2) - 1.24e+0 (9.07e-2) = 1.42e+0 (7.45e-2) - 1.42e+0 (1.08e-1) - 1.33e+0 (8.91e-2) - 1.36e+0 (1.24e-1) - 1.17e+0 (9.11e-2) 
70 1.83e+0 (9.29e-2) - 1.33e+0 (9.15e-2) = 1.57e+0 (6.21e-2) - 1.56e+0 (5.85e-2) - 1.45e+0 (6.71e-2) - 1.54e+0 (6.08e-2) - 1.25e+0 (1.51e-1) 
100 1.50e+0 (9.26e-2) - 1.50e+0 (9.44e-2) - 1.65e+0 (6.27e-2) - 1.71e+0 (4.45e-2) - 1.58e+0 (2.51e-2) - 1.63e+0 (7.50e-2) - 1.32e+0 (8.96e-2) 

UF8 

30 3.30e-1 (4.10e-2) + 3.66e-1 (4.43e-2) = 1.06e+0 (2.72e-1) - 3.94e-1 (2.25e-2) = 3.31e-1 (6.18e-2) + 9.65e-1 (4.43e-1) - 3.65e-1 (3.91e-2) 
50 4.05e-1 (6.20e-2) + 2.35e+0 (6.85e-1) - 3.11e+0 (1.51e-1) - 3.00e+0 (5.02e-1) - 4.19e-1 (1.67e-2) + 3.15e+0 (2.71e-1) - 4.42e-1 (5.41e-2) 
70 4.21e-1 (3.76e-2) + 2.91e+0 (3.49e-1) - 3.45e+0 (1.82e-1) - 3.34e+0 (1.53e-1) - 4.26e-1 (2.10e-2) + 3.28e+0 (1.53e-1) - 4.51e-1 (2.30e-2) 
100 5.11e-1 (3.45e-2) + 3.13e+0 (3.06e-1) - 3.48e+0 (1.69e-1) - 3.58e+0 (1.25e-1) - 5.09e-0 (3.46e-2) + 3.51e+0 (1.59e-1) - 5.52e-1 (5.38e-2) 

UF9 

30 8.88e-1 (4.20e-2) - 8.43e-1 (4.17e-2) = 1.13e+0 (2.19e-1) - 8.46e-1 (6.31e-2) = 1.07e+0 (1.42e-1) - 1.31e+0 (8.60e-1) - 8.43e-1 (2.16e-2) 
50 2.50e+0 (7.33e-1) - 2.50e+0 (7.71e-1) - 8.99e-0 (4.31e-1) = 2.99e+0 (7.18e-1) - 1.23e+0 (2.63e-1) - 3.25e+0 (2.29e-1) - 8.77e-1 (1.30e-2) 
70 2.91e+0 (3.10e-1) - 2.91e+0 (3.08e-1) - 3.49e+0 (1.65e-1) = 3.37e+0 (1.80e-1) - 1.68e+0 (1.50e-1) - 3.33e+0 (2.39e-1) - 8.74e-1 (1.57e-2) 
100 3.18e+0 (2.22e-1) - 3.18e+0 (2.72e-1) - 3.64e+0 (1.15e-1) = 3.66e+0 (1.22e-1) - 2.03e+0 (2.36e-1) - 3.73e+0 (9.14e-2) - 8.85e-1 (1.48e-2) 

MaF1 

30 1.45e-1 (1.20e-2) - 1.45e-1 (1.90e-2) - 6.87e-1 (5.35e-2) - 2.31e-1 (2.92e-2) - 4.01e-1 (3.23e-2) - 9.61e-2 (2.89e-2) = 9.49e-2 (1.94e-2) 
50 2.32e+0 (3.29e-1) - 2.32e+0 (3.53e-1) - 2.82e+0 (5.03e-1) - 2.71e+0 (3.63e-1) - 9.75e-1 (1.53e-1) - 2.00e-1 (2.65e-2) = 2.01e-1 (6.19e-2) 
70 3.43e+0 (4.86e-1) - 3.43e+0 (4.87e-1) - 3.60e+0 (1.17e+0) - 4.74e+0 (3.28e-1) - 2.04e+0 (2.53e-1) - 4.46e-1 (3.20e-1) = 3.97e-1 (1.21e-1) 
100 5.95e+0 (7.02e-1) - 5.95e+0 (7.35e-1) - 6.93e+0 (5.24e-1) - 7.02e+0 (2.95e-1) - 3.04e+0 (1.53e-1) - 8.91e-1 (2.83e-1) = 9.00e-1 (2.46e-1) 

MaF2 

30 8.29e-2 (5.63e-3) - 7.75e-2 (6.77e-3) = 1.14e-1 (1.43e-2) - 9.63e-2 (6.47e-3) - 8.86e-2 (2.03e-3) = 1.41e-1 (3.41e-3) - 7.61e-2 (1.92e-2) 
50 2.15e-1 (1.33e-2) - 2.15e-1 (1.13e-2) - 2.37e-1 (6.05e-3) - 2.33e-1 (8.50e-3) - 1.36e-1 (7.25e-3) - 2.37e-1 (8.27e-3) - 9.91e-2 (1.28e-2) 
70 3.13e-1 (1.47e-2) - 3.13e-1 (1.51e-2) - 3.43e-1 (1.20e-2) - 3.46e-1 (9.13e-3) - 1.26e-1 (3.80e-2) = 3.45e-1 (7.96e-3) - 1.17e-1 (1.91e-2) 
100 4.86e-1 (1.09e-2) - 4.86e-1 (1.89e-2) - 5.07e-1 (1.89e-2) - 5.05e-1 (1.66e-2) - 2.87e-1 (8.58e-4) - 5.05e-1 (1.76e-2) - 1.88e-1 (2.81e-2) 

MaF3 

30 3.52e+6 (7.28e+5) = 3.52e+6 (7.17e+5) = 4.31e+6 (1.15e+6) - 5.90e+6 (1.42e+6) - 4.76e+6 (7.34e+5) - 3.48e+6 (5.37e+5) = 3.36e+6 (3.67e+5) 
50 1.76e+7 (3.36e+6) - 1.76e+7 (3.39e+6) - 2.13e+7 (3.04e+6) - 2.27e+7 (2.44e+6) - 1.72e+7 (1.51e+6) - 2.20e+7 (2.99e+6) - 1.28e+7 (1.37e+6) 
70 4.01e+7 (7.56e+6) - 4.01e+7 (7.89e+6) - 3.98e+7 (6.25e+6) - 4.42e+7 (5.60e+6) - 3.64e+7 (4.24e+6) - 2.25e+7 (3.43e+6) + 2.93e+7 (1.92e+6) 
100 7.92e+7 (1.98e+7) - 7.92e+7 (1.65e+7) - 9.38e+7 (1.02e+7) - 9.44e+7 (7.06e+6) - 7.55e+7 (5.17e+6) - 9.58e+7 (8.97e+6) - 6.54e+7 (4.96e+6) 

MaF4 

30 4.94e+3 (6.03e+2) + 5.00e+3 (6.76e+2) + 4.41e+3 (9.22e+2) + 6.17e+3 (5.64e+2) = 6.36e+3 (5.80e+2) = 6.54e+3 (2.45e+2) - 5.56e+3 (8.45e+2) 
50 1.10e+4 (1.27e+3) = 1.09e+4 (1.10e+3) = 1.08e+4 (9.09e+2) = 1.11e+4 (7.14e+2) = 1.18e+4 (6.64e+2) - 1.14e+4 (7.53e+2) - 1.07e+4 (6.29e+2) 
70 1.20e+4 (2.07e+3) + 1.14e+4 (1.57e+3) + 1.69e+4 (9.87e+2) = 1.70e+4 (8.03e+2) = 1.71e+4 (7.51e+2) - 1.77e+4 (7.98e+2) - 1.62e+4 (9.27e+2) 
100 2.55e+4 (1.33e+3) = 2.49e+4 (1.60e+3) = 2.52e+4 (1.68e+3) = 2.55e+4 (6.18e+2) = 2.64e+4 (3.73e+2) - 2.56e+4 (1.20e+3) = 2.46e+4 (1.66e+3) 

MaF5 

30 3.72e+0 (7.29e-1) = 3.72e+0 (7.37e-1) = 5.93e+0 (8.74e-1) - 4.39e+0 (1.19e+0) - 6.24e+0 (3.92e-1) - 3.83e+0 (9.75e-1) = 3.25e+0 (7.86e-1) 
50 8.10e+0 (1.87e+0) - 8.10e+0 (1.09e+0) - 9.58e+0 (8.70e-1) - 9.05e+0 (1.08e+0) - 7.99e+0 (1.90e+0) - 9.35e+0 (1.55e+0) - 5.13e+0 (1.11e+0) 
70 1.13e+1 (1.79e+0) - 1.13e+1 (2.00e+0) - 1.27e+1 (9.36e-1) - 1.26e+1 (1.38e+0) - 1.14e+1 (1.80e+0) - 1.24e+1 (1.10e+0) - 7.32e+0 (8.73e-1) 
100 1.47e+1 (1.38e+0) - 1.47e+1 (1.14e+0) - 1.75e+1 (1.46e+0) - 1.78e+1 (1.30e+0) - 1.73e+1 (1.43e+0) - 1.69e+1 (6.33e-1) - 9.62e+0 (1.18e+0) 

MaF6 

30 1.25e+1 (4.43e+0) - 1.25e+1 (4.31e+0) - 4.24e+1 (1.43e+1) - 2.42e+1 (5.64e+0) - 2.40e+1 (7.26e+0) - 6.83e+1 (9.18e+0) - 8.71e+0 (4.57e+0) 
50 1.88e+2 (3.33e+1) - 1.88e+2 (3.34e+1) - 2.59e+2 (1.78e+1) - 2.41e+2 (2.56e+1) - 6.49e+1 (1.34e+1) - 2.37e+2 (1.69e+1) - 3.86e+1 (1.32e+1) 
70 3.13e+2 (2.48e+1) - 3.13e+2 (2.43e+1) - 3.63e+2 (3.14e+1) - 3.66e+2 (2.35e+1) - 1.66e+2 (6.02e+0) - 3.62e+2 (2.60e+1) - 1.03e+2 (2.66e+1) 
100 4.97e+2 (5.09e+1) - 4.97e+2 (5.68e+1) - 5.66e+2 (6.00e+1) - 5.74e+2 (3.26e+1) - 1.88e+2 (4.46e+1) + 5.59e+2 (5.59e+1) - 2.18e+2 (2.93e+1) 

MaF7 

30 9.92e-1 (3.48e-1) - 9.62e-1 (3.92e-1) = 1.23e+0 (2.18e+0) = 1.05e+0 (3.54e-1) = 7.10e+0 (9.69e-1) = 7.85e+0 (1.06e+0) - 8.51e-1 (3.68e-1) 
50 8.41e+0 (7.37e-1) - 8.41e+0 (7.89e-1) - 9.27e+0 (6.98e-1) - 8.36e+0 (1.32e+0) - 1.54e+0 (6.83e-1) = 9.14e+0 (5.97e-1) - 1.62e+0 (7.28e-1) 
70 8.91e+0 (8.87e-1) - 8.91e+0 (8.58e-1) - 9.50e+0 (4.59e-1) - 9.69e+0 (3.64e-1) - 1.58e+0 (5.62e-1) = 9.64e+0 (4.89e-1) - 1.65e+0 (1.03e+0) 
100 9.59e+0 (3.37e-1) - 9.59e+0 (3.70e-1) - 9.76e+0 (3.04e-1) - 9.80e+0 (3.15e-1) - 3.71e+0 (5.92e-1) = 1.00e+1 (4.46e-1) - 3.82e+0 (7.07e-1) 

+/-/= 14/42/8 4/43/17 1/45/18 0/49/15 11/38/15 5/44/15  
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Figure A.1: The final populations obtained by all the compared algorithms on 70-D DTLZ4, DTLZ7, and WFG9 
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Figure A.2: The final populations obtained by all the compared algorithms on 70-D UF2, UF4, UF6, and MaF2 

 


