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A B S T R A C T

Deep Reinforcement Learning (DRL) has achieved remarkable success in perfect information games.
However, when applied to imperfect information games like Contract Bridge, DRL faces challenges
not only from unobservable partial information but also from the lack of efficient exploration. Al-
though several Evolutionary Reinforcement Learning algorithms (ERLs) have harnessed Evolutionary
Algorithms (EAs) to enhance exploration capabilities, the practical performance of EAs is limited
either by the high-dimensional parameter space or possibly inaccurate guidance from value networks.
In this paper, we introduce a novel ERL algorithm that employs the Particle Swarm Optimization
(PSO) algorithm to search for superior action sequences, thereby aiding agents in exploring uncharted
territory. We conduct the search in action space and evaluate action sequences through interactions
with the environment to avoid the limitations of parameter space and value networks, respectively. The
diverse experiences collected in the search and evaluation can boost the learning of the DRL agent. In
addition, the action sequence search is executed only when the agent converges in local optima, which
can reduce the overall cost of action evaluation and avoid influencing the optimization process of DRL.
Through experimental comparisons conducted on Contract Bridge, our method demonstrates superior
performance when compared with several state-of-the-art DRL and ERL algorithms. Furthermore, we
utilize our method in the Bridge Competition of AAMAS 2023 Imperfect Information Card Games
Competition and rank the first.

1. Introduction
Deep Reinforcement Learning (DRL) has made great

achievement in the game of Go, chess and shogi [41,
42], which are perfect information games. For two-player
imperfect information game like heads-up no-limit Texas
hold’em, DRL also demonstrates super-human performance
[30]. Nevertheless, in the case of Contract Bridge, a multi-
player imperfect information game, DRL has not reached
the level of top human professionals [35]. When addressing
challenges within this domain, DRL encounters obstacles
stemming from incomplete observable information, enor-
mous state space, the lack of diverse exploration, etc [21, 35].
In addition, when training agents with self-play, it is easy
for agents to become trapped in local optima because of the
homogeneous partners and opponents [2]. Simultaneously,
the lack of efficient exploration makes escaping local optima
a formidable challenge.

Over the past few years, several methods have intro-
duced Evolutionary Algorithms (EAs) to improve the explo-
ration capabilities of DRL, called Evolutionary Reinforce-
ment Learning algorithms (ERLs) [3, 19, 21, 34]. EAs are a
type of population-based heuristic algorithm inspired by nat-
ural evolution and have demonstrated powerful search ability
in a wide spectrum of optimization problems [5, 27, 47]. Fur-
thermore, an increasing body of research has applied EAs to
the field of Deep Learning and produced more promising
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results than traditional methods [25, 50]. As a branch of this
emergent domain, ERLs typically employ policy networks or
actions to form the population and optimize them iteratively
by EAs. Throughout this process, the superior individuals
generated by EA can boost the learning of the RL agent.
In turn, the information learned by RL can contribute to
the update of the population. Through the mutual promotion
between EA and RL, ERLs generally can achieve superior
performance compared to the original EA or RL.

However, the majority of ERLs primarily utilize EAs
to directly optimize the weights of policy networks. The
high-dimensional parameter space makes the search of EAs
inefficient. To alleviate this problem, Proximal Distilled
ERL (PDERL) [3] proposes more efficient crossover and
mutation operators. In addition, ERL-Re2 [19] proposes
the two-scale representation and employs EAs to optimize
the output layer only, reducing the search space of EAs.
Nevertheless, the output layer of a neural network often has
at least thousands of parameters, which still leaves a too large
solution space for EAs. To avoid the problem of vast search
space, some algorithms utilize EAs to optimize the actions
of agents [29, 38]. These algorithms use value networks
to evaluate the actions generated by EAs. This evaluation
approach is intuitive, but the guidance provided by value
networks may be inaccurate because of inadequate training
during the optimization process or inherent errors from value
estimation [16].
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In this paper, we propose an innovative method named
Evolutionary Reinforcement Learning with Action Se-
quence Search (ERL-A2S), which avoids the issues of high-
dimensional solution space and possibly incorrect guidance
from value networks. ERL-A2S employs the Particle Swarm
Optimization (PSO) algorithm to search for superior action
sequences and provide diverse experiences for the RL agent.
The dimension of action space is significantly smaller than
that of parameter space, making it more suitable for EAs.
Furthermore, diverging from prior methods, the generated
action sequences are evaluated by the practical rewards in
the interaction process rather than the estimation of value
networks. This approach allows for a more accurate eval-
uation of action values. The search for a superior action
sequence may require multiple episodes of interaction. It is
inefficient and unnecessary to execute the action sequence
search and the evaluation of the RL agent with the same
frequency. Thus, to reduce the overall cost of action eval-
uation, the action sequence search is executed only when
the agent converges in local optima. In addition, it can
also avoid influencing the original optimization process of
RL. Throughout the search process, any discovered superior
action sequence is stored in the experience replay buffer.
These diverse experiences are not from the homogeneous
polices trained by RL and are expected to help the RL agent
escape the local optima. To validate the efficiency of our
method, we implement it with TD3 and compare it with
state-of-the-art RL and ERL methods on Contract Bridge.
The experimental results demonstrate that our method can
train more competitive agents, while other compared meth-
ods tend to converge prematurely. Moreover, we utilize our
method in the Bridge Competition of AAMAS 2023 Imper-
fect Information Card Games Competition and rank the first
(http://www.jidiai.cn/compete_detail?compete=31).

The organization of this paper is as follows. Section 2
provides a brief introduction of some background including
base information about EA and RL, RL in imperfect infor-
mation games and ERLs. Following that, we elaborate on
our method in Section 3. Section 4 presents an empirical
analysis of the performance of our method on the Contract
Bridge benchmark. Finally, in Section 5, we summarize our
findings and some future directions.

2. Background
2.1. Reinforcement learning

Reinforcement learning can be modeled as a Markov De-
cision Process (MDP), defined by a tuple <  ,, ,, 𝛾 >.
At each timestep 𝑡, the agent receives a state 𝑠𝑡 ∈ 
from the environment, and selects an action 𝑎𝑡 ∈  to
perform. Subsequently, the environment provides the agent
with the next state 𝑠𝑡+1 and a reward 𝑟𝑡 according to the
transition function (𝑠𝑡, 𝑎𝑡) and reward function (𝑠𝑡, 𝑎𝑡),
respectively. This interactive process repeats until the agent
receives a termination state. The primary objective of RL
algorithms is to discover the optimal policy that maximizes

the cumulative discounted reward 𝑅𝑡. This reward is math-
ematically defined as 𝑅𝑡 =

∑𝑇
𝑖=𝑡𝛾

(𝑖−𝑡)𝑟𝑡, where 𝛾 represents
the discount factor, and 𝑇 is the length of a single episode.

Deep Deterministic Policy Gradient (DDPG) [26] and
its variant Twin Delayed DDPG (TD3) [16] are the most
widely used RL algorithms in ERLs. To extend the concept
of Deep Q-Network (DQN) to the continuous action space,
DDPG employs a policy network 𝜇 to output continuous
actions and a value network  to approximate the action-
value function. The value network is updated by minimizing
the loss function as described below.

𝐿 = 1
𝑁

∑

𝑖
(𝑟𝑖 + 𝛾𝑄

′
(𝑠𝑖+1, 𝜇

′
(𝑠𝑖+1)) −(𝑠𝑖, 𝑎𝑖))2 (1)

where 𝑁 represents the batch size, 𝑄′ and 𝜇′ are target
networks. The policy network is updated by maximizing the
state-action value estimated by :

∇𝜃𝜇J ≈ 1
𝑁

∑

∇𝑎𝑄(𝑠, 𝑎)|𝑎=𝜇(𝑠)∇𝜃𝜇𝜇(𝑠). (2)

where 𝜃 means the parameters of the network. Building
upon DDPG, TD3 incorporates two distinct value function
networks, utilizing the minimum between the two estimates
to mitigate the issue of value overestimation. To further
diminish cumulative estimation errors, TD3 adopts the de-
laying policy update strategy, reducing the frequency of
updates for both the policy and target networks.

2.2. Evolutionary Algorithm
EAs are a type of population-based heuristic algorithm

that mimics the biological evolution. EA typically maintains
a population 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} consisting of 𝑛 individuals.
By iteratively evaluating and updating the individuals within
the population, EAs search for optimal solutions to opti-
mization problems. In most ERLs, the type of individuals
is policy 𝜋 or action 𝑎. For policy individual 𝜋, the fitness
is generally calculated by 𝑓 (𝜋) =

∑𝑇
𝑡=0 𝑟𝑡|𝜋 [3, 19, 21, 34].

For action individual 𝑎 in [29, 38], the fitness is calculated
by 𝑓 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) .

PSO [33] is a swarm intelligence optimization algorithm
inspired by biological behavior. In PSO, a population of 𝑁
particles is updated iteratively with the guidance from both
the historically best positions and the globally best position.
The position of particle 𝑖 is represented as vector 𝑋𝑖. The
historically best position of particle 𝑖 is denoted as 𝑝𝐵𝑒𝑠𝑡𝑖
and the globally best position 𝑔𝑏𝑒𝑠𝑡 is the best among all
𝑝𝐵𝑒𝑠𝑡𝑖. The update of particle velocity 𝑉𝑖 is as follows:

𝑉𝑖 = 𝑤𝑉𝑖 + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖 −𝑋𝑖) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡−𝑋𝑖) (3)

The particle position is updated by 𝑉𝑖:

𝑋𝑖 = 𝑋𝑖 + 𝑉𝑖 (4)

where 𝑤, 𝑐1 and 𝑐2 are hyperparameters. 𝑟1 and 𝑟2 are
random numbers. After each iteration of the population,
𝑝𝐵𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 are updated through the comparison with
new individuals.

X. Wu, Q. Zhu, W. Chen, Q. Lin .: Preprint submitted to Elsevier Page 2 of 14



Evolutionary Reinforcement Learning with Action Sequence Search for Imperfect Information Games

2.3. Reinforcement learning in imperfect
information games

DRL has been successfully applied to numerous imper-
fect information games. DeepStack [30] beats the profes-
sional poker players in two-player no-limit Texas hold’em.
ReBeL [4] proposes a general RL framework for two-player
zero-sum games and exhibits superhuman performance in
heads-up no-limit Texas hold’em. SPARTA [23] achieves
new state-of-the-art scores on the cooperative Game Hanabi
using innovative search techniques. Suphx [24], integrating
DRL with techniques such as global reward prediction,
surpasses most top human players in Mahjong. Douzero
[49] utilize the Monte-Carlo methods to enhance DRL and
demonstrates superior performance than previous AI pro-
gram in DouDizhu, which is a three-player imperfect infor-
mation game with a large action space.

Nevertheless, DRL has not yet attained the level of
top human professionals on Contract Bridge, which is a
multi-player imperfect information game that involves both
competition and cooperation. Over the past few years, sev-
eral methods have applied DRL to the bidding of Con-
tract Bridge. In [48], an agent is trained using DQN on a
simplified bidding problem without competition. In [35],
a hands estimation network is used to infer the hand of
partner. Additionally, it combines supervised learning and
RL to train bidding policies. Joint Policy Search (JPS) [45]
improves the policies of the team jointly to achieve better
practical performance. All these three algorithms are tested
in a team competition setting and outperform a top com-
puter bridge software in the theoretical results calculated by
Double Dummy Analysis [17]. However, in the real world,
there are not only team competitions, but also individual
competitions. In this paper, we focus more on the evaluation
by individual competitions, that is, each algorithm controls
one agent and plays with the other three agents manipulated
by different algorithms. In this way, each agent must learn to
cooperate with unknown agents, which brings more difficul-
ties to the collaboration between agents.

2.4. Evolutionary reinforcement learning
In recent years, many ERLs have been proposed to

harness the strengths of methods from both domains. Among
all these methods, the majority of ERLs prefer to leverage
EAs to optimize policy networks. ERL [21] optimizes a
population of policies by Genetic Algorithm (GA) and a
separate policy by DDPG. The policy population gener-
ates diverse experiences for the training of RL, while the
learned information of RL is shared with the population
by inserting the RL policy into the population. Through
the interaction between EA and RL, both methods mutually
reinforce each other and achieve a better final performance.
Despite demonstrating the superiority of hybrid methods,
ERL’s genetic operators are deemed destructive, limiting its
performance. To address this issue, PDERL [3] introduces
the proximal mutation and distillation crossover operators.
Proximal mutation utilizes the sum of gradients to reduce the
mutation strength of each weight, enhancing the stability of

the mutation process. Distillation crossover exploits parents’
experiences to train their child using a form of Behaviour
Cloning [32]. These two operators exhibit increased stability
compared to the original operators and improve the perfor-
mance. To improve the sample efficiency and reduce the
computational burden, a Surrogate-assisted Controller (SC)
[46] is proposed to estimate the individual fitness. Subse-
quently, ERL-Re2 [19] introduces a two-scale representa-
tion and utilizes GA to optimize the weights of the output
layer, reducing the search space for GA. Building on the
proposed two-scale representation, it also employs a value
function approximator for fitness estimation. Furthermore,
Collaborative ERL (CERL) [20] trains a population that
consists of actors with different discount factors to alleviate
the sensitivity of the method to hyperparameters.

The aforementioned methods typically utilize GA to
evolve the policy population, and there are also several works
that leverage the strengths of other methods. CEM-RL [34]
introduces a distinct framework that integrates RL algo-
rithms with the cross-entropy method [18, 36]. CEM-RL
optimizes half of the population by RL and produces the next
generation using the better half of the population. In compar-
ison to the combination mechanism in ERL, this approach
is better suited for the cross-entropy method, achieving im-
proved performance over ERL. Evolution-based Soft Actor-
Critic (ESAC) [44] employs a similar framework to ERL, but
it uses Evolution Strategies (ES) and SAC as its fundamen-
tal components. Additionally, ESAC introduces Automatic
Mutation Tuning to enhance the algorithm’s robustness to
hyperparameters. Moreover, Recruitment-imitation Mecha-
nism (RIM) [28] introduces the imitation learning into the
ERL framework and combines the strengths of three distinct
methods.

In contrast to methods that evolve policies, several ap-
proaches employ EA to search for superior actions to pro-
mote the learning of RL algorithms. Cross-Entropy Guided
Policies (CGP) [43] uses the CEM policy to replace the RL
policy for action selection, which utilizes the CEM to search
for the action with the maximum value. Additionally, the RL
policy is trained by imitating the behavior of the CEM policy.
Evolutionary Action Selection-TD3 (EAS-TD3) [29] utilizes
PSO to evolve the action chosen by the policy network.
Subsequently, the policy network learns the evolved action
through a process similar to behaviour cloning. Self-guided
and self-regularized actor-critic (GRAC) [38] leverages the
actor network to output a Gaussian distribution of action
first. Then, CEM is executed to search for an action with a
higher Q value, which can be applied to expedite the learning
of the RL agent.

Moreover, there are several distinct methods that evolve
interpretable decision trees [7, 13, 14, 40]. In [11] and
[12], Grammatical Evolution (GE) and Genetic Program-
ming (GP) are employed to optimize the decision trees for
solving control tasks and image-based Atrai benchmarks,
respectively. In [10], the optimization problem is decom-
posed into two sub-problems to combine the advantages of
GE and Q-learning. In this scheme, GE is responsible for
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Fig. 1: The general framework of ERL-A2S.

decomposing the state space while the RL method is respon-
sible for finding an action for the corresponding subspace.
Subsequently, in [8], the scheme of two-level optimization
introduced in [10] is extended into the multi-agent domain.
In addition, different coevolutionary schemes for reducing
the number of parallel processes are studied and discussed.
Apart from goal-directed methods, Quality Diversity meth-
ods are utilized in [15] to search diverse solutions and
improve the exploration capabilities.

Algorithm 1: Evolutionary Reinforcement Learn-
ing with Action Sequence Search

Input: population size 𝑛;
maximum timesteps 𝑚;
sample size 𝐿;

1 Initialize policy network 𝜋 and other networks with
random values;

2 Initialize an empty replay buffer 𝐵 and timestep 𝑡;
3 while 𝑡 < 𝑚 do
4 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑠𝑡𝑒𝑝 = Evaluation(𝜋, 𝐵) (Algorithm

3);
5 𝑡 = 𝑡 + 𝑠𝑡𝑒𝑝;
6 Calculate average return in recent 𝐿 and 2𝐿

episodes 𝑅𝐿, 𝑅2𝐿;
7 if 𝑅𝐿 < 𝑅2𝐿 then
8 𝑠𝑡𝑒𝑝 = Action_Sequence_Search(𝑓𝑖𝑡𝑛𝑒𝑠𝑠,

𝐵, 𝑛) (Algorithm 2);
9 𝑡 = 𝑡 + 𝑠𝑡𝑒𝑝;

10 Execute gradient update in RL method;

3. The proposed algorithm
This section introduces the details of our proposed ERL-

A2S algorithm. The general framework of ERL-A2S is
illustrated in Fig. 1. In each iteration of the algorithm, the
RL agent interacts with the environment and learns from
its experiences. Once the agent converges to local optima,
the population is initialized by the action sequence of the
RL agent in this iteration. Then, the evolutionary search is
conducted until a superior action sequence is found or the

Algorithm 2: Action Sequence Search
Input: fitness of RL agent 𝑓𝑅𝐿;
replay buffer 𝐵;
population size 𝑛;
Output: elapsed timesteps 𝑡

1 Obtain last action sequence of RL agent 𝑆𝑅𝐿;
2 Initialize population 𝑃 = {𝑆1, 𝑆2, ..., 𝑆𝑛}, where

𝑆𝑖 = 𝑆𝑅𝐿 +𝑁(0, 𝜎);
3 Initialize a temporary buffer 𝑇 , 𝑡 = 0;
4 Initialize the personal best 𝑝𝐵𝑒𝑠𝑡, global best 𝑔𝑏𝑒𝑠𝑡,

velocity 𝑉 ;
5 while 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
6 for 𝑖 = 1 to 𝑛 do
7 𝑉𝑖 =

𝑤𝑉𝑖+𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖−𝑆𝑖)+𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡−𝑆𝑖);
8 𝑆𝑖 = 𝑆𝑖 + 𝑉𝑖 ;
9 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑠𝑡𝑒𝑝 = Evaluation(𝑆𝑖, 𝑇 );

10 Update 𝑝𝐵𝑒𝑠𝑡𝑖 and 𝑔𝐵𝑒𝑠𝑡 by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠;
11 𝑡 = 𝑡 + 𝑠𝑡𝑒𝑝;
12 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑅𝐿 then
13 Append 𝑇 to 𝐵;
14 break;
15 Empty the buffer T;

16 return 𝑡;

Algorithm 3: Evaluation
Input: actor 𝜋 or action sequence 𝑆; replay buffer

𝐵;
Output: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, elapsed timesteps 𝑡

1 Initialize 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0 , 𝑡 = 0;
2 Reset environment and get initial state 𝑠0;
3 while env is not done do
4 Select action 𝑎𝑡 = 𝜋(𝑠𝑡|𝜃𝜋) + 𝑛𝑜𝑖𝑠𝑒 or 𝑎𝑡 = 𝑆𝑡 ;
5 Execute action 𝑎𝑡, get reward 𝑟𝑡 and new state

𝑠𝑡+1;
6 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑟𝑡;
7 Append transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) to 𝐵;
8 𝑡 = 𝑡 + 1
9 return 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑡;

maximum number of generations is reached. The diverse
experiences from superior action sequences are stored in the
replay buffer and used in the subsequent training. After a
number of such iterations with evolutionary search, the RL
agent can learn novel skills from diverse experiences and
continue its own optimization until it becomes stuck in local
optima again.

3.1. The complete algorithm of ERL-A2S
We combine our action sequence search with RL algo-

rithms to compose a novel algorithm called ERL-A2S. At
the beginning of the algorithm, the agent is optimized by RL
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Fig. 2: The general process of action sequence search.

methods only. Once the algorithm detects that the agent pos-
sibly converges to local optima, the action sequence search
is executed. When the agent reaches convergence, it tends
to act in a fixed manner and only acquires homogeneous
experiences from the interaction with the environment. In
this scenario, it is difficult for the RL agent to learn new skills
on its own. Therefore, we employ the action sequence search
to obtain superior action sequences and provide diverse
experiences for the learning of the RL agent. Once the RL
agent gets out of the local optima, the part of evolutionary
search will be skipped, which can reduce the unnecessary
cost of interaction.

As illustrated in Algorithm 1, the major part of the
method is an iterative process. First, the RL agent interacts
with the environment and acquires experiences from the
interaction (line 4). At the same time, the sum of rewards
during the interaction is regarded as the fitness of the agent.
Then, we assess whether the agent has converged by cal-
culating and comparing its average return in recent 𝐿 and
2𝐿 episodes (lines 6-7). In practical experiments, we set the
hyperparameter 𝐿 to 105, which is enough to determine the
performance of the agent. If the average return in recent 𝐿
episodes is less than the average value in recent 2𝐿 episodes,
the evolutionary search is executed to obtain diverse experi-
ences for the optimization of the RL agent (line 8). Finally,
the neural network models are updated by the RL method
(line 10). It is noteworthy that, although the timesteps used
by A2S are accumulated in the total timesteps, the number
of gradient updates is equal to the number of timesteps used
by the RL agent, excluding the timesteps used by A2S. This
can avoid excessive updates with the old data. The entire
iterative process will be terminated when the number of

elapsed timesteps is not less than the maximum timesteps
𝑚, which is a predefined variable that controls the maximum
number of interactions for the training.

3.2. Action sequence search
The aim of the search is to discover superior action

sequences and provide diverse experiences to promote the
further learning of the RL agent. In contrast to previous
methods, our method eliminates the need to cope with the
high-dimensional space of network parameters and avoids
incorrect guidance from the estimation errors of value net-
works. In addition, the search is conducted only when the
RL agent converges to local optima, which can reduce the
interaction costs of searching action sequences. The general
process of the action sequence search is depicted in Fig.
2. As this chart shows, the population consists of action
sequences and is initialized based on the action sequence
from the RL agent. Then, each individual is updated by
PSO and evaluated by interacting with the environment. We
select PSO for two main reasons. Firstly, PSO has been
utilized for searching superior actions and has demonstrated
promising results in prior studies [29]. Secondly, PSO has
been widely applied across various fields and it does not
impose a significant computational burden. The experiences
of each individual are stored in a temporary buffer and only
the experiences of superior action sequences are stored in
the formal replay buffer. The search is terminated when the
number of generations reaches the maximum value.

The pseudocode of our method is provided in Algorithm
2. First, the population is initialized by adding Gaussian
noises to the action sequence of the RL agent (line 2).
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Initializing the population by the RL action sequence can en-
hance the search efficiency while introducing random noises
can generate different new individuals. To some extent, this
initialization makes a trade-off between the search efficiency
and the diversity. Then, other variables are initialized (lines
3-4). Following the initialization, the population is iterated
until the termination criterion is satisfied. In each iteration,
we first update the velocity and position of particles accord-
ing to Eq. (3) and Eq. (4) (lines 7-8). In our algorithm,
the positions of particles represent the action sequences.
After that, the action sequences are evaluated and the fitness
values are obtained by calculating the cumulative rewards
during the interaction (line 9). To precisely evaluate the
action sequences, the initial state 𝑠0 is equal to the corre-
sponding initial state of 𝑆𝑅𝐿 and remains unchanged during
the search. The experiences of individuals are stored in the
temporary buffer 𝑇 . Finally, if the fitness of the individual is
larger than that of the RL agent, the experiences in temporary
buffer 𝑇 will be stored in the formal replay buffer 𝐵 and
the iteration will be terminated (lines 12-14). Otherwise, the
buffer 𝑇 will be emptied (line 15) and the iteration will be
continued.

4. Experimental studies
4.1. Benchmark problems

In this study, we utilize the environment in the
Bridge Competition of AAMAS 2023 Imperfect Informa-
tion Card Games Competition as the benchmark prob-
lem to assess the performance of compared algorithms.
The source code of the benchmark problem can be found
at https://github.com/jidiai/Competition_AAMAS2023. In
this benchmark, each algorithm controls one agent and plays
with the other three players, which includes a partner and
two opponents. Given that the control methods for the other
players are unknown, the agent must learn to cooperate
and compete with different players. Same as prior studies
[35, 45, 48], we mainly focus on the bidding phase, which is
recognized as the hardest part of Contract Bridge [35].

Contract Bridge is a four-player imperfect information
game that involves cooperation and competition. The four
players are divided into two teams: North and South, East
and West. At the beginning of each Game, each player
randomly obtains 13 cards from a standard deck of 52 cards,
which has 4 suits (club ♣, diamond ♢, heart ♡ and spade ♠)
and 13 ranks (from 2 to A). The subsequent process can be
separated into two phases: the bidding phase and the playing
phase. In the bidding phase, each player tries to communi-
cate with its partner and bid the best contract for their hands.
A valid contract comprises a level (ranging from 1 to 7) and
a suit (one of the 4 suits or NoTrump). The player must bid
a larger contract than the last one. Otherwise, the player can
only pass (the double and redouble are not considered here,
because they have no effect in the benchmark). The order of
all contracts is {1♣, 1♢, 1♡, 1♠, 1NT, 2♣, ...,7NT}, where
NT represents NoTrump. After three consecutive passes, the
largest contract is selected as the contract of this game and
the suit of this contract becomes the trump suit. The cards

of the trump suit are trump cards, which are larger than the
cards of other suits. NoTrump means that there are no trump
cards in this game. In the team that bids the final contract,
the player who first bids the trump suit is called the declarer.

After the bidding phase, the playing phase begins. This
phase consists of 13 rounds. In each round, each player must
play one card and the one who plays the largest card wins
this trick. The player to the left of the declarer leads the first
round, that is, playing first. Once the first card has played,
the partner of the declarer, called the dummy, opens its hand
to all players. The subsequent rounds are led by the player
that wins the last trick. During the playing, each player must
first play the card of the same suit as the leader’s card. Only
when there is no card of the same suit, the player can play
cards of other suits. In this phase, the aim of all players is to
take as many tricks as possible.

4.2. Performance Metric
To make the contract, the declarer side needs to take

𝑋 + 6 tricks, where 𝑋 is the level of contract. For instance,
if the North bids 1♡, its team must take at least 7 tricks to
complete the contract. In the benchmark, if the declarer side
makes the contract, its reward will be 𝑋 + 8. Otherwise, its
reward will be 𝑌 − 𝑋 − 6, where 𝑌 is the number of tricks
that it takes. For the other team, called the defender side,
its reward equals the number of tricks it takes. To ensure
a fair comparison between RL algorithms and population-
based algorithms, the timesteps used by each individual of
the population are accumulated. In addition, we pick the best
model during the entire training process to measure each
algorithm’s performance.

...

my hand

 

the bids of partner

I1

I2

I3

action

Input Hidden Hidden Output

Fig. 3: The network architecture of the policy network.

4.3. Experimental settings
To assess the practical efficacy of the proposed algo-

rithm, we conduct a comparative analysis against state-of-
the-art ERLs (ERL [21], PDERL [3], ERL-Re2 [19]), as well
as RL algorithms (TD3 [16] and PPO [37]). We utilize the
implementation published by the authors for all compared al-
gorithms. The network architectures and parameter settings
in each algorithm are set as suggested in the corresponding
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Table 1
The hyperparameters for all compared algorithms. × represents that the parameters are not used in algorithms.

Hyperparameters ERL-A2S ERL PDERL ERL-Re2 TD3 PPO

Discount factor 0.99 0.99 0.99 0.99 0.99 0.99
Actor learning rate 3e-4 5e-5 5e-5 1e-3 3e-4 3e-4
Critic learning rate 3e-4 5e-4 5e-4 1e-3 3e-4 3e-4

Target weight 5e-3 1e-3 1e-3 5e-3 5e-3 ×
Batch size 256 128 128 128 256 32

Replay buffer size 1e6 1e6 1e6 1e6 1e6 ×
Actor network architecture 256,256 128,128 128,128 400,300 256,256 64,64
Critic network architecture 256,256 400,300 400,300 400,300 256,256 64,64

Population size 5 10 10 5 × ×
Mutation probability × 0.9 0.9 0.9 × ×

papers and some critical hyperparameters are listed in Table
1. The network architecture used in all compared algorithms
is a multi-layer perceptron with 2 hidden layers and the
numbers of neurons in hidden layers are listed in Table 1. All
algorithms are trained for 6 million timesteps. The unique
hyperparameters used in our method are detailed as follows.
The inertia weight 𝑤 is decreased linearly from 0.9 to 0.4
and both acceleration coefficients 𝑐1 and 𝑐2 are 2 in PSO, as
the settings in [39]. The maximum number of generations
in each search is 5. The sample size 𝐿 is 105. The range
of particle positions is set from 0 to 8 (exclusive) to align
with the range of actions (the level of contract), while no
restrictions are imposed on velocity range. The PSO used
in our method is the classical version because it can meet
the requirements of finding superior actions. A comparable
analysis of the hyperpameters is provided in section 4.7.

In the bidding phase, the information observed by each
agent includes its hand and the bidding of all players. If
directly encoding the observation information by 0-1 vector,
the dimension of the input representation is at least 192 (52
for hand and 4x35 for the bidding of all players). To learn
from such an input representation, the policy network often
needs to utilize 8 or more hidden layers [35, 45], which
brings many difficulties for the training. Therefore, We sim-
plify the input representation of neural networks to enable
the MLP with 2 hidden layers to learn a superior policy,
which is also the scheme that we used in the competition.
The architecture of our policy network is illustrated in Fig.
3. Our input representation employs three scalar values to
abstract the useful information. The first value 𝐼1 is used to
measure the strength of our hand, which can be calculated as
follows:

𝐼1 =
13
∑

𝑖=1
(𝑝𝑖 − 10)+

4
∑

𝑗=1
(𝑞𝑗 − 5)+

4
∑

𝑗=1
(3 − 𝑚𝑖𝑛(𝑞𝑗 , 3)) (5)

where 𝑝𝑖 represents the point of each card in hand (the points
of J-A are 11-14) and 𝑞𝑗 is the number of cards in each suit.
In this equation, the first term can measure the strength of
card points while the latter two terms measure the strength
of the card distribution. The second value 𝐼2 represents the
largest level of the partner’s bids, which is used to assess

the strength of the partner’s hand and can be expressed as
follows:

𝐼2 = 𝑚𝑎𝑥{𝑙𝑒𝑣𝑒𝑙𝑖 | 𝑙𝑒𝑣𝑒𝑙𝑖 ∈ 𝑆𝑙𝑒𝑣𝑒𝑙} (6)

where 𝑆𝑙𝑒𝑣𝑒𝑙 is the level part of the partner’s bidding se-
quences and 𝑙𝑒𝑣𝑒𝑙𝑖 is the level of the partner’s 𝑖-th bid. The
last value 𝐼3 is the number of cards in the suit of the partner’s
last bid, serving as an assessment of the strength of the
partner’s bid for our team. This can be expressed as follows:

𝐼3 =
13
∑

𝑖=1
𝑥𝑖𝑗 (7)

where 𝑗 is the suit of the partner’s last bid and 𝑥𝑖𝑗 is a binary
variable that equals 1 when the 𝑖-th card in hand belongs
to suit 𝑗, and 0 otherwise. To ensure a fair comparison, the
input representations used by all compared algorithms are
the same.

An action consists of two parts: a suit and a level. The
value of suit is determined by the strength of cards in each
suit and only the level is searched by PSO. The level is
an integer which ranges from 0 to 7. Therefore, the range
of the particle position is from 0 to 8 (exclusive). And the
position (a real number) will be floored to obtain the action
(an integer). By discretizing the actions, our method can also
be applied to the discrete action space.

In the test problems, the action sequence is variable-
length, because the length of bidding sequence varies in
different games. In the search of PSO, the action sequence is
fixed-length and the length is equal to the length of RL pol-
icy’s action sequence. When evaluating individuals(action
sequences) in population, the step in the interaction process
may exceed the maximum length of the sequence. In this
situation, we use RL policy to assist the individual for
selecting subsequent actions, and the results of evaluation
can be seen as an estimation of real fitness.

All algorithms are trained by self-play and the opponents
are the copies of the current agent. To accelerate the training
and minimize the impact of playing on the results of bidding,
we utilize the Double Dummy Solver (DDS) [17] to obtain
the final result of the game during training. DDS calculates
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Table 2
The average results of different team combinations against diverse opponents. Each value represents the average results of the
team that includes two different agents against other team combinations.

ERL-A2S ERL PDERL ERL-Re2 TD3 PPO

ERL-A2S / 5.78 6.28 6.08 6.41 6.05
ERL 5.78 ∕ 5.42 5.24 5.61 5.37

PDERL 6.28 5.42 ∕ 5.88 6.33 5.87
ERL-Re2 6.08 5.24 5.88 ∕ 6.01 5.56

TD3 6.41 5.61 6.33 6.01 ∕ 5.98
PPO 6.05 5.37 5.87 5.56 5.98 ∕

average 6.12 5.48 5.96 5.75 6.07 5.77

the maximum number of tricks that the declarer side can take
based on the assumption that each player can see the hands
of others. It has been demonstrated as a good approximation
to the expert playing [35]. Consequently, there is no playing
phase during training and the results obtained from DDS are
used as the results of bidding.

The training for all algorithms is carried out on Ubuntu
18.04.6 LTS operation system, NVIDIA Tesla V100 GPU,
Intel(R) Xeon(R) Gold 6126 CPU and 256G memory. The
comparative experiments on the benchmark are conducted
on the Windows 10 operation system, Intel(R) Core(TM) i7-
7700 CPU @ 3.60GHz CPU, and 16G memory.

4.4. Results for cooperating with unknown agents
We first conduct experiments to test the algorithms’

performance for cooperating with unknown players. In these
experiments, agents from six algorithms are combined to
form fifteen different teams and all combinations confront
each other. Each result of rivalries between two teams is
the average value of 1000 games. Table 2 presents the
performance of different team combinations against other
combinations. For example, the value in the row ’ERL’,
column ’TD3’ represents the average results of the team that
consists of an ERL agent and a TD3 agent against the other
14 teams. The detailed results of each rivalry between teams
are provided in Table 3.

As shown in Table 2, our method demonstrates superior
performance even when teamed up with unknown partners.
Specifically, our method surpasses other algorithms by a
margin of at least 0.16 tricks per game, except for TD3.
Our method only outperforms TD3 slightly because it can
obtain many scores from weaker teams. If only the results of
rivalries between our method and TD3 are considered, our
method outperforms it by a margin of 0.32 tricks per game
when the partner is the same (The average results of AB vs
BE, AC vs CE, AD vs DE and AF vs EF in Table 3).

When cooperating with the agents of ERL, ERL-Re2,
TD3 and PPO, our method shows the best performance
among all compared algorithms. For PDERL, TD3 shows
better team performance than our method when competing
with 15 different teams. Nevertheless, as shown in Table 3,
the team ’AC’ (including agents of ERL-A2S and PDERL)
outperforms the team ’CE’ (including agents of PDERL and

TD3) by 0.61 tricks per game in the rivalries between both
teams.

4.5. Results for cooperating with familiar agents
In this section, we first conduct experiments to test the

algorithms’ performance in a situation where the agents can
cooperate with familiar partners. In the experiments, each
algorithm controls one team against other teams and the
average value of 10000 games is recorded as the reported
result.

As shown in Table 4, our method exhibits a signifi-
cant performance advantage over other compared algorithms
when each algorithm controls a team. Although the dif-
ference of average results for competing with all methods
between TD3 and our method is 0.06 tricks per game, our
method surpasses TD3 by a margin of 0.22 tricks per game
in 10000 games between both teams. In the games between
the same algorithms, the result of our method is slightly
below the results of TD3 and PDERL. However, in the
rivalries between ERL-A2S and these two methods, our
method outperforms them by a margin of 0.56 and 0.22 tricks
per game, respectively. This phenomenon indicates that our
agent is more aggressive than others and can restrict the
opponent teams’ scores. By the comparison of TD3, it can be
easily inferred that the skills of more accurate and aggressive
bidding are learned from experiences of the evolutionary
search, which validates the effectiveness of our method.

Then, we conduct experiments to compare our models in
multiple runs with the best model of TD3. To demonstrate
the differences in performance among models, each model
controls a team against the team controlled by the best model
of TD3. In addition, the reported results are the average
values of 1000 games.

As illustrated in Table 5, except for scores and relative
scores, we also record our method’s proportion as the de-
clarer side and the success rate for making the contract.
Overall, our method outperforms TD3 by a margin of 0.37
tricks per game. In addition, there are some differences
among the models in different runs. Some models (1, 2, and
3) exhibit more aggressive behavior (with higher declarer
rates but lower success rates) and significantly limit the
opponent’s scoring, while other models (0 and 4) are more
conservative and precise (with higher success rates and
scores but lower declarer rates).
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Table 3
The detailed results of rivalries between different team combinations. A-F represents ERL-A2S, ERL, PDERL, ERL-Re2, TD3 and
PPO, respectively. Each value represents the average results of the team of the column against the team of the row.

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF

AB / 6.14 5.82 6.41 5.71 5.29 5.25 5.38 5.36 5.77 6.14 5.74 6.08 5.63 5.98
AC 5.72 / 6.01 6.01 5.74 5.26 5.01 5.39 5.35 5.58 5.82 5.59 5.72 5.26 5.84
AD 5.84 6.09 / 6.30 6.17 5.42 5.07 5.46 5.19 5.62 6.33 5.81 5.97 5.45 5.97
AE 5.22 6.17 5.67 / 5.67 5.16 4.92 5.51 5.05 5.48 6.00 5.49 5.65 5.16 5.68
AF 5.80 6.32 5.80 6.43 / 5.69 5.41 5.44 5.12 5.78 6.24 5.75 6.03 5.54 5.90
BC 5.84 6.04 6.20 6.48 5.88 / 5.57 5.78 5.56 6.15 6.44 5.91 6.16 5.67 6.16
BD 5.94 6.42 6.40 6.65 5.99 5.51 / 6.01 5.61 6.20 6.39 6.10 6.17 5.96 6.29
BE 5.80 5.94 6.09 6.09 6.07 5.31 5.06 / 5.30 5.96 6.41 5.73 5.97 5.46 5.78
BF 5.91 6.21 6.31 6.56 6.54 5.39 5.43 5.76 / 6.04 6.56 6.40 6.32 5.83 5.61
CD 5.85 6.30 6.16 6.55 6.13 5.55 5.37 5.57 5.57 / 6.49 5.87 6.10 5.78 6.05
CE 5.69 6.43 5.89 6.10 6.01 5.22 4.97 5.31 5.17 5.58 / 5.70 5.79 5.27 5 78
CF 6.05 6.43 6.19 6.69 6.32 5.55 5.49 5.70 5.37 6.21 6.49 / 6.18 5.62 6.35
DE 5.50 6.39 5.98 6.42 6.02 5.27 5.02 5.54 5.19 5.90 6.41 6.03 / 5.64 6.03
DF 5.89 6.56 6.43 6.69 6.39 5.78 5.51 6.03 5.51 6.17 6.61 6.32 6.14 / 6.34
EF 5.84 6.43 6.14 6.37 6.13 5.46 5.33 5.68 5.78 5.94 6.25 5.75 5.91 5.56 /

average 5.78 6.28 6.08 6.41 6.05 5.42 5.24 5.61 5.37 5.88 6.33 5.87 6.01 5.56 5.98

Table 4
The average results of direct rivalries between algorithms. Each value represents the average results of the team controlled by the
algorithm of the column against the team controlled by the algorithm of the row.

ERL-A2S ERL PDERL ERL-Re2 TD3 PPO

ERL-A2S 6.06 4.78 5.80 5.08 5.97 5.07
ERL 6.63 5.22 6.52 5.72 6.61 5.88

PDERL 6.36 5.06 6.14 5.44 6.46 5.49
ERL-Re2 6.93 5.59 6.56 5.90 6.84 6.06

TD3 6.19 4.87 5.80 5.15 6.08 5.18
PPO 6.87 5.35 6.57 5.82 6.77 5.99

average 6.51 5.15 6.23 5.52 6.45 5.61

In addition to comparing our model with learning-based
agents, we also conduct experiments to compare it with
the rule-based agent. In the real world, bidding systems in
Contract Bridge comprise two main branches: the natural
system and the artificial system. The Standard American
Yellow Card (SAYC) [1], created by the American Contract
Bridge League (ACBL), is one of the most widespread natu-
ral systems. Based on the bidding rules in [1], we implement
a rule-based agent and conduct experiments to compare our
model with this agent. We first demonstrate the difference
between the two agents by the opening bids (SAYC provides
detailed regulations regarding the opening bids), as shown

in Table 6. The opening bids data of our method is collected
from practical games. As indicated in Table 6, our model is
significantly more aggressive than the agent based on SAYC.
For example, under SAYC, players generally need more than
12 HCP to bid a one-level contract, while our model only
needs at least 3 HCP.

After that, we compare our model with this rule-based
agent and provide the average results of 1000 games in Table
7. As shown in Table 7, our model significantly outperforms
the rule-based agent. In addition, our model is more ag-
gressive (higher proportion as the declarer side) and more
precise (higher success rate with high declarer rate). One

Table 5
The average results of ERL-A2S (multiple runs with different random seeds) against TD3.

seed0 seed1 seed2 seed3 seed4 mean std.

Scores 6.20 5.98 6.03 5.94 6.27 6.08 0.13
Relative scores 0.23 0.44 0.47 0.46 0.24 0.37 0.11
Declarer rate 54.5% 69.6% 68.0% 65.9% 51.3% 61.9% 7.48%
Success rate 82.0% 71.1% 70.7% 69.0% 82.1% 75.0% 5.82%
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Table 6
The opening bids of ERL-A2S’s model and SAYC. HCP represents High Card Points (4 for A, 3 for K, 2 for Q and 1 for J.).

Opening bids ERL-A2S SAYC

1♣ 3-15HCP, 4-6♣ 12+HCP, 3+♣

1♢ 3-15HCP, 4-6♢ 12+HCP, 4+♢ or 4♠4♡3♢2♣
1♡ 3-15HCP, 4-6♡ 12+HCP, 5+♡

1♠ 3-15HCP, 4-6♠ 12+HCP, 5+♠

2♣ 5-16HCP, 5-7♣ 22+HCP
2♢ 5-16HCP, 5-7♢ 5-11HCP, 6+♢ / good 5♢ / poor 7♢
2♡ 4-16HCP, 5-7♡ 5-11HCP, 6+♡ / good 5♡ / ppor 7♡
2♠ 4-16HCP, 5-7♠ 5-11HCP, 6+♠ / good 5♠ / poor 7♠
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Fig. 4: The relative results of rivalries between the policy models in different stages. For example, ’10%’ represents the model
at 0.6M timesteps and ’100%’ represents the model at the 6M timesteps. Each value represents the relative results of the team
controlled by the model of the column against the team controlled by the model of the row.

Table 7
The average results of ERL-A2S’s model against the rule-based
agent.

ERL-A2S rule-based agent

Scores 6.51 5.49
Relative scores 1.02 -1.02
Declarer rate 60.2% 39.2%
Success rate 82.2% 79.6%

important reason is that SAYC only provides general rules
and human players generally need to adjust their strategies
to adapt to different scenarios. However, it’s impractical to
design a rule for each possible situation. This is also one of

the main advantages of the learning-based agent, which can
learn a generic strategy to cope with all situations.

4.6. The performance in different training stages
When training with self-play, because the models of

opponents in different training stages are different, it is
difficult to observe the genuine performance changes from
the training curves. Even if the same baseline is used to
test the performance of models, it can only show the ability
to play against a single model. To demonstrate the genuine
performance change of policy models during training, we
provide the relative results of rivalries between the policy
models in different stages. Each result is the average value
of 1000 games.

X. Wu, Q. Zhu, W. Chen, Q. Lin .: Preprint submitted to Elsevier Page 10 of 14



Evolutionary Reinforcement Learning with Action Sequence Search for Imperfect Information Games

5 10 20 30 40 50
population size

0.20

0.15

0.10

0.05

0.00

re
la

tiv
e 

sc
or

e

0

0.03

-0.2

-0.09
-0.07

-0.13

(a) population size 𝑛

5 10 20 30 40 50
maximum generation

0.25

0.20

0.15

0.10

0.05

0.00

re
la

tiv
e 

sc
or

e

0

-0.05

-0.15

-0.09

-0.25 -0.26

(b) maximum generation

0.0 0.1 0.2 0.3 0.4 0.5
sample size (M)

0.2

0.1

0.0

re
la

tiv
e 

sc
or

e

-0.28

-0.19
-0.21

0

-0.1 -0.09

(c) sample size 𝐿

0.1 0.3 0.5 0.7 0.9
inertia weight

0.09

0.06

0.03

re
la

tiv
e 

sc
or

e

-0.04

-0.09

-0.06

-0.04

-0.03

(d) inertia weight 𝑤

0.5 1.0 1.5 2.0 2.5 3.0
acceleration coefficient

0.08

0.06

0.04

0.02

0.00

re
la

tiv
e 

sc
or

e

-0.01
-0.02

-0.07

0

-0.06

-0.09

(e) acceleration coefficient 𝑐1, 𝑐2

Fig. 5: The relative results of variants with different hyperparameters against the original ERL-A2S.

As shown in Fig. 4, the brighter the color of the column,
the more superior the model is compared to others. In Fig.
4 (a), the last few columns are significantly brighter than
the preceding columns, which means that the latter models
outperform the previous models. While for other algorithms,
there are several blue blocks at the top of the last column,
which means that even the models at 90% or 100% timesteps
show worse performance in the competition against models
at 10% timesteps or 20% timesteps. This situation indicates
that the models of these algorithms converge prematurely
to the local optima and the subsequent training does not
bring significant benefits. Compared to these methods, our
model’s performance shows significant improvement in the
subsequent training, which can be attributed to the action
sequence search. By introducing this evolutionary search,
our agent can acquire diverse experiences and has a stronger
ability to escape local optima.

4.7. Hyperparameters analysis
In this section, we conduct comparative experiments to

demonstrate the impact of certain hyperparameters, which
include the population size 𝑛, the maximum generation, the
sample size 𝐿, inertia weight 𝑤 and acceleration coefficient
𝑐1, 𝑐2. We utilize the relative scores of the variants with
different hyperparameters against the original algorithm to
measure their performance. All reported results are the av-
erage values of 1000 games.

First, we test the variants with population sizes of 10,
20, 30, 40 and 50. As shown in Fig. 5 (a), the performance

changes relatively slightly when the population size in-
creases, which indicates that the population size has a minor
impact on the results. However, a larger population requires
more interaction for evaluation. Therefore, the population
size of 5 or 10 may be promising for our method. Then,
we investigate the maximum number of generations of each
search in experiments. The results show that increasing the
maximum generation cannot bring benefit to the perfor-
mance. Because the search is executed for many times during
the training, excessive search may waste some resources.
In addition, the choices of RL policy may be the best and
there are no superior action sequences. In this situation, the
additional search serves no purpose. For the sample size 𝐿,
we test 0.01M, 0.02M, 0.05M, 0.1M, 0.2M and 0.5M. As
shown in Fig. 5 (c), too small or large values of 𝐿 are not
the best choices for our method. The former may not be
sufficient to determine the status of the agent, which makes
the evolutionary search impede the learning of the agent.
The latter slightly decreases the performance because it may
limit the use of A2S. Finally, we investigate the impact of
inertia weight and acceleration coefficient. As depicted in
Fig. 5 (d) and (e), compared to other hyperparameters, our
method is less sensitive to the inertia weight and acceleration
coefficient. The performance of most variants is only slightly
inferior to that of the original method.

4.8. Time consumption analysis
Except for the performance analysis, we also conduct

experiments to compare the runtime of ERL-A2S and other
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Table 8
The time consumption of algorithms for every 10000 timesteps.

Algorithms ERL-A2S ERL PDERL ERL-Re2 TD3 PPO

Seconds 58.1 201.4 362.8 404.5 70.1 28.7

algorithms. The experiments are run on NVIDIA GeForce
RTX 4090 and Intel(R) Xeon(R) Platinum 8336C CPU. The
process of each algorithm is run alone on a single GPU and
is allocated enough CPU resources during experiments.

As shown in Table 8, our method even runs faster than
the vanilla TD3. This is because TD3 executes gradient
updates at each timestep, but our method only executes it at
the timesteps used by the RL agent. Therefore, our method
needs fewer gradient updates than TD3. In addition, the
evolutionary search is only conducted when the RL agent
converges to the local optima, which only brings minimal
computational burden compared to gradient descent. PPO is
the fastest because it only executes limited gradient updates
after collecting a batch of tuples. Other ERLs consume more
time because of their evolutionary operations on neural net-
works. In comparison to ERL, the extra time of PDERL and
ERL-Re2 primarily stems from the gradient computation for
the genetic operators and fitness estimation respectively.

5. Conclusions
In this paper, we propose ERL-A2S, a novel evolution-

ary reinforcement learning algorithm with action sequence
search. This method utilizes PSO to search superior action
sequences to provide diverse experiences for the learning
of the agent. The introduction of this evolutionary search
enhances the exploration capability of the RL method. More-
over, the search conducted in the action space and the
evaluation by the interaction with the environment avoid the
limitations of high-dimensional parameter space and value
networks, respectively. In addition, we use it selectively, only
when the RL agent converges prematurely, thereby reducing
the overall computational cost of the search. We implement
ERL-A2S with TD3 and conduct several experiments to
compare its practical performance with other state-of-the-
art ERLs on the Contract Bridge. The experimental results
demonstrate the effectiveness of our algorithm. Further-
more, we investigate the performance of agents in different
training stages and conduct hyperparameters analysis, which
further validates the efficacy of our method.

Regarding the limitations and future work, similar to
previous ERL methods, although we validate the effective-
ness empirically, there is no theoretical analysis for the
convergence and complexity. Furthermore, the models op-
timized by our approach lack interpretability, therefore uti-
lizing interpretable models like decision trees[7, 10] is a
possible avenue for future research. Additionally, beyond
fitness-based selection, it may be worthwhile to explore
alternative selection methods, such as Novelty Search [6, 22]
or Quality Diversity methods [9, 31], which could be used

to select diverse individuals and provide valuable learning
experiences for the RL agent.
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