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Abstract

Efficiency has become one of the main concerns in evolutionary mul-
tiobjective optimization during recent years. One of the possible alterna-
tives to achieve a faster convergence is to use a relaxed form of Pareto
dominance that allows to regulate the granularity of the approximation
of the Pareto front that we wish to achieve. One of such relaxed forms
of Pareto dominance that has become popular in the last few years is
e-dominance, which has been mainly used as an archiving strategy in
some multi-objective evolutionary algorithms. Despite its advantages,
e-dominance has some limitations. In this paper, we propose a mecha-
nism that can be seen as a variant of e-dominance, which we call Pareto-
adaptive e-dominance (pae-dominance). Our proposed approach tries to
overcome the main limitation of e-dominance: the loss of several nondom-
inated solutions from the hypergrid adopted in the archive because of the
way in which solutions are selected within each box.
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1 Introduction

Laumanns et al. (2002) proposed a relaxed form of dominance for multi-
objective evolutionary algorithms (MOEASs), named e-dominance. This mech-
anism acts as an archiving strategy to ensure both properties of convergence
towards the Pareto-optimal set and properties of diversity among the solutions
found. Laumanns et al. (2002) proposed an extension of the classical Pareto-
dominance relation so that a point f € R™ not only dominates those points
with lower fitness in all their objectives but also all points close enough to f
(i.e., those with a distance to f less than an £). This value, £, could be pro-
vided by the decision maker to control the size of the solution set. Nevertheless,
because of the geometrical characteristics of the Pareto-optimal set (concavity,
convexity, curvature, torsion, disconnected segments, etc.) are usually unknown
to the decision maker, we can lose a high number of good solutions if the € value
is badly chosen.

Despite the obvious usefulness of e-dominance, this mechanism has several
drawbacks from which the main one has to do with the difficulties to compute
an appropriate value of £ that provides the number of nondominated solutions
that the user wants. Another important limitation of this mechanism is the
fact that it loses solutions lying on segments of the Pareto front that are almost
horizontal or almost vertical, as well as the extreme points of the Pareto front.

This paper provides an extension of e-dominance that addresses the prob-
lems indicated above. The remainder of this paper is organized as follows: In
Section 2, we provide the basic definitions associated to e-dominance, as well
as a brief description of its main limitations. Section 3 contains the detailed
description of our proposed scheme. The experimental setup used to validate
our proposed approach is provided in Section 4. Our scheme is incorporated into
a multi-objective evolutionary algorithm, and its results are compared with re-
spect to the same algorithm using e-dominance and with respect to the e-MOEA
(Deb et al., 2005a). Our results are presented and analyzed in Section 5. Fi-
nally, some conclusions and possible paths for future research are provided in
Section 6.

2 e-dominance

Laumanns et al. (2002) proposed two different methods/schemes to implement
e-dominance: the additive and the multiplicative approaches. We assume all
objectives are to be minimized. Then, given a vector f € R™ and € > 0, for the
additive scheme f is said to e-dominate all points in the set

{geR™ : fi—e<g;foralli=1,..,m}

whereas for the multiplicative scheme f is said to e-dominate all points in the
set
{geR™: fi(1—¢€) < giforalli=1,..,m}.
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Figure 1: Uniform grid with 400 boxes (maximum capacity of 20 points) for the
curve z2 + 32 = 1. This grid allows a maximum of 11 points (the other 9 points
are lost) because the extreme points are easily e-dominated.

Although the above definitions assume the same € value for all the objectives,
they can be easily generalized to consider a different value for each of objective.
In order to do this, we only have to take an ¢; for each i € {1,2,...,m}. Without
loss of generality, we assume that 1 < f; < K, for all 4.

So, both schemes generate a hyper-grid in the objective functions space

m m
with (£=1)™ boxes in the additive scheme and (ﬁg_%) for the multiplica-

tive one. As e-dominance only allows one point in each box, these grids could
. -1 . . .
accommodate a maximum of (£51)™" non e-dominated points for the addi-

tive scheme and (ﬁ{%)m ' non e-dominated points for the multiplicative
scheme. Another possibility would be to ask the decision maker for the number
of desired solutions and adjust the £ values in order to achieve that number.
For example, if the decision maker wants T points in the Pareto front, for the
additive scheme we can easily compute the value ¢ = (K — 1) /Tﬁ, that will

generate a hyper-grid with a maximum capacity of T" points non e-dominated.
1

Similarly, this leads to an e =1 — K~T7"™ for the multiplicative scheme.

e-dominance has been found to be an efficient mechanism to maintain diver-
sity in multiobjective optimization problems without losing convergence prop-
erties towards the Pareto-optimal set (Deb et al., 2003; Deb et al., 2005a; Reyes
Sierra and Coello Coello, 2005). However, this scheme has some limitations
such as the following;:
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Figure 2: Non-uniform grid with 400 boxes (maximum capacity of 20 points) for
the curve z2 + y? = 1. In this case, because the front is concave, the grid only
allows a maximum of 9 points, losing again both extreme points of the Pareto
front.



1. We can lose a high number of efficient solutions if the decision maker
does not take into account (o does not know beforehand) the geometrical
characteristics of the true Pareto front of the problem to be solved.

2. It is normally the case that we lose the extreme points of the Pareto front,
as well as points located in segments of the Pareto front that are almost
horizontal or vertical, as shown in Figure 1.

3. The upper bound for the number of points allowed by a grid is not easy to
achieve. For a non-adaptive grid, the upper bound is only achieved when
the real Pareto front is linear.

4. When adopting a multiplicative scheme, the size of the region e-dominated
by the point f € R™ depends on the f; values. Then, the size of this
region is larger in the cases where the f; values increase. For the same
reason, if the f; values are close to zero, e-dominance would be similar to
the traditional Pareto-dominance. This kind of grid is not suitable, for
instance, for concave Pareto fronts (see Figure 2).

3 Pareto-adaptive e-dominance

In order to address some of the problems previously described, we propose an
alternative scheme for the additive e-dominance. Our proposal is called Pareto-
adaptive-e-dominance (pae-dominance). This scheme maintains the good prop-
erties of e-dominance while overcoming its main limitations.

In our proposal, we consider not only a different € value for each objective but
also the vector € = (e1,¢€2,...,6n) associated to each f = (fi,fa,..., fm) € R™
depending on the geometrical characteristics of the Pareto-optimal front. In
other words, we consider different intensities of dominance for each objective
according to the position of each point along the Pareto front. Then, the size
of the boxes will be adapted depending on the area in the objective functions
space so that boxes will be smaller where needed (normally at the extremes of
the Pareto front), and larger in other less problematic parts of the front.

For this aim, each Pareto front (that we will assume normalized: 0 < f; <1
for any 4) will be associated to one curve of the following family

{£? +y?=1:0< 2,y <1,0< p < oc}.
for bi-objective optimization problems, or
{zP 4+ yP 4+ 2P =1:0<2,9,2 < 1,0 < p < o0}

for three dimensional problems. These families have the following property: For
p > 1, the curve (or surface) is concave and the bigger the p value the longer
the almost horizontal (and almost vertical) parts of the front; and, for p < 1,
the curve (surface) is convex and the lower the p value the longer the almost
horizontal (and almost vertical) stretches in the front. Finally, for p = 1 we get
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Figure 3: Curves in the reference set for p = %, %, 1,2,3. The ¢ values we have

to consider for p = 2 and p = 3 have to be different because z3 + y® = 1 has
longer horizontal and vertical stretches than 22 4+ y?> = 1. The same happens

forp=3andp=3.

the linear front x + y = 1. For this last value, it will be shown that our scheme
coincides with the additive e-dominance. Thus, our proposal generalizes the
e-dominance concept introduced by Laumanns et al. (Laumanns et al., 2002)
(just taking p = 1 in (1)).

In Figure 3 we show five different curves of this family for p € {3,3,1,2,3}.

In order to decide the value of p, we need an initial Pareto front approxi-
mation, denoted by F', that will determine which value of p fits better to our
front. This is, we will use F' to be the model where the p-curve should fit.
Then, the number of efficient points included in F' can be critical for the final
performance, because if the value of p is not appropriate, then the grid will not
be appropriate neither. Obviously, the higher the number of efficient points in
F the better performance of the grid generated. On the other hand, if we want
to maintain the diversity properties of e-dominance, we should generate the first
grid as soon as possible. For example, for a grid with a maximum capacity of
100 vectors, different experiments performed by the authors indicate that the
best results are obtained when the number of points in F' is between 75 and 125
(we set it at 100 for our experiments).

To compute the value of p, we calculate the area (hypervolume) under the
poligonal line (surface) formed by points in F' (see Section 3.3 for further details).
Once we know this area, we estimate the value of p € (0, +0c) by means of an
interpolation process. We choose p when the area under 2P +yP = 1 is as similar



to the F' hypervolume as desired (this precision is set beforehand).
Although we are assuming that the Pareto front is symmetrical, this method
could be generalized using the sets

{a? +3=1:0<2,y <1,0< p,q < oo}

and
{zP 4+ 91 4+2"=1:0<2,y,2<1,0< p,q,7 < 00}.

Nevertheless, the association procedure is more unstable, as it depends on F' to
a higher degree and the error for the estimated p and ¢ values could be large.

3.1 ¢ computation

Once the p value is estimated and the number T of points desired by the de-
cision maker is known, we compute the sizes of the boxes for each objective
i € {1,2,...,m}, that is, the vector e’ = (ei,¢},...,e%).

We use geometric sequences to do this: we compute these values according
to a geometric sequence depending on p, T and the size of the first box for each
dimension, €, so that, for n > 2,

; €y e,
€n = o T . T Tt (1)
o) )

where v; controls the speed of variation of the e values in order to get a uniform
distribution in the Pareto front.

Then, for each objective i € {1,2,...,m} we have to estimate the size of the
first box, ei, and the speed v;. To this end, we propose the following system of
non-linear equations, for each i,

T
e =1
n=1
» (2)
2
i 1
nz::fn 2

The first equation represents the fact that the sum of the sizes of all boxes
must be equal to the range of f;. The second equation tries to spread the
obtained efficient points along the front and forces the accommodation of T'/2
nondominated points in one half of the objective 7, and the remaining T'/2 points
in the other half. Taking into account that z? + y? = 1 is symmetric, it is easy
to obtain the middle point: (55, 5575 ) -

As both series in (2) are geometric, it follows that
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Then, the solutions of (3) are

gi — (@Ui=DpTTDv
1 — pTvi—l

) 1 (4)
(1 - 25)pT”" +25pFu —1=0

But &! is already calculated in the first equation and it does not appear in
the second one. So, we only have to solve the second equation in (4). Due to
its nonlinearity, we propose to solve it using a numerical method, for example,
a dichotomy method (Rao, 1996). Although this is not the fastest numerical
method available, we decided to use it because of the simplicity of its imple-
mentation and the easy that results to control the precision required. Along our
experiments, we applied a dichotomy method for v; in the interval [0.001,0.1]
because we set 7' =100 and {5 < p < 12.

3.2 Box Index Vector

As in the original e-dominance, the dominance relation is generalized among
boxes. That is, at most one element is kept in each box and this representative
vector can only be replaced by a dominating one. To this end, we associate to
each vector f € R™ a boz index vector b(f) = (b1, ...,bn) € Z™. So, in a first
level, the algorithm always maintains a set of nondominated boxes (this is, a set
of nondominated box index vectors). And in a second level, if two vectors share
the same box, the representative vector is eliminated if the other one dominates
it.

In order to calculate the box index vector of f = (f1, fo, ..., fm), we take b;
to be the only integer so that

b;+1

b;
Z 62 <fi< Z Efl.
n=1 n=1

for all i € {1,2,...,m}. Again, because both series are geometric, the above
inequalities are equivalent to
)%
Vi __
b (p)

pvi _ < 1 )bi—l
Ci —pvi
Y- pUi—1

<fi<el

If we assume that p¥ — 1 > 0, it is equivalent to

b;—1 B b;
1\” (pv —1 1\"
- — sz(p . )<pvi_ .
p’l}i E’i pvi

Then, by successive (elementary) operations, we have the following equivalent

expressions
bi—1 . b;
1\ i (pti—1 1\
ln( ) Zln(p”"—f’(pii)>>ln< ) .
pv, 81 pv,




(b; = 1)In (Lv) >1In (p”" - Lz_l)) > b;ln (%)
p= €1 p=

In <pv,- _ fi(Pv:—l))

€1

bi—1< - (p})i) < b;.
Finally, we choose
log E’ip”"—(gzz“"—l)f@-
bi(f) = ( log (p}l) ) +1

It is easy to check that the same b; is obtained if p¥ — 1 < 0.

In that way, although the whole objective function space is discretized into
boxes, the nondominated vectors are allocated into boxes whose box index vec-
tors range from (0,0, ...,0) to (T' = 1,7 —1,...,T — 1). Nevertheless, if vectors
outside of the above limits are found, we must include them in the grid (if their
box index vectors are non-pae-dominated) in one of the two following ways:

1. Update the grid re-computing new box limits. In this case, a new p value
would be also calculated. This does not ensure the convergence property
of e-dominance (see (Laumanns et al., 2002)) and the behavior could be
worse.

2. Do not change any of the box limits (the assignment of the elements to
the boxes must remain the same). This guarantees the same convergence
properties of e-dominance but the number of nondominated points could
be larger than T'. In this case, a larger € value can be chosen, but the grid
would have to be updated again.

In our proposed approach we follow the second choice shown above, and,
once the grid is generated, its boundaries are never modified. Note however,
that the grid depends on the quality of the first set of nondominated points, F',
as such set determines the value of p. The best performance is attained if there
is no need to re-adjust this initial grid. We only update the grid when some of
the coordinates of the new box index vector is sufficiently far to require it, this
is, when b; < —3 or b; > T + 3 for some i. The best results have been obtained
when the first grid is generated once F' contains at least 100 nondominated
points, as the hyper-grid is almost never re-adjusted with this setting. This
minimum value has been empirically derived after numerous experiments for
the curves 2P + y? = 1. In all the cases that the authors empirically tested,
with values close to 100, the value of p that was obtained was very close to the
simulated curve.

Finally, if two vectors f and g share the same box (so, b(f) = b(g)) and nei-
ther dominates the other, we choose the one closer (using Euclidean distance, for
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Figure 4: Alternative grid with 400 boxes (maximum capacity of 20 points)
using pae-dominance for the curve z2 + y? = 1. In this case the grid allows a
maximum of 19 points.

example) to the lower lefthand corner of the box, denoted by ¢(b) = (1, ..., ¢ )-
In order to calculate ¢;, we sum the size of all previous boxes, that is

pvi b;

(pvi = 1)pyi(bi=D)

1
=€

foralli=1,2,...,m.
In Figure 4 we can see the grid obtained for 2% + 32 = 1. The figure clearly
indicates how the grid adapts the size of the boxes as needed.

3.3 Algorithm for the Hypervolume

As we mentioned above, each Pareto front is associated to one curve in
{zP+9y?=1:0<z,y<1,0<p< 0}

by estimating the area (hypervolume) under the polygonal line (surface) formed
by the points in F' in objective function space. o
Let us assume a bi-objective optimization problem and F = {f7 = (f{, fJ) :
j=1,2,...,|F|} is the set of nondominated vectors obtained before generating
the hyper-grid. Obviously, if we rank points in F' in ascending order of magni-
tude in the first objective, f, values are ranked in descending order. Then, the
area under the polygonal, A(F'), is calculated by the mean value of the following

10



Algorithm 1 The pae-dominance algorithm - Part 1

Require: T + number of solutions given by user

1: procedure PAe-DOMINANCE GRID (P, points, nPoints, nObjectives)

2 mazValues[i] < Pppoints > maximum values per each nObjectives

3 minV alueg[i] < Pnpoints > minimum values per each nObjectives

4 if nObjectives == 2 then

5: area < Area(Pp,pyints, nPoints) > Calculate area

6 p « get_P(area, nObjectives)

7 else

8 hyper <+ HyperVolume(P,, points, nPoints,nObjectives)
Hypervolume

9: p < get_P(hyper, nObjectives)

10: end if

11: v « Speed_variation(p, T) > Calculate Speed Variation

12 aux e {(p° —1)-pT 1}/ (P — 1}

13: for i + 0,n0Objectives do > Calculate First €1 in each dimension

14: €l + abs ||[mazValues[i] — minV alue,[i]|| aux;

15: end for

16: end procedure

17: procedure GET_P(hyper, nObjectives)
18: if nObjectives == 2 then

19: fp «+ openFile p.txt > generated for 2 objectives
20: else

21: fp < openFile 3p.txt > generated for & objectives
22: end if

23: repeat

24: line + ReadNextLine (fp) > read line. eg: {0.5, 0.1667}
25: if hyper < line; then > lines = Second value of line. eg: 0.1667
26: return lastline; + (hyper7l?lsit,llizefl)(;(slzgzle;)laStlme1)

27: end if

28: lastline < line

29: until - (endofFile fp)
30: end procedure

31: procedure SPEED_VARIATION(p, T')

32: low + 0.001

33: up « 1.0

34: lowsign < Dichotomy_fun (p, t, low);

35: repeat

36: medium « ((up + low) / 2.0)

37: auxsign < Dichotomy_fun (p, t, medium)
38: if (auxsign == lowsign) then

39: low + medium

40: else

41: up ¢ medium

42: end if

43: until ((1 - 0.001) > 14) 11

44: return ((up + low) / 2.0);
45: end procedure




Algorithm 2 The pae-dominance algorithm - Part 2
1: procedure DICHOTOMY_FUN(p, T, v)

2 fun + ((1 —20/P)) . p(T*2)y 4 9(/p) . p(T*2/2) _ 1
3 if (0 <v) then

4: return 1

5: else
6
7
8

return 0
end if
: end procedure

9: procedure AREA(P,pyints, nPoints)

10: area < 0

11: upperArea < 0

12: lowerArea < 0

13: Sort P, points in the first objective value

14: for i «+ 1,nPoints do > Calculate both areas among the nPoints
solutions

15: lower Area < lowerArea + abs||(Pit1.f[0] — P;.f[0]) - (Pig1.f[1] —
PnPoz'nts—l-f[l])”

16: upperArea + upperArea + abs||(Piy1.f[0] — Pi.f[0]) - (P;.f[1] —
PnPo'intsfl-f[]-])”

17: end for

18: area = (lowerArea + upperArea) / 2 > Area between upper and lower
areas

19: return area

20: end procedure

21: procedure HYPERVOLUME(P, pyints, nPoints, nObjectives)

22: hypervolume ¢+ 0

23: Sort P, points in the third objective value

24: for j « 1,nPoints do

25: Project P, points ONto two-objective values

26: Check nondominated solutions in Py, pyints > (as mazimization
problem)

27 area < Area{P,points, nPoints}

28: depth + Pj - Pj,1

29: hypervolume < hypervolume + (area * depth)

30: Remove P; from P, points

31: end for

32: return hypervolume

33: end procedure

12



lower, LA(F'), and upper, UA(F), approximation areas:

Flr o
LA(F) = Y (fi* =) 151,
=1
and
|F|71 . . .
UAF) = (fi"' = fi) 5.
=1

From these areas, A(F) is

LA(F) + UA(F)
. .

For the three-dimensional case, the difficulty increases because points cannot
be fully ranked. So, we propose the following procedure:

Initially, the nPoints points are sorted by their values in the third objective
value. These values are then used to make slices. Each slice has a hypervolume
in the first 2 objectives (Area). This area is calculated and it is multiplied by
its depth in the third objective; then, the values obtained are summed up to
obtain the total hypervolume of the nPoints points.

Each slice in the hypervolume contains a different number of points, because
at each slice, it is removed the lowest value point in the third objective. However,
not all the points in each slice contribute to the Area in that slice. Some points
may be dominated in the first two objective values and contribute nothing. So,
it is important to re-check dominance (as a maximization problem) in the first
two objective values (not including the third objective) by each slice to calculate
the hypervolume (Area). This procedure it is illustrated in Algorithm 2 (see
line 21).

A(F) =

4 Validation of our Proposed Approach

In order to validate our proposed pae-dominance, we adopted three algorithms:
Two of them use e-dominance, and in one of them, such a mechanism is replaced
by our pae-dominance to make the third algorithm. This will allow us to show
also the performance of a same algorithm with and without pae-dominance.
The three multi-objective evolutionary algorithms adopted for our experimental
study are the following:

1. e-MyDE: This approach was proposed by Santana-Quintero and Coello
(2005), and it consists of an extension of the differential evolution algo-
rithm (Storn and Price, 1997) used to solve multi-objective optimization
problems. The operators typically adopted in differential evolution are
incorporated into this approach (Price et al., 2005), but the algorithm is
extended with a secondary population which is used to retain the non-
dominated solutions obtained during the evolutionary process. Also, &-
dominance is incorporated in order to get a well-distributed set of solutions
along the Pareto front.

13



Parameter e-MyDE e-MOEA | pac--MyDE
P 100 100 100

NP | 100 (approx) | 100(approx) | 100 (approx)

Graz 75 75 75

P, 0.95 1.0 0.95

P, 1/nVar 1/nVar 1/nVar

F 0.5 nr 0.5

nr = not required

Table 1: Parameters used by the algorithms compared.

2. e-MOEA: This approach was proposed by Deb et al. (Deb et al., 2003;
Deb et al., 2005a), and it consists of a steady-state genetic algorithm which
maintains an archive of nondominated individuals. Note however, that this
algorithm does not use the Pareto dominance relation when updating the
archive. Instead, it uses the e-dominance relation. One parent is selected
from the main population and other from the archive. Then, an offspring
is produced and it is allowed to enter into the archive if e-dominates at
least one of elements of the archive, and if no archive member e-dominates
it.

3. pae-MyDE: This is a modification of the e-MyDE approach indicated
above, in which we include pae-dominance instead of the regular e-dominance
concept.

Table 1 summarizes the parameter settings adopted for all the algorithms
compared. In Table 1, P refers to the population at each generation, G, 45 is the
total number of generations (or iterations) to be performed. Note that all the
algorithms perform the same number of objective function evaluations: 7,500 for
all test problems. NP is the number of solutions expected by each algorithm;
this parameter is controlled by the value of € F is a parameter applicable
only to differential evolution. P, and P,, are the crossover and mutation rates,
respectively.

4.1 Test functions and metrics

We chose five continuous (unconstrained) test problems with different geometri-
cal characteristics for our experimental study. Note that our choice of problems
was directed by the geometrical characteristics of the Pareto fronts rather than
by the difficulty of solving each test problems, since our goal is to show the
advantages of our pae-dominance scheme over the original e-dominance.

The problems selected are the following: Debll (convex and bimodal) and
Deb52 (the Pareto front is concave) from (Deb, 1999); Kursawe’s problem (Kur-
sawe, 1991) (the Pareto front is disconnected); ZDT1 (multimodal problem)

14



Test Function | NObj | NVar Type Characteristics
Debl1l 2 2 min(fi, f2) Convex, bimodal

Deb52 2 2 min(fi, f2) Concave

Kursawe 2 3 min.(f1, f2) Disconnected

ZDT1 2 30 min.(f1, f2) Multimodal

DTLZ2 3 12 min(fi, f2, f3) | Concave, three-dimensional

Table 2: NObj denotes the number of objectives, NVar the number of decision
variables, Type specifies the type of optimization problem (maximization or
minimization) and Characteristics provides a summary of the geometrical
characteristics of the Pareto front.

from (Zitzler et al., 2000); and DTLZ2 from (Deb et al., 2005b) (a three-
objective problem). Tables 2 and 3 show further details of these problems.

The main goal of pae-dominance is to obtain as many Pareto optimal so-
lutions as possible (up to the maximum capacity of the grid), but within a
homogeneous spread. Thus, the performance measures adopted in our study
are focused on such aspects:

Number of points: It shows us how far the number of solutions found is from
the maximum capacity of the grid. In all our experiments, the grid was de-
fined with a capacity of 100 points. So, the closer to 100 that an algorithm
gets, the better the value of this performance measure.

Chi-Square-Like Deviation Measure: This metric was proposed by Srini-
vas and Deb (1994) to measure the diversity of the set of solutions ob-
tained. Solutions are compared with respect to a uniformly distributed
set of the true Pareto front. Let P be the set of vectors uniformly dis-
tributed along the Pareto-optimal front and F' the set of solutions to be
compared. Then, for each i € {1,...,|P|}, let us denote by n; the number
of solutions in F' whose distance from ¢ is less than ¢ (4 is set beforehand
and we use Euclidean distance). Then, the deviation is measured like a
Chi-square distribution such as

The ideal distribution is achieved when all of the neighborhoods of points
in P have the same number of vectors, that is, if for each point in P there
are m; = |F'|/|P| points in F whose distance from this vector is less than
§. Then x = 0. The variance o2 is proposed to be o2 = m;(1 — %), for
alli € {1,2,...,|P|}. Index i = |P| 41 is used for those points that are far
from all points in P. For this index, 7|p|41 = 0 and JfPH_l =|F|(1- ﬁ)
are also proposed in (Srinivas and Deb, 1994). Then, it easy to see that
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Test Function Objectives Bounds
Debl1 hi@) = 29-0.2\2 29-0.6\2 Oszi<1
fo(z1,22) = - (2 — e~ (B ) — 0.8e~(F557) ) i=1,2
fi(zy) =1 — e **15in*(10mz;)
fo(z1,22) = g(2) * h(xl)
Deb52 where g(z3) =1 + 23 and 0<z <1
fE) )\ 1=1,2
h(z1) = 1- (m) if fi(z1) < g(z2)
0 otherwise.
2
fil@, @) = Y, —10e™0 2V
Kursawe ot “HsTi <
, i=1,2,3
fo(z1,20) = 21 <|:U,-|0'8 + 551n(;cz3))
1=
hi(@) = a1 n = 30
7ZDT1 f2(Z,9) =1- fl/g(f)n 0<z; <1
where: g(#) =14 25 Y = i=1,2,...,30
i=2
f1(Z) = cos(Fz1) cos(5x2)(1 + 9(Z))
£2(#) = cos(Za) sin(Z22)(1 + 9(2)) b<a <1
DTLZ2 f3(Z) = sin(321)(1 + 9(Z)) i = 1z 12
12 3
where g(Z) = 3 (z; — 0.5)°
i=1

Table 3: Objective functions and bounds of the decision variables for each of
the test problems adopted for our experimental study.
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0 < x < o and the lower the x value the better the distribution of F
with respect to P. The parameter § depends on P and it is crucial for the
final x value. Neighborhoods must be disjoint, so we take § as a half of
the minimum distance between two points in P.

Spread: Deb et al. (2002) proposed the metric A with the idea of measuring

both progress towards the Pareto-optimal front and the extent of spread.
To this end, if P is a subset of the Pareto-optimal front, A is defined as
follows

m |F| _
2 di+ > |di—d
i=1 =1

d¢ +|F|d

i=1

A=

where df denotes the distance between the i-th coordinate for both ex-
treme points in P and F, and d; measures the distance of each point in F’
to its closer point in F'. For our experiments, we use the crowding distance
for d; (see (Deb, 2001) for more details on this distance). Nevertheless,
other types of measures could be used for d;.

From the above definition, it is easy to conclude that 0 < A < 1 and
the lower the A value, the better the distribution of solutions. A perfect
distribution, that is A = 0, means that the extreme points of the Pareto-
optimal front have been found and d; is constant for all 7.

Standard Deviation of the Crowding Distances: Trying to get more in-

5

formation related with the crowding distance, we include its standard
deviation:

1 F -
SDC = 7 > (di — di)?
i=1

Now, 0 < SDC < oo and the lower the value of SDC, the better the
distribution of vectors in F'. d; is the mean value of all d;. Again, a
perfect distribution, that is SDC = 0, means that d; is constant for all .

Discussion of Results

In this section, we compare the performance of our proposed pae-dominance
using the aforementioned algorithms and test functions. In Tables 4, 5, 6, 7 and
8, for each performance measure considered, its mean value, standard deviation
and the maximum and minimum value over 30 independent runs. We emphasize
the best values using boldface.

Table 4 shows the results for the first problem considered (Debll1). It is

worth mentioning that pae-MyDE achieved the best results in this case, not
only regarding the distribution of solutions, but also with respect to the number
of solutions retained (its average was 99.8 from a maximum of 100). In fact,
the pae-MyDE obtained the best results with respect to all the performance
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Algorithm No. of points Chi-Square Spread Crowding

pae-MyDE  Mean 99.833 7.714 0.230 0.009
SDev 1.003 0.209 0.016 0.001
Max 101 8.255 0.273 0.011
Min 98 7.280 0.191 0.009
e-MyDE Mean 46.433 8.125 0.490 0.042
SDev 1.086 0.216 0.016 0.001
Max 50 8.668 0.526 0.047
Min 45 7.832 0.464 0.038
e-MOEA Mean 49.900 8.581 0.559 0.038
SDev 6.730 1.680 0.120 0.003
Max 60 11.010 0.734 0.041
Min 45 7.317 0.461 0.033

Table 4: Mean, standard deviation, maximum and minimum values over 30 runs
for the first test problem (Debll).

measures considered. In Figure 5, we show the Pareto fronts obtained by the
three algorithms. This figure graphically shows that our approach (pae-MyDE)
has benefited from adopting pae-dominance instead of e-dominance.

Table 5 shows the results for the second test problem (Deb52). In this case,
due to an almost horizontal region in the Pareto front, e-dominance loses a big
number of points. Although the number of points generated by pae-MyDE is
also far from 100, it finds more than twice the number of points obtained by the
two other algorithms adopting e-dominance. Again, the pae-MyDE obtained the
best results with respect to all the performance measures considered. In Figure
6, we show the Pareto fronts obtained by the three algorithms. Notice that
pae-MyDE was able to find the extreme points despite the difficult geometrical
characteristics of this Pareto front.

Table 6 shows the results for the third test problem (Kursawe). In this case,
the performance measures are very similar for the three approaches compared,
although our pae-MyDE outperformed the others with respect to two of them.
The reason for this similar performance is that the p value associated to this
problem is close to 1 and, as previously mentioned, £- dominance and pae-
dominance are almost the same as the p value gets close to 1. The number of
points found is around 60 because this front is disconnected. In Figure 7 we show
the Pareto fronts obtained by the three methods. In this case, pac-dominance
and e-dominance generate similar grids.

Table 7 shows the results for the fourth test problem (ZDT1). Again, our pae-
MyDE obtained the best results with respect to all the performance measures
considered. Again, the number of points retained is close to 100 and their
distribution is quite good. In Figure 8 we show the Pareto fronts obtained by
the three methods. Notice that pae-MyDE was able to find the extreme points
despite the almost vertical region of this Pareto front.
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Figure 5: Efficient solutions generated by pas-MyDE (top), e-MyDE (middle)
and e-MOEA (bottom) for the first test problem (Debl1).
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Algorithm No. of points Chi-Square Spread Crowding

pae-MyDE  Mean 75.033 6.875 0.377 0.056
SDev 1.494 0.1942 0.046 0.006
Max 78 7.461 0.474 0.068
Min 72 6.510 0.328 0.048
e-MyDE Mean 34.800 8.385 0.502 0.073
SDev 0.833 0.100 0.031 0.007
Max 37 8.646 0.585 0.083
Min 33 8.165 0.452 0.058
e-MOEA Mean 33.600 8.494 0.534 0.105
SDev 0.663 0.188 0.049 0.001
Max 35 8.799 0.580 0.106
Min 33 8.105 0.390 0.101

Table 5: Mean, standard deviation, maximum and minimum values over 30 runs
for the second test problem (Deb52).

Algorithm No. of points Chi-Square Spread Crowding
pae-MyDE Mean 63.733 6.113 0.351 0.036
SDev 1.711 0.275 0.025 0.001
Max 68 6.739 0.404 0.040
Min 60 5.645 0.303 0.034
e-MyDE Mean 60.933 6.682 0.300 0.035
SDev 1.031 0.207 0.022 0.001
Max 63 7.303 0.339 0.039
Min 59 6.401 0.241 0.033
e-MOEA Mean 57.433 6.653 0.327 0.035
SDev 0.761 0.224 0.016 0.001
Max 59 7.273 0.358 0.037
Min 56 6.298 0.287 0.033

Table 6: Mean, standard deviation, maximum and minimum values over 30 runs
for the third test problem (Kursawe).
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Figure 6: Efficient solutions generated by pae-MyDE (top), e-MyDE (middle)
and e-MOEA (bottom) for the second test problem (Deb52).
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Algorithm No. of points Chi-Square Spread Crowding

pae-MyDE  Mean 99.366 4.684 0.158 0.009
SDev 2.057 0.650 0.013 0.001
Max 98 5.788 0.200 0.011
Min 90 3.401 0.141 0.006
e-MyDE Mean 77.233 5.611 0.211 0.014
SDev 1.605 0.317 0.015 0.002
Max 81 6.392 0.240 0.023
Min 74 5.067 0.181 0.010
e-MOEA Mean 75.266 5.975 0.220 0.012
SDev 0.512 0.189 0.007 0.0005
Max 7 6.505 0.242 0.014
Min 75 5.675 0.205 0.011

Table 7: Mean, standard deviation, maximum and minimum values over 30 runs
for the fourth problem (ZDT1).

Finally, Table 8 shows the results for the fifth test problem (DTLZ2). Again,
best mean values are obtained by pae-dominance. In Figure 9 we show the
Pareto fronts obtained. The new grid finds more points specially on the extreme
areas of the Pareto front.

6 Conclusions and Future Work

In this paper, we have proposed an alternative approach for the e-dominance
(which we call pae-dominance) due to Laumanns et al. (2002). In our proposed
scheme, we considered different e-dominance regions depending on the geomet-
rical characteristics of the Pareto-optimal front. In order to do this, each Pareto
front is associated to one curve of the family

{tP +9yP=1:0<z,y <1,0<p < ox}.
for bi-objective optimization problems, or
{2P+yP+22=1:0<2,y,2 <1,0< p < 0}

for three dimensional problems. This way, we take advantage of the positive
aspects of e-dominance (already shown), while addressing some of its limitations.

On the one hand, pae-dominance finds a higher number of efficient points
because the size of the boxes are adjusted specially in those areas where the
Pareto front needs less solutions in any of its dimensions (almost horizontal or
vertical regions of the Pareto front). Also, these solutions are better uniformly
distributed along the Pareto front because the new grid balances the size of the
boxes being more precise in those areas of the objective function space in which
more solutions are needed.
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Algorithm No. of points Chi-Square Spread Crowding

pae-MyDE  Mean 82.633 11.403 0.461 0.043
SDev 16.113 0.442 0.060 0.011
Max 123 12.673 0.598 0.076
Min 61 10.775 0.367 0.026
e-MyDE Mean 69.433 11.7144 0.560 0.060
SDev 3.008 0.127 0.065 0.010
Max 7 11.300 0.664 0.081
Min 64 10.786 0.444 0.046
e-MOEA Mean 60.033 11.838 0.523 0.067
SDev 2.168 0.092 0.049 0.007
Max 64 11.199 0.633 0.086
Min 56 10.688 0.426 0.057

Table 8: Mean, standard deviation, maximum and minimum values over 30 runs
for the fifth test problem (DTLZ2).

Three evolutionary multiobjective algorithms are used to show the effective-
ness of our proposed scheme: e-MyDE and e-MOEA, which use e-dominance as
their diversification mechanism and pae-MyDE, which consists of the e-MyDE
approach, but adopting pae-dominance instead of e-dominance.

In order to assess the performance of our proposed pae-dominance, we solved
five test problem with different geometrical characteristics and used three stan-
dard metrics designed to measure diversity properties and one more measure
related to the number of points found. In all cases, pae-dominance has been
shown more efficient in getting a higher number of nondominated solutions with
a better spread. Thus, we conclude that pae-dominance is an advantageous al-
ternative to e-dominance, particularly when the Pareto front has geometrical
characteristics that cause difficulties to e-dominance.

As part of our future work, we plan to generalize our proposal, so that we can
drop our symmetry hypothesis assumed in the curves of the form x? + y? = 1.
This would certainly be more unstable than the current proposal, but we believe
that such unstability can be controlled using a different way of determining the
values of p, and ¢ (and r, if dealing with a three-objective problem), for a
given Pareto front. Disconnected Pareto front also require a more in-depth
analysis, since they deserve a special treatment when using relaxed forms of
Pareto dominance such as e-dominance or our proposed scheme. Additionally,
we are also looking into ways of using our proposed scheme to handle the user’s
preferences in an interactive way (Coello Coello, 2000; Coello Coello et al.,
2002).
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Figure 7: Efficient solutions generated by pae-MyDE (top), e-MyDE (middle)
and e-MOEA (bottom) for the third test problem (Kursawe).
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Figure 8: Efficient solutions generated by pae-MyDE (top), e-MyDE (middle)
and e-MOEA (bottom) for the fourth test problem (ZDT1).
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28



