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Abstract

The most relevant property that a quality indicator (QI) is ex-
pected to have is Pareto compliance, which means that every time an
approximation set is better than another in a Pareto sense, the indica-
tor must reflect this. The hypervolume indicator and its variants are
the only unary QIs known to be Pareto-compliant but there are many
commonly used weakly Pareto-compliant indicators such as R2, IGD+

and ε+. Currently, an open research area is related to finding new
Pareto-compliant indicators whose preferences are different to those
of the hypervolume indicator. In this paper, we propose a theoretical
basis to combine existing weakly Pareto-compliant indicators with at
least one being Pareto-compliant, such that the resulting combined
indicator is Pareto-compliant as well. Most importantly, we show
that the combination of Pareto-compliant QIs with weakly Pareto-
compliant indicators leads to indicators that inherit properties of the
weakly compliant indicators in terms of optimal point distributions.
The consequences of these new combined indicators are threefold: 1)
to increase the variety of available Pareto-compliant QIs by correcting
weakly Pareto-compliant indicators, 2) to introduce a general frame-
work for the combination of QIs, and 3) to generate new selection
mechanisms for multi-objective evolutionary algorithms where it is
possible to achieve/adjust desired distributions on the Pareto front.

1 Introduction

Currently, there exists a plethora of multi-objective evolutionary algorithms
(MOEAs) focused on solving multi-objective optimization problems (MOPs)
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[10, 36]. An MOP involves minimizing a vector function ~F (~x) composed of k
objective functions fi(~x), i = 1, . . . , k where ~x is the vector of decision vari-

ables, Ω ⊆ Rn is the decision variable space and ~F (~x) is the vector of m (≥ 2)
objective functions, where fi : Rn → R for i = 1, . . . ,m. Solving an MOP
involves finding points that represent the best possible trade-offs among the
objective functions. In this regard, the Pareto dominance relation1 has been
the commonly used optimality criterion to find a set of trade-off solutions.
The particular set that yields that optimum solutions, when defined in de-
cision variable space, is known as the Pareto Optimal Set and its image in
objective space is known as the Pareto Optimal front (PF∗).

Since each MOEA generates Pareto front approximations2 with specific
convergence and diversity properties, a critical aspect is to decide which one
performs best. In the early days, approximation sets were visually com-
pared, attending convergence, spread and uniformity [21]. However, as the
dimensionality of the manifolds related to the Pareto front approximations
increases, comparisons get more difficult. In consequence, new comparison
methods have been proposed. First, Pareto dominance, which is the most
general preference information, was extended to comparisons between sets as
described in Table 1. A drawback of using the Pareto dominance relation is
that it only captures convergence information but not the spread and unifor-
mity of solutions. The other comparison method relies on the use of quality
indicators (QIs) which are functions that assign a real value to one or more
approximation sets simultaneously, according to specific preference informa-
tion [43]. This way, they impose a total order on the set of approximation sets
related to an MOP. The cornerstone of QIs can be traced back to the Ph.D.
thesis of David Van Veldhuizen [35] who made a comprehensive review of the
existing QIs. This study was followed by an important theoretical analysis of
quality indicators, proposed by Ztizler et al. [43], relating their properties to
the various preorders on approximation sets defined in Table 1. Since then,
QIs have been employed to quantitatively compare MOEAs [27, 30, 29].

1Given ~x, ~y ∈ Ω and ~F : Rn → Rm, ~x Pareto dominates ~y (denoted as ~F (~x) ≺ ~F (~y))
iff fi(~x) ≤ fi(~y) for all i = 1, . . . ,m and there exists an index j ∈ {1, . . . ,m} such that
fj(~x) < fj(~y). In case fi(~x) ≤ fi(~y) for all i = 1, . . . ,m, ~x is said to weakly Pareto

dominate ~y (denoted as ~F (~x) � ~F (~y)). Assuming that fi(~x) < fi(~y) for all i = 1, . . . ,m,

~x is said to strongly Pareto dominate ~y (denoted as ~F (~x) ≺≺ ~F (~y)).
2Let A ∈ Ψ be a finite set of m-dimensional objective vectors. A is called a Pareto

front approximation or approximation set if ∀~u,~v ∈ A, ~u 6= ~v it holds that ~u 6� ~v ∧ ~v 6� ~u.
The set of all approximation sets is denoted as Ψ.
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Table 1: Relations on approximation sets based on Pareto dominance rela-
tions. A ≺≺ B ⇒ A ≺ B ⇒ AC B ⇒ A � B.

Relation Description

A ≺≺ B ∀~b ∈ B,∃~a ∈ A : ~a ≺≺ ~b
A ≺ B ∀~b ∈ B,∃~a ∈ A : ~a ≺ ~b
AC B ∀~b ∈ B,∃~a ∈ A : ~a � ~b ∧ A 6= B
A � B ∀~b ∈ B,∃~a ∈ A : ~a � ~b
A ‖ B A 6� B ∧ B 6� A

In the specialized literature, there are several QIs that aim to measure the
convergence, spread and uniformity of approximation sets [29]. Among QIs,
those focused on assessing convergence have considerably attracted the at-
tention of the evolutionary multi-objective optimization community [43, 30]
since they can be used not only to assess the performance of MOEAs but
also to design selection mechanisms [39, 4, 8, 16]. A remarkable property
of convergence QIs3 is Pareto compliance or Pareto compatibility which, in
words, means that every time an approximation set dominates another, the
result of the indicator when evaluating the dominating set is always better
than the indicator value of the dominated set (see Property 1). Zitzler et al.
[43] introduced a mathematical analysis where a number of QIs were ana-
lyzed regarding their compatibility and completeness with the set dominance
relations of Table 1. From this study, the hypervolume indicator (HV) [41]
was found to be the only unary QI that is Pareto-compliant. HV measures
the extent of the volume dominated by an approximation set and bounded
by an anti-optimal reference point, i.e., a point that is dominated by all
points in the Pareto front approximation. An important drawback of HV
is that under NP 6= P, its computational cost increases super-polynomially
as the dimension of the objective function does. Therefore, other QIs have
been proposed, being less expensive but weakly Pareto-compliant (see Prop-
erty 2) or not Pareto-compliant. For example, the most noteworthy weakly
Pareto-compliant QIs are R2 [7], the Inverted Generational Distance plus
(IGD+) [25], and the unary additive ε indicator (ε+) [43] while IGD [9] and

3From this point onwards, convergence QIs will be denoted just as QIs.
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Figure 1: Let A = {(0.125, 0.875), (0.375, 0.625), (0.575, 0.6), (0.625, 0.375),
(0.875, 0.125)}, B = {(0.125, 1), (0.375, 0.75), (0.5, 0.625), (0.75, 0.375),
(1, 0.125)}, and Z = {(0, 1), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25), (1, 0)}. Even
though A C B, IGD prefers B and IGD+ assigns the same quality to both
sets. HV prefers A since it is Pareto-compliant.

Generational Distance [35] are not Pareto-compliant indicators.
Currently, due to the high impact of the so-called many-objective opti-

mization problems (i.e., MOPs having more than three objective functions),
weakly and not Pareto-compliant QIs have been widely employed to com-
pare MOEAs [11, 37, 34, 28]. However, not using Pareto-compliant QIs to
assess MOEAs could lead to misleading results. In the following, let’s con-
sider the approximation sets A and B of Figure 1 for which we will compute
HV, IGD+, and IGD. It is worth noting that a lower value of IGD+ and
IGD means higher quality in constrast to HV that aims to maximize the
dominated volume. From the figure, it is clear that AC B which is reflected
by HV since HV(A, ~zref ) = 0.781875 and HV(B, ~zref ) = 0.671250. On the
other hand, the IGD+ indicator cannot decide which set is better since they
have the same value equal to 0.125. Regarding IGD, B is given more qual-
ity because IGD(B,Z) = 0.125 and IGD(A,Z) = 0.167705 even though it is
dominated by A. Based on the above results, it is evident that using QIs with
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weaker compliance properties could lead to false conclusions when assessing
MOEAs. Another critical drawback is related to the so-called deteriorative
cycles in the search process of MOEAs [42, 2]. A set-based MOEA that uses
IGD+ or IGD as its selection mechanism could easily get stuck in a cyclic
selection. In the example of Figure 1, the MOEA could select either A or B
since they have the same IGD+ value. This simple example illustrates the
need to construct new Pareto-compliant QIs.

From the above discussion, it is clear the need to construct new Pareto-
compliant QIs. To support this claim and to justify why weak Pareto compli-
ance might be not enough to ask for, we will consider the following example
that shows that weak Pareto compliance is not sufficient as a guideline for
constructing meaningful indicators. The example is an indicator which we
will call “Zero indicator”. It is defined as Z : Ψ → R with Z ≡ 0. Clearly,
for every A,B ∈ Ψ such that A C B, it implies Z(A) = Z(B), i.e., Z is
weakly Pareto-compliant. Although indicators such as R2, IGD+ and ε+ are
more complex than Z in a mathematical sense, all of them are only weakly
Pareto-compliant as the Zero indicator. Hence, we can see that is not enough
to construct a weakly Pareto-compliant QI and that Pareto compliance is in-
deed desirable to avoid misleading results when comparing approximation
sets.

Currently, an open research area is to find new Pareto-compliant QIs,
having preferences that are different from those of HV. For instance, if a set
of MOEAs is to be assessed based on HV and one of them uses an HV-based
selection mechanism, then HV will reward this hypothetical MOEA. This
situation can be avoided if the comparison is performed using a more neutral
Pareto-compliant QI, i.e., one having different preferences. In this paper,
we propose to construct new Pareto-compliant QIs based on the mathemat-
ical combination of one or more weakly Pareto-compliant indicators with at
least one Pareto-compliant QI, using an order-preserving combination func-
tion. Under these conditions, the combined indicators preserve the Pareto
compliance property. Additionally, our framework allows to create Pareto-
compliant QIs with different preferences to those of HV in two ways: 1)
exploiting the conflict that sometimes exists between the preferences of indi-
cators, such that the combined indicator shows intermediate preferences, and
2) keeping the original preferences of the weakly Pareto-compliant QIs but
using a correcting term derived from the Pareto-compliant QI being used.
Overall, the contributions of this paper are the following:
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1. We provide a guideline to the construction of new Pareto-compliant
QIs whose preferences are essentially different from those of HV.

2. This is the first theoretical study of the combined properties of indica-
tors.

3. Our proposed framework allows correcting weakly Pareto-compliant
QIs, such as R2, IGD+, and ε+, making them Pareto-compliant.

4. We introduce an empirical study of the optimal distribution of solutions
generated by a steady-state MOEA based on some selected new Pareto-
compliant QIs.

The remainder of the paper is organized as follows. Section 2 introduces
definitions related to QIs. Our mathematical framework for construction
of new Pareto-compliant QIS is introduced in Section 3. The experimental
results using the combined indicators is presented in Section 4. Finally, the
main conclusions and future work are described in Section 5.

2 Quality Indicators

In the following, we introduce the formal definition of a unary quality indi-
cator, the Pareto compliance properties, and the indicators HV, R2, IGD+,
and ε+. In all cases, let A denote an approximation set and Z be a reference
set that discretizes PF∗.
Definition 1 (Unary Quality Indicator). A unary quality indicator I is a
function I : Ψ → R, which assigns a real value to each approximation set
A ∈ Ψ, where Ψ is the set of all approximation sets for an MOP.

Hansen and Jaszkiewicz [18] defined when the evaluation of two approxi-
mation sets by a certain indicator is compatible with the result of a Pareto-
based outperformance relation applied to these two sets. Hence, an indicator
could be compliant or weakly compliant with the outperformance relation C
that is defined in Table 1. Both properties are defined in the following. With-
out loss of generality, let us assume that a greater indicator value corresponds
to a higher quality.

Property 1 (Pareto compliance). Given two approximation sets A and B,
a unary indicator I is C-compliant (Pareto-compliant) if A C B ⇒ I(A) >
I(B).
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Property 2 (Weakly Pareto compliance). Given two approximation sets A
and B, a unary indicator I is weakly C-compliant (weakly Pareto-compliant)
if AC B ⇒ I(A) ≥ I(B).

Definition 2 (Hypervolume indicator). Let Λ denote the Lebesgue measure
in Rm, the hypervolume indicator (HV) is defined as follows:

HV(A, ~zref ) = Λ

(⋃
~a∈A

{~x | ~a ≺ ~x ≺ ~zref}
)
, (1)

where ~zref ∈ Rm is a reference point which should be dominated by all points
in A.

HV is a convergence-diversity QI that measures the extent of volume
jointly dominated by the points in A and bounded by ~zref . Currently, HV
and the closely related logarithmic HV [17], the weighted HV [1], and the
free HV [15] are the only Pareto-compliant QIs. The two main drawbacks
of HV are the following. First, under NP 6= P, computational cost increases
super-polynomially as the number of objective functions does [3]. The other
issue is related to ~zref since the preferences of HV strongly depend on it
[1, 23]. In other words, the specification of the reference is dependent on the
Pareto front shape. It has been shown that the distribution of points is often
concentrated on the boundary and in knee point regions.

Definition 3 (Unary R2 indicator). The unary R2 indicator is defined as
follows:

R2(A,W ) =
1

|W |
∑
~w∈W

min
~a∈A
{u~w(a)}, (2)

where W is a set of m-dimensional weight vectors and u~w : Rm → R is a
utility function, parameterized by ~w ∈ W , that assigns a real value to each
solution vector.

The R2 indicator is a convergence-diversity QI that measures the aver-
age minimum utility values of the approximation set with respect to a set
of weight vectors. Its computational cost is in Θ(m|W | · |A|). Unlike the
hypervolume indicator, the time complexity of R2 scales only linearly with
the number of objectives. Its time complexity is, however, proportional to
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the number of weight vectors4, which has to grow exponentially in size, if
the number of objectives increases and the same resolution of sampling is
desired. A major conceptual difference with regard to the hypervolume in-
dicator is that the R2 indicator does not require an anti-optimal reference
point. Instead, it works with an ideal or utopian reference point. In many
application problems, for instance, in error or cost minimization, there is a
natural choice for an ideal point, but it is difficult to define an anti-optimal
reference point. Hence it would be desirable to use the R2 indicator.

A problem, however, arises due to the fact that the R2 indicator is not
Pareto-compliant, and it is only weakly Pareto-compliant. This makes it
possible that a set might have equal R2 indicator values than another set,
although it is dominated in the set order, or that sets degenerate if this
indicator is used as a guideline in Pareto optimization. One might argue that
these are rare cases, as they always involve shared coordinate values among
points, and in most cases, the R2 indicator works well when comparing sets.
In fact, in continuous unconstrained optimization, such cases might occur
with low probability, but it is relatively likely in continuous optimization
and in cases where box constraints are introduced.

Definition 4 (Inverted Generational Distance plus). The IGD+, for mini-
mization, is defined as follows:

IGD+(A,Z) =
1

|Z|
∑
~z∈Z

min
~a∈A

d+(~a, ~z) (3)

where d+(~a, ~z) =
√∑m

k=1 (max{ak − zk, 0})2.

Ishibuchi et al. [25] proposed IGD+ as an improvement of the IGD in-
dicator [9]. Both QIs measure convergence and diversity of solutions simul-
taneously. However, IGD+ is weakly Pareto-compliant while IGD is not
Pareto-compliant [5]. IGD+ measures the average distance from the refer-
ence set to the dominated space of the approximation set. Its computational
cost is Θ(m|Z| · |A|). A critical aspect is how to specify the reference set
when no information is available at about PF∗ [24].

4The Simplex-Lattice-Design method is usually employed to construct the set of weight
vectors [38]. Using this method, the number of weight vectors is the following combinatorial
number: N = CH+m−1

m−1 , where H ∈ N is a user-supplied parameter that determines the
number of divisions of the space, and m is the number of objectives.
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Definition 5 (Unary ε+ indicator). Mathematically, it is defined as follows:

ε+(A,Z) = max
~z∈Z

min
~a∈A

max
1≤i≤m

{zi − ai}. (4)

The unary ε+-indicator gives the minimum distance by which a Pareto
front approximation needs to or can be translated in all dimensions at once
in objective space such that a reference set is weakly dominated. In conse-
quence, this QI exclusively measures convergence to PF∗ and it is weakly
Pareto-compliant. A remarkable aspect is that ε+ does not require any pa-
rameters but, as in the case of IGD+, a reference set has to be supplied.
Additionally, ε+ is not very sensitive to local changes in the solutions in A
[6].

3 New Pareto-compliant indicators

The combination of quality indicators is a research topic that has not been
widely studied. A remarkable exception is the averaged Hausdorff distance
(∆p) proposed by Schütze et al. [33]. ∆p combines modified versions of the
indicators IGD and GD into a single value by selecting the maximum value
between both QIs. It is worth noting that ∆p inherits the not Pareto com-
pliance of both IGD and GD. In this section, we propose the first systematic
framework for combining QIs. Additionally, we provide the mathematical
argumentation to ensure that when combining QIs with specific properties,
the resulting combined indicator will be Pareto-compliant. This leads not
only to new types of indicators but also proves to be a way to create new
Pareto-compliant indicators with very different properties than the HV in
terms of the distribution of points that they favor, and in terms of the pa-
rameters provided by the user. In the following, we present the mathematical
framework for the combination of QIs.

Definition 6 (Combination function). A combination function C : Rk → R
assigns a real value to a vector ~I = (I1, I2, . . . , Ik), where each Ij is the value
of a unary indicator.

Definition 7 (Combined Indicator). Given an indicator vector ~I = (I1, I2, . . . , Ik)
and a combination function C, a combined indicator I is defined as follows:
I = C(~I).
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Figure 2: The objective space contains the approximation sets X, Y, and Z
that are mapped to the quality space using an indicator vector. The points
~IX , ~IY , and ~IZ in quality space are then transformed each to a single real
value by the combination function C : R2 → R to generate the real values
IX , IY , and IZ .

A general combined indicator I is a function that maps a vector of in-
dicator values to a single real value as it is stated in Definitions 6 and 7.
Figure 2 shows how to map Pareto front approximations (in objective space)
to the quality space Q, where each axis correspond to a specific indicator.
Then, indicator vectors in Q are assigned a real value, using the combination
function C. Based on the above definitions, nothing can be said about the
properties of I at this point. Hence, for getting more important theoretical
results, we should say something about the properties of each Ij, j = 1, . . . , k
and of the combination function. We are interested in analyzing the Pareto
compliance of I. Based on Properties 1 and 2, we construct a special vector
of indicators that is necessary for the refinement of the combined indicator
model.

Definition 8 (Compliant Indicator Vector). ~I = (I1, I2, . . . , Ik) ∈ Q is called
a compliant indicator vector (CIV) if ∀j = 1, . . . , k, Ij is weakly Pareto com-
pliant and there exists at least one index t ∈ {1, . . . , k} such that It is Pareto
compliant. Q ⊆ Rk is denoted as the quality space.

For the following Theorem, let us assume, without loss of generality, that
the unary indicators I1, . . . , Ik are to be maximized. Additionally, for the
rest of this section, let us consider the Pareto dominance for maximization,
i.e., given ~x, ~y ∈ Rk, ~x Pareto dominates ~y (denoted as ~x � ~y) iff xi ≥ yi for
all i = 1, . . . , k and there exists an index j ∈ {1, . . . , k} such that xj > yj.

10



Theorem 1 (Construction of Pareto-compliant combined indicators). Let

I1, . . . , Ik be unary indicators that form a compliant indicator vector ~I. A
combined indicator I(~I) is C-compliant if I has the order-preserving prop-
erty:

∀~u,~v ∈ Rk, ~u � ~v ⇒ I(~u) > I(~v).

Proof. Consider two approximation sets A and B such that A C B and let
~IA := ~I(A) and ~IB := ~I(B), where ~I is a CIV. Then, A C B ⇒ ~IA � ~IB

because the Pareto-compliant indicators get better and the weakly Pareto-
compliant ones get better or stay equal. Moreover, by definition ~IA � ~IB ⇒
I(~IA) > I(~IB). Hence, by transitivity of⇒, it holdsACB ⇒ I(~IA) > I(~IB),
i.e., I is Pareto-compliant.

Theorem 1 provides a sufficient condition for constructing Pareto-compliant
combined indicators on the basis of compliant indicator vectors. In other
words, a combined indicator preserves the Pareto-compliant property be-
cause of the use of order-preserving combination functions.

Remark 1. The condition of Theorem 1 is suffcient but not necessary. For
instance, given ~I = (I1, I2, . . . , Ik) where I1 is Pareto-compliant and the

Ij, j = 2, . . . , k are not Pareto-compliant, the “combined” indicator I(~I) = I1

is also Pareto-compliant. Hence, there is a large number of possibilities to
construct combined and compliant indicators.

There exist many combination functions that have the property of Theo-
rem 1. However, in this paper, we focus on certain utility functions [31, 32]
u : Rk → R that hold the desired property. A utility function (UF) is a model
of the decision maker preferences that assigns to each k-dimensional vector
a utility value. Thus, a combination function C can be defined in terms of
these functions. Generally, UFs employ a convex weight vector ~w ∈ Rk such
that

∑k
i=1 wi = 1, wi ≥ 0. However, for the combination of QIs, we need

wi > 0 for all i = 1, . . . , k such that all QIs contribute to the combined indi-
cator value. Based on the above, a Pareto-compliant utility indicator (PCUI)
is defined as follows:

Definition 9 (Utility indicator). Given a utility function u : Rk → R, a CIV
~I ∈ Rk that assesses an approximation set A and a weight vector ~w ∈ Rk

where wi > 0 for all i = 1, . . . , k, we denote a utility indicator as u~w(~I(A)).
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If u is also order-preserving as required in Theorem 1, u~w(~I(A)) is denoted
as a Pareto-compliant utility indicator.

In this work, we focused our attention on two utility functions that are
order-preserving, namely, the weighted sum function (WS) and the aug-
mented Tchebycheff function (ATCH). However, there is a plethora of utility
functions having this property. In the following, we prove that both WS and
ATCH are order-preserving functions and, thus, can be employed to define
PCUIs.

Definition 10. The weighted sum (WS) is defined by the following formula:

WS~w(~x) =
k∑
i=1

wixi, (5)

where ~x, ~w ∈ Rk and
∑k

i=1 wi = 1, wi ≥ 0, ∀i = 1, . . . , k.

Lemma 1. Given two CIVs ~x, ~y ∈ Rk and a weight vector ~w ∈ Rk such that
wi > 0 for all i = 1, . . . , k, then if ~x � ~y ⇒WS~w(~x) > WS~w(~y).

Proof. Since ~x � ~y, then xi ≥ yi for all i = 1, . . . , k and there exists at least
an index j ∈ {1, . . . , k} such that xj > yj. If wi > 0 for all i = 1, . . . , k,
then wixi ≥ wiyi for all i and wjxj > wjyj for at least one j. Hence,
WS~w(~x) > WS~w(~y).

For the Augmented Tchebycheff function, we slighly modified its original
defintion. We do not consider the absolute values such that the function is
order-preserving in the whole Rk.

Definition 11 (Augmented Tchebycheff). Given ~x, ~w ∈ Rk with wi ≥ 0 and
α > 0, the Augmented Tchebycheff function (ATCH) is defined as follows:

ATCH~w(~x) = max
i=1,...,k

{wixi}+ α
k∑
i=1

xi (6)

Lemma 2. Given two CIVs ~x, ~y ∈ Rk and a weight vector ~w ∈ Rk, wi >
0, i = 1, . . . , k, then if ~x � ~y ⇒ ATCH~w(~x) > ATCH~w(~y).
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Proof. Since ~x � ~y, then xi ≥ yi for all i = 1, . . . , k and there exists at
least an index j ∈ {1, . . . , k} such that xj > yj. Let’s suppose, without
loss of generality, that wtxt = wtyt is the resulting maximum value and
t 6= j. In case t = j, the proof is trivial. Additionally, since α > 0, then
α
∑k

i=1 xi > α
∑k

i=1 yi because xj > yj. This implies that wtxt+α
∑k

i=1 xi >

wtyt + α
∑k

i=1 yi. Hence, ~x � ~y ⇒ ATCH~w(~x) > ATCH~w(~y).

Finally, we need to punctualize the relationship between the order-preserving
functions and the PCUIs and we need to clarify what is the effect of the com-
bination weight vector ~w that PCUIs require. First, PCUIs are invariant to
the indicator scales because of the order-preserving combination function
u. No matter what order-preserving function is used, if ~x � ~y ⇒ u(~x) >
u(~y). However, if ~x and ~y are mutually non-dominated, we cannot say what
will be the relation between u(~x) and u(~y) unless we know the definition
of u. In consequence, each u expresses specific preferences when dealing
with non-dominated solutions and such preferences depend on the landscape
of u (see Figure 3). On the other hand, PCUIs require a weight vector
~w = (w1, . . . , wk) where wi > 0 for all i = 1, . . . , k. Each wj assigns a rela-
tive importance to its associated indicator Ij. Figure 3 shows the landscape
of ATCH function for three different ~w. Depending on ~w, the PCUI exploits
in a different way the trade-off among its baseline indicators. When all wi are
equal, the PCUI preferences are the intermediate point between the prefer-
ences of its baseline QIs. For the other two cases in Figure 3, the preferences
of the PCUI will be biased to the indicator having the greatest wi. Suppos-
ing a PCUI is integrated in the selection mechanism of an MOEA, we could
control the final distribution of points by defining ~w.

4 Experimental results

In this section, we present the results of two experiments that aim to provide
empirical information on the following PCUIs: WS~w(HV,R2), ATCH~w(HV,R2),
WS~w(HV, IGD+), ATCH~w(HV, IGD+), WS~w(HV, ε+), and ATCH~w(HV, ε+).
These PCUIs are the Pareto-compliant versions of the indicators R2, IGD+,
and ε+. The first experiment investigates the preferences of the adopted
PCUIs by measuring the correlation of preferences between them and with
their baseline QIs when assessing several MOEAs, having special distribution
properties, on the Lamé and Mirror superspheres problems proposed by Em-

13



Figure 3: Landscapes of ATCH function varying the weight vector ~w =
(w1, w2).

merich et al. [14]. On the other hand, the second experiment analyzes conver-
gence and distribution properties of a steady-state MOEA, similiar to the S-
Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [4],
that uses the PCUIs as part of its density estimator. The proposed algorithm,
denoted as PCUI-EMOA, is tested on MOPs from the benchmarks Deb-
Thiele-Laumanns-Zitzler (DTLZ) [13], Walking-Fish-Group (WFG) [22], and
their minus versions DTLZ−1 and WFG−1 [26], respectively.

4.1 Analysis of preferences

We analyzed the correlation of preferences of the six adopted PCUIs when
assessing the Pareto fronts of several Lamé and Mirror superspheres problems
[14]. The Pareto front geometry of such MOPs is controlled by a parameter
γ. Regarding the Lamé problems, when γ ∈ (0, 1), the Pareto front is convex;
a linear Pareto front is related to γ = 1; and when γ ∈ (1,∞), the Pareto
front is concave. In case of the Mirror problems, γ ∈ (0, 1) and γ ∈ (1,∞) are
related to concave and convex Pareto fronts, respectively. For both Lamé and
Mirror problems, we employed γ = 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 6.00 for 2,
3, and 4 objective functions. Regarding the construction of the Pareto front
approximations, we employed MOEAs that exhibit particular distribution
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Figure 4: Heatmap Kendall rank correlation τ for each pair of set quality
indicators, each Lamé problem on different dimensions of the objective space.
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Figure 5: Heatmap Kendall rank correlation τ for each pair of set quality in-
dicators, each Mirror problem on different dimensions of the objective space.
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characteristics to have a representative sample of the set Ψ. For each test
instance, 30 independent executions were produced by each MOEA, where
all algorithms shared the same settings. For all the objective functions, the
size of all the produced approximation sets was 120. The adopted MOEAs
are classified in five classes as follows:

• Indicator-based MOEAs: SMS-EMOA [4], MOMBI2 [19], IGD+-MaOEA
[16] and ∆p-MaOEA5.

• Pareto-based MOEAs: NSGA-II [12] and SPEA2 [40].

• Reference set-based MOEAs: NSGA-III [11].

• Decomposition-based MOEAs: MOEA/D [38].

• Image analysis-based MOEAs: MOVAP [20].

Regarding the assessment of the Pareto front approximations generated
by the adopted MOEAs, we used the following settings on the QIs and
PCUIs. We assumed that we know nothing about the true Pareto fronts
of the adopted MOPs to perform a fair quality comparison. Hence, we em-
ployed a very bad reference point for HV, i.e., ~zref = {2i + 1}i=1,...,m. A set
of convex weight vectors (constructed by the Simplex-Lattice-Design method
[38]) was employed as the set W for R2 and as the reference set for IGD+

and ε+. Since the set of weight vectors is in [0, 1]m, we traslated all the
approximation sets to [1, 2]m. Since a PCUI requires all its baseline QIs to
be maximized, we consider −R2, −IGD+, and −ε+. For all the six adopted
PCUIs, the weight vector was set as ~w = (0.1, 0.9), where 0.1 is the weight
associated with HV and 0.9 is related to the weakly Pareto-compliant QI.
This setting was employed to mostly preserve the preferences of the weakly
Pareto-compliant QIs while producing Pareto-compliant results due to the
use of HV as a correction factor.

Concerning the correlation analysis, we employed a similar methodology
to the one adopted by Liefooghe and Derbel [30]. We aim to correlate the
rankings of MOEAs within each indicator, i.e., by how much do the PCUIs
and QIs rank the MOEAs (i.e., the characteristic Pareto front approxima-
tions) similarly. For each test instance and QI, the MOEAs are ranked by

5We proposed this algorithm based on the framework of IGD+-MaOEA [16] but using
the ∆p indicator as the density estimator.
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their mean indicator value. The ranks of MOEAs are then analyzed for corre-
lation with the remaining QIs using the Kendall’s τ nonparametric measure
of association with a significance value α = 0.05. It is worth emphasizing
that Kendall’s τ quantifies the difference between the proportion of con-
cordant and discordant pairs among all possible pairwise MOEAs. Since
τ ∈ [−1, 1], where τ = −1 means perfect disagreement and τ = 1 means
perfect agreement of ranks, we decided to create intervals of τ values in
order to represent them using Heatmaps. Such intervals are the following:
[−1,−0.75), [−0.75,−0.5), [−0.5,−0.25), [−0.25, 0.25], (0.25, 0.5], (0.5, 0.75],
and (0.75, 1]. Figures 4 and 5 show the results of the nonparametric statis-
tical test for the correlation, using heatmaps for all the adopted Lamé and
Mirror test instances, respectively. It is worth noting that although we de-
fined seven intervals for τ , the results employed only three of them, i.e.,
[−0.75,−0.5), (0.5, 0.75], and (0.75, 1.0].

4.1.1 Correlation between PCUIs and baseline QIs

Regarding the correlation analysis on Lamé problems in Fig. 4, we have the
following conclusions. For 2 objective functions, the more linear the Pareto
front (i.e., γ = 0.75, 1.00, 1.50), the more correlated are the PCUIs with
their baseline QIs. For highly convex Pareto fronts there is more correla-
tion with the weakly Pareto-compliant QI (i.e., R2, IGD+, and ε+) mean-
while for highly concave MOPs, the correlation is stronger with HV. Re-
garding 3-dimensional MOPs, each class of PCUI shows different behaviors.
WS~w(HV,R2) and ATCH~w(HV,R2) are correlated with both HV and R2
for all test problems. For WS~w(HV, IGD+) and ATCH~w(HV, IGD+), there
is independence with both HV and IGD+ for problems with γ = 0.25 and
0.50 which means that the PCUIs have preferences completely different. For
γ = 0.75 and 1.00, there is only correlation with IGD+ and, in the con-
cave cases, the PCUIs are correlated with both HV and IGD+. Concerning
WS~w(HV, ε+) and ATCH~w(HV, ε+), both are correlated with ε+ in all cases.
A noteworthy aspect is that for 4-dimensional MOPs, there is a strong ten-
dency of all PCUIs to be exclusively correlated with their weakly Pareto-
compliant QI while there is independence with HV. Hence, we could expect
that as the dimensionality of the objective space increases, the PCUIs will
be more correlated with the weakly Pareto-compliant QI. However, the eval-
uation results of the PCUIs will be Pareto-compliant.

For the Mirror problems in Fig. 5, we have some similar results. In
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general, for 2 objective functions, the PCUIs are strongly correlated with
both baseline QIs except in highly convex and concave MOPs where their
preferences are correlated with either HV or the weakly Pareto-compliant
QI. It is worth noting that this result is similar to the Lamé problems hav-
ing 2 objectives. WS~w(HV,R2) and ATCH~w(HV,R2) are correlated with
both QIs in all problems except for γ = 6.00 for MOPs with 3 objectives
and for four-objective MOPs having γ ∈ {1.00, 1.50, 2.00, 6.00}. On the
other hand, WS~w(HV, IGD+) and ATCH~w(HV, IGD+) are only correlated
with both baseline QIs for convex problems and for linear and concave ones,
the correlation is stronger with IGD+ and there is independence with HV in
3- and 4-dimensional problems. Regarding the PCUIs based on HV and ε+,
in all cases, there is only correlation with the latter QI in MOPs with 3 and
4 objective functions.

In summary, there are two important points to emphasize. As the di-
mension of the objective space increases, the PCUIs tend to be strongly cor-
related with the preferences of their baseline weakly Pareto-compliant QIs
and the independence with the preferences of HV gets more accentuated.
Since the results of the PCUIs are Pareto-compliant, it is relevant that in
high-dimensional objective spaces the PCUIs show preferences independent
to those of HV because this could encourage the design of new selection
mechanisms of MOEAs that would produce approximation sets with differ-
ent distributions to those of SMS-EMOA but retaining the Pareto-compliance
property. In other words, PCUIs could be employed to manipulate the distri-
bution properties of MOEAs while maintaining the Pareto-compliance prop-
erty. On the other hand, in general, a PCUI inherits from its baseline weakly
Pareto-compliant QI the correlation with HV. A reason for this fact is that we
are using a combination vector in the PCUIs that favors the weakly Pareto-
compliant QI.

4.1.2 Correlation between PCUIs

We analyzed the correlation between the preferences of all PCUIs to ensure
that the combination does produce different indicators. Concerning both
the Lamé and Mirror problems, the correlation analysis indicates that the
PCUIs based on the same weakly Pareto-compliant QI are strongly correlated
between them. In consequence, the use of WS or ATCH is basically producing
the same PCUI although they have different landscapes. In the next section,
we give the reason for this behavior that, in a few words, is due to the
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Figure 6: From left to right, it is shown the Quality Spaces: HV-R2 for Lamé
γ = 0.25 2D, HV-IGD+ for Lamé γ = 0.75 4D, HV-IGD+ for Mirror γ = 1.50
3D, and HV-ε+ for Mirror γ = 6.00 4D. All cases tend to show a Pareto front
in Quality Space.

formation of a convex Pareto front in the Quality space. Since both WS
and ATCH are able to find solutions on convex Pareto fronts, thus, both will
present almost the same preferences when they are employed in PCUIs. As
a result of this observation, in this correlation analysis, we investigated the
Pareto-compliant versions of the R2, IGD+, and ε+ indicators.

Another remarkable conclusion is that the preferences of PCUIs based on
a different weakly Pareto-compliant QI are, in general, independent. Hence,
each class of PCUIs are presenting distinct preferences. This is explained by
the analysis of the correlation between R2-IGD+, R2-ε+, and IGD+-ε+ that
are mostly independent as shown in Figures 4 and 5. Additionally, due to the
use of ~w = (0.1, 0.9), each PCUI inherits the preferences of its weakly Pareto-
compliant QI. Hence, the PCUI will behave in a similar way to its weakly
Pareto-compliant QI but maintaining the Pareto-compliance property.

4.1.3 Pareto fronts in Quality Space

In objective space, we find Pareto fronts that represent the solution to an
MOP. These Pareto fronts are formed due to the conflict among objective
functions. In Quality Space (see Fig. 2), it is also possible to find Pareto fronts
when the preferences of an indicator are in conflict with the preferences of
other QI. Based on the correlation analysis previously explained, we found
that when there is independence of preferences between two QIs or when the
preferences are negatively correlated (as in the case of HV and IGD+ for the
Mirror problem with γ = 6.00 in 4D), a Pareto front in the Quality Space Q
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is formed. Fig. 6 shows four examples where it is possible to see the tendency
to a Pareto front in quality space. These plots present the indicator vectors
associated with each execution of the adopted MOEAs in the correlation
study for a specific test instance. Since we are maximizing HV, R2, IGD+,
and ε+ to use the PCUIs, it is possible to see that all plots introduce convex
Pareto front shapes. Hence, this fact supports the observation that there
is no critical difference when using WS or ATCH for constructing PCUIs.
The rest of the cases of independence on both heatmaps in Figures 4 and 5
present convex Pareto fronts. In case a PCUI is employed in the selection
mechanism of an MOEA, a compromise between the indicators will be found,
resulting in new distributions on the Pareto fronts that represent the solution
to an MOP. In conclusion, this result supports the fact that PCUIs could be
employed to better control the diversity of an MOEA but maintaining the
Pareto-compliance.

4.2 Steady-state selection

Algorithm 1 PCUI-EMOA general framework
Require: PCUI u~w(~I), where ~I(I1, I2, . . . , Ik).
Ensure: Approximation to the Pareto front
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: q ← V ariation(P )
4: Q← P ∪ {q}
5: {R1, . . . , Rt} ← NondominatedSorting(Q)
6: if |Rt| > 1 then

7: ~pworst = arg min~p∈Rt
{u~w(~I(Rt))− u~w(~I(Rt \ {p}))}

8: else
9: Let ~pworst be the sole solution in Rt

10: end if
11: P ← Q \ {~pworst}
12: end while
13: return P

In this section, we investigate the effect of using PCUIs in the selection
mechanism of an MOEA. For this purpose, we considered the framework
of SMS-EMOA that uses a density estimator (DE) based on HV but, in
our case, a PCUI is employed in the DE. Algorithm 1 presents the general
framework of our proposed PCUI-EMOA whose main loop is in lines 2 to
12. At each generation a new solution is created using genetic operators
and, then, this newly created solution is added to the population P to create
the temporary population Q. Then, in line 5, a set of ranks R1, . . . , Rt are
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created using the nondominated sorting algorithm [12], where Rt has the
worst solutions according to the Pareto dominance relation. If Rt has more
than one solution, the individual contributions to the PCUI are computed
to delete the worst-contributing solution in line 11. Finally, the Pareto front
approximation is returned when the stopping criterion is fulfilled.

We focused our attention on studying the final distribution properties of
PCUI-EMOA in comparison with four steady-state MOEAs based on the
indicators HV, R2, IGD+, and ε+, i.e., SMS-EMOA, R2-EMOA, IGD+-
MaOEA, and ε+-MaOEA. The latter is similar to IGD+-MaOEA. Regarding
PCUI-EMOA, we employed the six PCUIs of the previous section. Since
all the adopted indicator-based MOEAs (IB-MOEAs) share the same struc-
ture, the parameter settings are the following. For all objective functions,
the population size is 120. All MOEAs use simulated binary crossover and
polynomial-based mutation as their genetic operators [12], where, for all
cases, the crossover probability is set to 0.9, the mutation probability is 1/n
(n is the number of decision variables), and both the crossover and mutation
distribution indexes are set to 20. PCUI-EMOA employs the combination
vector as ~w = (0.5, 0.5) to look for the knee point on the Pareto front in
quality space, i.e., to generate distributions similar to both baseline QIs. We
tested the adopted MOEAs on 14 MOPs from the benchmarks DTLZ, WFG,
DTLZ−1, and WFG−1 for 2, 3 and 4 objective functions. We employed the
problems DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1, WFG2, WFG3, and
their minus versions. We selected these MOPs since they possess Pareto
fronts with different geometries, namely, linear, concave, convex, degenerate,
mixed, disconnected, correlated with the simplex shape and not correlated
with it [26].

The distribution analysis is focused on determining if the Pareto front
approximations produced by the six PCUI-EMOAs are similar to the IB-
MOEAs that use their baseline indicators. For each test instance, the MOEAs
were executed N = 30 independent times. Thus, each one produced N ap-
proximation sets for each MOP. We investigate the similarity between two
sets of approximation sets produced by two MOEAs, using a similarity mea-
sure based on the Hausdorff distance that we propose in the following:

Definition 12 (Hausdorff similarity measure). Given two sets A = {A1, . . . , AN}
and B = {B1, . . . , BN}, each one consisting of N Pareto front approxima-
tions, the Hausdorff similarity measure S is given as follows:
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S(A,B) =
1

N

N∑
i=1

median(Ai,B), (7)

where median(Ai,B) computes all the Hausdorff distances from Ai to every
element in B and returns the median value.

S calculates the degree of similarity between two sets. However, if we
are given three sets of approximation sets A,B, and C and we would like to
know if A is similar to B, to C, to both or to none of them, a classification
function is required. Such classifier is given as follows.

Definition 13 (Classifier). Given three sets of approximation sets A,B, and
C and a threshold ε > 0, the classifier function is given as follows:

Cε(S(A,B), S(A,C)) =


−1, S(A,B) ≤ ε ∧ S(A,C) > ε

0, S(A,B) ≤ ε ∧ S(A,C) ≤ ε

1, S(A,B) > ε ∧ S(A,C) > ε

2, S(A,C) ≤ ε ∧ S(A,B) > ε

where -1 means that A is exclusively similar to B; 0 means that A is similar
to both B and C; 1 means that A is not similar to B nor C; and, 2 means
that A is exclusively similar to C.

Based on the classification function, we analyzed the similarities between
the approximation sets produced by the PCUI-EMOAs and their correspond-
ing IB-MOEAs that use the baseline indicators for the construction of the
PCUI. Table 2 shows the results for all the considered test instances using
ε = 0.1. Since all PCUI-EMOAs use ~w = (0.5, 0.5) as the combination weight
vector for the order-preserving utility functions, our hypothesis is that the
Pareto front approximations should be similar to both IB-MOEAs that em-
ploy the baseline indicators. This hypothesis is true for several cases related
to the DTLZ and DTLZ−1 problems. Nevertheless, for most of the WFG and
WFG−1 problems, the PCUI-EMOA tends to produce approximation sets
with particular distributions that are not similar to the baseline IB-MOEAs.
This fact could be explained by the independence of preferences between HV
and the weakly Pareto-compliant indicators on these MOPs. Considering
the linear problems DTLZ1 and DTLZ1−1, it is clear that in most cases the
PCUI-EMOAs produce approximation sets similar to the IB-MOEAs using
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their baseline indicators. This result is explained by the correlation anal-
ysis of Section 4.1 where in almost all cases HV, R2, IGD+, and ε+ are
strongly correlated. The most important observation is related to the PCUI-
EMOAs based on WS~w(HV,R2) and ATCH~w(HV,R2). On the one hand,
SMS-EMOA produces uniformly distributed solutions in convex and linear
Pareto fronts and there is a bias towards the knee and boundaries of concave
Pareto fronts. Additionally, SMS-EMOA presents good results in degenerate
problems such as DTLZ5 and WFG3. On the other hand, R2-EMOA Brock-
hoff et al. [8] does not produce uniformly distributed solutions in convex
Pareto fronts, but it does in linear and concave ones. Regarding, degenerate
MOPs, R2-EMOA does not produce good results since its weight vectors do
not completely intersect the Pareto front shape. Hence, SMS-EMOA and
R2-EMOA have specific strengths and weaknesses depending on the MOP
being tackled. Regarding DTLZ2 having two and three objective functions
and concave Pareto fronts, it is possible to see that the distribution of the
PCUI-EMOAs based on WS~w(HV,R2) and ATCH~w(HV,R2) are similar to
the preferences of R2, i.e., R2-EMOA. When we analyze the minus version
DTLZ2−1 for the same objective funtions, the distributions are similar to
those of SMS-EMOA. This also happens for DTLZ5 3D which is degenerate
where the distributions are similar to those of SMS-EMOA as well. Hence,
we have empirical evidence on the compensation of weaknesses of one in-
dicator with the strengths of the other baseline indicator when employing
PCUI-EMOA. Fig 7 shows some examples of this remarkable compensation.

5 Conclusions and Future Work

In this paper, we proposed to construct new Pareto-compliant indicators
by combining existing QIs, under specific conditions. To the authors’ best
knowledge, this is the first work that proposes such a combination to ob-
tain Pareto-compliant QIs. To ensure the Pareto-compliance property, it is
mandatory to combine at least one Pareto-compliant indicator (such as the
hypervolume indicator) with as many weakly Pareto-compliant QIs, using
an order-preserving function. Regarding these functions, we proposed to use
the weighted-sum and the augmented Tchebycheff utility functions. Based
on these utility functions, we denoted the combined indicators as Pareto-
compliant Utility Indicators (PCUIs). As part of our experimental results,
we analyzed the preferences of six PCUIs based on the combination of the hy-
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Table 2: Distribution similarities between each PCUI-EMOA and the IB-
MOEAs based on the indicators HV, R2, IGD+ and ε+. For each test in-
stance, it is shown if the distribution of the PCUI-EMOA is similar to one
or other baseline indicator, to both or none of them.

MOP Dim.
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2
)

A
T

C
H

~w
(H

V
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)
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H

~w
(H

V
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D

+
)

W
S
~w

(H
V
,ε

+
)

A
T

C
H

~w
(H

V
ε+

)

DTLZ1
2 Both Both Both Both Both Both
3 Both Both Both Both Both Both
4 Both Both Both Both Both Both

DTLZ1−1
2 Both Both Both Both Both Both
3 Both Both Both Both Both Both
4 HV HV Both Both HV None

DTLZ2
2 Both Both Both Both Both Both
3 R2 R2 Both Both Both Both
4 R2 R2 None None None None

DTLZ2−1
2 HV HV Both Both Both Both
3 HV HV None None None None
4 None None None None None None

DTLZ5
2 R2 R2 Both Both Both Both
3 HV HV Both Both Both Both
4 HV HV IGD+ IGD+ ε+ ε+

DTLZ5−1
2 HV HV Both Both Both Both
3 HV HV IGD+ IGD+ None None
4 None None None None None None

DTLZ7
2 Both Both Both Both Both Both
3 None None IGD+ IGD+ ε+ None
4 None None None None None None

DTLZ7−1
2 Both Both Both Both Both Both
3 R2 R2 Both Both Both Both
4 None None IGD+ None ε+ Both

WFG1
2 None None None None None None
3 None None None None None ε+

4 None None IGD+ IGD+ ε+ None

WFG1−1
2 R2 R2 None None None None
3 None None None None None None
4 None None None None None None

WFG2
2 None None None None None None
3 None None None None None None
4 None None None None None None

WFG2−1
2 None None None None None None
3 R2 R2 IGD+ IGD+ ε+ ε+

4 None None None None None None

WFG3
2 None None None None None None
3 Both Both Both Both Both Both
4 None None IGD+ IGD+ ε+ ε+

WFG3−1
2 R2 R2 None None None None
3 Both Both Both Both Both Both
4 HV HV Both Both HV HV
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Figure 7: Pareto fronts that show the compensation of weaknesses of one
indicator with the strengths of other when coupled to PCUI-EMOA.

pervolume indicator with the R2, IGD+, and ε+ indicators which are weakly
Pareto-compliant. The results indicated that the PCUIs show different pref-
erences to those of the hypervolume indicator which implies that PCUIs
can be used as an alternative to HV while ensuring the Pareto-compliance
property. Additionally, we analyzed the distribution properties of an MOEA
based on the PCUIs, denoted as PCUI-EMOA. We empirically showed that
when solving MOPs, PCUI-EMOA is able to compensate for the weaknesses
of one of its baseline indicators with the strengths of the other. As part of
our future work, we want to use other weakly Pareto-compliant indicators
to define Pareto-compliant ones and we look for making a more in-depth
theoretical analysis of the properties of PCUIs.
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[20] Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba Torres.
A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates.
In 2016 Genetic and Evolutionary Computation Conference (GECCO’2016),
pages 565–572, Denver, Colorado, USA, 20-24 July 2016. ACM Press. ISBN
978-1-4503-4206-3.

[21] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. In Proceedings of the
First IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence, volume 1, pages 82–87, Piscataway, New Jer-
sey, June 1994. IEEE Service Center.

[22] Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While. A Review
of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE
Transactions on Evolutionary Computation, 10(5):477–506, October 2006.

[23] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. Reference
Point Specification in Hypervolume Calculation for Fair Comparison and Ef-
ficient Search. In 2017 Genetic and Evolutionary Computation Conference
(GECCO’2017), pages 585–592, Berlin, Germany, July 15-19 2017. ACM
Press. ISBN 978-1-4503-4920-8.

[24] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Dif-
ficulties in Specifying Reference Points to Calculate the Inverted Genera-
tional Distance for Many-Objective Optimization Problems. In 2014 IEEE
Symposium on Computational Intelligence in Multi-Criteria Decision-Making

29



(MCDM’2014), pages 170–177, Orlando, Florida, USA, 9-12 December 2014.
IEEE Press. ISBN 978-1-4799-4467-5.

[25] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modi-
fied Distance Calculation in Generational Distance and Inverted Generational
Distance. In António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos
Coello Coello, editors, Evolutionary Multi-Criterion Optimization, 8th Inter-
national Conference, EMO 2015, pages 110–125. Springer. Lecture Notes in
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