
Swarm Intelligence manuscript No.
(will be inserted by the editor)

An Advanced ACO Algorithm Implementing Boundary Search for

Constrained Numerical Optimization Problems

Guillermo Leguizamón1 and Carlos A. Coello Coello2

1 LIDIC - Universidad Nacional de San Luis

Ejército de los Andes 950

San Luis, ARGENTINA 5700

legui@unsl.edu.ar

2 Evolutionary Computation Group (EVOCINV)

Computer Science Department

CINVESTAV-IPN

Av. IPN No. 2508. Col. San Pedro Zacatenco

México D.F. 07300, ḾEXICO

ccoello@cs.cinvestav.mx

Abstract The boundary approach as a constraint-handling technique that can be considered a suitable alter-

native when facing constrained numerical optimization problems with active constraints. The definition ofad

hocor more general boundary operators is relevant in the area ofnumerical optimization for approaching the

region between the feasible and infeasible search space. Although the success of the boundary approach will

mainly depend on the solutions representation and the respective exploration operators, it is also an important

issue the provided search engine for applying the boundary approach. In this paper we proposed an advanced

search engine implementing the boundary approach based on anew Ant Colony Optimization algorithm for

continuous problem (ACOR). The paper describes the adaptation of ACOR to incorporate the boundary ap-

proach for constrained numerical optimization problems and includes an experimental study to determine the

impact of the parameter setting on the behavior of the proposed ACO algorithm for constrained optimization

problems. In addition, the performance of the modified ACOR is compared against a former and a simpler

2 Guillermo Leguizamón and Carlos A. Coello Coello

version of an ACO algorithm for continues problems, and the Stochastic Ranking, a well known method for

constrained evolutionary optimization.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic has been extensively applied to solving plenty of combi-

natorial optimization problems. The ACO metaheuristic (Corne et al. [5], Dorigo and Stüztle [6]) includes a

class of different algorithms derived from the main concepts involved in it, i.e., algorithms which design is

based on the behavior of the ant colonies. These algorithms involve a colony of artificial ants that aim to find

good solutions to a problem by cooperating among them. The cooperation is indirectly achieved bystigmergy,

that is, by indirect communication mediated by the environment. For example, the Ant System (AS) was the

first example of an ant colony optimization algorithm to be proposed in the literature. However, AS was not

competitive with state-of-the-art algorithms for the TSP,the problem to which the original AS was applied. Ac-

cordingly, several improvements were proposed to the original version of AS, many of which were especially

designed to deal with the TSP problem. The most important improvements are1: AS with anelitist strategyfor

updating the pheromone trail levels, ASrank (a rank-based version of Ant System),MAX -MIN Ant System

(MMAS), and the Ant Colony System (ACS), however, all of them were originally designed to operate on

combinatorial optimization problems (including some dynamic versions) according to the main formulation of

the ACO metaheuristic [6].

On the other hand, one of the first ACO extensions to operate oncontinuous spaces can be found in Bilchev

et al. [3] in which the whole search space is discretized in order to represent a finite number of search directions.

This approach was validated using a small set of constrainedproblems. Since then, several other researchers

have proposed schemes to apply the ACO algorithm to continuous search spaces. However, all of these ap-

proaches only deal with unconstrained optimization problems. For example, Ling et al. [22] report a general

proposal to apply an ACO algorithm in a continuous convex domain space without including any experimental

results. The proposal involves the application of adaptivecrossover and mutation operators based on the relative

fitness of the solutions. Lei et al. [19,20] adapt the ACO metaphor for continuous spaces by dividing the search

space inton subregions (i.e., a discrete view as proposed by Bilchev). The approach was applied to a set of uni-

1 A details description of these instances of the ACO metaheuristic can be found in [6].

Title Suppressed Due to Excessive Length 3

variable multimodal functions defined on an unconstrained search space where each subregion corresponds to a

subinterval of the variable. Initially, each ant is assigned to the respective search interval. As the search process

continues, each ant shifts the middle point of its interval according to the quality of the solution found. In this

way, overlapped search regions will arise as the ants focus the search on common promising subregions of the

search space. The pheromone trail distribution on intervali is given by a unimodal functionTi (bell shaped)

reaching a higher peak as the quality of solutionxi increases. FunctionTi represents the learning experience of

the algorithm in order to explore/exploit different subregions of the search space. Thus, the decision regarding

the interval in which an ant can deposit its pheromone is proportional to the amount of pheromone trail on the

respective intervals. Although this work is limited to a fewunconstrained continuous problems, it could be an

interesting approach to be extended for constrained problems. Finally, it is worth remarking that this algorithm

is applied as a complementary step after a genetic algorithmhas found some promising subregions of the search

space.

More recently, Dreo et al. [7] proposed a new manner of designing ACO algorithms in continuous spaces

by introducing the concept ofheterarchyand communication channels. The approach is tested on only one

problem (multimodal unconstrained function) and designedconsidering that the pheromone trail is not the only

way of applying indirect communication among the ants. Instead, they apply the concept of dense heterarchy as

a manner of explaining the behavior of some insect species for which the communication is achieved through

either indirect or direct communication channels with well-defined properties. The prominent characteristic of

this approach is represented by the possibility of using twocomplementary communication channels, either

indirect channels2 to promote exploration or direct channels to promote exploitation of the search space ac-

cording to the solutions previously evaluated. Using a similar approach, Monmarché et al. [24] presented an

ACO algorithm called API which implements a parallel searchin the solution space by conforming hunter sites

(points in the search space) according to the quality of the solutions. These sites can be moved (translated)

during the search process (exploration) by applying local search on the hunter site. The API algorithm was

applied with promising results to a set of well known unconstrained continuous functions.

2 According to the authors, this concept is similar to that used with Particle Swarm Optimization in [14] and to path-

relinking [10].

4 Guillermo Leguizamón and Carlos A. Coello Coello

On the other hand, Pourtakdoust et al. [25] propose an extension of an ant colony system to continuous

optimization which is purely pheromone based. To explore the search space, the algorithm uses a normal

probability distribution to model a relationship among theparameters, the aggregation of ants around the food

source (best so far point) and the distance of a particular point from the food source. Thus, the more the

distance between the point and the food source, the less the pheromone intensity. The pheromone update is

achieved in each iteration by updating the food source and the aggregation factor. In particular, the aggregation

factor is obtained considering the overall distance between all the points found and the food source and the

corresponding objective values. The experimental study includes the De Jong’s standard testbed functions (i.e.,

unconstrained problems) and an experimental comparison with API [24] and a GA. An extension of the ACO

metaheuristic to continuous domains and applied to continuous and mixed discrete-continuous problems is

presented by K. Socha [28] which follows the original conception on the ACO approach in regards of the way

the solutions are built, i.e., incrementally. The solutions are built by using a probability density distribution

(PDF). At stepi each ant generates a random number according to a mixture of normal kernels of PDFs

P i(xi) defined on the intervalai ≤ xi ≤ bi, i.e., a multimodal PDF aimed at considering several subregions

of that interval at the same time. The pheromone maintenanceis implemented following three alternatives:

positive update, negative update, and a variant of a negative update called dissolving instead of the classical

evaporation. The experimental study involves a set of continuous unconstrained problems and the results are

better than other ACO algorithms and competitive with respect to some other non-ACO algorithms. In another

recent work by Socha et al. [29], the former ideas proposed bySocha [28] regarding continuous domains are

extensively presented and details concerning implementation issues are given through the ACOR algorithm.

The experimental study considered a test suite of several unconstrained continuous optimization problems. In

addition, an analysis of the behavior of ACOR is presented regarding the impact on its performance of its main

parameters:q andξ.

In Leguizamón et al. [18] a new proposal for constraint-handling technique is implemented in an ACO

algorithm for continuous problems based in the former worksby Bilchev et al. [3]. The Leguizamón et al.’s work

introduced a more general boundary approach for solving nonlinear constrained problems which was presented

as a possible extension of the ACO algorithms for continuoussearch spaces. The boundary approach under the

ACO metaheuristic showed to be competitive with other state-of-the-art algorithm with respect to nonlinear

Title Suppressed Due to Excessive Length 5

problems with active constraints. It is also worth noting that the boundary approach has been studied from the

perspective of evolutionary computation. For example in Michalewicz et al. [23] the efficiency of this approach

was shown by using two constrained optimization problems: Keane’s function (also known asG02) [13] and

another function with one equality constraint (also known asG03). For these cases, it was possible to define

ad hocgenetic operators that fit perfectly the boundary of the feasible region. However, this sort of approach is

impractical in an arbitrary problem with many constraints,and it is therefore necessary to define a more general

approach for boundary search which can be as robust as possible to deal with different types of constraints.

Similarly, in Schoenauer et al. [27] some evolutionary operators capable of exploring a general surface of

dimensionn − 1 (n is the number of variables) for the following three test cases: functionG03 and two

additional functions which represent respectively a constrained versions of the two original (unconstrained)

functions proposed by Baluja [1]. On the other hand, Wu et al.[31] proposed a GA for the optimization of

a water distribution system, which is a highly constrained optimization problem. The proposed approach co-

evolves and self-adapts two penalty factors in order to guide and preserve the search towards the boundary of

the feasible search space. However, the Wu et al.’s work doesnot involve any explicit boundary operator.

The present work is adopts one of the more recent ACO extensions for continuous search spaces and

shows how the boundary approach could be included in a more advanced search engine based on the ACO

metaheuristic. More specifically we adopted the ACOR algorithm proposed by Socha et al.[29].

The remainder of this paper is organized as follows. Section2 describes the formulation of the general

nonlinear optimization problems and some features of theseproblems that could be exploited when some

conditions are met. In addition, a general formulation of the boundary approach (see [18,17]) is presented.

The two ACO algorithms, ACO(B)
BR

which is the search engine formerly used to study the applicability of our

proposed boundary approach, and ACO(S)
BR

, the more advanced search engine based in ACOR ; are presented

in Section 3. The test problems and experimental results arepresented and analyzed in Section 4. Finally, our

conclusions and some possible paths for future research areprovided in Section 5.

2 The Boundary Search Approach

The general nonlinear programming problem whose aim is to find x so as to optimize:

f(x) x = (x1, x2, ..., xn) ∈ R
n

6 Guillermo Leguizamón and Carlos A. Coello Coello

wherex ∈ F ⊂ S. The setS ⊂ R
n defines the search space and setsF ⊆ S andU = S − F define the

feasibleandinfeasiblesearch spaces, respectively. The search spaceS is defined as ann-dimensional rectangle

in R
n (domains of variables defined by their lower and upper bounds):

l(i) ≤ xi ≤ u(i) for 1 ≤ i ≤ n

whereas the feasible setF is defined by the intersection ofS and a set of additionalm ≥ 0 constraints:

gj ≤ 0, for j = 1, . . . , q and hj = 0 for j = q + 1, . . . ,m.

At any pointx ∈ F , the constraintsgk that satisfygk(x) = 0 are called the active constraints atx. Equality

constraintshj are active at all points ofF . It is worth remarking that plenty of problems formulated asabove

include active constraints at the best known or optimal solutions. For example, for problems with at least one

equality constrainthj, the respective optimal solution will lay on the region defined byhj(x) = 0. Furthermore,

for many problems, the best solutions may lay on the boundarybetween the feasible and infeasible search

space of some inequality constrains, i.e., the region defined bygj(x) = 0. When those conditions are met for a

particular problem, the design ofad hocoperators or approaches that explore the search space focusing on the

boundary region (according either to the equality and/or inequality constraints) can be a suitable alternative for

including in a specific search engine or metaheuristic.

In the following we first explain how the boundary region can be approached given a specific search space;

more precisely, then-dimensional spaceRn. Then, we also describe the manner in which this search spacecan

be explored assuming a hypothetical search engine and exploration operators. Afterwards, we present in detail

the proposed technique that takes advantage of the boundaryapproach to explore some specific regions of the

boundary of the feasible search space.

2.1 Approaching the boundary

We describe here a general boundary approach (proposed in [18,17]) which is based on the notion that each

point b of the boundary region can be represented by means of two different pointsx andy, wherex is

some feasible point andy is some infeasible one, i.e.,(x,y) can represent one point lying on the boundary by

applying a “binary search” on the straight line connecting the pointsx andy (when considering an equality

constraint,z ∈ F iff h(z) ≤ 0; otherwise,z ∈ U). Figure 1 shows a hypothetical search space including the

Title Suppressed Due to Excessive Length 7

feasible (shadowed area) and infeasible regions. We can identify four points lying on the boundaryb1, b2, b3,

andb4 which are respectively obtained from(x1,y1), (x2,y2), (x3,y3), and(x4,y4).

x1

x2

x3

x4

y1

y2

y3

y4

b1

b2

b3

b4

p1

p2

(1)

(2)

(3)

U

F

Fig. 1 Given one feasible and one infeasible point, the respectivepoint lying on the boundary can be easily reached by

using a simple binary search. In this way, the each point on the boundary can be reached from at least a pair of points(x,y)

with x ∈ F andy ∈ U .

The binary search applied to each pair of points(x,y) is achieved following the steps described in function

BS (see Algorithm 1). For example, a possible application ofthis process can be seen in Figure 1 where we

adopt the pair of points(x3,y3) from which we obtain the pointb3, which lies on the boundary. The first step

(labeled(1)) indicates that the first mid point found is infeasible. Consequently, the left side of the straight

line (x3) is moved to pointp1. In the next step (labeled(2)) we consider the pointsp1 andy3 as extreme

points for which the mid point is the feasible pointp2. Thus, the new feasible point or right extreme of the

line is now the pointp2. Finally, the last point generated isb3 which can be either lying on or close to the

boundary. Condition ((distto boundary(m) ≤ δ) AND Feasible(m)) defines a threshold to stop the process of

approaching the boundary. However, the second part of this condition (i.e., “Feasible(m)”) it is only applied

when considering an inequality constraint. In this way, functionBS guarantees thatm is in the feasible side

regarding the corresponding inequality constraint under consideration. It is worth noticing that parametersx and

y are local to BS, i.e., function BS behaves as a decoder of the pair of feasible and infeasible points passed as

parameters. Therefore, the number of “midpointsbetween”x andy before approaching the boundary within a

8 Guillermo Leguizamón and Carlos A. Coello Coello

distance less thatδ is given bylog2(r) wherer = (dist(x,y)))/δ. Thus, the closer to the boundary, the larger

log2(r).

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;

2: repeat

3: m = mid point between(x, y);

4: if Is on Boundary(m) then

5: returnm; { m is a point lying on the boundary}

6: end if

7: if Feasible(m) then

8: x = m;

9: else

10: y = m;

11: end if

12: until (dist to boundary(m)≤ δ) AND (Feasible(m));

13: returnm; {The closest point to the boundary according toδ }

2.2 Exploring the boundary region

So far, we have shown how a point lying on the boundaryb can be represented through a pair of points(x,y)

with x ∈ F andy ∈ U . Now we need to consider the exploration of the search space which, according to

our proposal, can be defined asG = {(x,y)|x ∈ F ⊂ R
n ∧ y ∈ U ⊂ R

n}, that is, the set of pair of points

(x,y) as described above. This space can be considered agenotype spaceas known in the area of evolutionary

computation. Since each point fromG represents a point on the boundary, it is necessary the application of

the decoder represented by functionBS (see Algorithm 1) to obtain the respectivephenotype, i.e., the “gene

expression” of(x,y) ∈ G. Thus, the setB = {b|b = BS(x,y)} is conformed by the set solutions on the

boundary. Each solution in this set is evaluated by functionφ, which represents a measure of solutions quality

and gives as result an element of setE = {e ∈ R|e = φ(b)}. Figure 2 displays the respective spaces and how

they are related with each other by the application of functionsBS andφ, respectively.

Title Suppressed Due to Excessive Length 9

G B

BS φ

E

Fig. 2 The search or genotype space (G), phenotype space (B), and spaceE, and the respective connection through the

decoderBS and function evaluationφ.

From the above described, is clear that the search engine must deal with the exploration of spaceG. Figure 3

shows a set of hypothetical points inG, a problem constraint and the respective points on the boundary. In the

third pair of points (from left to right) is represented a possible exploration region forx3 andy3 (it should be

noticed that the shape and size of the exploration area couldvary when considering different search engines

and/or operators). In this case, the projection of the extreme sides of the exploration areas on the boundary

(zig-zag line), represents the covered area on the boundaryof pointsx3 andy3 regarding a possible exploration

area. For example, from the perspective of evolutionary algorithms, it can be created a population of individu-

(*)

(**)

x1

x2

x3

x4

y1

y2

y3

y4

U

F

Fig. 3 A set of hypothetical points inG, a problem constraint and the respective points on the boundary where (*) indicates

the possible exploration regions forx3 andy3 and (**) indicates the respective points on the boundary region based on

possible perturbations ofx3 andy3.

als where each one of then represent an element of setG. Therefore, suitable operators to be chosen could be

any qualified crossover and/or mutation operators for floating-point representations. A similar approach can be

10 Guillermo Leguizamón and Carlos A. Coello Coello

adopted if using another search engine suitable for exploring continuous spaces, e.g., particle swarm optimiza-

tion, differential evolution, immune systems, etc. However, from the perspective of the ACO metaheuristic the

possibilities are more limited. In this work we will show at least two alternative for the ACO metaheuristic in

the next sections.

2.3 Focusing on the problem constraints

It is important to remember that we are assuming active constraints at the global optimum to proceed with

this method where the search is always performed “indirectly” on the boundary of the space defined by some

of the problem constraints. The simplest case to apply the boundary approach is when the problem has only

one constraint which could be either an equality or an inequality constraint. Let us suppose that the problem

includes only one constraint, let us sayh, then the search engine should proceed by generating a set ofelements

of setG. After that, the exploration ofG by the search engine will indirectly and exclusively explore the region

defined byh(x), i.e., all solutions generated will be feasible without requiring anyad-hocboundary operator.

In section 4 we will show for a test problem with only one constraint (G25) a particular distribution of points

in spaceG and the respective points on the boundary region through theexecution of the proposed algorithm in

this work.

On the other hand, when facing the typical situation in whichwe have more than one constraint, it is

necessary to define an appropriate policy to explore the boundary as efficiently as possible. One possibility is to

explore in turn the boundary of each constraint. The selection of the constraints to search for can be determined

using different methods. If the problem includes at least one equality constraint, such equality constraints are

the most appropriate candidates to be selected first. However, a possible search engine could keep focused on a

particular constraints over the whole run or may be change from one problem constraint to another depending on

a particular condition. In our previous work [18] we defined asimple condition based on a parameter calledtc

which counts the number of iterations the algorithm focusesin a particular constraint. However, more complex

condition could be considered, for example, taking into account the population deversity or the degree in which

some problem constraints are being violated. In this work, as will be explained in a further section, we adopted

the parametertc to control the time when the algorithm should focused on a different problem constraint.

Title Suppressed Due to Excessive Length 11

F

U

g1

g2
g3

Fig. 4 Feasible search space defined by3 inequality constraints. The search proceeds on the boundary of constraintg1.

As an illustrative example, Figure 4 shows a hypothetical search space determined by three inequality con-

straints. Let’s suppose that the search proceeds starting on constraintg1. If the visited points are on the boundary

of F , these points will also satisfy the remaining problem constraints (filled line in Figure 4). However, the ex-

ploration of the boundary with respect to constraintg1 will eventually produce points violating constraintsg2

andg3 (dotted line in 4). One of the simplest methods to deal with this situation is the application of a penalty

function for the infeasible solutions. In addition, ifg1 is active at the global optimum, the method will focus

the search on the boundary in order to restrict the explored regions of the whole search space. Note however,

that other (more sophisticated) constraint-handling techniques can also be adopted. For example, it could be

considered the inclusion of the Stochastic Ranking approach [26] to make the comparisons among the solutions

generated[16] and thus avoiding the inclusion and tuning ofany penalty factor for solutions evaluation.

3 Boundary Approach in ACO algorithms

In this section we present two ACO algorithms, the ACO(B)
BR

and ACO(S)
BR

which respectively implement the

boundary search approach as explained above. The first algorithm, ACO(B)
BR

is based on the Bilchev’s pro-

posal [2] and was first presented in Leguizamón et al. [18,17]. The second algorithm, called here ACO(S)
BR

, is an extended version of ACOR (Socha et al. [29]) for dealing with constrained continuousoptimization

problems. In this case, we present a possible implementation of the boundary approach following the main

characteristics of ACOR regarding the way in which is explored a continuous search space.

12 Guillermo Leguizamón and Carlos A. Coello Coello

3.1 A summary of the main characteristics of ACO(B)
BR

A possible design to apply the ACO approach in continuous search problems is by discretizing the continu-

ous search space in some way. In ACO(B)
BR

we used a discrete structure to represent a set of different points

spread on the search space. These points are calleddirections, following Bilchev et al.’s proposal in which the

continuous search space is discretized in the so-called search directions. Each one of these search directions

was represented through a reference point in the search space. The discrete structure is then related to a trail

pheromone structure used in the ant algorithm proposed for representing the desirability of exploring on a par-

ticular search direction. For further details see [3]. In ACO(B)
BR

, the discrete structure is similar, except for the

way in which the directions are represented. Our discrete structure can be seen as a set{d1, d2, ..., dk}, wherek

is a parameter for the number of directions. Each directiondl is represented as a pair of two realn-dimensional

vectors, i.e.,dl = (xl,yl), from which new points are generated by the ants allocated indirectionl. As an ex-

ample, Figure 5 showsk = 4 search directions (i.e., the4 pair of points) and the corresponding4 points on the

boundary which they respectively represent. The4 points on the boundary are the result of the corresponding

application of functionBS on the4 hypothetical directions.

F

U

d1

d2

d3

d4

Fig. 5 A 2-dimensional search space withk = 4 possible search directions. Notice that each direction include a hypotheti-

cal exploration area onG and the respective covered area on the boundary.

A general outline of the ACO algorithm is shown in Figure 2. Itis worth remarking that the original

proposal [3] for ACO in continuous domains is used to proceedwith the local exploration after a genetic

algorithm has finished with the global search. However, ACO(B)
BR

is in charge of performing the entire search

Title Suppressed Due to Excessive Length 13

process. More precisely, our ACO algorithm starts with a setof k directionsd = (x,y) randomly generated

with x ∈ F andy ∈ U .

Algorithm 2 Outline of the ACO algorithm based on Bilchev’s proposal
1: t = 0

2: initializeA(t); evaluateA(t);

3: while stop condition not metdo

4: t = t + 1

5: updatetrail;

6: reallocateantsA(t);

7: evaluateA(t);

8: end while

The ACO algorithm displayed in Figure 2 works as follows:initialize A(t) “distributes”Na ants on

thek directions, whereNa > k in order to allocate one or more ants to the same direction. Each ant allocated

in a directioni generates a new solution via the mutation-like operator applied to the pair of points(xl,yl)

representing the initial reference points on directionl; evaluate A(t) obtains the objective value for the

new points generated;updatetrail is in charge of accumulating pheromone trial in each direction proportionally

to the quality of the objective function values found in the corresponding direction, i.e.,τl = (1− ρ) · τl +∆τl

where∆τl is a value proportional to the best objective value on directiond and0 ≤ ρ ≤ 1 is the pheromone trail

evaporation rate;reallocateants A(t)redistributes the population of ants on thek directions, proportionally to

the accumulated pheromone trail values. Thus, the ants on directionl ∈ {1, . . . , k} are in charge of searching in

the neighborhood of the respective boundary feasible pointon directionl. The new reference point on direction

l for the next iteration is the best solution found in direction l.

The main characteristics of our ACO algorithm include two abstraction levels:

1. individual search: involves the strategy followed by each ant to search in its neighborhood. In our case, a

mutation-like operatorψ, such asψ(x,y) = (x′,y′) where (the same applies toy′):

x′ = (x1, . . . , x
′

i, . . . , xn) wherei is a random number from{1, . . . , n}

14 Guillermo Leguizamón and Carlos A. Coello Coello

and,

x′i =















xi + (u(i) − xi) ×R if r > 0.5

xi − (xi − l(i)) ×R otherwise

wherer is a random number in the range[0..1] and0 ≤ R ≤ 1 is considered to define the extent of the

search interval with respect to each variable. ParameterR starting at value1 will vary down to0 on each

iteration as described below.

2. cooperation: involves information exchange among the ants in order to guide the search to certain regions

of the search space. This information is represented by the pheromone trial structure (τ) whereτl represents

the accumulation of pheromone trail on directionl, i.e., the algorithm’s learning experience to be applied

to favor the promising regions of the search space. The distribution of the ants on the different directions is

achieved by the formula:

Pl(t) =
τl(t)

∑k
h=1 τh(t)

(1)

The changes on the values of ratioR, involved in our mutation operator, controls the extent of the search

interval for each dimension and can be implemented as∆R(t) = R(1 − r(1−t/Tmax)) wherer is a random

number in the range[0..1] andTmax is the maximum number of iterations. Consequently, the value∆R(t) falls

in the range[0..R] and gets closer to0 as the elapsed number of iterationst increases.

Finally, it is worth noting the rationale behind the pheromone trail: “the accumulated pheromone trail

will decrease on directions that produce low-quality solutions due to the effects of the evaporation process

focusing the ants’ attention on more promising regions of the feasible search space”. In order to avoid premature

convergence of the algorithm, a potentially useful direction can remain as an alternative search region by

bounding with lower and upper values the amount of pheromonetrail in each direction following the principle

of theMMAS algorithm.

3.2 The proposed algorithm ACO(S)
BR

for Boundary Approach

In this section we describe the design of ACO(S)
BR

algorithm which implements the boundary search. The search

engine involved in ACO(S)
BR

is based on the ACOR algorithm presented in [29]. Before explaining the imple-

mentation of ACO(S)
BR

, we first describe briefly the main characteristics of ACOR as it was proposed and tested

in [29] on unconstrained continuous optimization benchmark problems.

Title Suppressed Due to Excessive Length 15

l(i) u(i)

p(xi|s
p)

xi|s
p

Fig. 6 A continuous probability density functionp(x|sp) wherexi ∈ [l(i), u(i)], andsp is a partial solution under con-

struction (see [29] for further details).

Taking into account that the ACO metaheuristic works by incrementally building the solutions according to

a biased (by pheromone trail) probabilist choice of solutions components, the ACOR algorithm was designed

aiming at obtaining a set ofprobability density functions(PDFs). Each PDF is obtained from the search expe-

rience and is used to incrementally build a solutionx ∈ R
n considering in turn each componentxi (∀i . . . n).

Figure 6 represents a hypothetical PDF that could be eventually found during the search. It can be observed a

multimodal PDF used to obtain a value for the variable on dimensioni ∈ {1, . . . , n}. To approximate a multi-

modal PDF that looks like the one in Figure 6, Socha et al. [29]proposed a Gaussian Kernel which is defined

as a weighted sum of several one-dimensional Gaussian function gi
l(x) as follows:

Gi(x) =
k

∑

l=1

ωlg
i
l (x) =

k
∑

l=1

ωl
1

σi
l

√
2π
e
−

(x−µi
l
)2

2(σi
l
)2 (2)

wherei ∈ {1, . . . , n} identifies the number of dimension, i.e., ACOR uses as many Gaussian kernel PDFs as

the number of dimensions of the problem. In addition,Gi is parameterized with three vectors:ω, the vector

of weights associated with the individual Gaussian functions;µi, the vector of means; andσi, the vector of

standard deviations. All these vectors have cardinalityk, which constitutes the number of Gaussian functions

involved. Figure 7 shows a superposition of three Gaussian function which could approximate the hypothetical

multimodal Gaussian function displayed in Figure 6.

In ACOR , a solution archive calledT is used to keep track of a number of solutions similarly to the

Population Based ACO (PBACO) proposed by Guntsch et al. [11]. The cardinality of archive T is k, that

is, the number of kernels that conform the Gaussian kernel. For each solutionxl ∈ R
n, ACOR maintains the

respective values of each problem dimension, i.e.,x1
l , . . . , x

n
l , and the value of the objective functionf(xl)

16 Guillermo Leguizamón and Carlos A. Coello Coello

l(i) u(i)

p(xi|s
p)

xi|s
p

Gaussian Kernel
Individual Gaussian functions

Fig. 7 A possible set of three Gaussian functions to achieve by superposition a Gaussian Kernel which approximate the

multimodal Gaussian function as presented in figure 6

which are stored satisfying thatf(x1) ≤ . . . ≤ f(xl) ≤ . . . f(xk). On the other hand, the vector of weightsω

should satisfy thatω1 ≥ . . . ≥ ωl ≥ . . . ≥ ωk.

The solutions inT are therefore used to dynamically generate probability density functions involved in the

Gaussian kernels. More specifically, for obtaining the Gaussian kernelGi, the three parametersω, µi, andσi

need to be calculated. Thus, for eachGi, the values of thei-th variable of thek solutions inT become part of

the elements of vectorµi, that is,µi = {µi
1, . . . , µ

i
n} = {xi

1, . . . , x
i
n}. Vectorµ is generated as follows: each

solution that is added to the archiveT is evaluated and ranked (ties are broken randomly). The solution in T

are stored according to their rank, i.e., the highest the rank of the solution, the lowest the respective index inT .

The weightωl associated to Gaussian functiongi
l is obtained as:

ωl =
1

qk
√

2π
e
−

(l−1)2

2q2k2 (3)

with mean1.0 and standard deviationqk, whereq is a parameter of ACOR which controls the preference of the

ranked solutions. Thus, whenq is small, the best-ranked solution are preferred, otherwise, a large value forq

implies a more uniform probability. As mentioned in [29], the influence of this parameter on ACOR is similar

to adjusting the balance between the iteration-best and thebest-so-far pheromone updates used in traditional

ACO algorithms. On the other hand, each component of the deviation vectorσi = {σi
1, . . . , σ

i
k} is obtained as:

σi
l = ξ

k
∑

e=1

|xi
e − xi

l |
k − 1

(4)

Title Suppressed Due to Excessive Length 17

wherel ∈ {1, . . . , k} is the kernel number with respect deviation is calculated and ξ > 0 which is he same for

all dimensions, has an effect similar to that of the pheromone evaporation rata in ACO. Thus, the higher the

value ofξ, the lower the convergence speed of the algorithm.

For obtaining a solution component at stepi (in the construction solution process) it is only necessaryto

calculate thel-th component ofσi since the sampling process of Gaussian kernelGi is accomplished as follows.

Given the elements of vectorω calculated as in Eq. 3, the sampling is done in two phases: 1) choose one of the

k Gaussian functions ofGi according to the following probability:

pl =
ωl

∑k
r=1 ωr

, (5)

and, 2) after functiongi
l has been chosen, a sampling is accomplished may be using a random number generator

capable of generating random numbers according to a parameterized normal distribution or by using a uniform

random generator in conjunction with, for instance, the Box-Muller method [4]. Since at each step only one

Gaussian function is used (let us saygi
l), it is only neededσi

l instead the whole vectorσi. The pheromone

update is achieved by considering a setA of the newly generated solutions3. The newT (in the next algorithm

iteration) is obtained asT = rank(T ⊕A), i.e., the old solutions in the archiveT plus the set of newly created

solutionA are ranked. In other words, the old solutions compete against the newly generated ones to conform

the updatedT which maintain its cardinality (k) trough the whole search process.

To adapt ACOR to deal with constrained problems by implementing the boundary approach described

above is rather straightforward. The proposed algorithm ACO(S)
BR

, instead of maintaining one archiveT , it

maintains two archives for similar purposes,TF andTU which represent respectively the points on the feasible

and infeasible part of spaceG. A third archive,TB, is also considered which is obtained by applying function

BS the each point fromTF andTU . More precisely,TB = {be|be = BS(xe,ye), e = 1, . . . , k}. Solutions

in TB are evaluated by means of functionφ. It is worth remarking that solution inTB are ranked according

the solution quality given byφ. Taking into account this ranking, the solutions inTF andTU are then ranked

accordingly.

As in the original ACOR algorithm, vectorω is intended for sampling the chosen Gaussian function, how-

ever, the situation is different in ACO(S)
BR

since there exist two independent archivesTF andTU from which

3 SetA represents the set of ants according to Socha et al. [29].

18 Guillermo Leguizamón and Carlos A. Coello Coello

the Gaussian Kernels are built, i.e., to explore the search spaceG, it is necessary to process both archives from

which the solutions on the boundary are obtained. In addition, we define two additional structuresAF and

AU associated respectively to archivesTF andTU . These two structures, similarly as in the original ACOR ,

represent the newly solutions found according to the Gaussian kernels fromTF andTU . Figure 3.2 represents a

general outline of the archivesTF , TU , TB, ω, andE. The last one is associated toTB and maintains the value

corresponding to the evaluation quality of solution inTB. It should be notice thatTB is not used to build any

Gaussian Kernel, however, the ranking of the solution in it will influence the ranking of solutions inTF and

TU , which clearly influence the generations of new and better quality solutions in the spaceG.

A general outline of ACO(S)
BR

is presented in Algorithm 3 which displays its main components. In line1,

archivesTF andTU are initialized by randomly generating solutions in the feasible and infeasible search space

regarding the problem constraint at hand. Similarly, vector ω is initialized according to Eq. 3 which includes

the parametersq andk as explained above. The main loop includes a call to function“Boundary”, which is in

charge of applying functionBS to each pair of points respectively fromTF andTU and returns the archiveTB.

Then, function “BuildSols” is in charge of generate new solutions through the Gaussian kernel obtained from

the respective archives (lines4 and5). In order to furtherly obtainAB, i.e., the newly generated solutions on

the boundary, function “Boundary” is then applied toAF andAU . After that,TB plusAB are ranked according

the solutions quality given by functionφ, and the best firstk solutions in the ranking will be part now contents

of archiveTB which is used as reference to get the newTF andTU . Let say that the new set of point on the

boundary isTB = {bi1 , . . . , bik
} wherebir comes either fromTB or AB, therefore the newTF andTU are

obtained respectively fromTF ⊕AF andTU ⊕AU taking into account the ranked solutions in the newTB. This

is precisely that function “Update” does.

To make the things clearer, let us give a hypothetical example with k = 4, and number of antsNa = 6

(Na = |AF | = |AU |), where

TF = {x1,x2,x3,x4}, TU = {y1,y2,y3,y4}, and

TB = {b1,b2,b3,b4}, with be = BS(xe,ye), e ∈ {1 . . . k}

are the current archives and respective solutions generated on the boundary, and

AF = {xa
1 ,x

a
2 ,x

a
3 ,x

a
4 ,x

a
5 xa

6}, AU = {ya
1 ,y

a
2 ,y

a
3 ,y

a
4 ,y

a
5 ya

6}, and

Title Suppressed Due to Excessive Length 19

Table 1 Representation of the ACO(S)
BR

search space divided in feasible and infeasible points

TF

x1 x1
1 ... xi

1 ... xn
1

.

.

.

xl x1
l ... xi

l ... xn
l

.

.

.

xk x1
k ... xi

k ... xn
k

G1
F Gi

F Gn
F

TU

y1 y1
1 ... yi

1 ... yn
1

.

.

.

yl y1
l ... yi

l ... yn
l

.

.

.

yk y1
k ... yi

k ... yn
k

G1
U Gi

U Gn
U

⇐

ω

ω1

.

.

.

ωl

.

.

.

ωk

TB

b1 b1
1 . . . bi

1 . . . bn
1

.

.

.

bl b1
l . . . bi

l . . . bn
l

.

.

.

bk b1
k . . . bi

k . . . bn
k

E

φ(b1)

.

.

.

φ(bl)

.

.

.

φ(bk)

AB = {ba
1 ,b

a
2 ,b

a
3 ,b

a
4 ,b

a
5 ,b

a
6}, with ba

e = BS(xa
e ,y

a
e), e ∈ {1 . . .Na}

are the newly solutions found belonging toF andU by using the Gaussian kernels obtained fromTF and

TF respectively. In addition, the decoding process applied tothose solutions gives the respective setAB of

solutions on on the boundary. It is assumed thatTB andAB are ranked satisfying thatφ(b1) ≤ φ(b2) ≤

φ(b3) ≤ φ(b4)} andφ(ba
1) ≤ φ(ba

2) ≤ φ(ba
3) ≤ φ(ba

4) ≤ φ(ba
5) ≤ φ(ba

6). Let us assume in addition

20 Guillermo Leguizamón and Carlos A. Coello Coello

Algorithm 3 A general outline of ACO(S)
BR

algorithm
1: init(TF ,TU , ω);

2: for t in 1 : Tmax do

3: TB =Boundary(TF , TU)

4: AF =BuildSols(TF);

5: AU =BuildSols(TU);

6: AB =Boundary(AF , AU)

7: TB =Firstk(Sort(TB ⊕ AB))

8: Update(TF ,TU ,E); { According to the newTB}

9: end for

that{ba
1 ,b1,b2,b

a
2 ,b

a
3 ,b3,b4,b

a
4 ,b

a
5 ,b

a
6}4 is the ranked set fromTB ⊕ AB. Thus, the firstk = 4 elements

of that set will conform new archiveTB = {ba
1 ,b1,b2,b

a
2}. Taking into account the index of the elements

in TB, the respective archives that will contain the new points inF andU areTF = {xa
1 ,x1,x2,x

a
2} and

TU = {ya
1 ,y1,y2,y

a
2}.

4 Experimental Results

In the first part of this section a preliminary study on the behavior of ACO(S)
BR

is accomplished. The main objec-

tive is to analize to influence of an important parameter on its performance, more specifically the parameterq

which controls the preference of the ranked solutions. The second part aims at comparing the results of ACO(S)
BR

against ACO(B)
BR

and SR algorithms which performance was compared in [18,17].

Before presenting the results we will describe some common characteristics of ACO(B)
BR

and ACO(S)
BR

re-

garding their application to the different test cases. Indeed, ACO(B)
BR

and ACO(S)
BR

require minimum changes

when applied to the different test cases considered: the objective function, number of variables, range of each

variable, and constraints. However, the policy to determine on which constraint the search should focus needs

to be considered when a problem has more than one constraint:a) we can focus the search on all the con-

straints, but considering one constraint in turn by controlling the change through a particular condition (Sall),

b) similar to the previous alternative but considering onlythe active constraints (Sact), or c) just considering

one constraint during the whole run (Sc wherec ∈ {1, . . . ,m}). These three policy to deal with the way of

4 Obtained by mergingTB andAB

Title Suppressed Due to Excessive Length 21

approaching to the boundary were extensively study in Leguizamón et al. [18,17] for algorithm ACO(B)
BR

. From

these earlier results, we adopt the so called policy Sact, which showed the best performance through all the test

cases studied. However, the other policy are also a valuableand efficient alternative when no information is

available with respect to the possible active constraints.

In our experiments, the condition to produce a change on the search from one constraint to another is given

by an elapsed number of iterations and it is represented by the parametertc as explained in section 2.3. In

addition, for problems with more than one constraint, we incorporate a penalty function of the form:

φ(x, µ) = f(x) + µ(t)(

q
∑

j=1

max{0, gj(x)} +

m
∑

j=q+1

|hj(x)|) (6)

whereµ(t) is a dynamic penalty factor which could change ast, the elapsed iteration, increases withµ(0) ≤

µ(1) ≤ µ(2) . . . ≤ µ(Tmax). Alternatively, the penalty factor can be fixed throughout the run, i.e.,µ(t) = µ0

for all 1 ≤ t ≤ Tmax. Regardless of the penalty function adopted, it is worth remarking that each solution is

always lying on the boundary of the feasible space corresponding to the constraint under consideration. Note

that a penalty function was adopted due to its simplicity, since our interest was to assess the advantages of our

proposed approach. However, other constraint-handling techniques are evidently possible. The penalty factors

µ(t) were experimentally determined for each particular problem and are showed later for ACO(S)
BR

and ACOR

respectively.

All the algorithms considered in this experimental study (i.e., ACO(S)
BR

, ACO(B)
BR

, and SR5) were executed

30 times with different seeds for each parameter combination.The problems studied include a set of well-

known test cases traditionally adopted in the specialized literature:G01 to G07, G09, G10, G11, G13, G14,

G15,G17,G21,G23,G24[21], andG25 [9].

The whole experimental study was performed on a Laptop with an Intel R© PentiumR© M Processor 725,

running at 1.6 Ghz, and with 512 Mbytes of RAM. The ACO(B)
BR

algorithm was implemented in C Language

running under Suse-Linux.

5 The parameter setting for SR is showed in section 4.2

22 Guillermo Leguizamón and Carlos A. Coello Coello

4.1 Tunning of parameterq for ACO(S)
BR

In the earlier experiments with ACO(S)
BR

we initially chose a similar parameter setting as used in [29] where

Na = 2, k = 50, ξ = 0.85, andq ∈ {0.0001, 01}. The higher value for parameterq was chosen for multimodal

functions. The preliminary results from ACO(S)
BR

by using the above parameter setting was rather discouraging

since the algorithm was not capable of achieving any feasible solution for all tested problems. After that we

considered a larger number of ants (i.e.,Na ≫ 2) for generating a larger sampling of solutions according tothe

k = 50 Gaussian kernels. More specifically we setNa = 50 as was set for ACO(B)
BR

(see section 4.2). In addition

we considered an intermediate value for parameterq, thus, this parameter was set toq ∈ {0.0001, 0.01, 0.1}.

The penalty factor involved in functionφ (Eq. 6) for each problem were as follows:G01 (µ = 1000), G04

(µ = 5000000),G05 (µ = 10),G06 (µ = 1011),G07 (µ = 20000),G09 (µ = 200000),G10 (µ = 20000000,

G13 (µ = 0.1),G14 (µ = 150),G15 (µ = 10),G17 (µ = 1000),G21 (µ = 3000),G23 (µ = 1000), andG24

(µ = 10000). All of these values6 were set regarding the previous work [18] in which similar values were used

for ACO(B)
BR

(in section 4.2 we describe these values when comparing ACO(S)
BR

against ACO(B)
BR

and SR.)

We have divided de presentation of the results in two groups.The first group (Table 2) includes the test

problems for which ACO(S)
BR

achieved good quality results by usingTmax = 5000, i.e., at most250000 function

evaluations (in our case, corresponds to functionφ in Eq. 6). The second one in Table 3 shows the results

for those problems that needed a larger umber of iterations to achieve better results. Both tables show in the

respective columns: the problem name (Prob.), the best known or optimal value (Opt), the best found value

(BF), mean value (Mean), worst value (Worst), mean number offunction evaluations to achieve the best found

(Mean(#E)), and the number of feasible solutions out of30 runs.

It must be observed that neither Table 2 or 3 show the results for problemG05 for which any feasible

solution was found, however the solutions found were slightly infeasible. For this problem we considered a

different setting and the respective results will be showedlater.

Table 2 shows the results obtained from ACO(S)
BR

according to the parameter settingq = 0.0001, 0.01, and

0.1 (up to down on the respective row for for each problem) andξ = 0.85. First of all, it can be observed that

for all values of parameterq, ACO(S)
BR

was able to to find high quality results. Also, it worth remarking that

6 Note that all penalty factors are fixed, however, we used somedynamic penalty factor with the algorithm ACO(B)
BR

in

section 4.2

Title Suppressed Due to Excessive Length 23

Table 2 Results from ACO(S)
BR

according to the parameter settingq = 0.0001, 0.01, and0.1 (up to down on the respective
row for for each problem) andξ = 0.85 used for some test cases in [29]. The remaining values parameter used in the
experiment arek = 50, Na = 50, andTmax = 5000. The (*) symbol in column #Fea indicates that the average on the
violation constraints are in between0.0001 and0.0002. Since our policy, solutions which violates constraints for more than
0.0001 are considered infeasible.

ACO(S)

BR

Prob. Opt7 BF Mean Worst Mean(#E) #Fea

G01 -15.000
-15.000 -14.9609 -14.7281 66750 30
-15.000 -15.000 -15.000 92100 30
-15.000 -15.000 -15.000 161800 30

G03 1.000
1.000 1.000 1.000 104000 30
1.000 1.000 1.000 129600 30
1.000 1.000 1.000 157100 30

G04 -30665.539
-30665.539 -30665.539 -30665.539 68900 30

-30665.5722 -30665.5722 -30665.5722 126100 28
-30665.539 -30665.539 -30665.539 166950 30

G06 -6961.814
-6961.814 -6961.8137 -6961.813 52000 30
-6961.814 -6961.813 -6961.8129 89800 30
-6961.814 -6961.813 -6961.8125 116550 30

G07 24.306
24.306 24.530 24.985 30150 25(*)
24.306 24.470 24.815 55100 27
24.306 24.3293 24.392 88000 26

G09 680.630
680.630 680.630 680.630 49000 30
680.630 680.630 680.630 89200 30
680.630 680.630 680.630 116900 30

G10 7049.2480
7058.3559 7208.0776 7506.7651 85000 28
7049.3369 7160.5849 8127.4853 120340 28
7058.5097 7100.442 7162.373 58050 22

G11 0.75
0.75 0.75 0.75 17110 30
0.75 0.75 0.75 17305 30
0.75 0.75 0.75 18005 30

G13 0.053950
0.053951 0.054112 0.054637 10050 23 (*)
0.053950 0.054033 0.054596 11680 18
0.053980 0.053980 0.053980 17030 1 (*)

G14 -47.76441
-47.624847 -45.268413 -41.556510 240800 28
-47.71844 -47.11483 -44.32239 242900 29
-47.74250 -47.67783 -47.61127 243390 16 (*)

G15 961.715022
961.715148 961.714965 961.715209 165050 30
961.715148 961.71496 961.715209 178350 30
961.715200 961.715321 961.715390 199900 30

G21 193.7783
193.79061 193.83093 193.90968 102300 6
193.78950 193.83940 193.98170 145100 10
193.79360 193.83450 193.91410 180250 20

G24 -5.508013
-5.508013 -5.508013 -5.508013 19800 30
-5.508013 -5.508013 -5.508013 22950 30
-5.508026 -5.508026 -5.508026 23950 30

G25 -16.73889
-16.73893 -16.73893 -16.73893 9400 30
-16.73819 -16.73819 -16.73819 10850 30
-16.73893 -16.73893 -16.73893 12200 30

the best found values (columns BF) are very similar for the differentq values, however, it is remarkable the

increasing in the number of evaluations (column #Fea) when increasing theq value. This situation is easily

explained because for smallerq values, more importance is given to the best-so-far solution which increases

the convergence of ACO(S)
BR

. Although for all problems from this group the different values of parameter

q does not affect substantially the quality of results, it canbe noticed some differences regarding #Fea. For

example, for problemG10 ACO(S)
BR

achieved the larger number of feasible solutions when setting q = 0.1. A

similar situation is observed for problemG21, where #Fea increases as the value ofq increases. Clearly, for

these problems a more explorative strategy improves the ACO(S)
BR

performance. In the case of problemG14,

the situation described before is different concerning theincreasing in #Fea, however, the quality of results

for this problem are still better forq = 0.1. Finally, it is noticeable that for the reported results in Table 2

24 Guillermo Leguizamón and Carlos A. Coello Coello

of some problems (indicated with (*)) andq values, the average on the violation constraints are very low,

just in between0.0001 and0.0002 (according to our policy, solutions which violate constraints for more than

0.0001 are considered infeasible). As a conclusion, it can be said that lower values ofq increase the velocity of

convergence of the algorithm which could be useful for some type of problems. On the other hand, larger values

of q make ACO(S)
BR

a more explorative algorithm, however, with an increased number of function evaluation.

This is certainly the way in which ACO(S)
BR

achieved better results for some test problems.

Table 3 Results from ACO(S)
BR

according to the parameter settingq = 0.0001, 0.01, and0.1 (up to down on the respective
row for for each problem) andξ = 0.85 used for some test cases in [29]. The remaining values parameter used in the
experiment arek = 50, Na = 50, andTmax = 10000. The (*) symbol in column #Fea indicates that the average on the
violation constraints are in between0.0001 and0.0002. Since our policy, solutions which violates constraints for more than
0.0001 are considered infeasible.

ACO(S)

BR

Prob. Opt8 BF Mean Worst Mean(#E) #Fea

G02 0.803619
0.753613 0.640071 0.531255 23250 30
0.803619 0.697796 0.545772 30100 30
0.803619 0.777522 0.683394 31550 30

G17 8853.5397
8871.682 9029.559 9212.925 345200 29

8866.86523 9002.2568 9197.17871 359800 29
9017.47851 9017.47851 9017.47851 494700 1

G23 -400.0025
-300.80877 -49.064338 130.72998 295000 4
23.453075 73.200012 122.94695 325000 2
188.41090 188.41090 188.41090 360500 1

With respect to the remaining problems considered in this work, that is,G02,G17, andG23; it was neces-

sary to increase the number of iterations (consequently thenumber of function evaluations) to reach competitive

results. In Table 3 are showed the obtained results from ACO(S)
BR

with Tmax = 10000. The influence ofq in

the number of evaluation is similar as observed in Table 2, however, we can find some difference on column

#Fea. For problemG02, all solutions were feasible for the different values ofq, but the quality of the results

improved forq = 0.01, and0.1. The situation is different in some way forG17 since the best quality results

and the larger number of feasible solutions were obtained for q = 0.0001 and0.01. Certainly, the worst perfor-

mance of ACO(S)
BR

was on problemG23 for which only a few feasible solutions were found and the best setting

was forq = 0.0001.

It is also interesting to visually the distribution of points in the search spaceG during the exploration

according to different values ofq. For a visualization purposes, we show the mentioned distribution of points for

two problemsG24 andG25 which have2 inequality and1 equality constraints respectively (see Appendix A).

Figures 8 and 9 show for the three values ofq considered (from left to right) the distribution of points in the

search spaceG and the respective represented (decoded) points on the boundaryB. ProblemG25 has only one

Title Suppressed Due to Excessive Length 25

constraint, thus ACO(S)
BR

always focuses on that constraint whereasG25 has two constraints and the two of then

are active at the optimum. In this last case, for reasons of clarity, we obtain the points distribution by running

ACO(S)
BR

focusing exclusively on constraint1. For both problems, the respective initial points in spaceG are

the same, therefore, in the sequence of subfigures the first row are the same. Also, it is important to remark

the distribution of points on the boundary forG24 andG25 (on constraint1) in each subfigure. As the run

progresses, the set of points (remember that the points inG are the basis for building the successive kernels

through the run) tends to get clustered in a particular area.For both problems, that area correspond to a set of

points(x,y) ∈ G for whichBS(x,y) is close to the respective optimum solution. Whenq = 0.0001, it can

be observed a rapid convergence of ACO(S)
BR

. Similar situation is observed forq = 0.01, however, forG25 the

clusters are less tight than the clusters forG24. Forq = 0.1, the behavior of ACO(S)
BR

is clearly more explorative,

nevertheless, for these two problems, all this spread points decode in a very tight area of the boundary around

the optimal one.

Finally, we made an additional experiment in order to solve problemG05 for which ACO(S)
BR

found no

feasible solution in the experiments reported before. In this case, we modify the value ofξ based on its proposal.

More precisely, parameterξ controls the influence the variability of the PDFs. Therefore, the lowerξ, the more

slight are the perturbations on the points of spaceG which is precisely the difficulty with problemG05, that is,

the solutions found were slightly infeasible and very closeto the optimal one. For that reason we run ACO(S)
BR

forG05 with ξ = 0.3 andq = 0.1. In this case ACO(S)
BR

found27 feasible solutions where the best found, mean,

and worst values were respectively5126.5083, 5143.6240, and5159.6303. Figure 10 shows the behavior of

ACO(S)
BR

for problemG24 (as an example) by settingξ = 0.3 andq = 0.1. it can be seen a few number of no

well defined clusters after at iteration1500. When ACO(S)
BR

reaches iteration3000, arises a set of more defined

clusters. At the end, the algorithm converged to two clusters (one the feasible region and the other on the

infeasible one). These behavior occurs when avoiding selective pressure on the best-so-far solutions (a larger

q) and making small perturbation on the solutions to explore the search space (a smallerξ).

4.2 Performance Comparison of ACO(S)
BR

, ACO(B)
BR

, and SR

In this section we compare the best quality results from ACO(S)
BR

(the adapted ACOR for boundary search),

ACO(B)
BR

(the ant algorithm proposed in Leguizamón et al. [18]), andStochastic Ranking (SR) [26] (a well

26 Guillermo Leguizamón and Carlos A. Coello Coello

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

x

(a) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(b) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(c) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

x

(d) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(e) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(f) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(g) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(h) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(i) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(j) At iteration5000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(k) At iteration5000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary

U

F

(l) At iteration5000

Fig. 8 Test caseG24: distribution of feasible and infeasible points on the search spaceG and the respective points on the

boundary after the application of functionBS. From left to rightq = 0.0001, 0.01, and0.1 (ξ was fixed to0.85).

known constraint-handling technique). As explained before, we useSact as the most efficient search criteria

for the ACO algorithms, i.e., for ACO(S)
BR

and ACO(B)
BR

. The parameter setting for ACO(B)
BR

was taken from [18,

17]: Na = 50 ants (population size),k = 20 directions (number of reference points), maximum number of

iterationsTmax = 30000, evaporation rateρ = 0.5, andtc = 200 for the used policySact.

Title Suppressed Due to Excessive Length 27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

functions

F

U

(a) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(b) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(c) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

(i)

F

U

(d) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(e) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(f) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(g) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(h) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(i) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(j) At iteration5000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(k) At iteration5000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

C1
On the Boundary

F

U

(l) At iteration5000

Fig. 9 Test caseG25: distribution of feasible and infeasible points on the search spaceG and the respective points on the

boundary after the application of functionBS. From left to rightq = 0.0001, 0.01, and0.1 (ξ was fixed to0.85). Note that

some points have been clustered on the lower-left corner of the figures (see subfigures (d), (e), (g), (h), (j), and (k))

We adopted a dynamic penalty9 (µ(t) = 1.05 × µ(t − 1) for t = 0, 1, · · · , Tmax) for problemsG10,

µ(0) = 200000; G14, µ(0) = 150.8; G17, µ(0) = 400; G21, µ(0) = 1500; andG23, µ(0) = 13500.

The static penalty factors adopted for the remaining problems are (i.e.,µ(t) = µo for t = 0, 1, · · ·Tmax):

9 It is important to remark that the proposed algorithm in thiswork (ACO(S)
BR

) only used a fixed penalty factor for all

tested problems.

28 Guillermo Leguizamón and Carlos A. Coello Coello

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary
F

U

(a) At iteration1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary
F

U

(b) At iteration1500

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary
F

U

(c) At iteration3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

C1
C2

On the Boundary
F

U

(d) At iteration5000

Fig. 10 Test caseG24: distribution of feasible and infeasible points on the search spaceG and the respective points on the

boundary after the application of functionBS by settingq = 0.1 andξ = 0.3. By this setting, ACO(S)
BR

accomplishes highly

spread search however, making small perturbations on the points inG (k = 200 kernels were used for better visualization

purposes.)

G01, µ(t) = 1000; G04, µ(t) = 800000; G05, µ(t) = 10; G06, µ(t) = 10000; G07, µ(t) = 20000; G09,

µ(t) = 2000;G13, µ(t) = 0.2,G15; andG24, µ(t) = 1000.

The parameter setting for SR was as follows:µ = 30, λ = 200, Gaussian Mutation,ϕ = 1, Pf = 1,

Gm = 1750, andδ = 0.0001 (see [26] for further details). With respect to ACO(S)
BR

we report here the best

results found in the preliminary experiments reported in the section before.

For test suite considered, the three algorithms perform almost identically for many of them:G01, G03,

G04, G06, G09, G11, G15, G24, andG25, except for the number of evaluation functions (see a comparison

later in this section). Due to that fact, we do not display anyresults for the above mentioned problem. For the

remaining problems, i.e.,G02, G05, G07, G13, G14, G17, G21, andG23; we show the respective results in

Table 4 which shows for each problem considered: the averageof the best found out of30 runs (Mean) and

Title Suppressed Due to Excessive Length 29

Worst values respectively from ACO(S)
BR

, ACO(B)
BR

, and SR. The (*) indicates that the respective optimum (or

best known) was found and (+) indicates that the best found solution was very close to the optimum.

Table 4 Comparison of ACO(S)
BR

with respect to ACO(B)
BR

[18,17] and SR [26]. (*) indicates that the respective optimum

(or best known) was found whereas (+) indicates that the bestfound solution was very close to the optimum.

Mean Worst

Prob. ACO(S)
BR

ACO(B)
BR

SR ACO(S)
BR

ACO(B)
BR

SR

G02 0.77522 (*) 0.802656(*) 0.781875 (+) 0.683394 0.793083 0.726288

G05 5143.624 (*) 5138.37(*) 5128.881(*) 5159.63 5132.14 5142.472

G07 24.530 (*) 24.640 (*) 24.374(*) 24.620 24.920 24.642

G10 7160.584(+) 7199.01 (+) 7559.192 (+) 7377.647 7943.15 8835.655

G13 0.054112(*) 0.054908 (*) 0.057006 (*) 0.054637 0.055386 0.216915

G17 9029.559 (+) 8937.446289 (+) 8893.396000(+) 9212.925 8952.621093 8951.00700

G21 193.83093(+) 194.345108 (+) NA 193.90968 202.067779 NA

G23 -49.064338 -249.007506 NA 130.7272998 -28.448352x NA

First of all, it can be observed SR was not able to find any feasible solution for problemsG21 andG23.

In addition we run SR by settingGm = 3500 in order to increase the number of evaluations for these two

problems, nevertheless, SR could not ontain any feasible solutions forG21 andG23. For these two problems,

ACO(S)
BR

and ACO(B)
BR

beahave similarly on problemG23, where ACO(S)
BR

slightly outperforms ACO(S)
BR

regard-

ing mean and worst values. For problemG24, neither ACO(S)
BR

or ACO(B)
BR

found good quality results, however,

ACO(B)
BR

found better quality results. For the remaining problems inTable 4, we can observe the following: a)

the tree considered algorithms perform similarly when considering the best found result (indicated by (*) or

(+)), except for problemG02 for which SR was no capable of finding the best knwon value0.803619. How-

ever, a very close valur to the best knwon was found as indicated by (+), b) the best mean values were fairly

distributed on the three tested algorithms, c) for the best worst values, we can rank the three algorithms as

follows: ACO(S)
BR

, ACO(B)
BR

, and SR (this, of course, does not imply atht ACO(S)
BR

is better than ACO(B)
BR

and

this one is better than SR.

30 Guillermo Leguizamón and Carlos A. Coello Coello

As the final report of our experimental study we show in Table 5a comparison on the number of solution

evaluations regarding ACO(S)
BR

, ACO(B)
BR

, and SR. Columns̄e
ACO

(S)

B

, ē
ACO

(B)

B

, andēSR represent, respec-

tively, the average number of evaluations to obtain the bestsolution for ACO(S)
BR

, ACO(B)
BR

, and SR. It can

be observed that for problemsG01, G03, G05, G06, G07, G11, G14, G15, G17, G21, G23, G24, andG25;

ē
ACO

(S)

B

is less than̄e
ACO

(B)

B

andēSR, where the difference between these two values is remarkable for some

of them.

Table 5 Average number of evaluations to obtain the best solution for ACO(B)
BR

, ACO(S)
BR

, and SR on the test problems

considered (* means ‘not available’). Clearly, there is no clear trend on the performace of the three algorithms with respect

to the number of evaluations. However, an importatn reduction in the mean number of evaluations was achieved by ACO(S)
BR

with respect to ACO(B)
BR

(indicated with * in the respective rows).

Problem ē
ACO

(S)

B

ē
ACO

(B)

B

ēSR

* G01 66750 81400 149600

G02 54050 29500 233400

* G03 104000 140000 212000

G04 68900 21457 77600

* G05 59850 94000 52400

* G06 52000 80000 111600

* G07 30150 35600 141400

G09 49000 7400 111000

G10 120340 42800 17200

* G11 17110 70400 10400

G13 10050 7200 67200

* G14 240800 1250000 349600

* G15 165050 695600 73200

* G17 345200 411500 74000

* G21 102300 760000 *

* G23 295000 763100 *

* G24 19800 21400 23400

* G25 9400 10600 15200

Title Suppressed Due to Excessive Length 31

5 Conclusions and Future Work

In this paper we presented an alterative ACO algorithm (ACO(S)
BR

) including a a new search engine for im-

plementing the boundary search approach. The search engineis an adaptation of one recently proposed for

continuos problems (ACOR). For testing the proposed algorithm we we have used the penalty function as a

complementary mechanism for problems with more than one constraint as was done with ACO(B)
BR

, the first

proposed ACO algorithm implementing the boudnary search. The overall performance of ACO(S)
BR

was com-

pared with ACO(B)
BR

and SR, showing the potential of this method as an alternative or complementary approach

for constrained optimization problems. It is also worth noticing that ACO(S)
BR

was able to reduce the number of

function evaluation for several of the tested problems in comparison with the respective results from ACO(B)
BR

.

Future works include the use of more advanced complementaryconstraint-handling technique to be used

with the boundary approach, e.g., a combination with stochastic ranking (under devolpment [16]). Also, a hy-

brid version of ACO(S)
BR

with local search is an interesting possibility for improving the algorithm performance

for harder test problems by perturbating the points on the boundary, e.g., by doing the main exploration on

spaceG and a complementary exploration in spaceB. In addition, the authors suggest as research topic in

this area the design of a more general approach which includes the boundary search as a component that can

be triggered to proceed with the boundary search when some condition are met during the exploration of the

search space.

Acknowledgments

The first author acknowledges support from Universidad Nacional de San Luis and the ANPCYT (National

Agency for Promotion of Science and Technology). The secondauthor acknowledges support from CONACyT

project no. 45683-Y.

32 Guillermo Leguizamón and Carlos A. Coello Coello

References

1. S. Baluja. An empirical comparison of seven iterative andevolutionary function optimization heuristics. Technical

Report CMU-CS-95-193, School of Computer Science, Carnegie Mellon University, 1995.

2. G. Bilchev and I. Parmee. Ant colony search vs. genetic algorithms. Technical report, Plymouth Engineering Design

Centre, University of Plymouth, 1995.

3. G. Bilchev and I. C. Parmee. The ant colony metaphor for searching continuous design spaces.Lecture Notes in

Computer Science, 993:25–39, 1995.

4. G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.Annals of Mathematical Statistics,

pages 610–611, 1958.

5. D. Corne, M. Dorigo, and F. Glover, editors.New Ideas in Optimization. McGraw-Hill International, 1999.

6. M. Dorigo and T. Stützle.Ant Colony Optimization. Mit-Press, 2004.

7. J. Dréo and P. Siarry. A new ant colony algorithm using theheterarchical concept aimed at optimization of multiminima

continuous functions. In M. Dorigo et al., editor,ANTS, pages 216–221, Heidelberg, 2002. Springer-Verlag Berlin.

8. T. Epperly. Global optimization test problems with solutions. Available at http://citeseer.nj.nec.com/147308.html.

9. Christodoulos A. Floudas and P. M. Pardalos.A collection of test problems for constrained global optimization algo-

rithms, volume 455. Springer-Verlag Inc., New York, NY, USA, 1990.

10. F.W. Glover and M. Laguna.Tabu Search. Kluwer Academic Publishers, 1997.

11. Michael Guntsch and Martin Middendorf. A population based approach for aco. InEvoWorkshops, pages 72–81, 2002.

12. D. Himmelblau.Applied Nonlinear Programming. McGraw-Hill, New York, 1972.

13. Andy Keane. Genetic algorithms digest, v8n16, 1994.

14. J. Kennedy and R Eberhart. Particle swarm optimization.In IEEE International Conference on Neural Networks,

volume IV, pages 1942–1948, Perth, Australia. IEEE ServiceCenter.

15. Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homomorphous Mappings, and Constrained

Parameter Optimization.Evolutionary Computation, 7(1):19–44, 1999.

16. G. Leguizamón and C. Coello Coello. A boundary aco algorithm with stochastic ranking. In preparation.

17. G. Leguizamón and C. Coello Coello. Boundary search forconstrained numerical optimization problems in ACO

algorithms (an extended version of [18]). In preparation.

18. G. Leguizamón and C. Coello Coello. Boundary search forconstrained numerical optimization problems in ACO

algorithms. InANTS Workshop, pages 108–119, 2006.

19. W. Lei and W. Qidi. Ant system algorithm for optimizationin continuous space. InProceedings of the 2001 IEEE

International Conference on Control Applications, pages 395–400, Mexico City, Mexico, September 2001.

Title Suppressed Due to Excessive Length 33

20. W. Lei and W. Qidi. Further example study on ant system algorithm based continuous space optimization. InProceed-

ings of the 4th Congress on Intelligent and Automation, pages 2541–2545, Shangai, P.R. China, 10-14 June 2002.

21. J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc,P. N. Suganthan, C. Coello Coello, and K. Deb. Prob-

lem Definitions and Evaluation Criteria for the CEC. Technical report, Special Session on Constrained Real-

Parameter Optimization, School of Electrical and Electronic Engineering Nanyang Technological University, available

at http://www.ntu.edu.sg/home5/lian0012/cec2006/technical report.pdf, Singapore, 2006.

22. Chen Ling, Sheng Jie, Qin Ling, and Chen Hongjian. A method for solving optimization problems in continuous space

using ant colony algorithm. In Marco Dorigo, Gianni Di Caro,and Michael Sampels, editors,Proceedings of the Third

International Workshop, (ANTS’2002), volume 2463 ofLecture Notes in Computer Science, pages 288–289. Springer

Verlag, Brussels, Belgium.

23. Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A note on usefulness of geometrical crossover for

numerical optimization problems. In Lawrence J. Fogel, Peter J. Angeline, and Thomas Bäck, editors,Evolutionary

Programming V: Proc. of the Fifth Annual Conf. on Evolutionary Programming, pages 305–311, Cambridge, MA,

1996. MIT Press.

24. N. Monmarché, G. Venturini, and M. Slimane. On how pachycondyla apicalis ants suggest a new search algoritm.

Future Generation Computer Systems, 16:937–946, 2000.

25. Seid H. Pourtakdoust and Hadi Nobahari. An extension of ant colony systems to continuos optimization problems. In

M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors,Ant Colony Optimization

and Swarm Intelligence, 4th International Workshop, ANTS 2004, pages 294–301. Springer-Verlag.

26. Thomas P. Runarsson and Xin Yao. Stochastic ranking for constrained evolutionary optimization.IEEE Transactions

on Evolutionary Computation, 4(3):284–294, 2000.

27. M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of feasibility. In Hans-Michael Voigt,

Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors,Parallel Problem Solving from Nature – PPSN

IV, pages 245–254, Berlin, 1996. Springer.

28. Krzysztof Socha. ACO for continuos and mixed-variable optimization. In M. Dorigo, M. Birattari, C. Blum, L. M.

Gambardella, F. Mondada, and T. Stützle, editors,Ant Colony Optimization and Swarm Intelligence, 4th International

Workshop, ANTS 2004, pages 25–36. Springer-Verlag.

29. Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous domains.European Journal of Opera-

tional Research, 2007. In press.

30. K. Schittkowski W. Hock.Test Examples for Nonlinear Programming Codes. Lecture Notes in Econ. and Math. and

Syst. Springer-Verlag, Berlin, Germany, 1981.

34 Guillermo Leguizamón and Carlos A. Coello Coello

31. Z.Y. Wu and A.R. Simpson. A self-adaptive boundary search genetic algorithm and its application to water distribution

systems.Journal of Hidraulic Research, 40(2):191–203, 2002.

32. Q. Xia. Global optimization test problems. Available athttp://www.mat.univie.ac.at/ neum/glopt/xia.txt.

Title Suppressed Due to Excessive Length 35

A Problems

– G01[9]

Minimize:

f(x) = 5 ·
4

∑

i=1

xi − 5 ·
4

∑

i=1

x2
i −

∑

i = 513xi

subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are0 ≤ xi ≤ 1(i = 1, ..., 9), 0 ≤ xi ≤ 100(i = 10, 11, 12) y 0 ≤ x13 ≤ 1. The global

minimum is atx∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), where six constraints are active (g1, g2, g3, g7, g8,

andg9) andf(x∗) = −15.

– G02[13]

Maximize:

f(x) = |
∑n

i=1 cos
4(xi) − 2

∏n
i=1 cos

2(xi)
√

∑n
i=1 ix

2
i

|

subject to:

g1(x) = 0.75 − ∏n
i=1 xi ≤ 0

g2(x) =
∑n

i=1 −7.5n ≤ 0

wheren = 20 and0 ≤ xi ≤ 10. The best known solution is at

x∗ = (3.16237443645701, 3.12819975856112, 3.09481384891456, 3.06140284777302,

3.02793443337239, 2.99385691314995, 2.95870651588255, 2.92182183591092,

0.49455118612682, 0.48849305858571, 0.48250798063845, 0.47695629293225,

0.47108462715587, 0.46594074852233, 0.46157984137635, 0.45721400967989,

36 Guillermo Leguizamón and Carlos A. Coello Coello

0.45237696886802, 0.44805875597713, 0.44435772435707, 0.44019839654132) where

f(x∗) = 0.80619 and constraintg1 is close to being active.

Fig. 11 Keane’s function withn = 2.

– G03[23]

Maximize:

f(x) = (
√
n)n ·

n
∏

i=1

xi

subject to:

n
∑

i=1

x2
i = 1

where0 ≤ xi ≤ 1(i = 1, ..., n). The global optimum wheren = 10 is atx∗ = (1/
√
n, ..., 1/

√
n) where

f(x∗) = 1.

– G04[12]

Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:

Title Suppressed Due to Excessive Length 37

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4−

0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4+

0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 − 0.0029955x1x2+

0.0021813x2
3 − 100 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 + 0.0029955x1x2−

0.0021813x2
3 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3+

0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3−

0.0019085x3x4 ≤ 0

where78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is at

x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) wheref(x∗) = −30665.539. Two constraints are

active (g1 andg6).

– G05[30]

Minimize:

f(x) = 3x1 + 0.000001x2
1 + 2x2 + (0.000002/3)x3

2

subject to:

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000sen(x3 − 0.25) + 1000sen(−x4 − 0.25) + 894.8− x1 = 0

h4(x) = 1000sen(x3 − 0.25) + 1000sen(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(x) = 1000sen(x4 − 0.25) + 1000sen(x4 − x3 − 0.25) +1 294.8 = 0

where0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −.55 ≤ x3 ≤ 0.55, and−0.55 ≤ x4 ≤ 0.55. The best known

solution [15] isx∗ = (679.94453, 1026.067, 0.1188764,−0.3962336) wheref(x) = 5126.4981.

– G06[9]

38 Guillermo Leguizamón and Carlos A. Coello Coello

Maximize:

f(x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(x) = (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0,

g2(x) = −(x1 − 6)2 − (x2 − 5)2 + 82.81 ≥ 0,

where13 ≤ x1 ≤ 100 and0 ≤ x2 ≤ 100. The optimum solution isx∗ = (14.095, 0.84296), f(x∗) =

−6961.81381. Both constraints are active atx∗ (see Figure 12).

Feasible point

according tog1

Feasible Space

Boundary ofg1

Boundary ofg2

Infeasible point

according tog2

Fig. 12 Problem G6. Floudas-Pardalos’ function.

– G07[30]

Minimize:

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+29x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x110 − 7)2 + 45

subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 − 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

Title Suppressed Due to Excessive Length 39

where −10 ≤ xi ≤ 10 (i = 1, ..., 10). The optimum solution isx∗=(2.171996, 2.363683,

8.773926,5.095984,0.9906548,1.430574,1.3221644, 9.828726, 8.280092, 8.375927)wheref(x∗) = 24.306209.

Six constraints are active atx∗: g1, g2, g3, g4, g5, andg6.

– G09[30]

Minimize:

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(x) = −127 +2 x
2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where−10 ≤ xi ≤ 10 (i = 1, ..., 7). The optimum solution isx∗= (2.330499, 1.951372, -0.47775414,

4.365726, -0.6244870, 1.038131, 1.594227) wheref(x∗) = 680.6300573. The active constraints at this

point are:g1 andg4.

– G10[30]

Minimize:

f(x) = x1 + x2 + x3

subject to:

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x3x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x2x5 − 2500x5 ≤ 0

40 Guillermo Leguizamón and Carlos A. Coello Coello

where100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000(i+ 2, 3) and10 ≤ xi ≤ 1000(i = 4, ..., 8). The optimum

solutions isx∗ = (584.3282028010, 1354.1644876700, 5110.7156493300, 182.4326280510,

295.5675740820, 217.5673719490, 286.8650539690, 395.5675740820), wheref(x∗) = 7049.208339810.

– G11[15]

Minimize:

f(x) = x2
1 + (x2 − 1)2

subject to:

h(x) = x2 − x2
1 = 0

where−1 ≤ x1 ≤ 1 and−1 ≤ x2 ≤ 1. The optimum solution isx∗ = (+− 1/
√

2, 1/2) andf(x) = 0.75.

– G13[30]

Minimize:

f(x) = ex1x2x3x4x5

subject to:

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x2
1 + x3

2 + 1 = 0

where−2.3 ≤ xi ≤ 2.3 (i = 1, 2) y 3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimumn solution is

x = (−1.777143, 1.595709, 1.827247, 0.7636413,−0.763645) andf(x∗) = 0.0539498.

– G14[12]

Minimize:

f(x) =
10
∑

i=1

xi(ci+ ln
xi

∑10
j=1 xj

)

subject to:

h1(x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

10 See http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Library2new v1.html, where problemG10 can be

found ash106.

Title Suppressed Due to Excessive Length 41

where the bounds are0 < xi ≤ 10 (i = 1, . . . , 10), andc1 = −6.089, c2 = −17.164, c3 = −34.054,

c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708, c9 = −26.662, c10 = −22.179.

The best known solution is atx∗ = (0.036002, 0.151412, 0.783686,

0.001725, 0.484752, 0.000695, 0.028175, 0.017604, 0.038714, 0.093207) wheref(x∗) = −47.764411.

– G15[12]:

Minimize:

f(x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

subject to:

h1(x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are0 ≤ xi ≤ 10 (i = 1, 2, 3). The best known solution is atx∗ = (3.51212812611795133, 0.216998751042955

wheref(x∗) = 961.7150222.

– G17[12]

Minimize:

f(x) = f(x1) + f(x2)

where

f1(x1) =















30x1 0 ≤ x1 < 300

31x1 300 ≤ x1 < 400

f2(x2) =































28x2 0 ≤ x2 < 100

29x2 100 ≤ x2 < 200

30x2 200 ≤ x2 < 1000

42 Guillermo Leguizamón and Carlos A. Coello Coello

subject to:

h1(x) = −x1 + 300 − x3x4

131.078cos(1.48477− x6) +
0.90798x2

3

131.078 cos(1.47588)

h2(x) = −x2 − x3x4

131.078 cos(1.48477 + x6) +
0.90798x2

4

131.078 cos(1.47588)

h3(x) = −x5 − x3x4

131.078sin(1.48477 + x6) +
0.90798x2

4

131.078 sin(1.47588)

h4(x) = 200 − x3x4

131.078sin(1.48477− x6) +
0.90798x2

3

131.078 sin(1.47588)

where the bounds are0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤ 420, −1000 ≤ x5 ≤

1000 and0 ≤ x6 ≤ 0.5236. The best known solution is atx∗ = (212.684440144685, 89.1588384165537, 368.447892659317

4.16436988876356, 0.0680394595246655) wheref(x∗) = 8876.980680.

– G21[8]

Minimize:

f(x) = x1

subject to:

g1(x) = −x1 + 35x0.6
2 + 35x0.6

3 ≤ 0

h1(x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h3(x) = −x5 + ln(−x4 + 900) = 0

h4(x) = −x6 + ln(x4 + 300) = 0

h5(x) = −x7 + ln(−2x4 + 700) = 0

where the bounds are0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4

and4.5 ≤ x7 ≤ 6.25. The best known solution is atx∗ = (193.783493, 0, 17.3272116, 100.0156586, 6.684592154, 5.99150369

wheref(x∗) = 193.7783493.

– G23[32]

Minimize:

Title Suppressed Due to Excessive Length 43

f(x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)

subject to:

g1(x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

h1(x) = x1 + x2 − x3 − x4 = 0

h2(x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(x) = x3 + x6 − x5 = 0

h4(x) = x4 + x7 − x8 = 0

where the bounds are0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200 and0.01 ≤ x9 ≤

0.03. The best known solution is atx∗ = (0, 99.9999000001,

5.58738477217701e− 026, 100, 0.000099999999, 0, 100, 200, 0.01) where

f(x∗) = −400.002500.

– G24[9]:

Maximize:

f(x) = −x1 − x2

subject to:

x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36,

where the bounds are,0 ≤ x1 ≤ 3 and0 ≤ x2 ≤ 4. The best known solution is atx∗ = (2.3295, 3.1783)

wheref(x∗) = −5.5079. Figure 13 shows the feasible search space determined by thetwo inequelity

constraints and the approximate position ofx∗ which lies on the boundary.

– G25[9]:

Minimize:

f(x) = −12x1 − 7x2 + x2
2

subject to:

44 Guillermo Leguizamón and Carlos A. Coello Coello

−1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

g1

g2

F F

x∗

x1

x2

Fig. 13 Approximate position of the best known value on the boundaryof the feasible search space regarding constraints

g1 andg2.

−2x4
1 + 2 − x2 = 0

where the bounds are0 ≤ x1 ≤ 2 and0 ≤ x2 ≤ 3. The best known solution is atx∗ = (0.71751, 1.470)

wheref(x∗) = −16.73889. Figure 14 shows pointx∗ which lies on the boundary (in this case the boundary

is equivalent toF).

0
0

h

x2

x1
Boundary= F

U

U

1.47

0.71751

x
∗

Fig. 14 Best known solution and the feasible search space determined by equality constrainth.

