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Abstract: 

Multi-objective evolutionary algorithms based on decomposition (MOEA/Ds) convert a multi-objective 

optimization problem (MOP) into a set of scalar subproblems, which are then optimized in a collaborative 

manner. However, when tackling imbalanced MOPs, the performance of most MOEA/Ds will evidently 

deteriorate, as a few solutions will replace most of the others in the evolutionary process, resulting in a 

significant loss of diversity. To address this issue, this paper suggests a localized decomposition evolutionary 

algorithm (LDEA) for imbalanced MOPs. A localized decomposition method is proposed to assign a local 

region for each subproblem, where the inside solutions are associated and the solution update is restricted 

inside (i.e., solutions are only replaced by offspring within the same local region). Once off-spring are 

generated within an originally empty region, the best one is reserved for this subproblem to extend diversity. 

Meanwhile, the subproblem with the largest number of associated solutions will be found and one of its 

associated solutions with the worst aggregated value will be removed. Moreover, to speed up convergence for 

each subproblem while balancing the population’s diversity, LDEA only evolves the best-associated solution 

in each subproblem and correspondingly tailors two decomposition methods in the environmental selection. 

When compared to nine competitive MOEAs, LDEA has shown the advantages in tackling two benchmark 

sets of imbalanced MOPs, one benchmark set of balanced yet complicated MOPs, and one real-world MOP. 
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1. Introduction 

During recent decades, a number of multi-objective evolutionary algorithms (MOEAs) have been reported, 

which have shown very promising performance when tackling different kinds of multi-objective optimization 

problems (MOPs) [1]. According to the environmental selection mechanism, most MOEAs can be classified 

into three main categories, i.e., Pareto-based MOEAs [2]-[5], indicator-based MOEAs [6]- [11], and 

decomposition-based MOEAs (MOEA/Ds) [12]-[15]. When compared to Pareto-based and indicator-based 

MOEAs, MOEA/Ds are more flexible in balancing the convergence and diversity in their environmental 

selection mechanisms [16]-[17], showing the advantages for tackling some complicated MOPs [15], [18]. An 

MOP in MOEA/Ds is decomposed into a set of scalar subproblems, which are then optimized by the associated 



solutions in a collaborative manner. During the recent years, this framework has triggered a large number of 

research studies to further enhance different components of MOEA/Ds, such as the adjustment of weight 

vectors [19]-[21], modified decomposition methods [22]-[27], dynamic mating selection [28]-[31], enhanced 

evolutionary operators [32]-[35], and improved environmental selection [36]-[44]. Particularly, for more 

details, interested readers can refer to a review of MOEA/Ds [45] and some of their progress closely related to 

the methods proposed in this paper is detailed in Section 2.3. 

Although these MOEA/Ds show excellent performance in solving regular MOPs, they still fail to achieve 

satisfactory results when confronted with MOPs with imbalanced features. Specifically, imbalanced MOPs 

offer different degrees of search difficulty in different regions of the PF. As a result, some regions of the PF are 

relatively easy to search, while other regions are more challenging to explore. In addition, the easy-to-find 

regions of PF tend to dominate a relatively large area in the search space, making it difficult to discover 

“supporting” solutions for the remaining parts of the PF. The imbalance of search difficulty in MOPs poses an 

enormous challenge to MOEAs, as they may converge prematurely to suboptimal solutions in the easier-to-

find regions, neglecting the more challenging parts of the PF. Consequently, the obtained PF may be biased 

and the algorithm may miss the true optimal solutions. As experimentally studied in [15] and [46], the solution 

association methods in most MOEA/Ds will deteriorate their performance for solving imbalanced MOPs, as a 

few solutions may replace most of the others, leading to a significant loss of diversity. It is always a very 

challenging task to balance convergence and diversity in designing MOEAs [46]. In recent years, some MOEAs 

have been designed based on the reference vectors (same as weight vectors), e.g., NSGA-III [47], θ-DEA [48], 

and SPEA/R [49], which are mostly used to solve MOPs with more than three objectives. In these MOEAs, 

solutions are associated to the closest reference vectors and the reference vectors may be associated with none, 

one, or multiple solutions, which naturally provides a flexible method for solution association. However, their 

collaborative capability may be weakened, as solutions from the neighboring subproblems may not exist for 

coevolution. 

As inspired by the constrained decomposition reported in [25], [37] and the reference vectors used in [47]-

[49], this paper suggests a localized decomposition evolutionary algorithm (LDEA) for tackling imbalanced 

MOPs. A localized decomposition method is presented to strictly emphasize diversity first for each subproblem, 

which modifies the solution association methods in most MOEA/Ds and allows the subproblems associated 

with none, one, or multiple solutions. Moreover, in order to maintain the collaborative capability in MOEA/Ds, 

the matting selection, evolutionary operators, and environmental selection are accordingly modified to 

cooperate well with the above association mechanism. To summarize, the main contributions of this paper are 

the following: 

1) A localized decomposition evolutionary algorithm is designed for solving imbalanced MOPs, which 

associates solutions to their closest weight vector (subproblem). A localized decomposition method is run based 

on the switch of weighted sum (WS) and Tchebycheff (TCH) aggregated functions to follow the principle of 



diversity first and convergence second, which is very promising for solving imbalanced MOPs. The 

experimental results indicate that LDEA not only performs well on imbalanced MOPs (e.g., the MOP [15] and 

IMB [46] test suites), but also shows promising performance on balanced yet complicated MOPs (e.g., the UF 

[18] test suite). 

2) The mating selection, evolutionary operators, and environmental selection are accordingly modified to 

cooperate well with the localized decomposition method. Only the best offspring of each subproblem is evolved 

in mating selection and the dynamical search step sizes are embedded in evolutionary operators to speed up 

convergence, while the best solution of each subproblem is compulsorily saved to maintain diversity. In this 

way, our LDEA can obtain evenly distributed and very close approximations to the true PFs on most of the test 

problems adopted. 

The rest of this paper is organized as follows. In Section 2, the related background and motivation of our 

approach are introduced. The details of LDEA are clarified in Section 3, while the experimental results of 

LDEA with other competitive MOEAs and some discussions are provided in Section 4. Our conclusions and 

future work are presented in Section 5. 

 

2. Related background and motivations 

2.1.Multi-objective optimization problem 

Multi-objective optimization problems (MOPs) involve more than one conflicting objective and give rise 

to a set of Pareto-optimal solutions. In this paper, MOPs without constraints are considered, as follows: 
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where 1 2( , , , )nx x x x  is a decision vector having n decision variables in
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  R , and 1 ,[ ]n Li iUi    

denotes the n-dimensional feasible decision space. Li and Ui are the lower bound and upper bound of ix  (i = 

1, 2, …, n), respectively. ( )F x  defines m objective functions mapping from the decision space  to the 

objective space mR . Due to the potential conflicts among different objectives, there exists a Pareto-optimal 

set (PS) with equally optimal solutions when considering all the objectives, and the mapping of the PS on the 

objective space is termed the Pareto-optimal front (PF) [1]. 

 

2.2.Decomposition approaches 

In this paper, two popular decomposition approaches (WS [12] and TCH [50]) are used, which are 

respectively defined as follows: 
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( 0iw  ), and * * *
1{ , ..., }mz zz  is an ideal point with * ({min | })i iz f x x Ω  for 1,...,i m . 

As experimentally studied in [51], WS would work well for MOPs with convex PFs while TCH was better 

on MOPs with nonconvex PFs. In [52], WS and TCH were simultaneously used when tackling MOPs with 

different shapes of PFs. Each subproblem was associated with two solutions, which requires a population size 

twice as large and consequently wastes computational resources. Recently, a localized WS [25] was suggested 

to enhance diversity for each subproblem, by embedding the constraints on the original WS. However, this 

localized WS is unable to find the exact solution associated to each subproblem in solving MOPs with 

nonconvex PFs, as plotted in Fig. 1. Two solutions 1x  (marked by blue) and 2x   (marked by pink) are 

compared to be associated with the weight vector (0.5, 0.5). The blue line and the pink line respectively give 

the contour lines of TCH and the localized WS constrained by the shaded background for 1x and 2x . The 

solutions under the contour line are better, while those above the contour line are worse when compared to 1x  

or 2x . Obviously, 2x  will be selected if the localized WS is used, while 1x  will be selected if TCH is used. 

In fact, 1x  is better than 2x  when considering diversity as measured by the perpendicular distance to the 

weight vector. Thus, although the localized WS can speed up convergence toward the PFs, it has to be replaced 

by TCH at a latter evolutionary stage in order to maintain good diversity. Motivated by this observation, our 

localized decomposition method is designed to use WS at the beginning and then activate TCH when WS 

cannot bring any improvement for a subproblem in a long-running period.  

Fig. 1. The difference between TCH and the localized WS when selecting the associated solutions in MOEA/D. 

 

2.3.Related studies 

Here, a summary of some representative decomposition-based MOEAs (MOEA/Ds) is provided in Table 

1. Initially, the original MOEA/Ds were designed to consider convergence first and diversity second in their 

environmental selection methods. For example, MOEA/D [12] uses the aggregated function value for each 
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subproblem in its environmental selection, and MOEA/D-DE [53] further sets the maximal replacement 

number of each offspring when replacing the parents. However, this method is only suitable for solving MOPs 

with uniformly distributed Pareto-optimal fronts (PFs). Thus, with further studies of MOEA/Ds, some of them 

were suggested to strike a balance of convergence and diversity. For example, MOEA/D-AGR [36] designs an 

adaptive neighborhood update strategy to better achieve co-evolution, and MOEA/D-IR [16] develops a mutual 

preference interrelationship for improving optimization efficiency. Besides, MOEA/D-STM [17] devises a 

stable matching model (STM) to obtain a balance between convergence and diversity, which is further modified 

in AMOSTM and AOOSTM [41] by restricting incomplete matching lists for STM. These MOEA/Ds have 

shown very promising performance on some complicated MOPs, such as the UF test suite [18]. However, they 

experienced a significant performance deterioration for solving imbalanced MOPs, as experimentally shown 

in [15], [46]. Thus, some recent MOEA/Ds have been designed based on the principle of diversity first and 

convergence second. For example, MOEA/D-ACD [37] and MOEA/D-LWS [25] embed the constraints to 

limit the updating region of each subproblem, and MOEA/D-M2M [15] restricts the solving of MOPs within 

each sub-region. In these MOEA/Ds, when a subproblem has no associated solution, MOEA/D-ACD will relax 

the constraints to associate solutions, MOEA/D-LWS will associate solutions randomly, and MOEA/D-M2M 

will borrow solutions from other sub-regions. Thus, some solutions may still be associated to a far-away 

subproblem. Under this case, the diversity of each subproblem cannot be truly reflected, and thus correct 

neighboring information cannot be provided to run a collaborative search, which may slow down the 

convergence speed and easily get trapped in local PFs, as MOEA/Ds are designed to be an essentially 

collaborative framework for the subproblems. Based on the above analysis of the existing studies, this paper 

proposes a Localized Decomposition Evolutionary Algorithm, called LDEA, to better collaborate subproblem 

solving and thus improve the optimization performance when solving imbalanced MOPs. More details of our 

proposed LDEA are provided in Section 3. 
Table 1 

Summary of characteristics for decomposition-based MOEAs 
Algorithm Feature Strengths Limitations 
MOEA/D [12] Decompose the MOP and co-optimize subproblems Prioritizes convergence 

Best for uniformly distributed PFs 
MOEA/D-DE [53] Limit the maximal offspring replacement Better offspring-parent strategy 

MOEA/D-AGR [36] Adaptive neighborhood update Enhanced co-evolution 

Struggle in solving imbalanced MOPs MOEA/D-IR [16] Mutual preference for optimization High optimization efficiency 

MOEA/D-STM [17] Stable matching model (STM) Convergence-diversity balance 

MOEA/D-ACD [37] 
Limit the region for subproblem updates Prioritizes diversity Can misrepresent subproblem diversity 

MOEA/D-LWS [25] 

MOEA/D-M2M [15] Borrow solutions from other sub-regions if needed Solution borrowing mechanism Risk of local PF traps, slow convergence 

 

2.4.Difficulty in solving imbalanced MOPs 

In the early study of MOEA/Ds [18], the imbalanced feature in PSs was used to challenge their 

performance, in which solutions in a small segment of PS are projected to the majority of the PF. Thus, it is 

easy to converge towards a segment of the PF, but it is difficult to determine its majority. In [15], this 



imbalanced feature was introduced into the PF, which brings great challenges for most MOEA/Ds, as a strong 

diversity maintenance capability in MOEA/Ds would be required. Recently, this imbalanced feature was 

further explained in [46] and the imbalanced property was described as follows: 

1) The complexity of finding a specific subset of the PF (called the favored subset) is significantly lower 

than that of finding the other part of the PF (called the unfavored subset). 

2) The PS of the favored subset dominates a significantly larger part of the feasible variable space than 

the PS of another unfavored subset. 

Thus, a severe imbalance exists when achieving convergence and diversity maintenance in MOEA/Ds. 

Some solutions can easily replace most of the other solutions using the decomposition approach thus 

converging very quickly, which will significantly destroy the population’s diversity. A case study of this 

imbalanced feature is given in Fig. 2 to show the population evolution of MOEA/D [53] at different generations 

on IMB1 [46]. In this case, the population size and the total number of generations are respectively set to 100 

and 3000. In Fig. 2(a), the population was randomly initialized as represented by the circles, while the PF of 

IMB1 was marked using a red curve. In the second generation of Fig. 2(b), four solutions were found to have 

converged very closely towards the PF, which causes a replacement of other solutions (indicated by the red 

circles) using TCH. In Figs. 2(c)-2(e), this imbalanced evolutionary trend is obvious, as the number of solutions 

in the unexplored regions (above the right segment of the PF) is reduced with an increasing number of solutions 

having converged towards the left segment of the PF. At last, in the 3000th generation of Fig. 2(f), most 

solutions converge towards the left segment of the PF, while only five solutions are distributed above the right 

segment of the PF. Thus, the imbalanced feature of IMB1 in Figs. 2(a)-2(f) may significantly deteriorate the 

population’s diversity and weaken the collaborative capability in MOEA/D. 
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Fig. 2. The population evolution of MOEA/D at different generations on IMB1. 

Furthermore, to visually demonstrate the performance of using different aggregation functions in 

MOEA/D when solving MOPs with imbalanced features, the population evolution of MOEA/D with the TCH 

and WS aggregation functions at different generations on IMB3 are plotted in Figs. 3 and 4, respectively. As 

observed from Figs. 3 and 4, MOEA/D with the TCH aggregation function performs better in terms of diversity, 

while MOEA/D with the WS aggregation function exhibits faster convergence in the early stage. Thus, in our 

proposed LDEA, WS and TCH are incorporated by a collaborative switching mechanism to balance 

convergence and diversity, the details of which are provided in Section 3. 



 

Fig. 3 The population evolution of MOEA/D with TCH aggregation function at different generations on IMB3. 

 

Fig. 4 The population evolution of MOEA/D with WS aggregation function at different generations on IMB3. 

In [46], it was pointed out that the imbalanced features in MOPs would present significant challenges for 

MOEA/Ds and most MOEA/Ds could not solve the IMB test suite, while an MOEA enhanced by the multi-

objective to multi-objective (M2M) method [15] can properly tackle these imbalanced MOPs. Specifically, the 

M2M converts an MOP into a set of MOPs by dividing the region for co-evolution, and thus effectively 

maintains the diversity of the population. In this way, it can effectively avoid falling into local optimum, which 

makes it well suited for solving imbalanced MOPs. However, in the M2M method, an empty sub-region is still 

assigned with solutions borrowed from other sub-regions, which cannot truly reflect diversity in each sub-

region and cannot provide correct neighboring information to run the collaborative search in MOEA/Ds. 

Inspired by the M2M method, this paper suggests a localized decomposition evolutionary algorithm for solving 

imbalanced MOPs, which assigns a local region for each subproblem and performs a localized decomposition. 

Moreover, the mating selection, evolutionary operators, and environmental selection are accordingly modified 

to cooperate with the proposed localized decomposition method. The experimental results in Section 4 validate 

that LDEA can properly address the imbalanced MOPs (the MOP [15] and IMB [46] test suites) and balanced 

yet complicated MOPs (the UF test suite [18]), and also has promising performance on real-world MOP. 

 

3. The details of our algorithm 

In this section, the details of LDEA are introduced. First, the framework of LDEA is introduced to have 

an overview of the way it works. Then, the two main components of LDEA (the modified evolutionary 

operators and the localized decomposition method) are respectively introduced to clarify the implementation 

of LDEA. To be specific, the improved evolutionary operators are modified by embedding the dynamically 

reduced search steps, which can provide the course-grained search and fine-grained search respectively at the 

early and latter evolutionary stages when compared to the original version [15], [54]. Then, the localized 

decomposition method is run based on the switch of constrained WS and TCH, which only makes the solution 

update within the same local region of each subproblem. 
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3.1. The main framework of LDEA 

 
Algorithm 1: LDEA 
1 generate 1 2{ , ,..., }= Nw w wW and 1 2{ , ,..., }= Nc c cC . 
2 initialize g=1 and get an initial population P randomly.
3 set S={ 1 2

p p p

N, ,...,   } by Eq. (4). 
4 while g<Gmax 
5 O = Evolution(S). 
6 [S, C] = Localized Decomposition(P, O, C).
8 collect all solutions in S as P. 
9 g = g + 1. 
10 end while 
11 return P. 

The pseudo-code of LDEA is given in Algorithm 1. In line 1, N weight vectors 1 2{ , ,..., }= Nw w wW  (N 

is the population size) are uniformly generated using the method in [55] and the performance monitoring vector 

1 2{ , ,..., }= Nc c cC  for WS is initialized as 0 for each ic ( [1 ]i ,N ). Then, the value of the generation counter 

g is set to 1 and the initial population P is randomly generated within the search space in line 2. In line 3, the 

set S is obtained by classifying N subsets 1 2
p p p

N, ,...,    from P and each subset p
i  ( [1 ]i ,N ) includes the 

solutions in P that are closest to the weight vector iw , as follows:  

{ ( ) ( ) }p * i * j
i | - , - ,   x F x z w F x z wP  for [1 ]j ,N  ,                (4) 

where 1 1( )* * * *
mz ,z ,...,zz  (m is the number of objectives) is an ideal objective vector that is estimated by the 

minimal values of all the objectives from P, i.e.,
* ({min | })k kz f x x P  for each [1, ]k m , and 

( ) * i- ,F x z w  returns the acute angle of two vectors ( ) *-F x z  and iw , as follows:  
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 The termination condition (e.g., the generation counter g is smaller than the maximum number of 

generations Gmax in this paper) will be checked in line 4. If it is not reached, the main evolutionary process of 

LDEA will be run in lines 5-9. In line 5, the modified evolutionary operators (Algorithm 2) are performed on 

S to get an offspring population O, the details of which are given in Section 3.2. Then, the proposed localized 

decomposition method (Algorithm 3) is executed in line 6 to update the set S and the performance monitoring 

vector C, the details of which are provided in Section 3.3. In line 8, P is updated to include all the solutions in 

S and the generation number g is increased by 1 in line 9.  



Finally, after the completion of the above evolutionary process in lines 5-9, the final population P will be 

reported as the approximation set in line 11. For ease of understanding, the outline of LDEA is provided in Fig. 

5, which visually illustrates the running process of LDEA. 

Fig. 5. Outline of the proposed LDEA for solving imbalanced MOPs. 

 

3.2. The modified evolutionary operators 

The evolutionary operators used in this paper are modified from [15] by embedding the dynamically 

reduced search steps, which try to cooperate well with the localized decomposition method and enhance the 

overall search capability of LDEA, as run in line 5 of Algorithm 1. Here, its details are introduced by providing 

the pseudo-code in Algorithm 2 with the input: S (the subsets respectively associated to the subproblems) and 

the output: O (the generated offspring population from S). 

 
Algorithm 2: Evolution(S) 
1 set O as an empty set and obtain the mating neighborhood size T by Eq. (6). 
2 for i =1 to N 
3   collect the best solutions in T neighbors of p

i  as a mating pool A. 
4   for j =1 to p

i . 
5   set the best solution of p

i as 1x . 
6   if r <=g/Gmax or TA  
7      select x2 and x3 from A randomly. 
8   Else 
9      select x2 and x3 from S randomly. 
10   end if 
11   get an offspring with x1, x2 and x3 using Eqs. (7)-(8). 
12   add this offspring into O, evaluate it and update z*. 
13 end for 
14 end for 
15 return O. 

 

In line 1, the offspring population O is first initialized as an empty set and then the mating neighborhood 

size T is obtained. As each subset p
i ( [1 ]i ,N ) in S collects the solutions associated to the ith subproblem 
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(i.e., the weight vector iw ), some subsets may be empty according to Eq. (4) due to the imbalanced distribution 

of solutions. Thus, the traditional mating selection in most MOEA/Ds [12], [37], [53] cannot be properly used, 

as they associate each subproblem with one solution. Here, the mating selection in LDEA is modified. At first, 

the mating neighborhood size T is set as follows:  

( ) 1m max maxT T gG G    / ,                             (6) 

where mT   is a pre-set maximal integer for the neighborhood size, s     is a floor operator returning the 

maximal integer no larger than s, while maxG  and g are respectively the maximal generation and the current 

generation. mT   is determined by the population size N, usually set to 0 .1 N  . Using Eq. (6), the mating 

neighborhood size T will be gradually reduced from mT  to 1. By setting a larger neighborhood size T at early 

search stages, more neighbors are used to encourage a global search. In contrast, a smaller neighborhood size 

T is used at the latter stages of the search by only including a few close neighbors to emphasize a local search. 

Then, for each ith subset of S in line 2, the best solution in each of T neighbors of 
p
i  (i.e., the T subsets 

with their weight vectors closest to the weight vector iw ) is collected in line 3 as a mating pool A. For each 
p
i  in line 4, the best solution 1x  in 

p
i  is selected as a representative for this subset, which is evolved 

during p
i  times in lines 6-12 by the modified evolutionary operators. To be specific, in lines 6-10, when a 

randomly generated number r in (0, 1) is smaller than g/Gmax or at least one neighboring subproblem has no 

associated solution (i.e., TA ), two mating parents 2x  and 3x  are randomly selected from A in line 7. 

Otherwise, two mating parents 2x  and 3x  are randomly selected from S in line 9. 

After that, an offspring can be generated by 1x , 2x  and 3x , as follows: 

1 2 3
1 2(1 ( ) )( )i i i ir ry x x x   ,                               (7) 

where r1 and r2 are two random real numbers respectively generated from (-1, 1) and (0, 1), and   is an index 

that is set to -(1-g/Gmax)0.7 as suggested in [15] and [49]. This operator is called generation-related differential 

evolution (g-DE) here.  

Then, the mutation operator modified from [15] and [49], called generation-related mutation (g-MUT) 

here, is defined as follows: 

1 2(1 ( ) )( )i i i ir ry y u l    ,                               (8) 

where r1 and r2 are two random real numbers respectively generated from (-0.5, 0.5) and (0, 1), and   is an 

index that is set to -(1-g/Gmax)0.7 as suggested in [15] and [49]. The mutation step size   is also dynamically 

reduced with the generation number, and is set to (1-g/Gmax) in this paper. 

 In line 12 of Algorithm 2, this offspring is added into O and its objective values are evaluated to update 

the ideal point *z  used in TCH. Finally, when N offspring are produced in lines 2-14, the offspring population 

O is returned in line 15. 

 



3.3.The localized decomposition method 

 
Algorithm 3: [S, C]= Localized Decomposition(P, O, C) 
1 get each p

i  and o
i  respectively from P and O by Eqs. (4)-(5). 

2 obtain the number of solutions in  for each subset p
i  by Eq. (9). 

3 set 1
N

iisum n  . 
4 while sum > N 
5 find a kth subproblem with the maximal number of solutions by Eq. (10). 
6 set 1k kn n  and 1sum sum  . 
7 end while 
8 set =p p o

i i i    for each [1 ]i ,N . 
9 for i=1 to N  
10 if in > 0 
11    decide the decomposition approach for ith subproblem. 
12    reserve in best solutions from p

i  for ith subproblem. 
13    update the performance monitoring value ic by Eq. (11). 
14 end if 
15 end for 
16 set S={ 1 2

p p p

N, ,...,   }. 
17 return S, C. 

 

The pseudo-code of our localized decomposition method is given in Algorithm 3 with the inputs: the 

original population P, the offspring population O, and the performance monitoring vector C for WS in each 

subproblem, which is run in line 6 of Algorithm 1 in order to update the original population. In line 1, N 

subsets 1 2
p p p

N, ,...,    from P and N subsets 1 2
o o o

N, ,...,    from O are obtained by using Eqs. (4)-(5). In this 

way, each subset p
i  (or o

i ) ( [1 ]i ,N ) includes the solutions in P (or O) that are closest to the weight 

vector iw , which has been used in some constrained decomposition methods [25], [37] and some MOEAs 

based on the reference vectors [47]-[49]. Once offspring are generated to associate with an empty subproblem 

in P, the best offspring from O should be added into P to extend diversity. Thus, in line 2, the number of 

solutions in  in each subset p
i  is updated by including the best offspring from O in the originally empty 

local region, as follows: 

1,      if 0 and  !=0
=

,  otherwise

p o
i i

i p
i

n
   



.                           (9) 

Then, in line 3, the summation of all in  ( [1 ]i ,N ) is obtained by getting 1
N

iisum n  . If sum is larger 

than the population size N in line 4, the kth subproblem with the maximal number of associated solutions is 

identified in line 5, as follows: 

{ :arg max | |,  1,2,..., }p
ik i i N   .                          (10) 

If there is more than one subproblem in Eq. (10), only one of them is randomly selected. After that, the solution 

with the worst aggregated value will be removed from the subset | |p
k . Then, the subset size kn  indicating 

the number of associated solutions and the value of the sum are reduced by 1 in line 6, which won’t affect the 

convergence of all subproblems, as their best solutions are still reserved. After the running of lines 4-7, the 



total number of associated solutions in all the subsets is N. Then, the solutions in each subset o
i  are 

respectively combined into the subset p
i  ( [1 ]i ,N ) in line 8 for selecting the in  solutions with the best-

aggregated values from each ith subproblem. 

In lines 9-15, for each subset p
i , its aggregated function is decided in line 11. If the performance 

monitoring value ic  is smaller than a preset value (i.e., kem in Eq. (11), where k is set to 10 in this paper and 

m is the number of objectives), WS is used for the ith subproblem; otherwise, TCH is selected. By introducing 

the performance monitoring vector C, LDEA can adaptively switch the aggregated functions between WS and 

TCH to balance convergence and diversity, which is highly important for solving imbalanced MOPs. Then, in 

line 12, the in  best solutions are reserved into the subset p
i  based on their aggregated function values, 

followed by updating the corresponding performance monitoring value ic  for WS in line 13, as follows: 

WS WS0,       if and
=

1,  otherwise

( | ) ( | )best i best i m
i

i

i

c ke
c

c

g p g o  




w w
,            (11) 

where pbest and obest denote the best solutions respectively in p
i   and o

i  . At last, all the solutions in 

1 2
p p p

N, ,...,    and the performance monitoring vector C are returned in line 17. 

 

4. Experimental studies 

4.1.Benchmark problems and parameter settings 

In this study, two imbalanced test suites (MOP1-MOP7 [15] and IMB1-IMB10 [46]) and one balanced yet 

complicated test suite (UF1-UF10 [18]) were used to assess the performance of LDEA. The test problems used 

in our experimental study include eighteen two-objective problems, i.e., IMB1-IMB3, IMB7-IMB9, MOP1-

MOP5, and UF1-UF7, and nine test problems with three objectives, namely, IMB4-IMB6, IMB10, MOP6-

MOP7, and UF8-UF10. These adopted test problems have very complicated mathematical features on their 

PSs and PFs, which can challenge the capabilities of MOEAs for achieving convergence and diversity 

maintenance. For illustration purposes, a summary of the basic characteristics of these test problems and the 

corresponding parameter settings is presented in Table 2. 

 
Table 2 

Summary of characteristics for test problems and corresponding parameter settings 
Test problem m n N MaxFE Type PF Geometry 
IMB1-IMB3 2 10 100 3 104 

Imbalanced MOPs 

convex/linear/concave 
IMB7-IMB9 2 10 100 3 104 convex/linear/concave 

IMB4-IMB6/IMB10 3 10 300 9 104 linear/concave/linear/concave 
MOP1-MOP5 2 10 100 3 104 convex/concave/concave/disconnected/convex
MOP6-MOP7 3 10 300 9 104 linear/concave 

UF1-UF3 
2 30 100 3 104 

Complicated MOPs 
convex/convex/convex/ 

UF4-UF7 concave/disconnected/ disconnected/linear 
UF8-UF10 3 30 300 9 104 disconnected/disconnected/disconnected 

M3O 2 4 50 1 103 Real-world MOPs — 

 



As suggested in [15], the population size was set to 100 for the two-objective test problems and 300 for 

the three-objective test problems, while the maximum number of generations was set to 3000 for each problem. 

The number of decision variables was set to 30 for all the UF test problems and it was set to 10 for all the IMB 

and MOP test problems. As shown in the experiments of [15], some traditional MOEAs emphasizing 

convergence were found to be unsuitable for solving these imbalanced MOPs due to their loss of diversity. 

Thus, six competitive MOEAs with more emphasis on diversity i.e., MSEA [56], AOOSTM [41], AMOSTM 

[41], OPE [57], ACD [37], and SPEA/R [49] were selected for comparison with LDEA. As suggested in the 

original references, SPEA/R employed the evolutionary operators used in [54] with the same parameters 

adopted in Eqs. (7)-(8), where the crossover probability is 1.0. In particular, the parameters of MSEA and OPE 

are all the same as those of their original references [56], [57]. The other three compared MOEAs used 

DE/rand/1 (DE) with the scaling factor F=0.5 and the crossover rate CR=1.0, and polynomial-based mutation 

(PM) with the mutation index set to 20 [4]. LDEA executed g-DE in Eq. (7) and g-MUT in Eq. (8), respectively, 

as the crossover and mutation operators, in which the crossover probability was set to 1.0 and the mutation was 

randomly run in one decision variable of each solution. After the evolutionary operators, if a decision variable 

was offside, it was reset to the closest boundary value. Each algorithm was run 30 times for each test problem 

to collect the mean results and standard deviations for comparison. Other parameters of all the compared 

algorithms are given in Table 3, where   is the probability of selecting the neighbors for generating offspring, 

T means the neighborhood range for mating selection and environmental selection in MOEA/Ds, and Tm is 

only the mating neighborhood size. In AOOSTM & AMOSTM, the generation interval to update the utility of 

each subproblem [28] was set to 30 [41]. In SPEA/R, the size of the mating pool MT was set to select the 20 

closest solutions [49]. For LDEA, k in Eq. (11) was set to 10. Please note that LDEA was run in Matlab, MSEA, 

OPE, and SPEA/R were run in PlatEMO1 [58], while AOOSTM, AMOSTM, and ACD were run in jMetal2 

[59]. 

4.2.Performance indicators  

In order to provide a comprehensive assessment on the performance of all the compared algorithms, two 

widely used performance indicators (inverted generational distance (IGD) [60] and Hypervolume (HV) [61]) 

were adopted to assess the convergence and diversity of the final solution set. Specifically, the specific 

definitions of IGD and HV can be found in [4] and [62], respectively. In general, a smaller value of IGD and a 

larger value of HV indicate a better performance to closely approximate the PF with a more uniform 

distribution. No less than 500 sampling points from the true PF were used to compute IGD, while the reference 

points were respectively set to (1.1,1.1)T  and (1.1,1.1,1.1)T  for the two-objective and the three-objective test 

problems, in order to compute HV, as suggested in [63]-[64].  

 

 
1 https://github.com/BIMK/PlatEMO. 

2 https://github.com/MelonNg/EMOStudy_jMetal. 



Table 3 
Parameter settings of all the compared algorithms 

Algorithm Parameter settings  
 MSEA ——  

OPE —— 
AOOSTM&AMOSTM T=0.1N,  =0.9 

ACD T=0.1N,  =0.9 
SPEA/R MT=20 
LDEA k=10, Tm=0.1N 

 

4.3.Performance comparisons with six competitive MOEAs 

Table 4 provides the mean results and standard deviations of the compared algorithms on all the test 

problems regarding IGD, where the statistically best mean results for each problem are highlighted in boldface. 

The Wilcoxon’s rank sum test was run with a 5% significance level to show whether there exists a statistically 

significant difference on the results obtained by LDEA and each competitor. The signs “－”, “+” and “=” in 

the second to last row of Table 4 summarize the number of test problems in which LDEA respectively 

performed better than, worse than, and similarly to each competitor, while the last row of Table 4 concludes 

the percentages of obtaining the statistically best mean results on all the test problems. 

On the MOP and IMB test problems with imbalanced features, the advantages of LDEA were obvious, as 

it obtained the best IGD results on IMB1-IMB3, IMB7, IMB10, and MOP1-MOP7. AMOSTM achieved the 

best IGD results on IMB4-IMB6, while SPEA/R produced the best IGD results on IMB7-IMB9. Other compared 

algorithms could not perform best on any of IMB and MOP problems. AMOSTM, AOOSTM, and ACD 

employed DE and PM as their evolutionary operators, and they were designed to emphasize diversity, which 

produced approximations with IGD values mostly under an accuracy of 10-2. Similarly, MSEA places greater 

emphasis on diversity by designing a multi-stage evolutionary strategy, but ignores the importance of 

convergence, which also produces approximations with IGD values mostly under 10-2 accuracy. Although OPE 

tries to balance convergence and diversity by designing an adaptive resource allocation strategy, its 

performance on imbalanced MOPs is still not satisfactory. In contrast, SPEA/R obtained approximations with 

IGD values under an accuracy of 10-3 on IMB7-IMB9 and MOP2-MOP4. From these experimental results, 

SPEA/R seemed better than MSEA, AMOSTM, AOOSTM, OPE, and ACD on the imbalanced test MOPs, as 

it adopted evolutionary operators in [54], which encouraged a fine-grained search at the latter stages of the 

search. LDEA inherited the advantages of M2M [15] and SPEA2/R [54] by using the localized decomposition 

method based on WS and TCH. Moreover, LDEA modified the evolutionary operators, which also run the fine-

grained search at the latter stages of the search and could find approximate solutions closer to the true PF. Thus, 

LDEA could obtain better approximations with IGD 

Table 4 
The IGD comparison results of the compared algorithms on all the test problems 

Problem/IGD MSEA AOOSTM AMOSTM OPE ACD SPEA/R LDEA

IMB1 Mean 
Std 

1.98E-01 － 1.09E-2 － 1.13E-2 － 2.85E-2 － 1.31E-2 － 1.28E-2 － 4.75E-3
3.34E-04 6.00E-4 1.02E-3 1.77e-3 6.84E-4 2.35E-3 5.13E-5

IMB2 Mean 1.14E-01 － 4.39E-2 － 4.53E-2 － 3.93E-2 － 6.13E-2 － 1.29E-2 － 4.97E-3



Std 1.85E-04 2.22E-2 2.14E-2 7.21e-3 2.11E-2 1.17E-3 5.80E-5

IMB3 Mean 
Std 

2.17E-01 － 1.73E-2 － 1.66E-2 － 6.60E-2 － 2.30E-2 － 2.05E-2 － 6.28E-3
1.90E-04 1.46E-3 1.52E-3 4.33e-3 2.13E-3 9.67E-4 1.23E-4

IMB4 Mean 
Std 

1.04E-1 － 2.35E-2 + 2.34E-2 + 6.02E-2 － 2.79E-2 － 5.34E-2 － 2.47E-2
1.50E-2 1.98E-4 1.63E-4 2.55e-3 9.07E-4 3.22E-3 2.19E-4

IMB5 Mean 
Std 

8.09E-2 － 3.03E-2 + 3.03E-2 + 6.76E-2 － 7.47E-2 － 1.09E-1 － 3.14E-2
7.76E-5 2.79E-4 2.72E-4 6.16e-3 7.82E-3 5.00E-3 1.92E-4

IMB6 Mean 
Std 

4.40E-2 － 2.34E-2 + 2.34E-2 + 3.07E-2 － 2.50E-2 － 5.29E-2 － 2.41E-2
6.13E-5 1.53E-4 1.24E-4 5.35e-4 3.37E-4 2.39E-3 1.51E-4

IMB7 Mean 
Std 

2.90E-2 － 2.74E-2 － 2.56E-2 － 2.23E-2 － 2.90E-2 － 5.40E-3 = 5.38E-3
2.27E-4 7.06E-3 8.90E-3 7.42e-3 6.21E-3 4.20E-4 1.38E-4

IMB8 Mean 
Std 

3.40E-2 － 2.82E-2 － 2.82E-2 － 2.74E-2 － 3.53E-2 － 5.55E-3 + 5.86E-3
4.34E-4 1.08E-2 1.13E-2 7.20e-3 4.12E-3 4.97E-4 2.22E-4

IMB9 Mean 
Std 

3.23E-2 － 3.68E-2 － 3.56E-2 － 2.99E-2 － 3.92E-2 － 5.44E-3 + 7.12E-3
3.66E-4 7.02E-3 8.97E-3 5.34e-3 1.04E-3 5.19E-4 2.24E-4

IMB10 Mean 
Std 

3.96E-1 － 3.07E-2 － 3.13E-2 － 2.00E-1 － 3.15E-2 － 5.43E-2 － 2.73E-2
5.52E-2 9.06E-4 9.49E-4 5.79e-3 9.51E-4 2.80E-3 3.01E-4

MOP1 Mean 
Std 

3.63E-1 － 2.56E-2 － 2.55E-2 － 1.43E-2 － 2.71E-2 － 1.20E-2 － 7.98E-3
4.50E-3 1.97E-3 2.00E-3 8.90e-4 2.67E-3 3.25E-4 1.62E-4

MOP2 Mean 
Std 

3.55E-1 － 2.69E-2 － 1.77E-2 － 3.60E-2 － 1.63E-2 － 7.26E-3 － 4.45E-3
1.71E-1 5.13E-2 3.46E-2 6.35e-2 2.02E-2 4.04E-4 8.19E-4

MOP3 Mean 
Std 

4.36E-1 － 7.92E-3 － 9.51E-3 － 5.86E-2 － 9.18E-3 － 7.95E-3 － 4.48E-3
2.15E-2 1.01E-2 1.03E-2 9.77e-2 1.43E-2 4.63E-4 1.62E-4

MOP4 Mean 
Std 

3.20E-1 － 1.28E-2 － 1.96E-2 － 2.57E-2 － 6.09E-2 － 5.03E-3 － 4.21E-3
8.75E-3 5.36E-3 2.35E-2 1.92e-2 6.07E-2 5.02E-4 5.00E-4

MOP5 Mean 
Std 

2.88E-1 － 2.15E-2 － 2.11E-2 － 2.18E-2 － 2.34E-2 － 1.95E-2 － 7.36E-3
2.90E-2 2.40E-3 1.86E-3 1.16e-3 1.58E-3 2.74E-3 1.64E-4

MOP6 Mean 
Std 

3.09E-1 － 4.01E-2 － 3.95E-2 － 4.25E-2 － 4.99E-2 － 5.91E-2 － 2.69E-2
1.54e-6 8.62E-4 8.50E-4 5.65e-4 1.68E-3 3.78E-3 2.48E-4

MOP7 Mean 
Std 

3.57E-1 － 6.84E-2 － 6.76E-2 － 8.58E-2 － 2.34E-1 － 1.13E-1 － 3.58E-2
1.10E-6 1.53E-3 1.85E-3 2.90e-3 2.36E-2 5.51E-3 3.48E-4

UF1 Mean 
Std 

8.61E-2 － 4.99E-3 － 4.89E-3 － 3.43E-2 － 6.53E-3 － 8.33E-3 － 4.42E-3
1.05E-2 3.61E-4 1.89E-4 4.06e-3 2.94E-4 3.19E-3 1.57E-4

UF2 Mean 
Std 

3.89E-2－ 9.89E-3 － 1.31E-2 － 1.76E-2 － 1.44E-2 － 1.36E-2 － 8.12E-3
1.31E-2 4.22E-3 1.91E-2 3.26e-3 2.15E-3 2.39E-3 1.03E-3

UF3 Mean 
Std 

2.79E-1 － 9.72E-3 = 2.04E-2 － 8.18E-2 － 1.26E-2 = 2.18E-2 － 1.17E-2
3.17E-2 6.24E-3 2.32E-2 1.01e-2 6.74E-3 1.71E-2 3.94E-3

UF4 Mean 
Std 

4.25E-2 － 6.26E-2 － 6.60E-2 － 4.74E-2 － 7.14E-2 － 4.21E-2 － 4.00E-2
1.46E-3 5.72E-3 6.01E-3 1.99e-3 8.06E-3 4.28E-4 5.00E-4

UF5 Mean 
Std 

2.73E-1－ 3.04E-1 － 2.81E-1 － 2.70E-1 － 4.60E-1 － 1.64E-1 = 1.60E-1
8.37E-2 1.04E-1 1.34E-1 6.62e-2 1.31E-1 1.98E-2 1.27E-2

UF6 Mean 
Std 

1.97E-1 － 1.47E-1 － 1.91E-1 － 1.52E-1 1.90E-1 － 1.02E-1 － 1.20E-2
1.02E-1 8.83E-2 1.57E-1 7.10e-2 8.62E-2 2.26E-2 5.99E-3

UF7 Mean 
Std 

1.57E-1 － 6.09E-3 + 7.62E-3 + 1.45E-2 － 8.52E-3 = 9.08E-3 － 8.12E-3
1.52E-1 1.00E-3 4.81E-3 2.70e-3 2.58E-3 1.53E-3 1.54E-3

UF8 Mean 
Std 

2.36E-1 － 4.30E-2 + 4.69E-2 + 5.73E-2 + 5.82E-2 + 9.53E-2 － 8.15E-2
6.64E-2 1.09E-2 1.21E-2 7.22e-3 1.05E-2 2.05E-2 3.13E-2

UF9 Mean 
Std 

1.66E-1 － 1.54E-1 － 1.21E-1 － 3.17E-2 + 1.25E-1 － 1.37E-1 － 3.71E-2
6.98E-2 6.31E-2 7.91E-2 3.55e-2 4.27E-2 5.07E-2 1.01E-2

UF10 Mean 
Std 

3.58E-1 = 4.42E-1 － 8.33E-1 － 3.20E-1 = 4.84E-1 － 4.95E-1 － 3.12E-1
1.03E-1 9.70E-2 3.31E-1 7.12e-2 6.91E-2 5.44E-2 4.79E-2

－/=/+ 26/1/0 21/1/5 22/0/5 24/1/2 24/2/1 23/2/2  
best/all 0/27 3/27 3/27 2/27 1/27 4/27 19/27

values having an accuracy of 10-3 for all the two-objective problems (IMB1-IMB3, IMB7-IMB10, and MOP1-

MOP5) and with an accuracy of 10-2 for all the three-objective problems (IMB4-IMB5, and MOP6-MOP7), 

which are actually very close to the true PF of each problem. To visually show the performance of LDEA, Fig. 

6 plots the final non-dominated solution sets obtained by LDEA with the best IGD results, when solving all the 

IMB and MOP test problems. These plots show that the final solutions (indicated by the blue circles) of LDEA 

are distributed evenly and very close to the true PFs (indicated by the red lines). 

To visually show the running mechanisms of LDEA, the evolution of the population (indicated by the 

blue circles) is plotted in Fig. 7 for tackling IMB8 with its PF indicated by the red lines. Most of the 

subproblems were optimized by LDEA with WS in the 500th generation of Fig. 7(a). Then, in Figs. 7(b)-5(c), 

the solutions close to the right and left sides of the PF in the 1000th and 1500th generations gradually used 



TCH to converge with good diversity in the upper and lower parts of the PF, while the solutions in the central 

region were still far away, which still adopted WS to speed up their convergence. In Figs. 7(d)-5(e), the 

solutions in the central region also gradually evolved to approximate the central parts of PF. When the evolution 

was terminated in Fig. 7(f), LDEA could produce a good approximation set that can entirely cover the true PF. 

 

 

 

Fig. 6. The final non-dominated solution sets of LDEA with the best IGD values on all the IMB and MOP test problems. 

 

 
  (a)                (b)                (c)                (d)                (e)               (f) 

Fig. 7. The population evolution of LDEA at different generations on IMB8. 

For the UF test problems with balanced yet complicated features in PSs, MSEA, AOOSTM, AMOSTM, 

OPE, ACD, SPEA/R, and LDEA obtained the statistically best IGD results respectively on 0, 3, 0, 2, 1, 1, and 

7 cases. Thus, LDEA still showed obvious advantages on these UF test problems, as it was only worse on UF7-

UF9. Due to the contradicting (imbalanced and balanced) features in the IMB, MOP, and UF test problems, it 

is very challenging to solve all the used test problems simultaneously. For example, AMOSTM and SPEA/R 

performed relatively better than MSEA, AOOSTM, OPE, and ACD on most of the IMB and MOP test problems, 

but they performed relatively worse than AOOSTM, OPE, and ACD on most of the UF test problems. However, 

LDEA showed obvious advantages on both types of test MOPs, which validated the effectiveness of our 

localized decomposition method in cooperation with the modified evolutionary operators. 
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Table 5 
The HV comparison results of all the algorithms on all the test problems  

Problem/HV MSEA AOOSTM AMOSTM OPE ACD SPEA/R LDEA

IMB1 Mean 
Std 

5.17E-1 － 7.11E-1 － 7.10E-1 － 6.90E-01 － 7.09E-1 － 7.07E-1 － 7.18E-1
4.41E-4 6.58E-4 1.07E-3 1.74E-03 7.08E-4 3.10E-3 7.09E-5

IMB2 Mean 
Std 

4.54E-1 － 5.29E-1 － 5.27E-1 － 5.34E-01 － 5.08E-1 － 5.68E-1 － 5.79E-1
2.16E-4 2.85E-2 2.78E-2 9.23E-03 2.61E-2 1.68E-3 9.17E-5

IMB3 Mean 
Std 

2.05E-1 － 3.27E-1 － 3.28E-1 － 2.80E-01 － 3.24E-1 － 3.30E-1 － 3.42E-1
1.02E-4 1.85E-3 1.93E-3 1.83E-03 1.97E-3 4.84E-4 2.18E-4

IMB4 Mean 
Std 

7.85E-1 － 8.54E-1 + 8.54E-1 + 8.02E-01 － 8.46E-1 － 8.12E-1 － 8.50E-1
9.36E-3 4.35E-4 3.71E-4 3.41E-03 1.26E-3 3.72E-3 3.35E-4

IMB5 Mean 
Std 

5.48E-1 － 5.77E-1 + 5.77E-1 + 5.46E-01 － 5.42E-1 － 4.46E-1 － 5.76E-1
2.19E-4 8.31E-4 8.22E-4 1.48E-03 8.83E-4 6.85E-3 2.24E-4

IMB6 Mean 
Std 

8.43E-1 － 8.54E-1 + 8.54E-1 + 8.33E-01 － 8.52E-1 － 8.13E-1 － 8.53E-1
1.14E-4 2.70E-4 2.34E-4 1.02E-03 3.99E-4 3.01E-3 1.79E-4

IMB7 Mean 
Std 

6.97E-1 － 6.97E-1 － 6.98E-1 － 7.01E-01 － 6.95E-1 － 7.17E-1 = 7.17E-1
4.95E-04 6.28E-3 7.98E-3 5.59E-03 5.52E-3 7.33E-4 2.48E-4

IMB8 Mean 
Std 

5.46E-1 － 5.52E-1 － 5.51E-1 － 5.52E-01 － 5.44E-1 － 5.78E-1 = 5.78E-1
1.11E-3 1.24E-2 1.32E-2 6.75E-03 4.91E-3 8.72E-4 3.68E-4

IMB9 Mean 
Std 

3.15E-1 － 3.13E-1 － 3.13E-1 － 3.16E-01 － 3.12E-1 － 3.43E-1 + 3.40E-1
8.21E-4 5.96E-3 7.50E-3 3.40E-03 1.66E-3 1.10E-3 3.95E-4

IMB10 Mean 
Std 

3.92E-1 － 8.45E-1 － 8.44E-1 － 6.34E-01 － 8.44E-1 － 8.15E-1 － 8.47E-1
1.08E-1 1.03E-3 1.08E-3 1.11E-02 1.05E-3 3.07E-3 3.76E-4

MOP1 Mean 
Std 

2.38E-1 － 6.93E-1 － 6.94E-1 － 7.06E-01 － 6.92E-1 － 7.08E-1 － 7.14E-1
9.23E-3 2.35E-3 2.18E-3 9.88E-04 2.80E-3 4.04E-4 2.10E-4

MOP2 Mean 
Std 

1.74E-1 － 4.18E-1 － 4.28E-1 － 4.15E-01 － 4.27E-1 － 4.39E-1 － 4.44E-1
5.70E-2 5.37E-2 3.39E-2 5.53E-02 1.98E-2 5.75E-4 3.38E-4

MOP3 Mean 
Std 

1.11E-1 － 3.41E-1 － 3.38E-1 － 2.98E-01 － 3.39E-1 － 3.41E-1 － 3.46E-1
1.97E-2 1.45E-2 1.50E-2 8.44E-02 2.08E-2 5.18E-4 1.65E-4

MOP4 Mean 
Std 

2.51E-1 － 5.87E-1 － 5.79E-1 － 5.78E-01 － 5.28E-1 － 5.93E-1 － 5.96E-1
1.35E-2 4.43E-3 2.75E-2 2.32E-02 7.34E-2 1.52E-3 1.22E-3

MOP5 Mean 
Std 

4.05E-1 － 6.97E-1 － 6.97E-1 － 6.97E-01 － 6.94E-1 － 6.97E-1 － 7.14E-1
1.15E-2 2.77E-3 2.13E-3 1.33E-03 1.96E-3 3.50E-3 2.20E-4

MOP6 Mean 
Std 

6.23E-1 － 8.35E-1 － 8.36E-1 － 8.31E-01 － 8.28E-1 － 8.13E-1 － 8.49E-1
2.70E-4 8.27E-4 8.40E-4 9.69E-04 1.61E-3 4.09E-3 3.08E-4

MOP7 Mean 
Std 

4.09E-1 － 5.32E-1 － 5.34E-1 － 5.26E-01 － 4.95E-1 － 5.07E-1 － 5.66E-1
6.43E-6 2.38E-3 4.38E-3 1.88E-03 1.49E-2 3.44E-3 4.53E-4

UF1 Mean 
Std 

6.18E-1 － 7.16E-1 － 7.17E-1 － 6.73E-01 － 7.14E-1 － 7.11E-1 － 7.18E-1
1.49E-2 1.21E-3 5.04E-4 6.89E-03 5.26E-4 4.34E-3 2.90E-4

UF2 Mean 
Std 

6.86E-1 － 7.11E-1 － 7.09E-1 － 7.01E-01 － 7.04E-1 － 7.04E-1 － 7.14E-1
8.10E-3 3.30E-3 1.28E-2 4.31E-03 3.08E-3 3.71E-3 1.12E-3

UF3 Mean 
Std 

4.19E-1 － 7.07E-1 + 6.97E-1 － 6.02E-01 － 7.02E-1 － 6.89E-1 － 7.06E-1
3.07E-2 1.55E-2 2.17E-2 1.44E-02 1.04E-2 3.21E-2 6.69E-3

UF4 Mean 
Std 

3.90E-1 = 3.58E-1 － 3.53E-1 － 3.78E-01 － 3.46E-1 － 3.88E-1 － 3.91E-1
1.83E-3 7.24E-3 7.63E-3 3.18E-03 1.07E-2 5.92E-4 5.69E-4

UF5 Mean 
Std 

2.59E-1 － 1.91E-1 － 2.16E-1 － 1.96E-01 － 1.01E-1 － 3.36E-1 = 3.28E-1
5.44E-2 7.45E-2 7.39E-2 7.50E-02 6.57E-2 2.56E-2 1.62E-2

UF6 Mean 
Std 

3.04E-1 － 3.22E-1 － 3.02E-1 － 2.97E-01 － 2.93E-1 － 3.61E-1 － 5.09E-1
7.03E-2 6.15E-2 8.74E-2 8.20E-02 8.72E-2 3.22E-2 1.05E-2

UF7 Mean 
Std 

4.44E-1 － 5.77E-1 + 5.75E-1 = 5.63E-01 － 5.72E-1 － 5.72E-1 － 5.75E-1
1.07E-1 1.57E-3 7.10E-3 4.83E-03 4.63E-3 2.36E-3 2.42E-3

UF8 Mean 
Std 

3.58E-1 － 5.44E-1 + 5.36E-1 + 5.10E-01 + 5.17E-1 + 4.44E-1 － 4.79E-1
4.73E-2 2.31E-2 2.43E-2 1.59E-02 1.94E-2 2.58E-2 4.85E-2

UF9 Mean 
Std 

6.51E-1 － 6.46E-1 － 6.92E-1 － 7.85E-01 + 6.73E-1 － 6.41E-1 － 7.77E-1
6.19E-2 8.77E-2 1.02E-1 3.37E-02 4.73E-2 6.39E-2 1.93E-2

UF10 Mean 
Std 

1.92E-1 － 7.47E-2 － 8.29E-3 － 2.01E-01 = 8.83E-2 － 6.59E-2 － 2.80E-1
6.23E-2 4.30E-2 1.73E-2 1.10E-01 1.92E-2 3.97E-2 7.49E-2

－/=/+ 26/1/0 21/0/6 22/1/4 24/1/2 26/0/1 24/3/1  
best/all 1/27 3/27 3/27 1/27 0/27 3/27 18/27

To summarize from the last to second row of Table 4, LDEA performed better on 26, 21, 22, 24, 24, and 

23 cases, but only worse on 0, 5, 5, 2, 1, and 2 cases, when respectively compared to MSEA, AOOSTM, 

AMOSTM, OPE, ACD, and SPEA/R on IGD. Moreover, to summarize from the last row in Table 4, LDEA 

performed best on 19 out of a total of 27 cases regarding IGD, while MSEA, AOOSTM, AOOSTM, OPE, 

ACD, and SPEA/R respectively obtained the best IGD results on 0, 3, 3, 2, 1, and 4 cases. These summarized 

results on IGD indicated the obvious advantages of LDEA over the other compared algorithms. 



Similar conclusions can be found in Table 5 when considering the HV results on all the IMB, MOP, and 

UF test problems. As observed from the last to second row in Table 5, LDEA performed better on 26, 21, 22, 

24, 26, and 24 cases, but only worse on 0, 6, 4, 2, 1, and 1 cases, when respectively compared to MSEA, 

AOOSTM, AMOSTM, OPE, ACD, and SPEA/R on HV. Moreover, as observed from the last row in Table 5, 

LDEA performed best on 18 out of total 27 cases using HV, while MSEA, AMOSTM, AOOSTM, OPE, and 

SPEA/R respectively obtained the best HV results on 1, 3, 3, 1, and 3 cases. ACD could not find the best HV 

result for any test problem. These summarized HV results further confirmed the advantages of LDEA over the 

other compared algorithms. 

Moreover, to quantify the performance of each optimizer on all the test problems (i.e., IMB1-IMB10, 

MOP1-MOP7, and UF1-UF10), a comparative analysis was conducted using Friedman’s test. The resulting 

ranks are presented in Fig. 8, where a lower rank value indicates a superior performance of the optimizer. From 

Fig. 8, it is evident that LDEA outperforms its six competitors with a rank value of 1.52, which is significantly 

better than MSEA (6.22), AOOSTM (3.22), AMOSTM (3.44), OPE (4.33), ACD (4.96), and SPEA/R (3.7). 

These results establish that LDEA is a more effective optimizer for solving imbalanced and complicated MOPs. 

This is mainly attributed to its localized decomposition method and adaptive switching of aggregated functions 

between WS and TCH, which balance the convergence and diversity of the population effectively. 
 

Fig. 8. Illustration of the Friedman ranks of all the compared algorithms on the IMB, MOP, and UF test problems. 

4.4.Discussion on the effect of parameter k for controlling WS 

As indicated in [52], it is very challenging to select WS and TCH for each subproblem. In this paper, the 

performance monitoring vector 1 2{ , , ..., }= Nc c cC   is employed to record the running period that the 

subproblems stop to be improved by WS. Once the ci value ( [1 ]i ,N ) is larger than kem in Eq. (11), TCH will 

be activated to replace WS for the ith subproblem. Thus, the setting of parameter k in Eq. (11) determines the 

running of WS and TCH for each subproblem, which may affect the performance of LDEA. To study its 

influence, the LDEA variants with the parameter k set as 2.5, 5, 7.5, 10, 12.5, 15, and 17.5 are experimentally 

compared. A smaller value of k indicates a shorter running period to replace WS using TCH. The other 

experimental settings in LDEA are kept the same. 
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Table 6 
The IGD comparison results for LDEA with different k values on all the test problems 

Problem/IGD k=2.5 k=5 k=7.5 k=10 k=12.5 k=15 k=17.5

IMB1 Mean 
Std 

4.75E-3 4.74E-3 4.73E-3 4.75E-3 4.74E-3 4.77E-3 4.84E-3
5.81E-5 6.40E-5 3.04E-5 5.13E-5 5.47E-5 4.60E-5 9.39E-5

IMB2 Mean 
Std 

4.99E-3 4.98E-3 4.98E-3 4.97E-3 4.97E-3 5.01E-3 5.10E-3
6.36E-5 7.55E-5 8.70E-5 5.80E-5 8.08E-5 6.37E-5 9.36E-5

IMB3 Mean 
Std 

6.29E-3 6.26E-3 6.28E-3 6.28E-3 6.32E-3 6.32E-3 6.37E-3
9.18E-5 8.30E-5 1.09E-4 1.23E-4 6.33E-5 1.05E-4 1.11E-4

IMB4 Mean 
Std 

2.40E-2 2.40E-2 2.43E-2 2.47E-2 2.50E-2 2.53E-2 2.57E-2
7.32E-5 6.01E-5 1.32E-4 2.19E-4 1.98E-4 1.88E-4 2.38E-4

IMB5 Mean 
Std 

3.05E-2 3.05E-2 3.08E-2 3.14E-2 3.21E-2 3.36E-2 3.53E-2
8.42E-5 7.71E-5 1.64E-4 1.92E-4 3.64E-4 4.30E-4 4.93E-4

IMB6 Mean 
Std 

2.31E-2 2.32E-2 2.37E-2 2.41E-2 2.44E-2 2.48E-2 2.51E-2
7.12E-5 9.40E-5 1.26E-4 1.51E-4 1.04E-4 2.44E-4 1.61E-4

IMB7 Mean 
Std 

5.37E-3 5.38E-3 5.38E-3 5.38E-3 5.36E-3 5.25E-3 5.28E-3
1.44E-4 1.26E-4 9.63E-5 1.38E-4 1.25E-4 9.99E-5 1.13E-4

IMB8 Mean 
Std 

5.99E-3 5.94E-3 5.91E-3 5.86E-3 5.85E-3 5.75E-3 5.87E-3
1.60E-4 1.92E-4 1.89E-4 2.22E-4 1.58E-4 1.66E-4 2.55E-4

IMB9 Mean 
Std 

7.20E-3 7.19E-3 7.14E-3 7.12E-3 6.82E-3 7.12E-3 7.55E-3
2.75E-4 2.24E-4 2.60E-4 2.24E-4 2.16E-4 2.14E-4 3.46E-4

IMB10 Mean 
Std 

2.57E-2 2.57E-2 2.64E-2 2.73E-2 2.77E-2 2.79E-2 2.78E-2
1.11E-4 1.32E-4 1.70E-4 3.01E-4 2.94E-4 2.99E-4 2.73E-4

MOP1 Mean 
Std 

7.96E-3 7.93E-3 7.94E-3 7.98E-3 7.99E-3 8.02E-3 8.07E-3
1.32E-4 2.06E-4 1.58E-4 1.62E-4 1.67E-4 1.55E-4 2.19E-4

MOP2 Mean 
Std 

4.42E-3 4.31E-3 4.46E-3 4.45E-3 4.44E-3 4.40E-3 4.86E-3
7.48E-4 6.56E-4 7.54E-4 8.19E-4 7.28E-4 4.30E-4 7.22E-4

MOP3 Mean 
Std 

4.53E-3 4.54E-3 4.47E-3 4.48E-3 4.59E-3 4.66E-3 4.82E-3
3.49E-4 3.67E-4 3.33E-4 1.62E-4 7.90E-4 2.73E-4 3.30E-4

MOP4 Mean 
Std 

4.23E-3 4.27E-3 4.20E-3 4.21E-3 4.25E-3 4.23E-3 4.26E-3
5.18E-4 4.71E-4 4.72E-4 5.00E-4 5.23E-4 3.88E-4 1.85E-4

MOP5 Mean 
Std 

7.34E-3 7.37E-3 7.39E-3 7.36E-3 7.36E-3 7.42E-3 7.39E-3
1.58E-4 1.46E-4 1.52E-4 1.64E-4 1.43E-4 1.74E-4 2.24E-4

MOP6 Mean 
Std 

2.52E-2 2.53E-2 2.59E-2 2.69E-2 2.75E-2 2.77E-2 2.77E-2
1.34E-4 1.43E-4 1.66E-4 2.48E-4 3.03E-4 2.56E-4 3.09E-4

MOP7 Mean 
Std 

3.40E-2 3.40E-2 3.46E-2 3.58E-2 3.67E-2 3.71E-2 3.73E-2
1.92E-4 2.25E-4 2.79E-4 3.48E-4 4.45E-4 4.93E-4 3.97E-4

UF1 Mean 
Std 

4.90E-3 4.87E-3 4.62E-3 4.42E-3 4.26E-3 4.19E-3 4.13E-3
7.82E-4 6.15E-4 1.95E-4 1.57E-4 1.81E-4 1.52E-4 1.64E-4

UF2 Mean 
Std 

8.63E-3 8.37E-3 8.11E-3 8.12E-3 7.84E-3 7.67E-3 7.60E-3
1.13E-3 1.20E-3 1.37E-3 1.03E-3 1.19E-3 1.16E-3 1.33E-3

UF3 Mean 
Std 

1.61E-2 1.68E-2 1.27E-2 1.17E-2 1.05E-2 8.90E-3 8.77E-3
6.71E-3 6.43E-3 4.10E-3 3.94E-3 4.18E-3 3.56E-3 4.23E-3

UF4 Mean 
Std 

4.09E-2 4.06E-2 4.03E-2 4.00E-2 3.97E-2 3.93E-2 3.90E-2
4.94E-4 5.03E-4 5.54E-4 5.00E-4 5.92E-4 5.83E-4 6.09E-4

UF5 Mean 
Std 

1.61E-1 1.65E-1 1.62E-1 1.60E-1 1.66E-1 1.57E-1 1.61E-1
1.48E-2 1.98E-2 2.41E-2 1.27E-2 1.88E-2 2.12E-2 1.54E-2

UF6 Mean 
Std 

1.59E-2 1.60E-2 2.17E-2 1.20E-2 1.10E-2 1.05E-2 2.00E-2
5.95E-3 7.10E-3 4.62E-2 5.99E-3 6.89E-3 4.47E-3 5.10E-2

UF7 Mean 
Std 

7.72E-3 7.79E-3 7.85E-3 8.12E-3 8.59E-3 8.78E-3 8.65E-3
1.00E-3 9.61E-4 1.30E-3 1.54E-3 1.36E-3 1.45E-3 1.58E-3

UF8 Mean 
Std 

7.87E-2 7.96E-2 8.11E-2 8.15E-2 7.87E-2 7.97E-2 7.96E-2
2.53E-2 3.15E-2 3.14E-2 3.13E-2 2.62E-2 3.20E-2 3.21E-2

UF9 Mean 
Std 

5.20E-2 4.89E-2 4.09E-2 3.71E-2 4.14E-2 3.69E-2 3.65E-2
2.95E-2 2.97E-2 1.24E-2 1.01E-2 2.47E-2 1.06E-2 9.80E-3

UF10 Mean 
Std 

2.21E-1 1.96E-1 2.12E-1 1.95E-1 2.10E-1 2.00E-1 2.06E-1
3.05E-2 2.41E-2 5.36E-2 2.76E-2 4.97E-2 2.93E-2 3.15E-2

Table 6 and Table 7 respectively provide the mean results and standard deviations of IGD and HV, which 

were obtained by LDEA with different k values in solving all the test problems. In Table 6 and Table 7, the 

statistically best mean results of each problem using the Wilcoxon’s rank sum test with a 5% significance level 

are all highlighted with a shaded background. 

For the IMB test problems, a smaller k value is better for LDEA to produce better IGD results on IMB1-

IMB6 and IMB10 in Table 6. However, a larger k value is preferred by LDEA to better solve IMB7, and LDEA 

with k=15 and k=12.5 are respectively best on IMB8 and IMB9. Moreover, the HV results of LDEA on IMB1-



IMB3 and IMB7 are statistically similar in Table 7. A smaller k value is better for LDEA to solve IMB4-IMB6 

and IMB10, while a larger k value is more suitable for LDEA on IMB8-IMB9. 

 

Table 7 
The HV comparison results of LDEA with different k values on the test problems 

Problem/HV k=2.5 k=5 k=7.5 k=10 k=12.5 k=15 k=17.5

IMB1 Mean 
Std 

7.18E-1 7.18E-1 7.18E-1 7.18E-1 7.18E-1 7.18E-1 7.18E-1
8.55E-5 9.56E-5 5.11E-5 7.09E-5 8.21E-5 5.52E-5 1.15E-4

IMB2 Mean 
Std 

5.79E-1 5.79E-1 5.79E-1 5.79E-1 5.79E-1 5.79E-1 5.79E-1
1.01E-4 1.17E-4 1.39E-4 9.17E-5 1.31E-4 1.01E-4 1.42E-4

IMB3 Mean 
Std 

3.42E-1 3.42E-1 3.42E-1 3.42E-1 3.42E-1 3.42E-1 3.42E-1
1.45E-4 1.46E-4 1.67E-4 2.18E-4 1.24E-4 1.78E-4 1.79E-4

IMB4 Mean 
Std 

8.51E-1 8.51E-1 8.51E-1 8.50E-1 8.48E-1 8.47E-1 8.45E-1
1.14E-4 7.82E-5 1.70E-4 3.35E-4 9.06E-4 9.20E-4 1.08E-3

IMB5 Mean 
Std 

5.76E-1 5.76E-1 5.76E-1 5.76E-1 5.75E-1 5.73E-1 5.71E-1
1.78E-4 1.81E-4 2.18E-4 2.24E-4 6.09E-4 5.85E-4 7.04E-4

IMB6 Mean 
Std 

8.53E-1 8.53E-1 8.53E-1 8.53E-1 8.52E-1 8.51E-1 8.51E-1
1.21E-4 1.30E-4 1.58E-4 1.79E-4 2.42E-4 3.65E-4 5.18E-4

IMB7 Mean 
Std 

7.17E-1 7.17E-1 7.17E-1 7.17E-1 7.17E-1 7.17E-1 7.17E-1
2.42E-4 2.16E-4 1.71E-4 2.48E-4 2.32E-4 1.94E-4 2.29E-4

IMB8 Mean 
Std 

5.77E-1 5.77E-1 5.77E-1 5.78E-1 5.78E-1 5.78E-1 5.78E-1
2.62E-4 3.11E-4 3.07E-4 3.68E-4 2.55E-4 2.83E-4 4.19E-4

IMB9 Mean 
Std 

3.40E-1 3.40E-1 3.40E-1 3.40E-1 3.41E-1 3.41E-1 3.41E-1
4.83E-4 4.21E-4 4.53E-4 3.95E-4 4.26E-4 4.45E-4 6.09E-4

IMB10 Mean 
Std 

8.48E-1 8.48E-1 8.48E-1 8.47E-1 8.45E-1 8.43E-1 8.41E-1
1.53E-4 1.41E-4 1.95E-4 3.76E-4 6.70E-4 1.39E-3 1.40E-3

MOP1 Mean 
Std 

7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1
1.66E-4 2.44E-4 1.84E-4 2.10E-4 2.07E-4 1.96E-4 2.74E-4

MOP2 Mean 
Std 

4.44E-1 4.44E-1 4.44E-1 4.44E-1 4.44E-1 4.44E-1 4.44E-1
4.12E-4 7.30E-4 8.13E-4 3.38E-4 4.49E-4 1.75E-4 3.45E-4

MOP3 Mean 
Std 

3.46E-1 3.46E-1 3.46E-1 3.46E-1 3.46E-1 3.46E-1 3.46E-1
3.49E-4 3.66E-4 3.47E-4 1.65E-4 6.73E-4 2.47E-4 3.49E-4

MOP4 Mean 
Std 

5.96E-1 5.96E-1 5.96E-1 5.96E-1 5.96E-1 5.96E-1 5.96E-1
1.12E-3 7.15E-4 6.44E-4 1.22E-3 1.44E-3 4.35E-4 1.93E-4

MOP5 Mean 
Std 

7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.14E-1
2.22E-4 2.09E-4 1.93E-4 2.20E-4 1.90E-4 2.31E-4 3.22E-4

MOP6 Mean 
Std 

8.50E-1 8.50E-1 8.49E-1 8.49E-1 8.47E-1 8.46E-1 8.46E-1
1.26E-4 1.62E-4 1.63E-4 3.08E-4 5.65E-4 1.01E-3 9.68E-4

MOP7 Mean 
Std 

5.67E-1 5.67E-1 5.67E-1 5.66E-1 5.65E-1 5.65E-1 5.64E-1
4.16E-4 3.47E-4 3.69E-4 4.53E-4 5.27E-4 4.89E-4 6.93E-4

UF1 Mean 
Std 

7.17E-1 7.17E-1 7.18E-1 7.18E-1 7.18E-1 7.19E-1 7.19E-1
1.22E-3 8.34E-4 3.60E-4 2.90E-4 3.55E-4 3.21E-4 4.43E-4

UF2 Mean 
Std 

7.14E-1 7.14E-1 7.14E-1 7.14E-1 7.15E-1 7.15E-1 7.15E-1
1.32E-3 1.26E-3 1.49E-3 1.12E-3 1.35E-3 1.25E-3 1.56E-3

UF3 Mean 
Std 

7.00E-1 7.00E-1 7.06E-1 7.06E-1 7.08E-1 7.11E-1 7.11E-1
9.82E-3 8.87E-3 5.66E-3 6.69E-3 6.52E-3 5.82E-3 6.55E-3

UF4 Mean 
Std 

3.90E-1 3.91E-1 3.91E-1 3.91E-1 3.91E-1 3.91E-1 3.92E-1
7.43E-4 6.18E-4 7.09E-4 5.69E-4 7.09E-4 7.79E-4 7.55E-4

UF5 Mean 
Std 

3.32E-1 3.27E-1 3.35E-1 3.28E-1 3.25E-1 3.38E-1 3.28E-1
2.73E-2 2.33E-2 2.76E-2 1.62E-2 2.10E-2 2.66E-2 1.98E-2

UF6 Mean 
Std 

5.02E-1 5.03E-1 5.04E-1 5.09E-1 5.09E-1 5.10E-1 4.99E-1
8.38E-3 9.15E-3 2.77E-2 1.05E-2 1.14E-2 1.17E-2 2.77E-2

UF7 Mean 
Std 

5.75E-1 5.75E-1 5.75E-1 5.75E-1 5.74E-1 5.74E-1 5.74E-1
1.55E-3 1.49E-3 2.07E-3 2.42E-3 2.17E-3 2.20E-3 2.46E-3

UF8 Mean 
Std 

4.77E-1 4.78E-1 4.79E-1 4.79E-1 4.83E-1 4.83E-1 4.82E-1
3.71E-2 4.72E-2 4.76E-2 4.85E-2 4.02E-2 5.00E-2 5.02E-2

UF9 Mean 
Std 

7.60E-1 7.62E-1 7.72E-1 7.77E-1 7.72E-1 7.78E-1 7.80E-1
3.87E-2 3.72E-2 2.03E-2 1.93E-2 3.44E-2 1.81E-2 1.79E-2

UF10 Mean 
Std 

2.34E-1 2.86E-1 2.52E-1 2.80E-1 2.63E-1 2.66E-1 2.53E-1
6.29E-2 6.08E-2 7.97E-2 7.49E-2 7.83E-2 7.85E-2 8.07E-2

For the MOP test problems, the IGD results of LDEA in Table 6 are slightly better when k<15 for 

MOP1. For MOP2, the best IGD result is obtained by k=5, while a smaller k value (i.e., k<12.5) will bring a 

better IGD result for MOP3. The performance on MOP4 is not impacted by k. For MOP6 and MOP7, their best 

IGD results are obtained by LDEA with k=2.5 and k=5. On the other hand, the HV results of LDEA in Table 7 



are statistically similar on MOP1-MOP5, which are not influenced by k, while a smaller k value is preferred 

by LDEA to better solve MOP6-MOP7. 

For the UF test problems, a larger k value can provide better IGD results for LDEA on UF1-UF4 and 

UF9-UF10, and all the IGD results on UF5-UF6 and UF8 are statistically similar in Table 6. Only a smaller k 

value (k<12.5) is preferred by LDEA in solving UF7. From Table 7, a similar conclusion can be observed from 

the HV results on all the UF problems.  

To summarize, the impact of the parameter k can be roughly classified as three cases. For MOP4, UF5-

UF6, and UF8, the impact of k is very small and LDEA with different k values can properly address these 

problems. For MOP6-MOP7, IMB4-IMB6, IMB10, and UF7, a smaller k value will generally improve the 

performance of LDEA, indicating a short running period to activate TCH at the evolutionary process. Since 

their PF shapes are non-convex, the activation of TCH in LDEA can help to avoid the issue as plotted in Fig. 

1. For IMB8-IMB9 and UF1-UF4, a larger k value will be better for LDEA, which will run more WS in their 

evolutionary process. This is because the PF shapes of UF1-UF3 are convex and thus the switch to TCH is not 

necessary, and WS can speed up the convergence when solving UF4 and IMB8-IMB9. 
Table 8 

The IGD and HV comparison results for LDEA and its variants on all the test problems 

Problem/IGD LDEA-I LDEA-II LDEA Problem/HV LDEA-I LDEA-II LDEA

IMB1 Mean 
Std 

1.30E-2 － 7.70E-3 － 4.75E-3 IMB1 Mean
Std

7.08E-1 － 7.15E-1 － 7.18E-1
4.38E-4 1.54E-4 5.13E-5 4.76E-4 1.78E-4 7.09E-5

IMB2 Mean 
Std 

4.11E-2 － 9.10E-3 － 4.97E-3 IMB2 Mean
Std

5.33E-1 － 5.74E-1 － 5.79E-1
1.65E-2 1.86E-4 5.80E-5 2.13E-2 2.50E-4 9.17E-5

IMB3 Mean 
Std 

2.34E-2 － 1.22E-2 － 6.28E-3 IMB3 Mean
Std

3.21E-1 － 3.34E-1 － 3.42E-1
6.30E-4 2.56E-4 1.23E-4 7.74E-4 3.03E-4 2.18E-4

IMB4 Mean 
Std 

3.88E-2 － 2.85E-2 － 2.47E-2 IMB4 Mean
Std

8.34E-1 － 8.45E-1 － 8.50E-1
4.51E-4 2.34E-4 2.19E-4 6.04E-4 2.83E-4 3.35E-4

IMB5 Mean 
Std 

3.93E-2 － 3.33E-2 － 3.14E-2 IMB5 Mean
Std

5.61E-1 － 5.71E-1 － 5.76E-1
4.79E-4 1.94E-4 1.92E-4 8.20E-4 4.14E-4 2.24E-4

IMB6 Mean 
Std 

2.73E-2 － 2.45E-2 － 2.41E-2 IMB6 Mean
Std

8.49E-1 － 8.52E-1 － 8.53E-1
2.07E-4 1.69E-4 1.51E-4 1.90E-4 1.61E-4 1.79E-4

IMB7 Mean 
Std 

2.64E-2 － 8.07E-3 － 5.38E-3 IMB7 Mean
Std

6.97E-1 － 7.14E-1 － 7.17E-1
1.00E-2 3.66E-4 1.38E-4 8.61E-3 5.72E-4 2.48E-4

IMB8 Mean 
Std 

2.78E-2 － 9.38E-3 － 5.86E-3 IMB8 Mean
Std

5.50E-1 － 5.73E-1 － 5.78E-1
1.17E-2 3.68E-4 2.22E-4 1.36E-2 5.73E-4 3.68E-4

IMB9 Mean 
Std 

3.46E-2 － 1.14E-2 － 7.12E-3 IMB9 Mean
Std

3.13E-1 － 3.34E-1 － 3.40E-1
1.08E-2 4.84E-4 2.24E-4 7.85E-3 8.70E-4 3.95E-4

IMB10 Mean 
Std 

6.02E-2 － 3.62E-2 － 2.73E-2 IMB10 Mean
Std

8.09E-1 － 8.36E-1 － 8.47E-1
1.07E-3 4.30E-4 3.01E-4 1.00E-3 5.63E-4 3.76E-4

MOP1 Mean 
Std 

3.27E-2 － 1.73E-2 － 7.98E-3 MOP1 Mean
Std

6.83E-1 － 7.02E-1 － 7.14E-1
1.09E-3 5.95E-4 1.62E-4 1.10E-3 6.46E-4 2.10E-4

MOP2 Mean 
Std 

1.66E-2 － 5.59E-3 － 4.45E-3 MOP2 Mean
Std

4.24E-1 － 4.41E-1 － 4.44E-1
8.84E-3 1.84E-3 8.19E-4 1.41E-2 2.72E-3 3.38E-4

MOP3 Mean 
Std 

3.28E-2 － 5.63E-3 － 4.48E-3 MOP3 Mean
Std

3.05E-1 － 3.43E-1 － 3.46E-1
3.40E-2 8.50E-4 1.62E-4 4.49E-2 9.76E-4 1.65E-4

MOP4 Mean 
Std 

2.69E-2 － 4.42E-3 － 4.21E-3 MOP4 Mean
Std

5.71E-1 － 5.95E-1 － 5.96E-1
2.59E-2 2.86E-4 5.00E-4 3.02E-2 3.89E-4 1.22E-3

MOP5 Mean 
Std 

2.78E-2 － 1.53E-2 － 7.36E-3 MOP5 Mean
Std

6.85E-1 － 7.02E-1 － 7.14E-1
7.69E-4 3.85E-4 1.64E-4 9.06E-4 4.40E-4 2.20E-4

MOP6 Mean 
Std 

5.48E-2 － 3.45E-2 － 2.69E-2 MOP6 Mean
Std

8.19E-1 － 8.39E-1 － 8.49E-1
7.47E-4 3.95E-4 2.48E-4 7.53E-4 3.81E-4 3.08E-4

MOP7 Mean 
Std 

7.62E-2 － 4.68E-2 － 3.58E-2 MOP7 Mean
Std

5.14E-1 － 5.47E-1 － 5.66E-1
1.23E-3 3.91E-4 3.48E-4 1.59E-3 7.11E-4 4.53E-4

UF1 Mean 
Std 

4.98E-3 － 9.41E-3 － 4.42E-3 UF1 Mean
Std

7.16E-1 － 7.11E-1 － 7.18E-1
4.51E-4 3.79E-3 1.57E-4 7.40E-4 6.64E-3 2.90E-4

UF2 Mean 
Std 

9.44E-3 － 6.65E-3 + 8.12E-3 UF2 Mean
Std

7.13E-1 － 7.16E-1 + 7.14E-1
1.70E-3 9.40E-4 1.03E-3 1.87E-3 1.02E-3 1.12E-3

UF3 Mean 
Std 

8.14E-2 － 1.32E-2 － 1.17E-2 UF3 Mean
Std

6.40E-1 － 7.02E-1 － 7.06E-1
3.20E-2 4.02E-3 3.94E-3 3.24E-2 5.74E-3 6.69E-3



UF4 Mean 
Std 

5.98E-2 － 4.13E-2 － 4.00E-2 UF4 Mean
Std

3.62E-1 － 3.89E-1 － 3.91E-1
4.65E-3 5.13E-4 5.00E-4 5.94E-3 6.25E-4 5.69E-4

UF5 Mean 
Std 

3.72E-1 － 1.73E-1 － 1.60E-1 UF5 Mean
Std

1.67E-1 － 3.27E-1 = 3.28E-1
1.77E-1 2.17E-2 1.27E-2 7.88E-2 2.56E-2 1.62E-2

UF6 Mean 
Std 

2.63E-1 － 5.76E-2 － 1.20E-2 UF6 Mean
Std

3.85E-1 － 4.83E-1 － 5.09E-1
5.27E-2 1.76E-1 5.99E-3 3.20E-2 8.72E-2 1.05E-2

UF7 Mean 
Std 

7.90E-3 = 1.14E-2 － 8.12E-3 UF7 Mean
Std

5.74E-1 － 5.70E-1 － 5.75E-1
2.86E-3 1.36E-3 1.54E-3 4.07E-3 2.10E-3 2.42E-3

UF8 Mean 
Std 

6.14E-2 + 8.54E-2 － 8.15E-2 UF8 Mean
Std

5.10E-1 + 4.71E-1 － 4.79E-1
9.89E-3 3.93E-2 3.13E-2 2.16E-2 6.03E-2 4.85E-2

UF9 Mean 
Std 

5.37E-2 － 9.19E-2 － 3.71E-2 UF9 Mean
Std

7.62E-1 － 7.02E-1 － 7.77E-1
3.54E-2 4.89E-2 1.01E-2 4.68E-2 6.76E-2 1.93E-2

UF10 Mean 
Std 

3.16E-1 － 2.94E-1 － 1.95E-1 UF10 Mean
Std

1.54E-1 － 2.09E-1 － 2.80E-1
4.48E-2 1.08E-1 2.76E-2 2.66E-2 7.78E-2 7.49E-2

－/=/+ 25/1/1 26/0/1 －/=/+ 26/0/1 25/1/1  

 

4.5.Discussion on the modified evolutionary operators 

The evolutionary operators play a key role in the performance of MOEAs. In this paper, to cooperate well 

with the localized decomposition method, the adopted evolutionary operators were modified from [15]. Here, 

the effectiveness of our modified evolutionary operators in Eqs. (7)-(8) was experimentally studied by 

comparing LDEA with its two variants. One LDEA variant (LDEA-I) used the traditional DE and PM, while 

the other LDEA variant (LDEA-II) adopted the original evolutionary operators in M2M. In LDEA-I, DE/rand/1 

was run with F=0.5 and CR=1.0, and PM was randomly run in one decision variable with the mutation index 

set as 20 [4]. LDEA-II used the same parameter settings as LDEA in Eqs. (7)-(8). Please note that if a decision 

variable was out of bounds after applying the evolutionary operators, it was reset to the closest boundary value, 

as done in Section 4.1. Table 8 provides the mean results and standard deviations obtained by LDEA and its 

two variants on all the test problems, which shows the IGD and HV results respectively in the left and right 

columns. The Wilcoxon’s rank sum test with a 5% significance level was run to show the statistically significant 

difference on the results of LDEA with each variant. In Table 8, the statistically best mean results of each 

problem are all highlighted in boldface. The signs “－”, “+” and “=” in Table 8 summarize the numbers of test 

problems in which LDEA respectively performed better than, worse than, and similarly to its variants.  

As observed from Table 8, LDEA obtained the best IGD and HV results on 25 out of 27 total cases, which 

validated the effectiveness of our modified evolutionary operators in LDEA. To be more specific, regarding 

IGD, LDEA performed better than LDEA-I and LDEA-II respectively on 25 and 26 cases, but only worse than 

LDEA-I and LDEA-II on 1 case each. For HV, LDEA performed better than LDEA-I and LDEA-II respectively 

on 26 and 25 cases, but only worse than LDEA-I and LDEA-II respectively on 1 case each. These one-by-one 

comparison results have evidently confirmed the effectiveness of the modified evolutionary operators in Eqs. 

(7)-(8) for enhancing the performance of LDEA. 

 

4.6.Running time analysis 

When evaluating computational efficiency, we considered several compared algorithms implemented in 

MATLAB, including DEAGNG, SPEA/R, NSGAIIARSBX, GFMMOEA, MSEA, OPE, and the proposed 



LDEA. However, AOOSTM, AMOSTM, and ACD, developed in Java, are excluded from Fig. 9 due to 

potential performance disparities arising from differences in programming languages. 

As shown in Fig. 9, GFMMOEA and OPE show prolonged computational durations for most test problems, 

while NSGAIIARSBX runs faster than other compared algorithms. In general, the overall performance of 

LDEA is moderate on these test problems. This is because the localized decomposition strategy inevitably 

consumes a certain amount of computational resources. However, given the excellent performance of LDEA 

regarding the IGD and HV indicators, it is still very competitive with other algorithms. 

Fig. 9. The average running times (seconds) of LDEA and its six competitors on IMB, MOP, and UF test problems. 

4.7.Real-world Application 

There is a wide range of multi-objective optimization scenarios in the real-world [66]-[67]. Therefore,  

to evaluate the effectiveness of LDEA in real-world scenarios, a Multi-Objective Optimal Operations (M3O) 

problem is studied here [67], which is a real-world MOP built from a water reservoir system. In the experiment, 

the parameter settings for the M3O problem are referenced from [19], where the population size N, dimension 

of decision variables n, number of objective m, and maximal function evaluations are set to 50, 4, 2, and 1000, 

respectively. To ensure comparability among all the algorithms in PlatEMO2 [58], MSEA [56], SPEA/R [49], 

and three additional algorithms (DEAGNG [68], GFMMOEA [69] and NSGAIIARSBX [70]) are chosen as 

comparison algorithms for solving the M3O problem. The HV values obtained by the six compared algorithms 

are plotted in Fig. 10, where the best results are marked with a star. Observing from Fig. 10, LDEA is superior 

to its five competitors, achieving the best HV value. This confirmed the effectiveness of LDEA in solving the 

real-world M3O problem. Moreover, to visually illustrate the comparison, the final solutions obtained by all 

the compared algorithms are plotted in Fig. 8. As shown in Fig. 11, a set of solutions with better diversity and 
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convergence is obtained by LDEA, outperforming its five competitors in solving the M3O problem. This can 

be attributed to the excellent optimization mechanism of LDEA in balancing diversity and convergence. 

Notably, an additional performance comparison between the three newly introduced compared algorithms (i.e., 

DEAGNG, GFMMOEA, and NSGAIIARSBX) and LDEA on the artificial benchmark test problems (i.e., 

IMB1-IMB10 [46], MOP1-MOP7 [15], and UF1-UF10 [18]) is also studied, and the experimental results are 

provided in Table 9, which show that LDEA greatly outperforms these three compared algorithms on artificial 

benchmark test problems in terms of IGD and HV [71] metrics. 

Fig. 10. Comparison of HV values obtained by six compared algorithms on the M3O problem. 

Fig. 

11. 

Final 

solutions obtained by LDEA and its five competitors on the M3O problem. 

 
Table 9 

The IGD and HV results obtained by LDEA and three additional compared algorithms on all the test problems 

Problem IGD HV 
DEAGNG GFMMOEA NSGAIIARSBX LDEA DEAGNG GFMMOEA NSGAIIARSBX LDEA

IMB1 Mean 
Std 

1.19E-1 - 1.05E-1 - 9.47E-2 - 4.75E-3 5.86E-1 - 6.05E-1 - 6.13E-1 - 7.18E-1
3.63E-02 1.58E-02 3.43E-02 5.13E-5 3.57E-02 2.10E-02 3.45E-02 7.09E-5

IMB2 Mean 
Std 

1.55E-1 - 1.42E-1 - 1.31E-1 - 4.97E-3 3.99E-1 - 4.08E-1 - 4.19E-1 - 5.79E-1
1.46E-02 2.15E-02 1.25E-02 5.80E-5 1.78E-02 2.09E-02 1.94E-02 9.17E-5

IMB3 Mean 
Std 

2.28E-1 - 2.17E-1 - 2.23E-1 - 6.28E-3 1.42E-1 - 1.52E-1 - 1.76E-1 - 3.42E-1
2.88E-02 4.42E-02 7.22E-03 1.23E-4 2.41E-02 2.90E-02 2.91E-02 2.18E-4

IMB4 Mean 
Std 

1.28E-1 - 1.21E-1 - 1.26E-1 - 2.47E-2 7.63E-1 - 7.70E-1 - 7.60E-1 - 8.50E-1
6.73E-03 6.63E-03 1.14E-02 2.19E-4 4.75E-03 2.22E-03 9.22E-03 3.35E-4

IMB5 Mean 
Std 

1.18E-1 - 8.22E-2 - 8.93E-2 - 3.14E-2 5.09E-1 - 5.46E-1 - 5.35E-1 - 5.76E-1
1.18E-02 2.90E-04 7.63E-04 1.92E-4 1.11E-02 4.65E-04 2.21E-03 2.24E-4

IMB6 Mean 
Std 

4.69E-2 - 4.47E-2 - 5.35E-2 - 2.41E-2 8.37E-1 - 8.42E-1 - 8.37E-1 - 8.53E-1
1.09E-03 1.60E-04 1.07E-03 1.51E-4 1.30E-03 1.52E-04 9.85E-04 1.79E-4

IMB7 Mean 
Std 

2.94E-2 - 2.89E-2 - 2.89E-2 - 5.38E-3 6.96E-1 - 6.97E-1 - 6.97E-1 - 7.17E-1
8.39E-04 1.85E-04 6.78E-05 1.38E-4 9.51E-04 5.36E-04 8.22E-05 2.48E-4

IMB8 Mean 
Std 

3.43E-2 - 3.41E-2 - 3.39E-2 - 5.86E-3 5.45E-1 - 5.45E-1 - 5.47E-1 - 5.78E-1
4.27E-04 4.05E-04 5.69E-05 2.22E-4 1.07E-03 9.89E-04 6.66E-05 3.68E-4

IMB9 Mean 
Std 

3.28E-2 - 3.27E-2 - 3.22E-2 - 7.12E-3 3.13E-1 - 3.13E-1 - 3.16E-1 - 3.40E-1
4.78E-04 5.10E-04 1.02E-04 2.24E-4 1.13E-03 1.29E-03 7.93E-05 3.95E-4

IMB10 Mean 
Std 

2.93E-1 - 2.39E-1 - 6.12E-2 - 2.73E-2 5.55E-1 - 6.22E-1 - 8.14E-1 - 8.47E-1
8.08E-02 3.07E-02 6.50E-03 3.01E-4 7.47E-02 3.19E-02 6.23E-03 3.76E-4

MOP1 Mean 
Std 

3.52E-1 - 3.77E-1 - 3.15E-1 - 7.98E-3 2.61E-1 - 2.09E-1 - 3.24E-1 - 7.14E-1
3.51E-03 1.87E-02 4.39E-02 1.62E-4 6.69E-03 4.04E-02 5.66E-02 2.10E-4

MOP2 Mean 
Std 

3.54E-1 - 3.54E-1 - 3.54E-1 - 4.45E-3 1.73E-1 - 1.73E-1 - 1.73E-1 - 4.44E-1
1.51E-16 1.62E-16 1.79E-16 8.19E-4 7.54E-17 5.65E-17 2.92E-17 3.38E-4

MOP3 Mean 
Std 

5.19E-1 - 4.90E-1 - 4.20E-1 - 4.48E-3 9.09E-2 - 9.36E-2 - 1.40E-1 - 3.46E-1
4.79E-02 5.98E-02 1.49E-02 1.62E-4 7.06E-17 8.32E-03 3.41E-02 1.65E-4

MOP4 Mean 
Std 

3.01E-1 - 2.92E-1 - 2.60E-1 - 4.21E-3 2.75E-1 - 2.84E-1 - 3.22E-1 - 5.96E-1
2.16E-02 1.78E-02 2.21E-02 5.00E-4 1.75E-02 1.78E-02 1.52E-02 1.22E-3

MOP5 Mean 
Std 

2.87E-1 - 3.55E-1 - 2.54E-1 - 7.36E-3 4.10E-1 - 3.53E-1 - 4.30E-1 - 7.14E-1
2.87E-02 1.66E-01 7.27E-02 1.64E-4 2.22E-02 1.33E-01 7.36E-02 2.20E-4

MOP6 Mean 
Std 

3.19E-1 - 3.09E-1 - 2.90E-1 - 2.69E-2 6.17E-1 - 6.23E-1 - 6.44E-1 - 8.49E-1
3.04E-02 1.60E-06 3.92E-02 2.48E-4 1.42E-02 4.37E-06 4.50E-02 3.08E-4

MOP7 Mean 
Std 

4.52E-1 - 3.57E-1 - 3.57E-1 - 3.58E-2 3.70E-1 - 4.08E-1 - 4.08E-1 - 5.66E-1
9.71E-02 1.01E-06 3.49E-06 3.48E-4 4.74E-02 5.83E-06 2.94E-05 4.53E-4

UF1 Mean 
Std 

1.01E-1 - 1.05E-1 - 9.06E-3 - 4.42E-3 5.99E-1 - 5.97E-1 - 7.11E-1 - 7.18E-1
2.18E-02 1.95E-02 3.63E-04 1.57E-4 2.57E-02 1.64E-02 5.16E-04 2.90E-4

UF2 Mean 
Std 

4.01E-2 - 3.99E-2 - 1.31E-2 - 8.12E-3 6.79E-1 - 6.82E-1 - 7.06E-1 - 7.14E-1
1.66E-02 1.44E-02 6.93E-04 1.03E-3 1.05E-02 9.70E-03 1.10E-03 1.12E-3

UF3 Mean 
Std 

2.55E-1 - 2.43E-1 - 1.35E-2 = 1.17E-2 4.41E-1 - 4.47E-1 - 7.05E-1 = 7.06E-1
5.35E-02 3.81E-02 5.81E-03 3.94E-3 5.11E-02 2.86E-02 7.35E-03 6.69E-3

0 0.5 1
0

0.5

1
MSEA vs LDEA on M3O

MSEA
LDEA

0 0.5 1
0

0.5

1
SPEA/R vs LDEA on M3O

SPEA/R
LDEA

0 0.5 1
0

0.5

1
DEAGNG vs LDEA on M3O

DEAGNG
LDEA

0 0.5 1
0

0.5

1
GFMMOEA vs LDEA on M3O

GFMMOEA
LDEA

0 0.5 1
0

0.5

1
NSGAIIARSBX vs LDEA on M3O

NSGAIIARSBX
LDEA



UF4 Mean 
Std 

4.08E-2 - 4.15E-2 - 4.46E-2 - 4.00E-2 3.90E-1 - 3.90E-1 - 3.85E-1 - 3.91E-1
8.93E-04 3.16E-03 3.99E-04 5.00E-4 1.05E-03 3.35E-03 7.39E-04 5.69E-4

UF5 Mean 
Std 

3.07E-1 - 2.96E-1 - 2.15E-1 - 1.60E-1 2.49E-1 - 2.52E-1 - 3.19E-1 - 3.28E-1
8.63E-02 1.06E-01 1.30E-01 1.27E-2 5.11E-02 5.62E-02 5.76E-02 1.62E-2

UF6 Mean 
Std 

1.80E-1 - 1.87E-1 - 2.00E-1 - 1.20E-2 3.23E-1 - 3.26E-1 - 3.33E-1 - 5.09E-1
9.86E-02 1.10E-01 2.02E-01 5.99E-3 5.07E-02 6.35E-02 9.47E-02 1.05E-2

UF7 Mean 
Std 

1.62E-1 - 1.51E-1 - 1.46E-2 - 8.12E-3 4.37E-1 - 4.49E-1 - 5.65E-1 = 5.75E-1
1.40E-01 1.33E-01 5.91E-03 1.54E-3 1.01E-01 9.70E-02 8.00E-03 2.42E-3

UF8 Mean 
Std 

2.39E-1 - 2.40E-1 - 3.05E-1 - 8.15E-2 3.34E-1 - 3.40E-1 - 2.23E-1 - 4.79E-1
4.00E-02 7.86E-02 5.65E-02 3.13E-2 2.57E-02 5.87E-02 5.78E-02 4.85E-2

UF9 Mean 
Std 

1.18E-1 - 1.53E-1 - 2.04E-1 - 3.71E-2 6.89E-1 - 6.38E-1 - 5.65E-1 - 7.77E-1
6.57E-02 8.97E-02 1.04E-01 1.01E-2 5.69E-02 1.06E-01 1.19E-01 1.93E-2

UF10 Mean 
Std 

3.74E-1 - 3.42E-1 - 1.20E+0 - 3.12E-1 1.68E-1 - 2.09E-1 - 3.69E-4 - 2.80E-1
8.85E-02 9.48E-02 3.27E-01 4.79E-2 4.25E-02 6.58E-02 2.02E-03 7.49E-2

-/=/+ 27/0/0 27/0/0 26/1/0 — 27/0/0 27/0/0 25/2/0 —
best/all 0/27 0/27 1/27 27/27 0/27 1/27 2/27 27/27

 

 

5. Conclusions and future work 

In this paper, a localized decomposition evolutionary algorithm was proposed for solving imbalanced 

MOPs. Using the localized decomposition method, the solutions’ diversity is maintained by only updating the 

solutions under the same local region of each subproblem, which is extended when offspring are generated in 

the originally empty region. At the beginning, the WS decomposition is used to speed up convergence, while 

the TCH decomposition will be activated to maintain diversity when WS cannot bring any improvement for a 

long-running period. Moreover, the mating selection and the evolutionary operators  

are accordingly modified to cooperate well with the localized decomposition method, which can further 

improve the performance of LDEA. When compared to nine competitive MOEAs (MSEA, AOOSTM, 

AMOSTM, OPE, ACD, SPEA/R, DEAGNG, GFMMOEA, and NSGAIIARSBX), LDEA showed the 

advantages on two benchmark sets with imbalanced features, one benchmark set with balanced yet complicated 

features, and one real-world MOP built from a water reservoir system. More experiments were run to study the 

impact of parameters in LDEA, and the effectiveness of our modified evolutionary operators and localized 

decomposition approach. 

Notably, even though LDEA has demonstrated its excellent competence in balancing convergence and 

diversity when solving imbalanced MOPs, the localized decomposition method may inevitably slow down the 

convergence speed, thereby reducing its effectiveness in limited evaluation scenarios. As part of our future 

work, the performance of this localized decomposition method will be further studied by using an adaptive 

adjustment strategy on the weight vectors, which can let LDEA handle more complicated MOPs or many-

objective optimization problems with disconnected or incomplete PFs. Also, the use of LDEA in some real-

world engineering problems will be part of our future work. 
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