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Abstract The boundary approach as a constraint-handling technigieean be considered a suitable alter-
native when facing constrained numerical optimizatiorbpgms with active constraints. The definitionaxd
hocor more general boundary operators is relevant in the arearokrical optimization for approaching the
region between the feasible and infeasible search spatteouigh the success of the boundary approach will
mainly depend on the solutions representation and the cégpexploration operators, it is also an important
issue the provided search engine for applying the boundagoach. In this paper we proposed an advanced
search engine implementing the boundary approach basedew &nt Colony Optimization algorithm for
continuous problem (AC®). The paper describes the adaptation of AQO incorporate the boundary ap-
proach for constrained numerical optimization problend iacludes an experimental study to determine the
impact of the parameter setting on the behavior of the prgh@€CO algorithm for constrained optimization

problems. In addition, the performance of the modified ACG® compared against a former and a simpler
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version of an ACO algorithm for continues problems, and ttexlBastic Ranking, a well known method for

constrained evolutionary optimization.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic has beeteesgively applied to solving plenty of combi-
natorial optimization problems. The ACO metaheuristicrfoet al. [5], Dorigo and Stiiztle [6]) includes a
class of different algorithms derived from the main consédptolved in it, i.e., algorithms which design is
based on the behavior of the ant colonies. These algorithm$vie a colony of artificial ants that aim to find
good solutions to a problem by cooperating among them. Thpearation is indirectly achieved ksfigmergy
that is, by indirect communication mediated by the envirenmFor example, the Ant System (AS) was the
first example of an ant colony optimization algorithm to bepmsed in the literature. However, AS was not
competitive with state-of-the-art algorithms for the T&i& problem to which the original AS was applied. Ac-
cordingly, several improvements were proposed to themalgiersion of AS, many of which were especially
designed to deal with the TSP problem. The most importantorgments are AS with anelitist strategyfor
updating the pheromone trail levels, ASk (a rank-based version of Ant System{ AX-MZN Ant System
(MMAS), and the Ant Colony System (ACS), however, all of themewveriginally designed to operate on
combinatorial optimization problems (including some dyi@aversions) according to the main formulation of
the ACO metaheuristic [6].

On the other hand, one of the first ACO extensions to operatewotinuous spaces can be found in Bilchev
et al. [3] in which the whole search space is discretized deoto represent a finite number of search directions.
This approach was validated using a small set of constrgingllems. Since then, several other researchers
have proposed schemes to apply the ACO algorithm to conimgearch spaces. However, all of these ap-
proaches only deal with unconstrained optimization pneisleFor example, Ling et al. [22] report a general
proposal to apply an ACO algorithm in a continuous convex @iorepace without including any experimental
results. The proposal involves the application of adapiieesover and mutation operators based on the relative
fitness of the solutions. Lei et al. [19,20] adapt the ACO mpleta for continuous spaces by dividing the search

space into: subregions (i.e., a discrete view as proposed by Bilchdw.dpproach was applied to a set of uni-

1 A details description of these instances of the ACO metasigzican be found in [6].
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variable multimodal functions defined on an unconstraimaach space where each subregion corresponds to a
subinterval of the variable. Initially, each ant is assigjteethe respective search interval. As the search process
continues, each ant shifts the middle point of its interealoading to the quality of the solution found. In this
way, overlapped search regions will arise as the ants fdmwsdarch on common promising subregions of the
search space. The pheromone trail distribution on interi@biven by a unimodal functiof®; (bell shaped)
reaching a higher peak as the quality of solutigincreases. Functidfj; represents the learning experience of
the algorithm in order to explore/exploit different sukicets of the search space. Thus, the decision regarding
the interval in which an ant can deposit its pheromone is qutignal to the amount of pheromone trail on the
respective intervals. Although this work is limited to a fewconstrained continuous problems, it could be an
interesting approach to be extended for constrained pmohlEinally, it is worth remarking that this algorithm

is applied as a complementary step after a genetic algohitafiound some promising subregions of the search

space.

More recently, Dreo et al. [7] proposed a new manner of désigACO algorithms in continuous spaces
by introducing the concept dfeterarchyand communication channels. The approach is tested on oely o
problem (multimodal unconstrained function) and desigemtsidering that the pheromone trail is not the only
way of applying indirect communication among the ants dadt they apply the concept of dense heterarchy as
a manner of explaining the behavior of some insect specragtitch the communication is achieved through
either indirect or direct communication channels with vasfined properties. The prominent characteristic of
this approach is represented by the possibility of using tsmplementary communication channels, either
indirect channefsto promote exploration or direct channels to promote exafinin of the search space ac-
cording to the solutions previously evaluated. Using alsimapproach, Monmarché et al. [24] presented an
ACO algorithm called API which implements a parallel sedrctihe solution space by conforming hunter sites
(points in the search space) according to the quality of thetisns. These sites can be moved (translated)
during the search process (exploration) by applying loearch on the hunter site. The API algorithm was

applied with promising results to a set of well known unceoaisied continuous functions.

2 According to the authors, this concept is similar to thatdusith Particle Swarm Optimization in [14] and to path-

relinking [10].
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On the other hand, Pourtakdoust et al. [25] propose an agtein$ an ant colony system to continuous
optimization which is purely pheromone based. To exploee gbarch space, the algorithm uses a normal
probability distribution to model a relationship among gfeameters, the aggregation of ants around the food
source (best so far point) and the distance of a particulart fimom the food source. Thus, the more the
distance between the point and the food source, the lesshitt®@mone intensity. The pheromone update is
achieved in each iteration by updating the food source amdglgregation factor. In particular, the aggregation
factor is obtained considering the overall distance betwadethe points found and the food source and the
corresponding objective values. The experimental studuydes the De Jong’s standard testbed functions (i.e.,
unconstrained problems) and an experimental comparistnAR| [24] and a GA. An extension of the ACO
metaheuristic to continuous domains and applied to coatialand mixed discrete-continuous problems is
presented by K. Socha [28] which follows the original corta@pon the ACO approach in regards of the way
the solutions are built, i.e., incrementally. The solusi@re built by using a probability density distribution
(PDF). At step: each ant generates a random number according to a mixturergfah kernels of PDFs
Pi(x;) defined on the interval; < z; < b;, i.e., a multimodal PDF aimed at considering several stibnsg
of that interval at the same time. The pheromone maintenaniceplemented following three alternatives:
positive update, negative update, and a variant of a negafidate called dissolving instead of the classical
evaporation. The experimental study involves a set of oolotis unconstrained problems and the results are
better than other ACO algorithms and competitive with respesome other non-ACO algorithms. In another
recent work by Socha et al. [29], the former ideas propose8dpha [28] regarding continuous domains are
extensively presented and details concerning implemientédsues are given through the Ag@lgorithm.
The experimental study considered a test suite of sevecaingtrained continuous optimization problems. In
addition, an analysis of the behavior of A@@ presented regarding the impact on its performance ofdig m

parameters; and¢.

In Leguizamon et al. [18] a new proposal for constraintdismy technique is implemented in an ACO
algorithm for continuous problems based in the former wbgkBilchev et al. [3]. The Leguizambn et al.’s work
introduced a more general boundary approach for solvinjmear constrained problems which was presented
as a possible extension of the ACO algorithms for continseasch spaces. The boundary approach under the

ACO metaheuristic showed to be competitive with other stéitthe-art algorithm with respect to nonlinear
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problems with active constraints. It is also worth notingttthe boundary approach has been studied from the
perspective of evolutionary computation. For example istiewicz et al. [23] the efficiency of this approach
was shown by using two constrained optimization problenesan€’s function (also known &s02) [13] and
another function with one equality constraint (also knowriz3). For these cases, it was possible to define
ad hocgenetic operators that fit perfectly the boundary of theibdasegion. However, this sort of approach is
impractical in an arbitrary problem with many constraimisd it is therefore necessary to define a more general
approach for boundary search which can be as robust as [gotsitheal with different types of constraints.
Similarly, in Schoenauer et al. [27] some evolutionary apars capable of exploring a general surface of
dimensionn — 1 (n is the number of variables) for the following three test saganctionG03 and two
additional functions which represent respectively a aaised versions of the two original (unconstrained)
functions proposed by Baluja [1]. On the other hand, Wu ef3l] proposed a GA for the optimization of

a water distribution system, which is a highly constrainptimization problem. The proposed approach co-
evolves and self-adapts two penalty factors in order togaitd preserve the search towards the boundary of
the feasible search space. However, the Wu et al.’s work moigsvolve any explicit boundary operator.

The present work is adopts one of the more recent ACO extendar continuous search spaces and
shows how the boundary approach could be included in a mar@nadd search engine based on the ACO
metaheuristic. More specifically we adopted the AC&gorithm proposed by Socha et al.[29].

The remainder of this paper is organized as follows. SeQiaescribes the formulation of the general
nonlinear optimization problems and some features of tipeeblems that could be exploited when some
conditions are met. In addition, a general formulation & Houndary approach (see [18,17]) is presented.
The two ACO algorithms, AC@) which is the search engine formerly used to study the applitaof our
proposed boundary approach, and A@Q the more advanced search engine based in /AC&e presented
in Section 3. The test problems and experimental resultprasented and analyzed in Section 4. Finally, our

conclusions and some possible paths for future researgireved in Section 5.

2 The Boundary Search Approach

The general nonlinear programming problem whose aim is thx¥fiso as to optimize:

fx) x=(z1,22,....,2,) ER"
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wherex € F C S. The setS C R"™ defines the search space and sEts- S andi/ = S — F define the
feasibleandinfeasiblesearch spaces, respectively. The search spacédefined as an-dimensional rectangle

in R™ (domains of variables defined by their lower and upper bojunds

(i) <z <wu(i)for1 <i<n

whereas the feasible sétis defined by the intersection 6fand a set of additionah > 0 constraints:

g; <0, for j=1,...,¢ and h; =0 for j=q¢+1,...,m.

At any pointx € F, the constraintg,, that satisfyg, (x) = 0 are called the active constraintsatEquality
constraintsy; are active at all points af . It is worth remarking that plenty of problems formulatedah®ve
include active constraints at the best known or optimaltgmis. For example, for problems with at least one
equality constraint ;, the respective optimal solution will lay on the region defliby% ; (x) = 0. Furthermore,
for many problems, the best solutions may lay on the bounbatween the feasible and infeasible search
space of some inequality constrains, i.e., the region defiyeg,; (x) = 0. When those conditions are met for a
particular problem, the design afl hocoperators or approaches that explore the search spacénfgpcunsthe
boundary region (according either to the equality and/egirality constraints) can be a suitable alternative for
including in a specific search engine or metaheuristic.

In the following we first explain how the boundary region candpproached given a specific search space;
more precisely, the-dimensional spack™. Then, we also describe the manner in which this search g@ace
be explored assuming a hypothetical search engine andratiplooperators. Afterwards, we present in detalil
the proposed technique that takes advantage of the bouagargach to explore some specific regions of the

boundary of the feasible search space.

2.1 Approaching the boundary

We describe here a general boundary approach (propose8,ib7]) which is based on the notion that each
point b of the boundary region can be represented by means of twereliff pointsx andy, wherex is
some feasible point angis some infeasible one, i.€x,y) can represent one point lying on the boundary by
applying a “binary search” on the straight line connecting pointsx andy (when considering an equality

constraintz € F iff h(z) < 0; otherwisez € U). Figure 1 shows a hypothetical search space including the
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feasible (shadowed area) and infeasible regions. We catifigléour points lying on the boundaty,, bs, bs,

andb, which are respectively obtained frofr1, y1), (X2,y2), (X3,y3), and(x4,y4).

\\\\\\ »

Fig. 1 Given one feasible and one infeasible point, the respeptinat lying on the boundary can be easily reached by
using a simple binary search. In this way, the each point eltiundary can be reached from at least a pair of p¢iatg)

with x € F andy € U.

The binary search applied to each pair of poiatsy) is achieved following the steps described in function
BS (see Algorithm 1). For example, a possible applicatiothisf process can be seen in Figure 1 where we
adopt the pair of pointéxs, y3) from which we obtain the poirtis, which lies on the boundary. The first step
(labeled(1)) indicates that the first mid point found is infeasible. Gamsently, the left side of the straight
line (x3) is moved to pointp;. In the next step (labele@)) we consider the pointp; andys; as extreme
points for which the mid point is the feasible pois. Thus, the new feasible point or right extreme of the
line is now the pointp,. Finally, the last point generated i, which can be either lying on or close to the
boundary. Condition ((disto_boundarym) < ¢) AND Feasiblefn)) defines a threshold to stop the process of
approaching the boundary. However, the second part of driditon (i.e., “Feasiblaf)”) it is only applied
when considering an inequality constraint. In this wayction B.S guarantees that is in the feasible side
regarding the corresponding inequality constraint undesiteration. It is worth noticing that parametesnd
y are local to BS, i.e., function BS behaves as a decoder ofah@pfeasible and infeasible points passed as

parameters. Therefore, the number of “npidints betweenx andy before approaching the boundary within a
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distance less thatis given bylogz(r) wherer = (dist(x,y)))/d. Thus, the closer to the boundary, the larger

loga(r).

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;

2: repeat

3:  m = mid_pointbetweeng, y);

4: if Is.on.Boundarym) then

5: returnm; { m is a point lying on the boundary
6: endif

7. if Feasiblefn) then

8 X = m,
9: else

10: y = m,;
11: endif

12: until (distto_boundaryfm)< §) AND (Feasiblefn));

13: returnm; {The closest point to the boundary according tp

2.2 Exploring the boundary region

So far, we have shown how a point lying on the boundanan be represented through a pair of po{tsy)

with x € F andy € U. Now we need to consider the exploration of the search spaéehwaccording to
our proposal, can be defined@s= {(x,y)|x € F C R® Ay € U C R"}, that is, the set of pair of points
(x,y) as described above. This space can be considegedaype spacas known in the area of evolutionary
computation. Since each point froghrepresents a point on the boundary, it is necessary thecagiph of

the decoder represented by functiBiy (see Algorithm 1) to obtain the respectighenotypei.e., the “gene
expression” of(x,y) € G. Thus, the se8 = {b|b = BS(x,y)} is conformed by the set solutions on the
boundary. Each solution in this set is evaluated by functiowhich represents a measure of solutions quality
and gives as result an element of Bet {e € R|e = ¢(b)}. Figure 2 displays the respective spaces and how

they are related with each other by the application of fumsB.S and¢, respectively.
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BS o)

Fig. 2 The search or genotype spac®,(phenotype spacds), and spacéE, and the respective connection through the

decoderBSS and function evaluatio.

From the above described, is clear that the search engirtedeaisvith the exploration of spacke Figure 3
shows a set of hypothetical pointsdh) a problem constraint and the respective points on the banynbh the
third pair of points (from left to right) is represented a pibte exploration region foxs andys (it should be
noticed that the shape and size of the exploration area camdwhen considering different search engines
and/or operators). In this case, the projection of the extrsides of the exploration areas on the boundary
(zig-zag line), represents the covered area on the bounflpointsxs andys regarding a possible exploration

area. For example, from the perspective of evolutionargritlgms, it can be created a population of individu-

1
*

T1e” u

N\ Y3

/Y2
.

)

Fig. 3 A set of hypothetical points ig, a problem constraint and the respective points on the tayyndhere (*) indicates
the possible exploration regions fag andys and (**) indicates the respective points on the boundaryoregased on

possible perturbations &f; andys.

als where each one of then represent an element &f. Setterefore, suitable operators to be chosen could be

any qualified crossover and/or mutation operators for figagioint representations. A similar approach can be
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adopted if using another search engine suitable for exgjarbntinuous spaces, e.g., particle swarm optimiza-
tion, differential evolution, immune systems, etc. Howefi®m the perspective of the ACO metaheuristic the
possibilities are more limited. In this work we will show aglt two alternative for the ACO metaheuristic in

the next sections.

2.3 Focusing on the problem constraints

It is important to remember that we are assuming active cainss at the global optimum to proceed with
this method where the search is always performed “indiy&oth the boundary of the space defined by some
of the problem constraints. The simplest case to apply thendary approach is when the problem has only
one constraint which could be either an equality or an inkiyuzonstraint. Let us suppose that the problem
includes only one constraint, let us Jaythen the search engine should proceed by generating adetaénts

of setgG. After that, the exploration of by the search engine will indirectly and exclusively expltire region
defined byh(z), i.e., all solutions generated will be feasible withoutuieng anyad-hocboundary operator.

In section 4 we will show for a test problem with only one coastt (G25) a particular distribution of points

in spacgg and the respective points on the boundary region througéxbeution of the proposed algorithm in

this work.

On the other hand, when facing the typical situation in whigh have more than one constraint, it is
necessary to define an appropriate policy to explore thedrmyras efficiently as possible. One possibility is to
explore in turn the boundary of each constraint. The seleaif the constraints to search for can be determined
using different methods. If the problem includes at least equality constraint, such equality constraints are
the most appropriate candidates to be selected first. Hoyaepessible search engine could keep focused on a
particular constraints over the whole run or may be charaya fine problem constraint to another depending on
a particular condition. In our previous work [18] we definesimple condition based on a parameter catled
which counts the number of iterations the algorithm focuis@sparticular constraint. However, more complex
condition could be considered, for example, taking intaacd the population deversity or the degree in which
some problem constraints are being violated. In this washkyidl be explained in a further section, we adopted

the parameter, to control the time when the algorithm should focused on fediht problem constraint.
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Fig. 4 Feasible search space definedlimequality constraints. The search proceeds on the boyrd@onstrainty; .

As an illustrative example, Figure 4 shows a hypotheticatc®space determined by three inequality con-
straints. Let’s suppose that the search proceeds startiogrestraing; . If the visited points are on the boundary
of F, these points will also satisfy the remaining problem caists (filled line in Figure 4). However, the ex-
ploration of the boundary with respect to constrajintvill eventually produce points violating constraints
andgs (dotted line in 4). One of the simplest methods to deal with situation is the application of a penalty
function for the infeasible solutions. In addition,gf is active at the global optimum, the method will focus
the search on the boundary in order to restrict the explargibns of the whole search space. Note however,
that other (more sophisticated) constraint-handlingnépes can also be adopted. For example, it could be
considered the inclusion of the Stochastic Ranking apr{i26] to make the comparisons among the solutions

generated[16] and thus avoiding the inclusion and tunirgngfpenalty factor for solutions evaluation.

3 Boundary Approach in ACO algorithms

In this section we present two ACO algorithms, the A(ﬁband ACdBSﬁg which respectively implement the
boundary search approach as explained above. The firstithtgonACO(B%) is based on the Bilchev's pro-
posal [2] and was first presented in Leguizamon et al. [18,Tf7e second algorithm, called here Ag@
, is an extended version of AGQO(Socha et al. [29]) for dealing with constrained continuopsimization
problems. In this case, we present a possible implementafithe boundary approach following the main

characteristics of AC@regarding the way in which is explored a continuous searakesp
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3.1 A summary of the main characteristics of ,ﬁb

A possible design to apply the ACO approach in continuouschgaroblems is by discretizing the continu-
ous search space in some way. In A@@)we used a discrete structure to represent a set of diffe@ntg
spread on the search space. These points are chtsrdions following Bilchev et al.’s proposal in which the
continuous search space is discretized in the so-calledlsdaections. Each one of these search directions
was represented through a reference point in the searck.splae discrete structure is then related to a trail
pheromone structure used in the ant algorithm propose@foesenting the desirability of exploring on a par-
ticular search direction. For further details see [3]. In@ﬁ) , the discrete structure is similar, except for the
way in which the directions are represented. Our discretetsire can be seen as a §ét, ds, ..., di. }, wherek

is a parameter for the number of directions. Each directjos represented as a pair of two reatlimensional
vectors, i.e.d; = (x;,y;), from which new points are generated by the ants allocate@éttion/. As an ex-
ample, Figure 5 shows = 4 search directions (i.e., thiepair of points) and the corresponditgoints on the
boundary which they respectively represent. Thmints on the boundary are the result of the corresponding

application of functionB.S on the4 hypothetical directions.

Fig. 5 A 2-dimensional search space with= 4 possible search directions. Notice that each directioluiteca hypotheti-

cal exploration area of and the respective covered area on the boundary.

A general outline of the ACO algorithm is shown in Figure 2isltworth remarking that the original
proposal [3] for ACO in continuous domains is used to proceét the local exploration after a genetic

algorithm has finished with the global search. However, é@@s in charge of performing the entire search
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process. More precisely, our ACO algorithm starts with aofét directionsd = (x,y) randomly generated

withx € Fandy € U.

Algorithm 2 Outline of the ACO algorithm based on Bilchev’s proposal
1:t=0

2: initialize A(t); evaluateA(t);

3: while stop condition not metlo
4. t=t+1

5.  updatetrail;

6: reallocateantsA(t);

7:  evaluateA(t);

8: end while

The ACO algorithm displayed in Figure 2 works as followsi ti al i ze A(t) “distributes” N, ants on
the k directions, whereéV, > k in order to allocate one or more ants to the same directioch Bat allocated
in a directioni generates a new solution via the mutation-like operatoliegpo the pair of pointsx;,y;)
representing the initial reference points on directipaval uat e A(t) obtains the objective value for the
new points generatedpdatetrail is in charge of accumulating pheromone trial in each dioagproportionally
to the quality of the objective function values found in tlreresponding direction, i.et; = (1 — p) - 7 + A7y
whereAr; is a value proportional to the best objective value on dioact and0 < p < 1isthe pheromone trail
evaporation rateeallocateants A(t)redistributes the population of ants on thdirections, proportionally to
the accumulated pheromone trail values. Thus, the antgectitinl € {1, ..., k} are in charge of searchingin
the neighborhood of the respective boundary feasible poimdtirection/. The new reference point on direction

| for the next iteration is the best solution found in direotio

The main characteristics of our ACO algorithm include twetediction levels:

1. individual searchinvolves the strategy followed by each ant to search inéigimborhood. In our case, a

mutation-like operatot, such as)(x,y) = (x’,y’) where (the same applies 0):

.., xy) wherei is a random number frofll, ..., n}

(2
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and,

x; + (u(@) —x;)) x R ifr>05

x; — (x; — (1)) x R otherwise
wherer is a random number in the rang®.1] and0 < R < 1 is considered to define the extent of the
search interval with respect to each variable. Paranfetarting at valud will vary down to0 on each
iteration as described below.

2. cooperationinvolves information exchange among the ants in order tdegthe search to certain regions
of the search space. This information is represented byttheomone trial structure-f wherer; represents
the accumulation of pheromone trail on directigne., the algorithm'’s learning experience to be applied
to favor the promising regions of the search space. Theildisiion of the ants on the different directions is
achieved by the formula:

A = 1)

22:1 Th(t)

The changes on the values of rafit) involved in our mutation operator, controls the extenths search
interval for each dimension and can be implemented\aét) = R(1 — r(1=t/Tmaz)) wherer is a random
number in the rangl..1] andT,,, .. is the maximum number of iterations. Consequently, theevaly (¢) falls
in the rangd0.. R] and gets closer t0 as the elapsed number of iteratigriacreases.

Finally, it is worth noting the rationale behind the pheraradrail: “the accumulated pheromone trail
will decrease on directions that produce low-quality Solut due to the effects of the evaporation process
focusing the ants’ attention on more promising regions eféfasible search space”. In order to avoid premature
convergence of the algorithm, a potentially useful di@ttcan remain as an alternative search region by
bounding with lower and upper values the amount of pheronailén each direction following the principle

of the MMAS algorithm.

3.2 The proposed algorithm ACZ@ for Boundary Approach

In this section we describe the design of Agsﬂ@algorithm which implements the boundary search. The search
engine involved in AC@Q is based on the AC@algorithm presented in [29]. Before explaining the imple-
mentation of Accgg , we first describe briefly the main characteristics of ACE3 it was proposed and tested

in [29] on unconstrained continuous optimization benchnpaoblems.
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p(wils”)

1(4) u(i)

Fig. 6 A continuous probability density functiom(z|s”) wherex; € [I(i), u(i)], ands? is a partial solution under con-

struction (see [29] for further details).

Taking into account that the ACO metaheuristic works byaneentally building the solutions according to
a biased (by pheromone trail) probabilist choice of sohdgioomponents, the AGCalgorithm was designed
aiming at obtaining a set gdfrobability density function@PDFs). Each PDF is obtained from the search expe-
rience and is used to incrementally build a solutiog R™ considering in turn each component(Vi . .. n).
Figure 6 represents a hypothetical PDF that could be evintoand during the search. It can be observed a
multimodal PDF used to obtain a value for the variable on disieni € {1,...,n}. To approximate a multi-
modal PDF that looks like the one in Figure 6, Socha et al. [26posed a Gaussian Kernel which is defined

as a weighted sum of several one-dimensional Gaussiaridang{z) as follows:

k k (z—pi)?
; ; 1 —-=a=
Gi(z) =Y wigl(a) = Y wi——me D @
wherei € {1,...,n} identifies the number of dimension, i.e., Ag@ses as many Gaussian kernel PDFs as

the number of dimensions of the problem. In additi6f,is parameterized with three vectots; the vector
of weights associated with the individual Gaussian fumsj@.’, the vector of means; angl’, the vector of
standard deviations. All these vectors have cardinalitywhich constitutes the number of Gaussian functions
involved. Figure 7 shows a superposition of three Gaussiaction which could approximate the hypothetical
multimodal Gaussian function displayed in Figure 6.

In ACOg , a solution archive called” is used to keep track of a number of solutions similarly to the
Population Based ACO (PBCO) proposed by Guntsch et al. [11]. The cardinality of arel" is k, that
is, the number of kernels that conform the Gaussian kermele&ch solutiorx; € R™, ACOr maintains the

respective values of each problem dimension, ig., ..,z7, and the value of the objective functigifx;)
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| P .
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1(4) u(i)

Fig. 7 A possible set of three Gaussian functions to achieve byrpopiion a Gaussian Kernel which approximate the

multimodal Gaussian function as presented in figure 6

which are stored satisfying th@tx;) < ... < f(x;) < ... f(xx). On the other hand, the vector of weights
should satisfy that; > ... > w; > ... > wg.

The solutions iri” are therefore used to dynamically generate probabilitgifiefunctions involved in the
Gaussian kernels. More specifically, for obtaining the Geauskernel7?, the three parametess, p, ando?’
need to be calculated. Thus, for eagh the values of theé-th variable of thek solutions inT" become part of
the elements of vectqr?, thatis,u’ = {ut, ..., ul} = {2%,..., 2% }. Vectoru is generated as follows: each
solution that is added to the archi¥eis evaluated and ranked (ties are broken randomly). Thdisolin T

are stored according to their rank, i.e., the highest thie o&the solution, the lowest the respective indefin

The weighty, associated to Gaussian functiginis obtained as:

1 _(1=1)? 3
wp = e 24°k?
T kvan )

with meanl.0 and standard deviatioyk, whereg is a parameter of AC@which controls the preference of the
ranked solutions. Thus, whenis small, the best-ranked solution are preferred, othexveidarge value fog
implies a more uniform probability. As mentioned in [29]etimfluence of this parameter on Ag@s similar

to adjusting the balance between the iteration-best antiebeso-far pheromone updates used in traditional

ACO algorithms. On the other hand, each component of thetlenivectoio’ = {o%, ..., %} is obtained as:

k . .
i |ze — ]
Ul_ggﬁ (4)
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wherel € {1, ..., k} is the kernel number with respect deviation is calculatedisanr 0 which is he same for
all dimensions, has an effect similar to that of the pheroen@vaporation rata in ACO. Thus, the higher the
value of¢, the lower the convergence speed of the algorithm.

For obtaining a solution component at stefin the construction solution process) it is only necessary
calculate thé-th component of* since the sampling process of Gaussian kefiés accomplished as follows.
Given the elements of vectar calculated as in Eg. 3, the sampling is done in two phase$iddse one of the

k Gaussian functions af* according to the following probability:

wi
n=— ()
ZT‘:]. Wr

and, 2) after functiog; has been chosen, a sampling is accomplished may be usindamarumber generator
capable of generating random numbers according to a pageamext normal distribution or by using a uniform
random generator in conjunction with, for instance, the ®tidler method [4]. Since at each step only one
Gaussian function is used (let us sgy, it is only neededs! instead the whole vectar’. The pheromone
update is achieved by considering a dedf the newly generated solutich§ he newT (in the next algorithm
iteration) is obtained &8 = rank(T @ A), i.e., the old solutions in the archiZeplus the set of newly created
solution A are ranked. In other words, the old solutions compete agiiasewly generated ones to conform
the updated” which maintain its cardinalityk) trough the whole search process.

To adapt ACQ to deal with constrained problems by implementing the bampdpproach described
above is rather straightforward. The proposed algorithnoglﬁ , instead of maintaining one archivg it
maintains two archives for similar purpos&3s; and7;, which represent respectively the points on the feasible
and infeasible part of spacg A third archive, Ty, is also considered which is obtained by applying function
BS the each point fronT'» andT,. More preciselyls = {b.|b, = BS(X¢,¥e),¢ = 1,...,k}. Solutions
in T are evaluated by means of functign It is worth remarking that solution iffz are ranked according
the solution quality given by. Taking into account this ranking, the solutionslig andT;, are then ranked
accordingly.

As in the original ACQ algorithm, vectot is intended for sampling the chosen Gaussian function, how-

ever, the situation is different in AC@ since there exist two independent archifésandT;, from which

3 SetA represents the set of ants according to Socha et al. [29].
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the Gaussian Kernels are built, i.e., to explore the seqrabeg;, it is necessary to process both archives from
which the solutions on the boundary are obtained. In additice define two additional structuress and
Ay, associated respectively to archivEs andT;,. These two structures, similarly as in the original ACO
represent the newly solutions found according to the Gandsrnels froni’» and;,. Figure 3.2 represents a
general outline of the archivés-, T, T, w, andE. The last one is associatedfg and maintains the value
corresponding to the evaluation quality of solutioriig. It should be notice théfy is not used to build any
Gaussian Kernel, however, the ranking of the solution inilit wfluence the ranking of solutions ifi'’ and
Ty, which clearly influence the generations of new and bettafityusolutions in the spacg.

A general outline of AC@%? is presented in Algorithm 3 which displays its main compdseln linel,
archivesl's andTy, are initialized by randomly generating solutions in thesfbke and infeasible search space
regarding the problem constraint at hand. Similarly, vectas initialized according to Eq. 3 which includes
the parameterg andk as explained above. The main loop includes a call to fun¢Bmundary”, which is in
charge of applying functio®.S to each pair of points respectively frafy and7T;, and returns the archivgs.
Then, function “BuildSols” is in charge of generate new $iolus through the Gaussian kernel obtained from
the respective archives (lindsand5). In order to furtherly obtaimg, i.e., the newly generated solutions on
the boundary, function “Boundary” is then applied4g and A;,. After that, 7 plus Az are ranked according
the solutions quality given by functiaf, and the best first solutions in the ranking will be part now contents
of archiveTs which is used as reference to get the riEBwandT;,. Let say that the new set of point on the
boundary isTs = {b,,,...,b;, } whereb,;, comes either fronTz or Az, therefore the neW'r and7y, are
obtained respectively frofiz ® A andTy, © A, taking into account the ranked solutions in the rigyw This
is precisely that function “Update” does.

To make the things clearer, let us give a hypothetical examjith £ = 4, and number of ant®&/, = 6

(Na = |Ax| = |Aul), where

T.'F = {X17X27X37X4}7Tu = {Y1a}’2a}’37}’4}, and
T = {bl,bg,bg,b4}7 with b, = BS(X€7ye),€ € {1 Ce k}

are the current archives and respective solutions gemevatthe boundary, and

A]: = {X?X&Xgaxixgxg}ﬂélu = {ylllaYgQ’gv}’ZaYgYZ}, and
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Table 1 Representation of the AC(Q) search space divided in feasible and infeasible points

Tr Tu w
xi | ab | o2t | ] 2l yi|wi | vk || YT w1
xp | ab | | &t || ] vi |y | |y ||yl <~ wi
Xp | xp | oo | 2b || 2R ve | yi | o |yl ||yl Wk
Gx G G G4, Gy Gy
Ts E

by | b} Lo bl Lo by #(b1)

b | b bi br' o(b)

by | b S b S by ¢(bs)

Ap = {b{,b5. b5, b}, b bg}, withb? = BS(x%,yd),e € {1... Ny}

are the newly solutions found belonging Yo and{ by using the Gaussian kernels obtained frém and
T respectively. In addition, the decoding process appliethé@e solutions gives the respective det of
solutions on on the boundary. It is assumed thatand Az are ranked satisfying that(b;) < ¢(bs) <

d(b3) < ¢(bs)} andé(bg) < ¢(bg) < B(b%) < d(b) < ¢(b?) < (bg). Let us assume in addition
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Algorithm 3 A general outline of AC@? algorithm
1 init(Tr, Ty, w);

2: fortinl: Thas do

3.  Ts =Boundary(s, Tw)

4: Ay =BuildSols(r);

5. Ay =BuildSols([);

6: Ap =Boundary@dr, Ay)

7:  Tp =First,(Sort([s © Ag))

8: Update{'r,1u,E); { According to the neviz }

9: end for

that{b¢, by, ba, b%, bs, bs, by, b, bg, bi}* is the ranked set frorfis © Ag. Thus, the firsk = 4 elements
of that set will conform new archiv€s = {b{, by, bs, b5}. Taking into account the index of the elements

in T, the respective archives that will contain the new pointFimndlf areTr = {x{,x1,x2,x%} and

TZ/{ = {y(117YIay23y(21}‘

4 Experimental Results

In the first part of this section a preliminary study on thedabr of ACO%) is accomplished. The main objec-
tive is to analize to influence of an important parameter sipérformance, more specifically the parameter
which controls the preference of the ranked solutions. Eeersd part aims at comparing the results of @O
against ACCE%) and SR algorithms which performance was compared in [18,17]

Before presenting the results we will describe some comnhamnacteristics of AC@) and ACd;ig re-
garding their application to the different test cases. dmﬂe!\CdB%) and ACd;R) require minimum changes
when applied to the different test cases considered: thextibg function, number of variables, range of each
variable, and constraints. However, the policy to deteenin which constraint the search should focus needs
to be considered when a problem has more than one const@aiwe can focus the search on all the con-
straints, but considering one constraint in turn by colitrglthe change through a particular condition (%

b) similar to the previous alternative but considering athlg active constraints (), or c) just considering

one constraint during the whole run.(&herec € {1,...,m}). These three policy to deal with the way of

4 Obtained by mergin@s and Az
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approaching to the boundary were extensively study in Lagubn et al. [18, 17] for algorithm Ac@ . From
these earlier results, we adopt the so called poligy, Svhich showed the best performance through all the test
cases studied. However, the other policy are also a valatiesfficient alternative when no information is

available with respect to the possible active constraints.

In our experiments, the condition to produce a change ongaiehk from one constraint to another is given
by an elapsed number of iterations and it is represented dpdhnametet. as explained in section 2.3. In

addition, for problems with more than one constraint, weiporate a penalty function of the form:

q m
3z, ) = f(x) + p(t)(d_max0,g;(@)} + > |hy(x)]) (6)
g=1 j=q+1

wherep(t) is a dynamic penalty factor which could changé athe elapsed iteration, increases wjitf)) <
(1) < w(2) ... < w(Thae). Alternatively, the penalty factor can be fixed throughdet tun, i.e.u(t) = po
forall 1 <t < T,,4.- Regardless of the penalty function adopted, it is worthandasing that each solution is
always lying on the boundary of the feasible space corredipgrio the constraint under consideration. Note
that a penalty function was adopted due to its simplicitygsiour interest was to assess the advantages of our
proposed approach. However, other constraint-handletgiigues are evidently possible. The penalty factors
w(t) were experimentally determined for each particular proteéad are showed later for ACﬁQ and ACQG;

respectively.

All the algorithms considered in this experimental studg.(iAC SR? , ACO(B%) , and SR) were executed
30 times with different seeds for each parameter combinafitve. problems studied include a set of well-
known test cases traditionally adopted in the specialitedhture:G01 to G07, G09, G10, G11, G13, G14,

G15, G17, G21, G23, G24[21], andG25 [9].

The whole experimental study was performed on a Laptop witlh&elR Pentiuni®) M Processor 725,
running at 1.6 Ghz, and with 512 Mbytes of RAM. The A@ algorithm was implemented in C Language

running under Suse-Linux.

® The parameter setting for SR is showed in section 4.2
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. S
4.1 Tunning of parameter for ACOER)

In the earlier experiments with AC@ we initially chose a similar parameter setting as used if} y@%re
N, =2,k =50,§ = 0.85,andg € {0.0001,01}. The higher value for parametgwas chosen for multimodal
functions. The preliminary results from A(Z@ by using the above parameter setting was rather discogagin
since the algorithm was not capable of achieving any feasiblution for all tested problems. After that we
considered a larger number of ants (i€, > 2) for generating a larger sampling of solutions accordiniipé&

k = 50 Gaussian kernels. More specifically we 8&t= 50 as was set for AC@) (see section 4.2). In addition
we considered an intermediate value for paramegténus, this parameter was setge {0.0001,0.01,0.1}.
The penalty factor involved in functiop (Eq. 6) for each problem were as followG01 (1 = 1000), G04

(1 = 5000000), GO5 (1 = 10), GO6 (1 = 10'1), GO7 (1 = 20000), GO9 (1 = 200000), G10 (1 = 20000000,
G13 (1 = 0.1), G14 (1 = 150), G15 (1 = 10), G17 (& = 1000), G21 (1 = 3000), G23 (1 = 1000), andG24

(x = 10000). All of these valueSwere set regarding the previous work [18] in which similaues were used
for ACO%%) (in section 4.2 we describe these values when comparingﬁﬁ)ca@ainst ACC@H‘? and SR.)

We have divided de presentation of the results in two grotje.first group (Table 2) includes the test
problems for which AC@%{ achieved good quality results by usiiig,, = 5000, i.e., at mos250000 function
evaluations (in our case, corresponds to functioim Eq. 6). The second one in Table 3 shows the results
for those problems that needed a larger umber of iteratimaehieve better results. Both tables show in the
respective columns: the problem name (Prob.), the best krosvoptimal value (Opt), the best found value
(BF), mean value (Mean), worst value (Worst), mean numbéirradtion evaluations to achieve the best found
(Mean(#E)), and the number of feasible solutions owfuns.

It must be observed that neither Table 2 or 3 show the resatprbblemG05 for which any feasible
solution was found, however the solutions found were diginfeasible. For this problem we considered a
different setting and the respective results will be sholaésat.

Table 2 shows the results obtained from Agpaccording to the parameter setting= 0.0001,0.01, and
0.1 (up to down on the respective row for for each problem) ard 0.85. First of all, it can be observed that

for all values of parameter, ACO(;R) was able to to find high quality results. Also, it worth remagkthat

® Note that all penalty factors are fixed, however, we used stynamic penalty factor with the algorithm A(‘BQ in

section 4.2
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Table 2 Results from AC@? according to the parameter settipg= 0.0001, 0.01, and0.1 (up to down on the respective
row for for each problem) and = 0.85 used for some test cases in [29]. The remaining values paeamsed in the
experiment ard = 50, N, = 50, andTr.q> = 5000. The (*) symbol in column #Fea indicates that the averagehen t
violation constraints are in betwe8ro001 and0.0002. Since our policy, solutions which violates constraintsfmre than
0.0001 are considered infeasible.

ACOY)

Prob. Opt’ BF Mean Worst | Mean(#E) #Fea
-15.000 -14.9609 -14.7281 66750 30

GO1 -15.000 -15.000 -15.000 -15.000 92100 30
-15.000 -15.000 -15.000 161800 30

1.000 1.000 1.000 104000 30

GO03 1.000 1.000 1.000 1.000 129600 30
1.000 1.000 1.000 157100 30

-30665.539 | -30665.539| -30665.539 68900 30

G04 | -30665.539 | -30665.5722| -30665.5722| -30665.5722 126100 28
-30665.539 | -30665.539| -30665.539 166950 30

-6961.814 | -6961.8137 -6961.813 52000 30

G06 -6961.814 -6961.814 -6961.813 | -6961.8129 89800 30
-6961.814 -6961.813 | -6961.8125 116550 30

24.306 24.530 24.985 30150 | 25(%)

Go7 24.306 24.306 24.470 24.815 55100 27
24.306 24.3293 24.392 88000 26

680.630 680.630 680.630 49000 30

G09 680.630 680.630 680.630 680.630 89200 30
680.630 680.630 680.630 116900 30

7058.3559 7208.0776 7506.7651 85000 28

G10 7049.2480 7049.3369 7160.5849 8127.4853 120340 28
7058.5097 7100.442 7162.373 58050 22

0.75 0.75 0.75 17110 30

G11 0.75 0.75 0.75 0.75 17305 30
0.75 0.75 0.75 18005 30

0.053951 0.054112 0.054637 10050 | 23 (%)
G13 0.053950 0.053950 0.054033 0.054596 11680 18

0.053980 0.053980 0.053980 17030 1(%
-47.624847 | -45.268413| -41.556510 240800 28
G14 -47.76441 -47.71844 -47.11483 -44.32239 242900 29

-47.74250 -47.67783 -47.61127 243390 | 16 (%)
961.715148| 961.714965| 961.715209 165050 30
G15 | 961.715022| 961.715148 961.71496 | 961.715209 178350 30
961.715200| 961.715321| 961.715390 199900 30

193.79061 193.83093 193.90968 102300 6
G21 193.7783 193.78950 193.83940 193.98170 145100 10
193.79360 193.83450 193.91410 180250 20
-5.508013 -5.508013 -5.508013 19800 30
G24 -5.508013 -5.508013 -5.508013 -5.508013 22950 30

-5.508026 -5.508026 -5.508026 23950 30
-16.73893 -16.73893 -16.73893 9400 30
G25 -16.73889 -16.73819 -16.73819 -16.73819 10850 30
-16.73893 -16.73893 -16.73893 12200 30

the best found values (columns BF) are very similar for tHfeint g values, however, it is remarkable the
increasing in the number of evaluations (column #Fea) whereasing the value. This situation is easily
explained because for smallgwvalues, more importance is given to the best-so-far saiutibich increases
the convergence of AC@) . Although for all problems from this group the different wak of parameter

q does not affect substantially the quality of results, it @nnoticed some differences regarding #Fea. For
example, for problend=10 ACO(;R) achieved the larger number of feasible solutions whemsgjt= 0.1. A
similar situation is observed for proble@®21, where #Fea increases as the valug afcreases. Clearly, for
these problems a more explorative strategy improves the@%bﬁkrformance. In the case of probleri4,

the situation described before is different concerningitiveeasing in #Fea, however, the quality of results

for this problem are still better fay = 0.1. Finally, it is noticeable that for the reported results able 2
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of some problems (indicated with (*)) andvalues, the average on the violation constraints are vemwy lo
just in betweer?.0001 and0.0002 (according to our policy, solutions which violate congttaifor more than
0.0001 are considered infeasible). As a conclusion, it can be baiddwer values of increase the velocity of
convergence of the algorithm which could be useful for soype bf problems. On the other hand, larger values
of ¢ make ACCfﬁg a more explorative algorithm, however, with an increaseatlmer of function evaluation.
This is certainly the way in which AC@) achieved better results for some test problems.

Table 3 Results from AC(%) according to the parameter settipg= 0.0001, 0.01, and0.1 (up to down on the respective
row for for each problem) and = 0.85 used for some test cases in [29]. The remaining values paeamsed in the
experiment aré = 50, N, = 50, andT ;.4 = 10000. The (*) symbol in column #Fea indicates that the averagehen t

violation constraints are in betwe8rd001 and0.0002. Since our policy, solutions which violates constraintsrfmre than
0.0001 are considered infeasible.

ACOY)
Prob. Opf BF Mean Worst | Mean(#E) | #Fea
0.753613 0.640071 0.531255 23250 30
G02 0.803619 0.803619 0.697796 0.545772 30100 30

0.803619 0.777522 0.683394 31550 30
8871.682 9029.559 9212.925 345200 29
G17 | 8853.5397| 8866.86523| 9002.2568| 9197.17871 359800 29
9017.47851| 9017.47851| 9017.47851 494700 1
-300.80877 | -49.064338 | 130.72998 295000 4

2

1

G23 -400.0025| 23.453075| 73.200012 122.94695 325000
188.41090| 188.41090| 188.41090 360500

With respect to the remaining problems considered in thiskwtbat is,G02, G17, andG23; it was neces-
sary to increase the number of iterations (consequentiyuh#er of function evaluations) to reach competitive
results. In Table 3 are showed the obtained results from gg:@th Trmae = 10000. The influence of; in
the number of evaluation is similar as observed in Table igver, we can find some difference on column
#Fea. For problend702, all solutions were feasible for the different valuesypbut the quality of the results
improved forg = 0.01, and0.1. The situation is different in some way 617 since the best quality results
and the larger number of feasible solutions were obtained 0 0.0001 and0.01. Certainly, the worst perfor-
mance of Accgg was on problend=23 for which only a few feasible solutions were found and the beting

was forg = 0.0001.

It is also interesting to visually the distribution of painin the search spagg during the exploration
according to different values gf For a visualization purposes, we show the mentioned hligtan of points for
two problems>24 andG25 which have2 inequality andl equality constraints respectively (see Appendix A).
Figures 8 and 9 show for the three valuesyaonsidered (from left to right) the distribution of pointsthe

search spacg and the respective represented (decoded) points on thelagus. ProblemG25 has only one
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constraint, thus AC@R) always focuses on that constraint wheréa$ has two constraints and the two of then
are active at the optimum. In this last case, for reasonsanitgl we obtain the points distribution by running
ACO(;R) focusing exclusively on constrairt For both problems, the respective initial points in spgcare

the same, therefore, in the sequence of subfigures the firsam® the same. Also, it is important to remark
the distribution of points on the boundary f624 and G25 (on constraintl) in each subfigure. As the run
progresses, the set of points (remember that the poir@sare the basis for building the successive kernels
through the run) tends to get clustered in a particular &eaboth problems, that area correspond to a set of
points(x,y) € G for which BS(x,y) is close to the respective optimum solution. Whea: 0.0001, it can

be observed a rapid convergence of Ag\,{b Similar situation is observed fgr= 0.01, however, forG25 the
clusters are less tight than the clustersd@r. Forq = 0.1, the behavior of AC@? is clearly more explorative,
nevertheless, for these two problems, all this spread pdietode in a very tight area of the boundary around
the optimal one.

Finally, we made an additional experiment in order to solk@bfem G05 for which ACO&’ found no
feasible solution in the experiments reported before.ildase, we modify the value based on its proposal.
More precisely, parametércontrols the influence the variability of the PDFs. Thereftohe lowek, the more
slight are the perturbations on the points of spaeehich is precisely the difficulty with probler@05, that is,
the solutions found were slightly infeasible and very cltsthe optimal one. For that reason we run Ag{b
for G05 with ¢ = 0.3 andg = 0.1. In this case AC@Q found27 feasible solutions where the best found, mean,
and worst values were respectivély26.5083, 5143.6240, and5159.6303. Figure 10 shows the behavior of
ACO(;R) for problemG24 (as an example) by settigg= 0.3 andq = 0.1. it can be seen a few number of no
well defined clusters after at iteratidb00. When ACCfﬁg reaches iteratioB000, arises a set of more defined
clusters. At the end, the algorithm converged to two clgsf{ene the feasible region and the other on the
infeasible one). These behavior occurs when avoiding Bedegressure on the best-so-far solutions (a larger

q) and making small perturbation on the solutions to exploessiearch space (a smalfgr

4.2 Performance Comparison of A(f;@, ACdBB) ,and SR

In this section we compare the best quality results from g@qxhe adapted AC® for boundary search),

ACOES%) (the ant algorithm proposed in Leguizamon et al. [18]), &tdchastic Ranking (SR) [26] (a well
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Fig. 8 Test cas&~24: distribution of feasible and infeasible points on the skapace; and the respective points on the

boundary after the application of functidhS. From left to rightg = 0.0001, 0.01, and0.1 (£ was fixed t0.85).

known constraint-handling technique). As explained befare useS,.; as the most efficient search criteria
for the ACO algorithms, i.e., for Acﬁg and ACC%%) . The parameter setting for AQQ was taken from [18,
17]: N, = 50 ants (population size}; = 20 directions (number of reference points), maximum number of

iterationsT, .. = 30000, evaporation rate = 0.5, and¢. = 200 for the used policyS,;.
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Fig. 9 Test cas&>25: distribution of feasible and infeasible points on the skapace; and the respective points on the
boundary after the application of functid@hS. From left to rightg = 0.0001, 0.01, and0.1 (£ was fixed ta0.85). Note that

some points have been clustered on the lower-left cornédredfigures (see subfigures (d), (e), (9), (h), (j), and (k))

We adopted a dynamic pendltgu(t) = 1.05 x u(t — 1) fort = 0,1, -+, Tae) for problemsG10,
1(0) = 200000; G14, 1(0) = 150.8; G17, u(0) = 400; G21, u(0) = 1500; and G23, 1(0) = 13500.

The static penalty factors adopted for the remaining problare (i.e.u(t) = p, fort = 0,1, Thuaa):

® It is important to remark that the proposed algorithm in thigk (ACO(BS];g ) only used a fixed penalty factor for all

tested problems.
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Fig. 10 Test cas&=24: distribution of feasible and infeasible points on the skapace; and the respective points on the
boundary after the application of functidS by settingg = 0.1 and¢ = 0.3. By this setting, AC(@? accomplishes highly
spread search however, making small perturbations on tinésgn G (k = 200 kernels were used for better visualization

purposes.)

GO1, pu(t) = 1000; GO4, p(t) = 800000; GO5, u(t) = 10; GO6, u(t) = 10000; GOT, u(t) = 20000; GO,

((t) = 2000; G13, u(t) = 0.2, G15; andG24, u(t) = 1000.

The parameter setting for SR was as follows= 30, A = 200, Gaussian Mutationy = 1, Py = 1,
G, = 1750, andd = 0.0001 (see [26] for further details). With respect to A@T@ we report here the best

results found in the preliminary experiments reported egbction before.

For test suite considered, the three algorithms perfornosindentically for many of them&G01, G03,
G04, G06, G09, G11, G15, G24, andG25, except for the number of evaluation functions (see a coisqar
later in this section). Due to that fact, we do not display easults for the above mentioned problem. For the
remaining problems, i.eG02, G05, G07, G13, G14, G17, G21, andG23; we show the respective results in

Table 4 which shows for each problem considered: the avaraitiee best found out a$0 runs (Mean) and
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Worst values respectively from AC@ , ACO%%) , and SR. The (*) indicates that the respective optimum (or

best known) was found and (+) indicates that the best fouhdiso was very close to the optimum.

Table 4 Comparison of AC@}) with respect to AC@? [18,17] and SR [26]. (*) indicates that the respective optim

(or best known) was found whereas (+) indicates that thefbestl solution was very close to the optimum.

Mean Worst

Prob. ACOY) ACOY) SR ACO) ACOY) SR
G02 | 0.77522 (% 0.802656(*) 0.781875 (+)|  0.683394|  0.793083| 0.726288
GO5 | 5143.624 (¥) 5138.37(*) 5128.881(*) 5159.63 5132.14| 5142.472
G07 24.530 (*) 24.640 (*) 24.374(%) 24.620 24.920 24.642
G10 | 7160.584(+) 7199.01 (+)|  7559.192 (+)|  7377.647 7943.15| 8835.655
G13| 0.054112(%) 0.054908 (*)|  0.057006 (*)|  0.054637|  0.055386| 0.216915
G17 | 9029.559 (+)| 8937.446289 (+) 8893.39600q+) 9212.925| 8952.621093| 8951.00700
G21 | 193.83093+) | 194.345108 (+) NA | 193.90968| 202.067779 NA

G23| -49.064338|  -249.007506 NA | 130.7272998| -28.448352 NA

First of all, it can be observed SR was not able to find any ldasolution for problem&:21 and G23.
In addition we run SR by setting,, = 3500 in order to increase the number of evaluations for these two
problems, nevertheless, SR could not ontain any feasililéisios for G21 andG23. For these two problems,
ACOES%) and ACdB%) beahave similarly on proble23, where Accgig slightly outperforms AC@? regard-
ing mean and worst values. For probléf4, neither ACC&? or ACO(B%) found good quality results, however,
ACOES%) found better quality results. For the remaining problemgahle 4, we can observe the following: a)
the tree considered algorithms perform similarly when @ering the best found result (indicated by (*) or
(+)), except for problendz02 for which SR was no capable of finding the best knwon vali$63619. How-
ever, a very close valur to the best knwon was found as irgtichy (+), b) the best mean values were fairly
distributed on the three tested algorithms, c) for the besstwalues, we can rank the three algorithms as
follows: ACO(;R) : ACO(B%) , and SR (this, of course, does not imply atht Agp's better than AC@% and

this one is better than SR.
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As the final report of our experimental study we show in Tabéedomparison on the number of solution

evaluations regarding AC@ , ACOES%) , and SR. Columns andegp represent, respec-

AcO$) CacoP)

tively, the average number of evaluations to obtain the belsttion for AC ?R) \ ACO%%) , and SR. It can
be observed that for probleni®1, G03, G05, G06, G07, G11, G14, G15, G17, G21, G23, G24, andG25;

€40l is less thara?ACOua) andegp, where the difference between these two values is remagkabsome
B B

of them.

Table 5 Average number of evaluations to obtain the best solutiomtbogi) , ACO%SR) , and SR on the test problems
considered (* means ‘not available’). Clearly, there is l@ctrend on the performace of the three algorithms withees
to the number of evaluations. However, an importatn redndti the mean number of evaluations was achieved by ggéo

with respect to AC@? (indicated with * in the respective rows).

Problem EACOI(SS) éACOz(SB) éSR
* GO01 66750 81400 | 149600
G02 54050 29500 | 233400

* GO03 104000| 140000| 212000

G04 68900 21457 | 77600
* GO05 59850 94000 | 52400
* G06 52000 80000 | 111600
* G0O7 30150 35600 | 141400
G09 49000 7400 | 111000
G10 120340 42800 | 17200
* G11 17110 70400 | 10400
G13 10050 7200 | 67200

* G14 240800| 1250000 | 349600

* G15 165050 | 695600 73200

* G17 345200| 411500( 74000

* G21 102300| 760000 *
* G23 295000| 763100 *
* G24 19800 21400 | 23400

* G25 9400 10600 | 15200
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5 Conclusions and Future Work

In this paper we presented an alterative ACO algorithm (é?@ including a a new search engine for im-
plementing the boundary search approach. The search eisgameadaptation of one recently proposed for
continuos problems (ACR). For testing the proposed algorithm we we have used theltgdoaction as a
complementary mechanism for problems with more than onstcaint as was done with AC(Q) , the first
proposed ACO algorithm implementing the boudnary searble. dverall performance of ACQ was com-
pared with ACC%%) and SR, showing the potential of this method as an altematicomplementary approach
for constrained optimization problems. It is also worthiciog that ACdng) was able to reduce the number of
function evaluation for several of the tested problems imgarison with the respective results from Aﬁ@.
Future works include the use of more advanced complemeatarstraint-handling technigue to be used
with the boundary approach, e.g., a combination with stsiihaanking (under devolpment [16]). Also, a hy-
brid version of Accgg with local search is an interesting possibility for impnogithe algorithm performance
for harder test problems by perturbating the points on thenHary, e.g., by doing the main exploration on
spaceg and a complementary exploration in spageln addition, the authors suggest as research topic in
this area the design of a more general approach which ingltieboundary search as a component that can
be triggered to proceed with the boundary search when songitmn are met during the exploration of the

search space.
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A Problems
- GO01[9]
Minimize:
4 4
fx)=5-> mi—5-Y a7 - i="513;
=1 =1
subject to:

g1(x) =221 + 222 + 210+ 211 — 10 <0
g2(x) =221 + 223 + 210 + 12 — 10 <0
93(X) = 229 + 225 + x11 + 212 — 10 <0
ga(x) = =8x1 + 2190 <0

g5(x) = —8x2 41211 <0

g6(x) = —8x3 + 212 <0

g7(x) = =24 — w5 + 710 < 0

98(x) = =2z — 27 + 211 <0

gg(X) =—2x8—T9g+2x12 <0

where the bounds afe< z; < 1(i = 1,...,9),0 < a; < 100(i = 10,11,12) y 0 < 213 < 1. The global
minimum is atx* = (1,1,1,1,1,1,1,1, 1,3, 3,3, 1), where six constraints are active (g, g3, 97, gs;

andgg) and f (x*) = —15.

— G02[13]
Maximize:
Flx) = |ZZ_1 cost(z;) — 2 [, cos®(z;) |
Vi i
subject to:

g1(%) = 0.75 = T[1 @i <0

(%) = X1y ~T5n <0
wheren = 20 and0 < z; < 10. The best known solution is at
x* = (3.16237443645701, 3.12819975856112, 3.09481384891456, 3.06140284 777302,
3.02793443337239, 2.99385691314995, 2.95870651588255, 2.92182183591092,
0.49455118612682, 0.48849305858571, 0.48250798063845, 0.47695629293225,

0.47108462715587,0.46594074852233, 0.46157984137635, 0.45721400967989,
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0.45237696886802, 0.44805875597713,0.44435772435707,0.44019839654132) where

f(x*) = 0.80619 and constraing; is close to being active.

Fig. 11 Keane's function witm = 2.

— GO03[23]

Maximize:

subject to:

where0 < z; < 1(i = 1,...,,n). The global optimum where = 10 is atx* = (1/y/n, ..., 1/v/n) where
fx7) = 1.
— G04[12]

Minimize:

flx) = 5.3578547x§ + 0.8356891z1 x5 + 37.2932392; — 40792.141

subject to:
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91(x) = 85.334407 + 0.0056858z575 + 0.0006262 124 —
0.0022053z 325 — 92 < 0

g2(x) = —85.334407 — 0.0056858z025 — 0.00062627 174+
0.0022053z525 < 0

g3(x) = 80.51249 + 0.0071317z925 — 0.002995521 22+
0.002181322 — 100 < 0

g4(x) = —80.51249 — 0.007131 72925 + 0.00299552 25—
0.002181322 < 0

g5(x) = 9.300961 + 0.0047026z55 + 0.0012547 123+
0.0019085z324 — 25 < 0

g6(x) = —9.300961 — 0.0047026z325 — 0.001254721 25—

0.0019085z374 < 0

where78 < x; < 102,33 < 2o < 45 and27 < z; < 45 (i = 3,4,5). The optimum solution is at

x* = (78, 33,29.995256025682, 45, 36.775812905788) where f (x*) = —30665.539. Two constraints are

active (g; andgg).

— GO05[30]

Minimize:

subject to:

f(x) = 321 +0.000001a? + 25 + (0.000002/3)a3

9g1(x) = —x4+x3—0.55<0

g2(x) = —x3+ 24 —0.55 <0

hs(x) = 1000sen(xs — 0.25) + 1000sen(—x4 — 0.25) +894.8 — z1 =0
ha(x) = 1000sen(zs — 0.25) + 1000sen(zs — x4 — 0.25) +894.8 — x5 =0

hs(x) = 1000sen (x4 — 0.25) + 1000sen(zy — x5 — 0.25) +71 294.8 =0

where0 < z; < 1200, 0 < x5 < 1200, —.55 < z3 < 0.55, and—0.55 < z4 < 0.55. The best known

solution [15]isx* = (679.94453,1026.067,0.1188764, —0.3962336) wheref(x) = 5126.4981.

— GO06[9]
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Maximize:
f(x) = (21 — 10) + (x5 — 20)3
subject to:
g1(x) = (z1 — 5)% + (22 — 5)2 — 100 > 0,

g2(x) = — (21 — 6)% — (x5 — 5)% + 82.81 > 0,

wherel3 < z; < 100 and0 < z2 < 100. The optimum solution is* = (14.095,0.84296), f(x*) =

—6961.81381. Both constraints are active at (see Figure 12).

Feasible point
according tog 1

Feasible Space

/< Boundary ofgo

Boundary ofg

Infeasible point
according togo

Fig. 12 Problem G6. Floudas-Pardalos’ function.

— GO7[30]
Minimize:
f(x) = 2% + 23 + 122 — a1 — 1622 + (23 — 10)% + 4(z4 — 5)? + (25 — 3)?

+2976 — 1) + 522 4+ T(wg — 11)% 4+ 2(wg — 10)% + (2110 — 7)% + 45

subject to:
g1(x) = =105+ 4x1 + bxo — 3w7 — 925 < 0
g2(x) = 1021 — 8xg — 1727 + 225 <0
g3(x) = —8x1 + 29 + bxg — 2210 — 12 <0
ga(x) = 3(z1 — 2)% + 4(wg — 3)? + 223 — Twy — 120 <0
g5(x) = 523 + 8z9 + (23 — 6)% — 224 — 40 < 0
g6(x) = 23 + 2(w2 — 2)? — 22129 + a5 — 26 < 0
g7(x) = 0.5(x1 — 8)? + 2(z2 —4)2 + 322 — 26 — 30 <0

gs(x) = =321 + 629 + 12(29 — 8)% — 7219 < 0
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where —10 < z; < 10 (¢ = 1,...,10). The optimum solution isx*=(2.171996, 2.363683,
8.773926,5.095984,0.9906548,1.430574,1.322164489 85, 8.280092, 8.375927) whefiex* ) = 24.306209.

Six constraints are active &t: g1, g2, 93, 94, g5, andgg.

— GO09[30]
Minimize:
F(x) = (1 — 10)2 + 5z — 12)2 4 a8 + 3(z4 — 11)2
+10Ig + 756% + CC% — 4$6£C7 — 10566 — 8:07
subject to:

g1(x) = —127 +9 2% + 323 + 23 + 423 + 55 <0
go(x) = —282 + 7wy + 3z2 + 1025 + 24 — 25 <0
g3(x) = =196 + 23z1 + 23 + 2% — 827 <0

ga(x) = 422 + 23 — 3w120 + 223 + 516 — 1127 <0

where—10 < z; < 10 (¢ = 1,...,7). The optimum solution is*= (2.330499, 1.951372, -0.47775414,
4.365726, -0.6244870, 1.038131, 1.594227) whipe*) = 680.6300573. The active constraints at this
point are:g; andgsy.

— G10[30]

Minimize:

f(x) =214+ 22+ 3

subject to:

g1(x) = —1+0.0025(z4 + 26) < 0

g2(x) = =14 0.0025(x5 + x7 — 24) <0

g3(x) = —1+0.01(zg — x5) <0

g4(x) = —x126 + 833.3325224 + 10021 — 83333.333 < 0
g5(x) = —xowy + 125025 + w324 — 125024 <0

gG(X) = —x3x8 + 1250000 + oy — 25001‘5 < 0
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wherel00 < z; < 10000, 1000 < z; < 10000( + 2,3) and10 < z; < 1000(: = 4, ..., 8). The optimum

solutions isx* = (584.3282028010, 1354.1644876700,5110.7156493300, 182.4326280510,

295.5675740820, 217.5673719490, 286.8650539690, 395.5675740820), wheref (x*) = 7049.208339810.
— G11[15]

Minimize:

subject to:
h(x) =29 —27 =0
where—1 < z; < 1and—1 < z, < 1. The optimum solution is* = (+ —1/v/2,1/2) and f(x) = 0.75.
— G13[30]
Minimize:
F(x) = emrwavavazs

subject to:
hi(x) =23 + 23 +23+25+22-10=0
ha(x) = xox3 — Sraws =0
hs(x)=2i+25+1=0
where—23 < z; < 23 (i = 1,2)y 32 < x; < 32 (i = 3,4,5). The optimumn solution is

x = (—1.777143,1.595709, 1.827247, 0.7636413, —0.763645) and f (x*) = 0.0539498.

- G14[12]
Minimize:
10 .
fx)= Z zi(ci + In—5—)
i=1 j=1T]
subject to:

h,l(X):I1+2I2—|—2I3—|—ZC6—|—ZC10—2:O
hg(x):$4+2$5+$6+$7—1:0

h3(X)=$3+$7+$8+2$9+$10—1:0

10 see http://www.mat.univie.ac.at/ neum/glopt/coconeti@mark/Library2new.vi1.html, where problenti10 can be

found ash106.
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where the bounds afe < z; < 10 (i = 1,...,10), andc; = —6.089, c; = —17.164, c3 = —34.054,
c4 = —5.914,c5 = —24.721, c¢ = —14.986, cy = —24.1, cg = —10.708, cg = —26.662, c10 = —22.179.
The best known solution is at* = (0.036002, 0.151412, 0.783686,
0.001725,0.484752,0.000695, 0.028175,0.017604, 0.038714, 0.093207) wheref (x*) = —47.764411.

— G15[12]:

Minimize:

f(x) = 1000 — 22 — 223 — 22 — 2120 — T123

subject to:

hi(x) =23 + 23+ 23 -25=0

hQ(X) = 8171 + 14172 + 7563 —-56=0

where the bounds afe< z; < 10 (i = 1, 2, 3). The bestknown solutionis at = (3.51212812611795133, 0.21699875104295!
wheref (z*) = 961.7150222.
- G17[12]

Minimize:

fx) = f(@1) + f(2)

where

30z 0<z1 <300
fi(z1) =
31z, 300 < x1 < 400

28r9 0 < 29 < 100
fa(z2) = § 2925 100 < 29 < 200

30z2 200 < 22 < 1000
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subject to:

hi(x) = —a1 + 300 — 2224 cos(1.48477 — ag) + 22070855 5(1.47588)

ha(X) = —ws — T2 cos(1AB4TT + x6) + S20T014 55(1.47588)

h — e _®aTa_ (] ASATT 0.90798x . (1 47588
3(x) = —z5 — migrssin(l. +26) + “3r07s (1 )

ha(x) = 200 — T2 sin(1.48477 — 26) + ST g (1.47588)
where the bounds afe< z; <400, 0 < x5 < 1000, 340 < x3 < 420, 340 < 14 < 420, —1000 < x5 <
1000and0 < x4 < 0.5236. The best known solution is at = (212.684440144685, 89.1588384165537, 368.44789265931
4.16436988876356, 0.0680394595246655) wheref (z*) = 8876.980680.
- G21[8]

Minimize:
f(x) =1
subject to:

g1(x) = —z1 + 35296 + 35256 <0

hi(x) = —300z3 + 7500x5 — 75006 — 25x425 + 25T426 + T3x4 =0
ha(x) = 10022 + 155.365x4 + 250027 — xaw4 — 252427 — 15536.5 = 0
hs(x) = —x5 + In(—x4 +900) =0

ha(x) = —z6 + In(xz4 +300) =0
hs(x) = —x7 4+ In(—2x4 4+ 700) = 0
where the bounds afe< 7 < 1000,0 < z9, 23 < 40,100 < 24 < 300,6.3 < x5 <6.7,5.9 < 25 < 6.4
and4.5 < z7 < 6.25. The best known solutionis at = (193.783493, 0, 17.3272116, 100.0156586, 6.684592154, 5.99150:
wheref (z*) = 193.7783493.
- G23[32]

Minimize:
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f(x) = =925 — 1528 + 621 + 1622 + 10(w6 + 27)

subject to:

g1(x) = z9x3 + 0.0226 — 0.02525 < 0
92(X) = xoxy + 0.0227 — 0.01528 < 0
hx)=xz1+z3—23—24=0
ha(x) = 0.0321 + 0.012s — 29(x3 + 24) =0
h3(x) =23+ 26 —25 =0
hy(x) =a4+ax7 —28 =0
where the bounds ae < 1, 29,26 < 300,0 < z3,25, 27 < 100,0 < 24,28 < 200 and0.01 < zg <
0.03. The best known solution is at = (0, 99.9999000001,
5.58738477217701e — 026, 100, 0.000099999999, 0, 100, 200, 0.01) where
F(z*) = —400.002500.
— G24[9I:

Maximize:

f(x)=—21 — x5

subject to:

T2 < 221 — 823 + 822 + 2

T2 < dat — 3223 + 8827 — 9611 + 36,
where the bounds aré,< z; < 3 and0 < z5 < 4. The best known solution is &t = (2.3295,3.1783)
where f(x*) = —5.5079. Figure 13 shows the feasible search space determined byvthmequelity
constraints and the approximate position:dfwhich lies on the boundary.

- G25[9]:
Minimize:
f(x) = =121 — Tz + 22

subject to:
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z2

Fig. 13 Approximate position of the best known value on the boundéhe feasible search space regarding constraints

g1 andgs.

—217%—!—2—172:0

where the bounds afe< z; < 2 and0 < x5 < 3. The best known solution is at* = (0.71751,1.470)
wheref (x*) = —16.73889. Figure 14 shows point* which lies on the boundary (in this case the boundary

is equivalent taF).

0.71751

Boundary= F

I,

Fig. 14 Best known solution and the feasible search space detedrbinequality constraink.



