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Abstract


In this paper, we study three selection mechanisms based on the maximin fit-


ness function and we propose another one. These selection mechanisms give


rise to the following MOEAs: “Maximin-Clustering Multi-Objective Evolution-


ary Algorithm (MC-MOEA)”, “Maximin-Distances Multi-Objective Evolution-


ary Algorithm (MD-MOEA)”, “Maximin-Hypervolume Multi-Objective Evolu-


tionary Algorithm (MH-MOEA)” and “Maximin-Approximated Hypervolume


Multi-Objective Evolutionary Algorithm (MAH-MOEA)”. All of these MOEAs


are validated using standard test functions taken from the specialized litera-


ture, having from three up to ten objective functions. First, we compare these


four MOEAs and we conclude that MD-MOEA and MAH-MOEA are the best


options to solve multi-objective optimization problems with both low and high


dimensionality. After that, we compare MD-MOEA and MAH-MOEA with re-
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spect to MOEA/D (which is based on decomposition) using Penalty Boundary


Intersection (PBI), and to SMS-EMOA (which is based on the hypervolume


indicator). For this sake, we use a version of SMS-EMOA that approximates


the contribution to the hypervolume indicator, since it is less computationally


expensive than the original version, which uses exact hypervolume contribu-


tions. The results indicate that both MD-MOEA and MAH-MOEA outperform


MOEA/D, and that MAH-MOEA is able to outperform SMS-EMOA in some


cases. Also, MD-MOEA and MAH-MOEA are both much faster than SMS-


EMOA; and MD-MOEA is not much slower than MOEA/D. Thus, we conclude


that our proposed maximin-based MOEAs are promising alternatives for solving


multi-objective optimization problems with either low or high dimensionality.


Keywords: Multi-objective evolutionary algorithms; selection operators;


maximin fitness function


1. Introduction


In real-world applications there are many problems which involve the simul-


taneous optimization of multiple objective functions [1], which are normally in


conflict with each other. They are called “Multi-objective Optimization Problems


(MOPs)”. Because of the conflicting nature of the objectives to be optimized,


the notion of optimality refers in this case to finding the best possible trade-offs


among the objectives (i.e., we aim to find solutions for which no objective can be


improved without worsening another). Consequently, when solving MOPs we


do not aim to find a single optimal solution but a set of them, which constitute


the so-called Pareto optimal set, whose image is known as the Pareto front.


The use of evolutionary algorithms for solving MOPs has become very pop-


ular in the last few years [2], giving rise to the so-called Multi-Objective Evo-


lutionary Algorithms (MOEAs).2 MOEAs have two main goals: (i) to find


2Although this paper focuses on MOEAs, there are many other multi-objective meta-
heuristics currently available (for example, multi-objective ant colony optimizers [3, 4], multi-
objective particle swarm optimizers [5], multi-objective firefly algorithms [6], multi-objective
flower pollination algorithms [7], and multi-objective harmony search algorithms [8] just to
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solutions that are, as close as possible, to the true Pareto front and, (ii) to pro-


duce solutions that are spread along the Pareto front as uniformly as possible.


We can talk of two types of MOEAs, if we classify them based on their selec-


tion mechanism: (i) those that incorporate the concept of Pareto optimality into


their selection mechanism, and (ii) those that do not use Pareto dominance to se-


lect individuals. The use of Pareto-based selection has several limitations from


which, its poor scalability with respect to the number of objective functions


is, perhaps, the most remarkable. The quick increase in the number of non-


dominated solutions as we increase the number of objective functions, rapidly


dilutes the effect of the selection mechanism of a MOEA [9].


Here, we are interested in the maximin fitness function (MFF) [10, 11] which


can act as a selection mechanism of type (ii) and it has interesting properties.


For example, through its application, we can know which individuals are non-


dominated and, in the case of dominated individuals, the fitness value that


this expression returns is a metric of the distance to the non-dominated front.


Additionally, the fitness value of the non-dominated individuals that is obtained


with this expression is penalized if they are clustered in the same region of


objective function space. Furthermore, computing the MFF is computationally


efficient because its complexity is linear with respect to the number of objective


functions. Nevertheless, the use of the MFF also has some disadvantages, but


there have been some proposals to address them. Thus, we argue here that the


use of the MFF is a viable alternative for dealing (at an affordable computational


cost) with many-objective optimization problems [12, 13, 14, 15].


Thus, the main goal of this paper is to provide an in-depth study about the


MFF and its proposed variations, so that we can identify its main advantages


and possible limitations. Such a study aims to provide more information about


the sort of instances in which it is advisable to use any of the proposed MFF-


based MOEAs, as well as those cases in which their use may present some


difficulties.


name a few). However, their discussion is beyond the scope of this paper.
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The remainder of this paper is organized as follows. Section 2 states the


problem of our interest. The previous related work about MOEAs based on the


maximin fitness function is presented in Section 3. The maximin fitness function


is described in detail in Section 4. Section 5 describes three MOEAs based on


the maximin fitness function (MC-MOEA, MD-MOEA and MH-MOEA) and we


also propose a new version of MH-MOEA called MAH-MOEA. Our experimental


results are presented in Section 6. Finally, we provide our conclusions and some


possible paths for future work in Section 7.


2. Problem Statement


We are interested in the general multiobjective optimization problem (MOP),


which is defined as follows: Find ~x∗ = [x∗1, x
∗
2, . . . , x


∗
n]T which optimizes


~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)


such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region of the problem.


Assuming minimization problems, we have the following definitions.


Definition 1. We say that a vector ~x = [x1, . . . , xn]T dominates vector ~y =


[y1, . . . , yn]T , denoted by ~x ≺ ~y, if and only if fi(~x) ≤ fi(~y) for all i ∈ {1, ..., k}


and there exists an i ∈ {1, . . . , k} such that fi(~x) < fi(~y).


Definition 2. We say that a vector ~x = [x1, . . . , xn]T is weakly non-dominated


if there does not exist any ~y such that fi(~y) < fi(~x) for all i ∈ {1, ..., k}.


Definition 3. A point ~x∗ ∈ Ω is Pareto optimal if there does not exist any


~x ∈ Ω such that ~x ≺ ~x∗.


Definition 4. A point ~x ∈ Ω is weakly Pareto optimal if there does not exist


another point ~y ∈ Ω such that fi(~y) < fi(~x) for all i ∈ {1, ..., k}.


Definition 5. For a given MOP, ~f(~x), the Pareto optimal set is defined as:


P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~y ≺ ~x.
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Definition 6. Let ~f(~x) be a given MOP and P∗ the Pareto optimal set. Then,


the Pareto Front is defined as: PF∗ = {~f(~x) | ~x ∈ P∗}.


3. Related Work


The maximin fitness function (MFF) was originally proposed by Balling in


[10] and it has been incorporated in genetic algorithms [11, 16, 13, 14, 15],


particle swarm optimizers [17, 18], ant colony optimizers [19] and differential


evolution [12].


The early proposals based on MFF only considered MOPs with low dimen-


sionality (two objective functions) and did not adopt a technique to improve the


distribution based on the idea that MFF penalizes clustering. It was until 2012


[12] that a more in-depth study of MOEAs based on MFF was undertaken. The


authors of this study found two important disadvantages when MFF is used to


select individuals:


1. MFF prefers weakly non-dominated individuals over dominated individu-


als and this causes a loss in the diversity of the population, especially, in


MOPs in which one objective function is easier to solve than the others.


2. The second disadvantage has to do with the poor diversity obtained in


objective function space. Although MFF penalizes clustering between


solutions, it is possible that many individuals have the same fitness and


then we cannot know which individual should be selected.


In recent years, some proposals to address the two above disadvantages have


been made [12, 13, 14, 15]. In the following sections we will provide an in-depth


analysis of such proposals.


4. Maximin Fitness Function


The maximin fitness function (MFF) works as follows. Let’s consider a MOP


with K objective functions and an evolutionary algorithm whose population size


is P . Let f i
k be the normalized value of the kth objective for the ith individual


5







in a particular generation. Assuming minimization problems, we have that the


jth individual weakly dominates the ith individual if:


mink(f i
k − f j


k) ≥ 0 (2)


The ith individual, in a particular generation, will be weakly dominated by


another individual, in the generation, if:


maxj 6=i(mink(f i
k − f j


k)) ≥ 0 (3)


Then, the maximin fitness of individual i is defined as:


fitnessi = maxj 6=i(mink(f i
k − f j


k)) (4)


where the min is taken over all objective functions, and the max is taken over all


individuals in the population, except for the same individual i. From eq. (4), we


can say the following: (i) Any individual whose maximin fitness is greater than


zero is a dominated individual; (ii) any individual whose maximin fitness is less


than zero is a non-dominated individual; (iii) finally, any individual whose max-


imin fitness is equal to zero is a weakly-dominated individual. Some interesting


properties of MFF are the following:


1. MFF penalizes clustering of non-dominated individuals. See Figure 1(b).


2. The maximin fitness of dominated individuals is a metric of the distance


to the non-dominated front. See Figure 1(c).


3. The max function in the maximin fitness of a dominated individual is al-


ways controlled by a non-dominated individual and is indifferent to clus-


tering. The max function in the maximin fitness of a non-dominated indi-


vidual may be controlled by a dominated or a non-dominated individual.


See Figure 1(c).
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Figure 1: Properties of maximin fitness function. In (b), we can see that if we incorporate
individual D, individuals B, C and D are penalized because they are close from each other. In
(c), we can see that the fitness of individuals D, E and F is controlled by the non-dominated
individual B, and their fitness is a metric of the distance to the individual B. The same occurs
with individual G but its fitness is controlled by the non-dominated individual C. Also, we
can see that the fitness of individual B is affected by the dominated individual D because they
are close and the fitness of individual C is affected by the dominated individual G.


The author of MFF proposed in [11] the following modified maximin fitness


function:


fitnessi = maxj 6=i,j∈ND(mink(f i
k − f j


k)) (5)


where ND is the set of non-dominated individuals. Using eq. (5) to assign


the fitness of each individual, we guarantee that the fitness of a non-dominated


individual is controlled only by its non-dominance and then, we only penal-


ize clustering between non-dominated individuals. For example, if we use the


modified maximin fitness function in Figure 1(c), individual B would not be


penalized and it would retain a fitness value equal to -1.


It is interesting to observe that MFF allows to design, in an easy way, an


interactive method to solve MOPs when the decision maker can define prefer-


ences. For example, at each iteration of the algorithm we can present to the


decision maker the set of non-dominated solutions, and then he/she can choose


which solutions will be considered to calculate the fitness of each solution in the


population. Then, we use the following equation to assign fitness:


fitnessi = maxj 6=i,j∈A(mink(f i
k − f j


k)) (6)
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where A is the set of non-dominated individuals which were chosen by the


decision maker.


4.1. Disadvantages of Maximin Fitness Function


A MOEA based on Differential Evolution and MFF was proposed in [12]. In


that work, two important disadvantages of MFF were identified. The principal


disadvantage arises from the following question: Is it better to prefer weakly


non-dominated individuals than dominated individuals? The answer


was that it is not good to prefer weakly non-dominated individuals (even if they


are weakly non-dominated by any dominated individual). As an example to


illustrate this claim, the ZDT2 function was used:


f1(~x) = x1


f2(~x) = g(~x)
(


1 − (x1/g(~x))2
)


g(~x) = 1 +
9


n− 1


n
∑


i=2


xi (7)


If we used MFF into an evolutionary algorithm to solve ZDT2, we would


assign the fitness of each individual, using MFF, and then we would sort the


individuals according to their fitness values. Then, we will obtain many (perhaps


even only) weakly Pareto points because f1 is easier to optimize than f2 and


then, we quickly obtain weakly non-dominated solutions at one extreme of the


Pareto front. Figure 2(a) shows that if we use Differential Evolution and MFF,


we only obtain weakly Pareto points. Figure 2(b) shows that if we use a Genetic


Algorithm and MFF, the convergence to the Pareto optimal front is slow because


we obtain many weakly Pareto points during the search. In [17], the authors


proposed a MOEA based on a particle swarm optimizer and MFF, and also


reported problems in ZDT2. In order to address this problem, the following


constraint was proposed in [12]: Any individual that we want to select must not


be similar (in objective function space) to another (already selected) individual.


The process to verify similarity between individuals is shown in Algorithm 1.
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Input : P (population), x (individual such that x /∈ P) and ǫ (minimum difference
between components).


Output: Returns 1, if the individual x is similar to any individual in the population P;
otherwise, returns 0.


1 foreach y ∈ P do


2 foreach objective function “k” do


3 if |x.~f[k]− y. ~f[k]| < ǫ then


4 return 1;
5 end


6 end


7 end


8 return 0;


Algorithm 1: Verify similarity


By adding this constraint, we can find the true Pareto front of ZDT2 when


we use a MOEA based on Differential Evolution, see Figure 2(c). Also, we


speed up convergence when we use a MOEA based on a Genetic Algorithm,


see Figure 2(d). The complete selection mechanism using MFF and the above


constraint proposed in [12] is shown in Algorithm 2. One could think that we


can use MFF simply without selecting solutions whose maximin fitness value is


equal to zero (because they are weakly dominated). However, it is important to


note that the above constraint avoids that we select both: (i) solutions which


are weakly dominated by non-dominated solutions and (ii) solutions which are


weakly dominated by dominated solutions. For example, let’s assume that we


want to select five individuals in Figure 1(c). If we only use MFF, then we select


individuals A, C, B, D, F. If we use MFF and the above constraint, then we sort


them according to their fitness values: A(-1), C(-0.75), B(-0.5), D(0.5), F(0.5),


G(0.75) and E(1). Finally, we select individuals A, C, B, D and we consider


the individual F but we do not select it because is similar to individual D (in


objective function f1) which had been already selected. Consequently, we select


individual G.


The second disadvantage has to do with the approximate Pareto optimal


front and its distribution. In [12], the authors showed that the maximin fitness


has difficulties in some cases. For example, in Figure 1(b), individuals B, C and


D have the same maximin fitness value. Therefore, we cannot know which of


those three is the best individual that should be part of the next generation.


In orded to address this disadvantage, several approaches have been proposed.
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Input : P (population), N (number of individuals that we want to choose such that
N < |P|) and ǫ (minimum difference between objectives).


Output: S (selected individuals).
/*Sorting with respect to the maximin fitness values */


1 AssignFitness(P);
2 Sort(P);


/*Fill up the new population with the best copies according to the maximin fitness


values, verifying that no solution is similar to one that had been previously
selected */


3 S ← ∅;
4 foreach y ∈ P do


5 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then


6 S ← S ∪ y;
7 end


8 end


/*Choose the remaining individuals considering only the maximin fitness values */


9 if |S| < N then


10 foreach y ∈ P such that y has not been selected and |S| < N do


11 S ← S ∪ y;
12 end


13 end


14 return S;


Algorithm 2: Maximin Selection


In [12], the authors proposed to combine MFF with a clustering technique. In


[13], the authors studied if it was better to use the original MFF or its modi-


fied version. In [14], the authors proposed to combine MFF with a technique


based on Euclidean distances which has as its aim to improve the distribution


of solutions. Finally, in [15], the authors proposed combining MFF with the


hypervolume indicator. In the following section, we will analyze these proposals


in more detail.


5. Selection Mechanisms based on MFF


5.1. MFF and a Clustering Technique


In [12], the authors proposed a selection mechanism based on MFF and a


clustering technique to select solutions from a set of non-dominated solutions.


Such mechanism works as follows. If we want to select N individuals from a


population of non-dominated individuals called ND, then, we choose the best


N individuals with respect to their maximin fitness, and we use them as centers


of the clusters. Then, we proceed to place each individual in its nearest cluster.


Finally, for each of the resulting clusters, we recompute the center, and we


choose the individual closest to it. This procedure is shown in Algorithm 3.
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Figure 2: In (a), we used a MOEA based on Differential Evolution and the maximin fitness
function. In (b), we used a MOEA based on a Genetic Algorithm and the maximin fitness
function. In cases (c) and (d), we used the same MOEAs adopted in (a) and (b), respectively,
but using the constraint to verify similarity. In all cases, we used a population size of 100
individuals. In cases (a) and (c), we iterated for 100 generations. Finally, in cases (b) and
(d), we iterated for 150 generations.
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Figure 3: Let’s assume that we want to select two individuals. If we use only the maximin
fitness function and we assume that A, B, C and D is the ordering of the solutions after sorting
them with respect to their fitness value, then we select individuals A and B and individuals C
and D are not considered (see (a)). This is clearly not a good selection procedure. If we use
the clustering technique proposed in [12], we take A and B as initial centers of the clusters
and we obtain two clusters: the first one only has A and the second has B, C and D, see (b).
When we recalculate the centers of the clusters and choose the closest solution to the centers,
we select A and C, see (c).


With this technique, if we return to Figure 1(b) and we assume that we want to


choose two individuals, we can see that, regardless of the individual (B, C or D)


that we choose as an initial center of the cluster, we always obtain two clusters:


one of them contains individual A, and the other one contains individuals B, C


and D. After applying this procedure, we always choose individuals A and C.


See Figure 3. It is important to note that clustering selection does not iterate


many times to improve the distribution of the centers because we choose the


initial centers regarding the maximin fitness and we only want to do a small


correction based on the idea that MFF penalizes clustering.


It is necessary to consider that if we want to select from a set which contains


dominated solutions, this selection mechanism is not effective. For example,


in Figure 1(c), if we want to select three individuals, the clustering technique


selects individuals A, D and C, penalizing individual B. This is clearly not good


because individual B dominates individual D. Therefore, the complete selection


mechanism that the authors proposed in [12] is a a combination of Algorithms 2


and 3. If we want to select N individuals from a population P . First, we


obtain the set of non-dominated solutions and we called it “ND”. Then, if the


number of non-dominated solutions is greater than N (i.e., |ND| > N), we use


Algorithm 3, in other case, we use Algorithm 2.
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Input : ND (population of non-dominated individuals) and N (number of individuals that
we want to choose such that N < |P|).


Output: S (selected individuals).
/*Choose the best N individuals, according to maximin fitness, as centers of the


clusters C */


1 AssignFitness(ND);
2 Sort(ND);
3 for j ← 1 to N do


4 µj = yj such that yj ∈ ND;
5 Cj = {∅};


6 end


/*Do one iteration of clustering */
7 foreach y ∈ ND do


8 if µj is closest to y then


9 Cj ← Cj ∪ y;
10 end


11 end


/*Obtain the new centers of the clusters */


12 for j ← 1 to N do


13 µj ←
1


|Cj |


∑


yi∈Cj


yi;


14 end


/*Select individuals who are closest to the centers of the clusters */


15 S ← ∅;
16 for j ← 1 to N do


17 if yi | yi ∈ Cj is the nearest to the center µj then


18 S ← S ∪ yi;
19 end


20 end


21 return S;


Algorithm 3: Clustering Selection (setting the centers using maximin)


Although with this selection mechanism the authors were able to address


some difficulties of MFF, it still has some disadvantages. For example, if we see


Figure 4, and we assume that we want to select six individuals, if we only use


MFF to select, we would choose individuals: A, B, C, D, E and F. If we use


the selection mechanism based on MFF and the above clustering technique, we


would choose individuals: A, B, C, D, E and K. None of two results is correct.


This is because MFF penalizes all solutions: G, H, ..., O and prefers to select


solutions in other parts of the Pareto front, leaving big gaps in the front.


Finally, a study about of the impact of using the original MFF or its modified


version was done in [13]. The main conclusions of this study were that there is


no significant impact. In this paper, we always use the modified version of MFF


for all the MOEAs presented.
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Figure 4: Maximin fitness function penalizes all solutions G, H, ... O. This is undesirable,
because it leaves gaps when we select individuals.


5.2. MFF and Euclidean Distances


In [14], the authors proposed to combine MFF with a technique based on


Euclidean distances to improve the distribution of the solutions in objective


function space. They explained that they used Euclidean distances because


the aim was that the solutions were uniformly distributed. Such a selection


mechanism works as follows:


Let’s assume that we want to select N individuals from a population called


P . First, we assign fitness to each individual using the modified version of MFF.


Then, we proceed to select individuals according to their fitness value, verify-


ing similarity between the selected individuals (see Algorithm 1). We put the


selected individuals in the set called S. If we already selected the N individuals


but there are still non-dominated individuals which have not participated in the


selection process, then we proceed to do the following. For each non-dominated


individual y who has not participated in the selection process (because its fitness


value is low), we obtain its nearest neighbor from S (snearest) and we choose a


random individual from S (srandom, such that snearest 6= srandom). We assume


that the probability of choosing an individual in a crowded region is higher than


the probability of choosing an individual in an unexplored region. Then, y will
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compete with srandom and snearest to survive. We use snearest with the idea


of improving the diversity locally: If we move snearest to y, do we increase the


distance with respect to its nearest neighbor in S? And, we use srandom be-


cause we consider the scenario in which the solution snearest is in an unexplored


region and, therefore, it is not a good idea to delete snearest or y. Therefore,


first, y competes with the randomly chosen solution srandom: If the Euclidean


distance from y to its nearest neighbor in S is greater than the Euclidean dis-


tance from srandom to its nearest neighbor in S, we replace srandom with y. If


y loses the competition, then y competes with its nearest neighbor to survive.


If the Euclidean distance from y to its nearest neighbor in S (without consider-


ing snearest) is greater than the Euclidean distance from snearest to its nearest


neighbor in S, then we replace snearest with y. It is important to mention that


if all the objectives are equally important, we need to calculate the Euclidean


distance on the normalized values of the objective functions. The complete


selection mechanism is shown in Algorithm 4.
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Input : P (population), N (number of individuals to choose N < ‖P‖).
Output: S (selected individuals).
/*Sorting with respect to the maximin fitness */


1 AssignFitness(P);
2 Sort(P);
3 ND ← The non-dominated solutions in P;


/*Fill up the new population with the best copies according to the maximin fitness,


verifying that there is not a similar one */
4 S ← ∅;
5 foreach y ∈ P do


6 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then


7 S ← S ∪ y;
8 end


9 end


10 if |S| ≤ N then


/*Choose the remaining individuals considering only the maximin fitness */


11 foreach y ∈ P such that y has been not selected do


12 S ← S ∪ y;
13 end


14 else


/*mprove diversity according to the Euclidean distances between solutions. */
15 foreach y ∈ ND who has not participated in the selection process do


16 if VerifySimilarity(y, S, ǫ) = 0 then


17 snearest ← The nearest neighbor of y in S;
18 dy1← Distance from y to snearest;
19 srandom ← Obtain a random individual from S such that snearest 6= srandom;
20 dsrandom← Distance from srandom to its nearest neighbor in S;
21 if dy1 > dsrandom then


22 Replace srandom with y;
23 else


24 dsnearest ← Distance from snearest to its nearest neighbor in S;
25 dy2← Distance from y to its nearest neighbor in S without regarding


snearest;
26 if dy2 > dsnearest then


27 Replace snearest with y;
28 end


29 end


30 end


31 end


32 end


33 return S;


Algorithm 4: Maximin-Euclidean Selection


Figure 5 shows the selection process using MFF and Euclidean distances.


Since individuals C and D are not considered in (a), in (b), C competes with A


and B, and C replaces B. In (c), D competes with A and C, and D replaces C.


With this selection mechanism, if we return to Figure 4, we can avoid that the


approximate Pareto front has big gaps. Because of that, all individuals G, H,


· · · , O have the same fitness value.


5.3. MFF and the Hypervolume indicator


There are different indicators to assess the quality of the approximate Pareto


optimal set generated by a MOEA. However, the hypervolume indicator (IH) is
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Figure 5: Let’s assume that we want to select two individuals. If we use the technique based
on MFF and Euclidean distances, first we select A and B (S = A,B), see (a). After that,
we consider individual C; its nearest neighbor is B and we choose A as a random solution.
First, C competes with A and C loses because the distance from A to B is greater than the
distance from C to B. Then, C competes with B and C wins because the distance from C to
A is greater than the distance from B to A, see (b). Finally, we consider D, and D loses with
A but it wins with C. Then, we select A and D, see (c).


the only unary indicator which is strictly “Pareto compliant 3” [20]. Besides, IH


rewards convergence towards the Pareto front as well as the maximum spread


of the solutions obtained. For these reasons, many MOEAs based on it have


been proposed [21, 22, 23, 24, 25, 26, 27, 28]. However, this indicator has an


important disadvantage: its high computational cost (the problem of comput-


ing IH is #P-hard4 [29]). In [15], the authors proposed a selection mechanism


that combines MFF and IH . Their idea is to use MFF as the main selection


mechanism and IH is used only to correct the possible errors produced when


selecting with MFF. One interesting thing of this selection mechanism is that,


to the author’s best knowledge, it is the only one based on IH that is known


to work with a population-based scheme. This is probably because MFF de-


termines the order in which each individual competes to survive using IH and


also uses the competition scheme proposed in [28] in which each individual only


competes with two other individuals of the population. Therefore, the original


combinatorial problem no longer exists.


3An indicator I : Ω → R is Pareto compliant if for all A,B ⊆ Ω : A � B ⇒ I(A) ≥
I(B) assuming that greater indicator values correspond to higher quality, where A and B are
approximations of the Pareto optimal set, Ω is the feasible region and A � B means that
every point ~b ∈ B is weakly dominated by at least one point ~a ∈ A.


4IH cannot be computed exactly in polynomial time in the number of objective functions
unless P = NP .
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5.3.1. Hypervolume Indicator


The hypervolume indicator (IH) was originally proposed by Zitzler and


Thiele in [30]. If Λ denotes the Lebesgue measure, IH is defined as:


IH(A, ~yref ) = Λ








⋃


~y∈A


{~y′ | ~y ≺ ~y′ ≺ ~yref}





 (8)


where ~yref ∈ R
k denotes a reference point that should be dominated by all the


Pareto optimal points. The contribution to IH of a solution ~x is defined as:


CH(~x,A) = IH(A, ~yref ) − IH(A \ ~x, ~yref) (9)


where ~x ∈ A. Then, the contribution of ~x is the space that is only covered by


~x. See Figure 6(a).


Auger et al. [31] conducted a study about the optimal µ-distributions and the


choice of the reference point in IH . In this study, they mentioned an interesting


property of this indicator when d = 2 (two objective functions), called locality


which is stated as follows: Given three consecutive points on the Pareto front,


moving the middle point will only affect the hypervolume contribution that is


solely dedicated to this point, but the joint hypervolume contribution remains


fixed. In Figure 6(a), if we move the point ~x4 between ~x3 and ~x5, the space


covered by A \ ~x4 is not affected and only the contribution of ~x4 is affected.


However, it is important to mention that Auger et al. conducted a similar


study for d = 3 in [32] and they mentioned that the optimal placement of a


single solution is not determined by only two neighbors, anymore, as it is the


case for d = 2.


Recently, a new selection scheme based on IH and its locality property was


proposed in [28]. It works as follows: Let’s assume that at each iteration of


a MOEA, only one solution ~ynew is created and the current population is P .


Then, we choose the nearest neighbor (~ynearest) of ~ynew in P and we also choose


(randomly) another solution, ~yrandom, such that ~yrandom ∈ P and ~yrandom 6=
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Figure 6: (a) Let A = {~x1, ~x2, · · · , ~x8} be the approximate Pareto optimal set and ~yref be
the reference point. Then, the gray area is the hypervolume of set A and the hatched area
is the contribution to the hypervolume of the solution ~x4. (b) Competition scheme based on
IH and its locality property. Suppose that we generate a new solution called ~ynew. Then,
we identify its nearest neighbor in the population and we call it ~ynearest. Also, we select
a random individual from the population and we call it ~yramdom. Finally, the individual
~yrandom is eliminated because it has a worse contribution to IH than ~ynew and ~ynearest.


~ynearest. After that, ~ynew, ~ynearest and ~yrandom will compete to survive. The


solution with the worst contribution to IH is eliminated. The core idea is to move


a solution within its neighborhood with the aim of improving its contribution


to IH . However, the authors said that it is necessary to consider the case in


which the new solution is located in an unexplored region (a region with few


solutions) as shown in Figure 6(b). In that case, it is not a good idea to remove


the new solution or its nearest neighbor. To address this problem, the authors


proposed to choose (randomly) another solution, ~yrandom. Then, ~yrandom will


also compete with the other two solutions (~ynew and ~ynearest). The authors


explained that they considered that the probability of choosing a solution in


a crowded region is higher than the probability of choosing a solution in an


unexplored region.


5.3.2. Selection mechanism based on MFF and IH


The selection mechanism proposed in [15] works as follows: If we want to


select N individuals from a population P , we assign first a fitness value to each


individual using the modified MFF. Then, we proceed to select the individuals
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Figure 7: Let’s assume that we want to select two individuals. If we use the technique based
on MFF and IH , first we select A and B (S = A,B). After that, we consider individual C;
its nearest neighbor is B and we choose A as a random solution. Individual B is eliminated
because it has the worst contribution, see (b). Finally, we consider D; its nearest neighbor is
C and we choose A as a random solution. Individual D is eliminated because it has the worst
contribution, see (b). Finally, we choose individuals A and C, see (c).


according to their fitness, verifying similarity between selected individuals, see


Algorithm 1. If we consider all individuals in the population and we do not


select N individuals, we select the remaining individuals considering only the


maximin fitness. If we already selected the N individuals but there are still non-


dominated individuals in P who have not participated in the selection process,


then, we proceed to use the contribution to IH as follows: Let S be the set of


current selected individuals. Then, for each non-dominated individual y who


has not participated in the selection process, we obtain its nearest neighbor in S


(we call it ynearest) and we choose a random individual called yrandom such that


ynearest 6= yrandom. Finally, we calculate the contribution to IH of y, ynearest


and yrandom. If y has a better contribution than ynearest or yrandom, then y


replaces the individual with the worst contribution (ynearest or yrandom). The


full selection mechanism is shown in Algorithm 5.


Figure 7 shows the selection process using MFF and IH . Since individuals


C and D are not considered, in (a), C competes with A and B, and C replaces


B. In (b), D competes with A and C, and it loses. Also, with this selection


mechanism, if we return to Figure 4, we can avoid that there are big gaps in


the front.


As we mentioned before, calculating IH or its contribution is a #P-hard


20







problem. Therefore, although with the selection mechanism based on MFF and


IH , we can reduce the number of times that we need to calculate the contribution


to IH , if we want to solve MOPs with many objective functions, e.g., more than


six, this MOEA is not practical.


Input : P (population), n (number of individuals to choose N < ‖P‖).
Output: S (selected individuals).


1 AssignFitness(P);
2 Sort(P);
3 ND ← The non-dominated solutions in P;
4 S ← ∅;


/*Fill up the new population with the best copies according to the maximin fitness,
verifying that there is not a similar one */


5 S ← ∅;
6 foreach y ∈ P do


7 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then


8 S ← S ∪ y;
9 end


10 end


11 if |S| ≤ N then


/*Choose the remaining individuals considering only the maximin fitness */


12 foreach y ∈ P such that y has been not selected do


13 S ← S ∪ y;
14 end


15 else


/*Improve the diversity according to the contribution to IH */


16 foreach y ∈ ND who had not participated in the selection process do


17 if VerifySimilarity(y, S, ǫ) = 0 then


18 ynearest ← The nearest neighbor of y in S;
19 yrandom ← A randomly selected individual in S such that


ynearest 6= yrandom;
/*Calculate the contributions to the hypervolume */


20 Cnearest ← CH(ynearest,S);
21 Crandom ← CH(yrandom,S);
22 Cy ← CH(y,S);


/*Remove the individual with the worst contribution */
23 worst← Individual with the worst contribution (y, ynearest or yrandom);
24 if worst = ynearest or worst = yrandom then


25 Replace worst with y;
26 end


27 end


28 end


29 end


30 return S;


Algorithm 5: Maximin-Hypervolume Selection


In [33], the authors studied the competition scheme proposed in [28] and


also studied different ways to approximate IH or its contribution. Finally, they


showed that approximating the contribution to IH by adopting the technique


proposed by Bringmann and Friedrich in [34] in the selection mechanism pro-


posed by Menchaca and Coello in [28] produces good results. For this reason,


in this work, we propose to use a version of the selection mechanism based on


MFF and IH which approximates the contributions to IH , using the technique


proposed by Bringmann and Friedrich.
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6. Experimental Results


Each of the four selection mechanism described above were incorporated


into a MOEA that uses the crossover and mutation operators of NSGA-II


to create new individuals, giving rise to the four following MOEAs: “MC-


MOEA: Maximin-Clustering Multi-Objective Evolutionary Algorithm”, “MD-


MOEA: Maximin-Distances Multi-Objective Evolutionary Algorithm”, “MH-


MOEA: Maximin-Hypervolume Multi-Objective Evolutionary Algorithm” and


“MAH-MOEA: Maximin-Approximated Hypervolume Multi-Objective Evolu-


tionary Algorithm”. These MOEAs works as follows: If the size of the popu-


lation is P , then we create P new individuals. We use a binary tournament to


select the parents. At each tournament, two individuals are randomly selected


and the one with the higher maximin fitness value is chosen. After that, we


combine the population of parents and offspring to obtain a population of size


2P . Then, we use one of the four selection mechanisms to choose the P indi-


viduals that will take part of the following generation. This process is repeated


for a certain (pre-defined) number of generations.


For our experiments, we used the following test problems: DTLZ [35] and


WFG [36]. We used MOPs with up to ten objective functions. We used k = 5


for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for the remaining DTLZs. And,


we used k factor = 2 and l factor = 10 for WFGs. Table 1 shows some fea-


tures of each test problem; these features were studied in [36]. We adopted the


parameters suggested by the authors of NSGA-II: pc = 0.9 (crossover proba-


bility), pm = 1/n (mutation probability), where n is the number of decision


variables. For the crossover and mutation operators, we adopted ηc = 15 and


ηm = 20, respectively. Our maximum number of fitness function evaluations


was set to 50,000 (we used a population size of 100 individuals and we iterated


for 500 generations). In the case of MAH-MOEA, we used 104 as our number


of samples.


6.1. Performance Indicators


To assess performance, we adopted the following indicators:
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Table 1: Features of the test problems adopted. An objective function is separable if it can
be optimized by considering each parameter in turn, independently of one another, and the
resultant set of globally optimal parameter vectors is the cross-product of the optimal sets for
each individually optimized parameter. In the multi-objective sense, this means that the ideal
points for separable objectives can be determined considering only one parameter at a time.
An objective function is multimodal when it has multiple local optima and it is unimodal


when it has a single optimum. We consider that a problem is multimodal if it has at least
one multimodal objective function. A deceptive objective function has a special kind of
multimodality (it must have at least two optima: a true optimum and a deceptive optimum).
We consider that a problem is deceptive if it has at least one deceptive objective function.


MOP Separability Modality Geometry
DTLZ1 separable multimodal linear
DTLZ2 separable unimodal concave
DTLZ3 separable multimodal concave
DTLZ4 separable unimodal concave
DTLZ5 ? unimodal degenerate
DTLZ6 ? unimodal degenerate
DTLZ7 separable unimodal disconnected
WFG1 separable unimodal convex, mixed
WFG2 nonseparable multimodal convex, disconnected
WFG3 nonseparable unimodal linear, degenerate
WFG4 separable multimodal concave
WFG5 separable deceptive concave
WFG6 nonseparable unimodal concave
WFG7 separable unimodal concave


• Hypervolume indicator (IH). It is defined as the size of the space


covered by the Pareto optimal solutions. IH rewards both convergence


towards the Pareto front as well as the maximum spread of the solu-


tions obtained. To calculate IH , we normalized the approximations of


the Pareto optimal set, generated by the MOEAs, and we used yref =


[y1, · · · , yk] such that yi = 1.1 as our reference point. The normalization


was performed considering all approximations generated by the different


MOEAs (i.e., we place, in one set, all non-dominated solutions found by


the MOEAs which are being compared and from this set we calculate the


maximum and minimum for each objective function).


• Two Set Coverage (ISC). We decided to use this indicator with the


aim of assessing the convergence of the MOEAs. ISC was proposed by


Zitzler et al. [37] and it is a binary Pareto compliant indicator. Let A,B
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two approximations of the Pareto optimal set, ISC is defined as follows:


ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|


|B|


If all points in A dominate or are equal to all points in B, then by def-


inition ISC = 1. ISC = 0 implies that no element in B is dominated by


any element of A. In general, both ISC(A,B) and ISC(B,A) have to be


considered.


• Spacing (IS). It was proposed by Schott [38]. It measures the spread


of solutions in the approximate Pareto optimal front. This indicator is


defined as follows:


IS(A) =


√


√


√


√


1


|A| − 1


|A|
∑


i=1


(


d− di
)2


where:


di = min
j,j 6=i


∑


k


|f i
k − f j


k |


d =
1


|A|


|A|
∑


i=1


di


k is the number of objective functions, i, j = 1, · · · |A|. When IS = 0 all


the solutions in A are uniformly spread.


It is important to keep in mind that we can obtain different results if we


use different indicators since each indicator can measure a different feature of


a multi-objective problem. Even if they measure the same feature, the use of


different indicators can provide different results, e.g., the hypervolume indicator


assesses both convergence and spread of solutions, and the R2-indicator also as-


sesses both features but the optimal distribution for the R2-indicator depends


of the convex weights that it adopts. If the convex weights are uniformly dis-


tributed, then the optimal distribution of these two indicators is different if


the Pareto front is not linear. In our case, we chose the hypervolume indica-
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tor because, as it is known, this is the only unary indicator that is known to


be strictly Pareto compliant [20]. Additionally, we chose the two set coverage


indicator and the spacing indicator because the first one assesses convergence


and it is also Pareto compliant and the second one assesses distribution but its


optimal distribution is uniform. In this way, our comparison among MOEAs


can be performed in a fair manner. However, it is worth noticing that the use


of the spacing indicator has to be considered in combination with the two set


coverage indicator because a set of solutions that presents a uniform distribution


is considered appropriate only if it constitutes a good approximation to the true


Pareto optimal front (i.e., convergence has precedence over distribution when


assessing performance of a MOEA).


6.2. Comparison of MOEAs based on MFF


In this section, we compare the four MOEAs based on MFF: MC-MOEA,


MD-MOEA, MH-MOEA and MAH-MOEA. Table 2 shows the results with re-


spect to IH for the DTLZ test problems with up to six objective functions. In


this table, we can see that MC-MOEA ranked fourth in all twenty-eight cases;


MD-MOEA ranked third in twenty-four cases, second in two cases and first


in two cases; MH-MOEA ranked first in twenty-five cases and only in three


cases ranked second; finally, MAH-MOEA ranked second in twenty-three cases,


third in four cases and first in one case. Table 6 shows the results of the sta-


tistical analysis that we made to validate our experiments, for which we used


Wilcoxon’s rank sum. In this case, we decided to compare the fourth place with


the third place (MC-MOEA and MD-MOEA, respectively), the third place with


the second place (MD-MOEA and MAH-MOEA, respectively) and the second


place with the first place (MAH-MOEA and MH-MOEA, respectively). For


MC-MOEA and MD-MOEA, we can see that in twenty-six cases we can reject


the null hypothesis (medians are equal) and only for DTLZ6 with four objec-


tive functions and DTLZ1 with five objective functions we can say that these


two algorithms have a similar behavior. For MD-MOEA and MAH-MOEA,


we can see that in twenty-five cases we can reject the null hypothesis and only
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for three problems both algorithms have a similar behavior. Finally, for MAH-


MOEA and MH-MOEA, we have that for sixteen cases we can reject the null


hypothesis and for twelve cases we can say that both algorithms have a similar


behavior. This result is interesting because we can say that MAH-MOEA is


really competitive with respect to MH-MOEA.


Since MD-MOEA outperformed MC-MOEA in all cases, we can say that


the technique based on Euclidean distances was able to correct some disad-


vantages of the technique based on clustering, e.g., it can avoid that the ap-


proximate Pareto front has big gaps. However, both MOEAs (MC-MOEA and


MD-MOEA) have difficulties when the MOP has a degenerate Pareto front


(see problems DTLZ5 and DTLZ6). We think that this problem arises because


these two selection mechanisms have as their aim to distribute the solutions


uniformly and then, it is hard for the MOEA to converge to a front with a lower


dimensionality than the dimensionality of the problem. However, we can see


that MH-MOEA and MAH-MOEA were able to correct this disadvantage. This


is because the aim of these selection mechanisms is to maximize IH and the


maximum IH corresponds to a distribution into the degenerate Pareto front.


An interesting thing is that MAH-MOEA, the version of MH-MOEA that


approximates the contribution to IH , obtained results very close to MH-MOEA


but at a lower computational cost (see Tables 2, 6 and 3). This is an important


result because, as we know, MOEAs based on the use of the exact IH values are


not practical when we want to solve MOPs with more than five or six objective


functions. In order to address this disadvantage, some authors have proposed


differents techniques to approximate IH or its contribution. However, the qual-


ity of the solutions obtained by these MOEAs considerably degrades in most


cases, unlike MAH-MOEA which does not lose much quality due to two reasons:


First, it approximates the contribution to IH in the competition scheme pro-


posed in [13] as the authors suggested in [33]. And second, it produces a ranking


using MFF to perform an initial selection and then it uses the contribution to


IH only to correct the possibles errors in this first selection procedure, i.e., IH


is not used as the primary selection mechanism.
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From Tables 2 and 3, we can say that the best option to solve MOPs with low


and high dimensionality (in objective function space) is MAH-MOEA. However,


if we need to obtain the approximate Pareto optimal set in the shorest time


possible, MD-MOEA is a good option but we should be careful when dealing


with MOPs having degenerate Pareto fronts.


Table 4 shows the results with respect to IH for the WFG test problems with


up to six objective functions and we can see that MC-MOEA ranked fourth in


twenty-three cases, third in three cases and first in two cases. MD-MOEA ranked


third in eighteen cases, fourth in four cases, second in one case and first in five


cases. MH-MOEA ranked first in sixteen cases, second in ten cases and third in


two cases. Finally, MAH-MOEA ranked second in seventeen cases, first in five


cases, third in five cases and fourth in one case. In the same way as with the


DTLZ test problems, we conducted a statistical analysis using Wilcoxon’s rank


sum to validate our experiments, see Table 6. For MC-MOEA and MD-MOEA,


we can see that in four problems both algorithms have a similar behavior and


in twenty-four cases we can reject the null hypothesis. For MD-MOEA and


MAH-MOEA, we can reject the null hypothesis in twenty-one cases and only in


seven cases both algorithms have a similar behavior. Finally, for MAH-MOEA


and MH-MOEA, we can say that for eighteen problems both algorithms have a


similar behavior and only in ten cases we can reject the null hypothesis. With


these results, we can corroborate that MAH-MOEA is really competitive with


MH-MOEA. Then, these two algorithms are the best, followed by MD-MOEA


in the third place and MC-MOEA in the fourth place. However, if we consider


the running time, MH-MOEA is the worst algorithm followed by MAH-MOEA


in the third place, MD-MOEA in the second place and MC-MOEA is the best


algorithm (see Table 5).


Finally, we can observe that MC-MOEA and MD-MOEA have difficulties in


problems WFG1, WFG4 and WFG7. However, we cannot identify particular


features of these problems which reflects the possible disadvantages of these


MOEAs in solving such types of problems.


It is important to note that if we use IH to compare the different MOEAs,
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then it is evident that MOEAs based on this indicator have advantages over


those which don’t adopt it, because the aim of the former type of MOEAs is to


maximize IH . For this reason, we decided to use two other indicators to compare


the approximate Pareto optimal sets obtained by the MOEAs. We adopted the


two set coverage indicator (ISC) to measure convergence to the Pareto front and


the spacing indicator (IS) to measure distribution of the solutions found. Since


we can use these two indicators to evaluate approximations which involve any


number of objective functions, we decided to use up to ten objective functions.


However, in this comparison we only considered MD-MOEA and MAH-MOEA


due to two reasons: First, Tables 2 and 4 show clearly that MD-MOEA obtained


better results than MC-MOEA. And second, although MH-MOEA is better than


MAH-MOEA, it cannot be used to solve MOPs with more than six objective


functions (its running time is too high, and it would require weeks or even


months to complete all the required experiments).


Table 7 shows the results for the DTLZ test problems with respect to ISC


and we can see that in fifty-four cases the solutions found by MAH-MOEA


were able to cover a larger percentage of the solutions found by MD-MOEA


than the percentage of solutions found by MAH-MOEA which are covered by


at least one solution found by MD-MOEA. However, only in the DTLZ6 test


problem we can assure that MAH-MOEA is better than MD-MOEA because


only in this problem the percentage of solutions found by MAH-MOEA which


are covered by at least one solution found by MD-MOEA is zero or close to


zero and the percentage of solutions found by MD-MOEA which are covered


by at least one solution found by MAH-MOEA is close to one. Table 8 shows


the results regarding IS and we can observe that MD-MOEA ranked second in


thirty-nine cases and first in seventeen cases. With these two tables, we can


corroborate the results found when we use IH : MAH-MOEA is better than


MD-MOEA in most cases. Figures 8 and 9 show the Pareto fronts obtained by


the four algorithms in their median with respect to the hypervolume indicator in


some of the test problems adopted. Here, we can see again that MAH-MOEA is


the best MOEA because it found well-distributed Pareto fronts, and its results
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are very similar with respect to MH-MOEA. Also, we can see that MD-MOEA


is better than MC-MOEA and it is competitive with respect MH-MOEA and


MAH-MOEA (only in DTLZ6 it obtained a worse distribution).


Finally, Tables 9 and 10 show the results with respect to the WFG test


problems. According to ISC , MD-MOEA was ranked in second place in twenty-


four cases and in first place in twenty cases. However, there are no cases in which


we can assure that one MOEA is better than the others. Regarding IS , we can


see that MD-MOEA was ranked in first place in forty-nine cases and it was


ranked in second place in seven cases. Therefore, for these test problems MAH-


MOEA and MD-MOEA are competitive because from ISC we cannot assure that


MAH-MOEA outperformed MD-MOEA in terms of convergence and from IS


we observe that MD-MOEA is better in most problems. Also, in these problems


we can see in a clearer way that the technique based on Euclidean distances is


effective.


As final conclusions of this section, we can say that MD-MOEA and MAH-


MOEA are the best options to solve MOPs with high and low dimensionality


in objective function space. Although MAH-MOEA is better than MD-MOEA


according to IH , regarding ISC and IS they are competitive. Also, MD-MOEA


is much faster than MAH-MOEA. However, it is important to be careful when


we use MD-MOEA because it has difficulties to solve a certain type of MOPs,


e.g., MOPs with a degenerate Pareto front.


6.3. MOEAs based on MFF vs MOEAs not based on MFF


In this section, we compare MD-MOEA and MAH-MOEA with respect to


two well-known MOEAs: The first one is MOEA/D. We chose this MOEA


because it has been a viable alternative to deal with many-objective opti-


mization problems in recent years. Also, its computational cost is very low.


MOEA/D [39] decomposes the MOP into N scalar optimization subproblems


and then it solves these subproblems simultaneously using an evolutionary al-


gorithm. For our experiments, we used the version in which MOEA/D adopts


PBI (Penalty Boundary Intersection) to decompose the MOP. We decided to
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Figure 8: Pareto fronts obtained by the four MOEAs (MC-MOEA, MD-MOEA, MH-MOEA
and MAH-MOEA) in the median (with respect to the hypervolume indicator) of their thirty
independent runs for the test problems DTLZ1 and DTLZ2.
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Figure 9: Pareto fronts obtained by the four MOEAs (MC-MOEA, MD-MOEA, MH-MOEA
and MAH-MOEA) in the median (with respect to the hypervolume indicator) of their thirty
independent runs for the test problems DTLZ6 and DTLZ7.
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use PBI because the resulting optimal solutions with PBI are normally much


better distributed than those obtained by the Tchebycheff approach [39]. To


generate the convex weights we used the technique proposed in [40] and after


that, we applied clustering (k-means) to obtain a specific number of weights.


The second one is SMS-EMOA [24]. We chose this MOEA because it is


the most popular hypervolume-based MOEA. SMS-EMOA creates an initial


population and then, it generates only one solution by iteration. After that,


it applies Pareto ranking. When the last front has more than one solution,


SMS-EMOA calculates the contribution to IH of each individual in the last


front and it eliminates the individual with the worst contribution. Beume et


al. [25] proposed not to use the contribution to IH when in the Pareto ranking


we obtain more than one front. In that case, they proposed to use the number


of solutions which dominate to one solution (the solution that is dominated


by more solutions is removed). In this work, we used the version proposed


by Beume et al. but instead of calculating the exact contribution to IH , we


approximate it using the same technique that we adopted for MAH-MOEA.


Since these four MOEAs use the same operators to create new individuals


(they use the same crossover and mutation operators adopted by NSGA-II), the


comparison of selection mechanisms is fair. For MOEA/D and SMS-EMOA, we


also adopted the parameters suggested by the authors of NSGA-II: pc = 0.9,


pm = 1/n, where n is the number of decision variables, ηc = 15 and ηm = 20.


In the case of MOEA/D, we used a neighborhood with size equal to 20 and in


the case of SMS-EMOA we used 104 as our number of samples.


Before we perform the comparison, it is important to mention that both


MOEA/D and SMS-EMOA have important disadvantages. SMS-EMOA is im-


practical to solve MOPs with many objective function because calculating IH or


its contribution involves a very high computational cost. In this work, we use a


version that approximates the contribution to IH . However, as we will see later


on, the competition scheme used by SMS-EMOA is not efficient and therefore,


the running time of this version of SMS-EMOA is also high. On the other hand,


MOEA/D needs to generate a set of well-distributed convex weights and this
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task becomes more difficult as we increase the number of objective functions.


Regarding IH and considering the DTLZ test problems, MD-MOEA ranked


second in eleven cases, third in nine cases, fourth in five cases and first in three


cases. MAH-MOEA ranked first in fourteen cases, second in ten cases, third


in three cases and fourth in one case. MOEA/D ranked fourth in nineteen


cases, third in five cases, second in three cases and first in one case. Finally,


SMS-EMOA ranked third in eleven cases, first in ten cases, second in four cases


and fourth in three cases. See Table 11. Table 15 shows the results of the


statistical analysis that we conducted to validate our experiments, for which


we used Wilcoxon’s rank sum and IH . In this case, we decided to compare


the MOEAs based on MFF (MD-MOEA and MAH-MOEA) with respect to


MOEA/D and SMS-EMOA. For MD-MOEA and MOEA/D, we can say that


only in one problem they have a similar behavior and in the twenty-seven re-


maining problems the null hypothesis (“medians are equal”) can be rejected.


The same occurs with MAH-MOEA and MOEA/D, since in only one problem


they have a similar behavior. In the case of MD-MOEA and SMS-EMOA only


in two problems both algorithms have a similar behavior and in the twenty-six


remaining problems the null hypothesis can be rejected. Finally, with respect to


MAH-MOEA and SMS-EMOA only in two cases they have a similar behavior


and in the twenty-six remaining problems the null hypothesis can be rejected.


From these results, we can say that MAH-MOEA is the best algorithm, fol-


lowed by SMS-EMOA in the second place, MD-MOEA in the third place and


MOEA/D in the fourth place. Another interesting thing is that MAH-MOEA


is much faster than SMS-EMOA. It is also worth noticing that MD-MOEA is


ranked second with respect to the running time but it is not much slower than


MOEA/D which is in the first place. See Table 12.


With respect to the WFG test problems, we can see in Table 13 that MD-


MOEA ranked third in seventeen cases, first in 6 cases, second in three cases


and fourth in two cases. MAH-MOEA ranked second in twenty-five cases and


first in three cases. MOEA/D ranked fourth in twenty-three cases and third


in five cases. Finally, SMS-EMOA ranked first in nineteen cases, third in six
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cases and fourth in three cases. We applied a statistical analysis to validate our


experiments in the same way as done with the DTLZ test problems, see Table 15.


For MD-EMOA and MOEA/D in all twenty-eight problems, the null hypothesis


can be rejected. And the same occurs for MAH-MOEA and MOEA/D. For


MD-MOEA and SMS-EMOA, in two problems these two algorithms have a


similar behavior and in the twenty-six remaining problems we can reject the


null hypothesis. And, for MAH-MOEA and SMS-EMOA, we can see that in two


cases both algorithms have a similar behavior and for all twenty-six problems


the null hypothesis can be rejected. Then, for these problems SMS-EMOA is


the best algorithm, followed by MAH-MOEA in the second place, MD-MOEA


in the third place and MOEA/D in the fourth place. However, also in these


problems MAH-MOEA is much faster than SMS-EMOA and MD-MOEA is not


much slower than MOEA/D.


As conclusions of this section, we can say that MOEAs based on MFF are


a good option to solve MOPs with low and high dimensionality because they


can outperform well-known MOEAs such as SMS-EMOA and MOEA/D, e.g.,


both MD-MOEA and MAH-MOEA outperformed MOEA/D in the two sets


of test problems adopted (DTLZ and WFG) and MAH-MOEA outperformed


SMS-EMOA in the DTLZ test problems. In addition, both MD-MOEA, MAH-


MOEA are much faster than SMS-EMOA and MD-MOEA is not much slower


than MOEA/D.


7. Conclusions and Future Work


In this paper, we have studied three selection mechanisms based on MFF.


The first one combines MFF with a clustering technique, the second one com-


bines MFF with a technique based on Euclidean distances and the third one com-


bines MFF with IH . Since calculating IH or its contribution is a #P -hard prob-


lem, we propose to approximate the contribution to IH as the authors suggested


in [33]. Each of the four selection mechanisms was incorporated into a MOEA


that uses simulated binary crossover (SBX) and parameter-based mutation
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(PM), giving rise the following MOEAs: “Maximin-Clustering Multi-Objective


Evolutionary Algorithm (MC-MOEA)”, “Maximin-Distances Multi-Objective


Evolutionary Algorithm (MD-MOEA)”, “Maximin-Hypervolume Multi-Objective


Evolutionary Algorithm (MH-MOEA)” and “Maximin-Approximated Hyper-


volume Multi-Objective Evolutionary Algorithm (MAH-MOEA)”. According to


our experimental results, the best algorithm is MAH-MOEA because it obtains


results with a high quality and also it can also be used in MOPs with many ob-


jective functions (in this work we tested it with up to ten objective functions).


MAH-MOEA is followed by MD-MOEA, in terms of performance. MD-MOEA


obtained good results in most problems, but it has difficulties in MOPs with


degenerate Pareto fronts. We think that this is due to the fact that the aim of


the selection mechanism used by MD-MOEA is to obtain a uniform distribution.


Consequently, it is hard for MD-MOEA to converge to a Pareto front with a


dimensionality lower than the dimensionality of the MOP. If the time to obtain


the approximate Pareto optimal set is an important factor, MD-MOEA is the


best option because it obtains competitive results with respect to MAH-MOEA


but at a much lower computational cost.


Besides, in this work we compare MD-MOEA and MAH-MOEA, with re-


spect to two well-known MOEAs: MOEA/D and SMS-EMOA (in a version that


approximates the contribution to IH). These MOEAs use a selection mecha-


nism based on decomposition and another based on IH , respectively. Our re-


sults showed that both MD-MOEA and MAH-MOEA outperformed MOEA/D


in the two sets of test problems adopted (DTLZ and WFG) and MAH-MOEA


outperformed SMS-EMOA in the DTLZ test problems. With respect to the


running time, both algorithms (MD-MOEA and MAH-MOEA) are efficient


because MAH-MOEA is much faster than SMS-EMOA and it also obtained


good results (it outperformed SMS-EMOA in the DTLZ test problems) and


MD-MOEA is not much slower than MOEA/D, while obtaining better results.


Therefore, we can say that MD-MOEA and MAH-MOEA are a good option to


solve MOPs with low and high dimensionality because they obtain approxima-


tions of the Pareto optimal set with a high quality and the computational cost
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of both MOEAs is affordable. Additionally, the running time of MD-MOEA


is quite good. Also, these MOEAs do not need additional information such as


MOEA/D that requires a set of well-distributed convex weights.


Another interesting feature of MOEAs based on MFF is that they can be


used to solve MOPs in an interactive way when the decision maker defines


his/her preferences. For example, a MOEA based on MFF can present at each


generation a set of non-dominated solutions to the user and then he/she chooses


the solutions which will be considered when calculating the maximin fitness of


each indidividual.


As part of our future work, we want to study the constraints used to avoid


selecting weakly dominated solutions because we think that this is one of the


reasons for which SMS-EMOA obtains better results than our MAH-MOEA in


some problems. For example, the constraint used in the MOEAs presented here


does not check if the selected solution is worst than the new solution that we


want to select. However, we cannot select such a solution, because it is similar


to the solution that has been previously selected.
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Table 2: Results obtained in the DTLZ test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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Number of times it came second


Number of times it came third
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md-moea
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mh-moea


IH
mah-moea


IH
DTLZ1 (3) 1.1593 (0.013) 1.1823 (0.003) 1.1897 (0.001) 1.1896 (0.001)
DTLZ2 (3) 0.6964 (0.008) 0.7319 (0.003) 0.7535 (0.002) 0.7525 (0.002)
DTLZ3 (3) 1.3043 (0.021) 1.3281 (0.000) 1.3265 (0.000) 1.3263 (0.000)
DTLZ4 (3) 0.7015 (0.008) 0.7304 (0.006) 0.7491 (0.004) 0.7492 (0.004)
DTLZ5 (3) 0.2552 (0.005) 0.2651 (0.000) 0.2661 (0.001) 0.2661 (0.000)
DTLZ6 (3) 1.0453 (0.067) 1.0989 (0.008) 1.0998 (0.007) 1.0975 (0.009)
DTLZ7 (3) 0.5377 (0.040) 0.5519 (0.041) 0.5645 (0.043) 0.5638 (0.043)
DTLZ1 (4) 1.4241 (0.016) 1.4375 (0.005) 1.4471 (0.002) 1.4444 (0.002)
DTLZ2 (4) 1.0480 (0.019) 1.1249 (0.010) 1.1672 (0.003) 1.1647 (0.005)
DTLZ3 (4) 1.4630 (0.001) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000)
DTLZ4 (4) 1.1455 (0.016) 1.1912 (0.010) 1.2261 (0.006) 1.2252 (0.006)
DTLZ5 (4) 0.3928 (0.017) 0.4668 (0.023) 0.5492 (0.005) 0.5469 (0.004)
DTLZ6 (4) 1.2518 (0.045) 1.2742 (0.024) 1.3617 (0.003) 1.3600 (0.003)
DTLZ7 (4) 0.6659 (0.014) 0.7062 (0.016) 0.7305 (0.019) 0.7262 (0.018)
DTLZ1 (5) 1.5861 (0.069) 1.6011 (0.003) 1.6061 (0.001) 1.6031 (0.001)
DTLZ2 (5) 1.3004 (0.025) 1.4063 (0.015) 1.4680 (0.004) 1.4519 (0.006)
DTLZ3 (5) 1.6089 (0.002) 1.6098 (0.000) 1.6098 (0.000) 1.6098 (0.000)
DTLZ4 (5) 1.4341 (0.018) 1.4801 (0.011) 1.5182 (0.006) 1.5096 (0.007)
DTLZ5 (5) 0.7294 (0.019) 0.8122 (0.033) 0.9249 (0.007) 0.9180 (0.015)
DTLZ6 (5) 0.4890 (0.074) 1.3396 (0.063) 1.5522 (0.002) 1.5450 (0.005)
DTLZ7 (5) 0.7562 (0.026) 0.8534 (0.009) 0.8716 (0.015) 0.8699 (0.010)
DTLZ1 (6) 1.7002 (0.088) 1.7652 (0.004) 1.7688 (0.001) 1.7669 (0.001)
DTLZ2 (6) 1.6061 (0.027) 1.6757 (0.014) 1.7264 (0.004) 1.7114 (0.006)
DTLZ3 (6) 1.7707 (0.001) 1.7710 (0.000) 1.7713 (0.000) 1.7712 (0.000)
DTLZ4 (6) 1.6978 (0.024) 1.7234 (0.008) 1.7495 (0.002) 1.7407 (0.003)
DTLZ5 (6) 0.8283 (0.030) 0.9563 (0.067) 1.1347 (0.019) 1.1170 (0.041)
DTLZ6 (6) 0.5754 (0.050) 1.0454 (0.174) 1.7039 (0.004) 1.6984 (0.004)
DTLZ7 (6) 0.7382 (0.054) 0.9319 (0.022) 0.9438 (0.020) 0.9380 (0.026)
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Table 3: Results obtained in the DTLZ test problems with up to six objective functions. We
compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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Number of times it came second


Number of times it came third
Number of times it came fourth


~f
mc-moea


time
md-moea


time
mh-moea


time
mah-moea


time
DTLZ1 (3) 0.6277 (0.010) 0.8317 (0.025) 341.8550 (48.468) 26.5683 (6.888)
DTLZ2 (3) 0.9857 (0.011) 1.7247 (0.016) 362.5860 (46.285) 80.2447 (11.191)
DTLZ3 (3) 0.6150 (0.016) 0.7897 (0.028) 410.8940 (51.899) 26.4793 (5.165)
DTLZ4 (3) 1.0137 (0.009) 1.7187 (0.018) 441.8840 (25.976) 77.7587 (9.585)
DTLZ5 (3) 0.8377 (0.009) 1.2467 (0.019) 362.4503 (36.636) 9.6463 (2.308)
DTLZ6 (3) 0.7157 (0.032) 1.0763 (0.020) 358.8433 (17.170) 26.3760 (12.040)
DTLZ7 (3) 0.9210 (0.018) 1.0917 (0.036) 370.5477 (18.106) 28.6033 (7.032)
DTLZ1 (4) 0.8150 (0.013) 1.0227 (0.015) 350.6833 (13.917) 17.1963 (2.158)
DTLZ2 (4) 1.2033 (0.015) 2.0807 (0.009) 380.9720 (12.960) 56.9457 (9.412)
DTLZ3 (4) 0.8083 (0.013) 1.0830 (0.029) 403.1007 (26.826) 23.3403 (2.858)
DTLZ4 (4) 1.2520 (0.011) 2.0533 (0.020) 424.2623 (37.408) 52.1267 (9.269)
DTLZ5 (4) 1.2420 (0.017) 2.3523 (0.028) 418.8673 (56.864) 50.0157 (6.454)
DTLZ6 (4) 0.9953 (0.011) 1.6473 (0.020) 386.8503 (13.442) 49.7007 (6.381)
DTLZ7 (4) 1.1347 (0.019) 1.1903 (0.026) 354.2237 (11.950) 16.5777 (2.984)
DTLZ1 (5) 0.9823 (0.015) 1.1693 (0.037) 495.2057 (40.617) 12.5180 (1.662)
DTLZ2 (5) 1.3807 (0.017) 2.3043 (0.014) 893.2087 (23.893) 29.8747 (3.466)
DTLZ3 (5) 0.9920 (0.009) 1.2967 (0.028) 558.4480 (23.573) 17.2507 (2.455)
DTLZ4 (5) 1.4673 (0.022) 2.2767 (0.021) 843.5720 (16.920) 28.0337 (3.063)
DTLZ5 (5) 1.4577 (0.011) 2.4603 (0.021) 1516.0527 (91.143) 44.2683 (5.359)
DTLZ6 (5) 1.3483 (0.016) 2.2447 (0.044) 980.2290 (39.726) 46.6733 (5.942)
DTLZ7 (5) 1.3380 (0.016) 1.3070 (0.035) 324.5770 (35.547) 7.3807 (1.137)
DTLZ1 (6) 1.1350 (0.017) 1.3033 (0.070) 3137.1263 (406.976) 10.5600 (1.946)
DTLZ2 (6) 1.5407 (0.046) 2.4600 (0.023) 7760.6740 (199.641) 19.9033 (1.739)
DTLZ3 (6) 1.1487 (0.010) 1.4473 (0.030) 3859.2973 (340.664) 15.7413 (2.575)
DTLZ4 (6) 1.6273 (0.014) 2.4343 (0.026) 6662.2467 (190.364) 18.3560 (2.040)
DTLZ5 (6) 1.6177 (0.025) 2.6093 (0.028) 7964.5500 (1610.847) 37.3323 (5.122)
DTLZ6 (6) 1.5197 (0.018) 2.8480 (0.049) 5459.3457 (126.423) 44.0187 (5.048)
DTLZ7 (6) 1.5173 (0.017) 1.4347 (0.047) 618.1323 (159.834) 3.7347 (0.632)
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Table 4: Results obtained in the WFG test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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WFG1 (3) 1.0315 (0.061) 1.0043 (0.057) 1.1414 (0.046) 1.1274 (0.049)
WFG2 (3) 0.6980 (0.091) 0.7559 (0.091) 0.7559 (0.091) 0.7559 (0.091)
WFG3 (3) 0.5476 (0.011) 0.6156 (0.004) 0.6320 (0.003) 0.6312 (0.002)
WFG4 (3) 0.5549 (0.015) 0.6584 (0.008) 0.7430 (0.002) 0.7414 (0.002)
WFG5 (3) 0.4479 (0.012) 0.5325 (0.005) 0.5531 (0.001) 0.5529 (0.001)
WFG6 (3) 0.5081 (0.008) 0.5483 (0.003) 0.5615 (0.003) 0.5602 (0.004)
WFG7 (3) 0.5324 (0.012) 0.6099 (0.013) 0.7354 (0.004) 0.7342 (0.005)
WFG1 (4) 1.1074 (0.045) 1.0396 (0.027) 1.2004 (0.049) 1.2045 (0.045)
WFG2 (4) 0.6485 (0.132) 0.6338 (0.134) 0.6338 (0.134) 0.6338 (0.134)
WFG3 (4) 0.1807 (0.057) 0.5674 (0.009) 0.5865 (0.009) 0.5801 (0.009)
WFG4 (4) 0.4842 (0.045) 0.8193 (0.017) 1.0055 (0.005) 0.9955 (0.007)
WFG5 (4) 0.3934 (0.019) 0.5501 (0.008) 0.5901 (0.002) 0.5870 (0.003)
WFG6 (4) 0.3125 (0.055) 0.5510 (0.016) 0.5714 (0.012) 0.5712 (0.010)
WFG7 (4) 0.5361 (0.018) 0.6163 (0.018) 0.8721 (0.008) 0.8623 (0.008)
WFG1 (5) 1.1905 (0.036) 1.0896 (0.030) 1.2266 (0.031) 1.2095 (0.031)
WFG2 (5) 0.6027 (0.183) 0.6349 (0.203) 0.6349 (0.203) 0.6349 (0.203)
WFG3 (5) 0.0000 (0.000) 0.5753 (0.018) 0.5724 (0.022) 0.5742 (0.018)
WFG4 (5) 0.5167 (0.044) 0.9373 (0.022) 1.2261 (0.011) 1.2076 (0.009)
WFG5 (5) 0.3200 (0.028) 0.5744 (0.014) 0.6136 (0.012) 0.6142 (0.008)
WFG6 (5) 0.0020 (0.007) 0.5557 (0.023) 0.5697 (0.031) 0.5735 (0.025)
WFG7 (5) 0.5125 (0.018) 0.6113 (0.023) 0.9623 (0.019) 0.9482 (0.019)
WFG1 (6) 1.3749 (0.023) 1.2711 (0.036) 1.3562 (0.029) 1.3288 (0.031)
WFG2 (6) 0.6486 (0.198) 0.7530 (0.164) 0.7530 (0.164) 0.7530 (0.164)
WFG3 (6) 0.0000 (0.000) 0.5635 (0.027) 0.5630 (0.037) 0.5575 (0.032)
WFG4 (6) 0.6202 (0.053) 1.0276 (0.032) 1.4082 (0.012) 1.4025 (0.015)
WFG5 (6) 0.1658 (0.016) 0.5893 (0.023) 0.6005 (0.022) 0.6099 (0.024)
WFG6 (6) 0.0016 (0.006) 0.6030 (0.034) 0.6140 (0.031) 0.6134 (0.032)
WFG7 (6) 0.4872 (0.020) 0.6100 (0.023) 0.8517 (0.092) 0.9036 (0.071)
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Table 5: Results obtained in the WFG test problems with up to six objective functions. We
compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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WFG1 (3) 2.0607 (0.016) 3.0037 (0.036) 407.7103 (16.770) 97.5580 (11.196)
WFG2 (3) 1.4210 (0.197) 1.3063 (0.081) 384.3690 (16.681) 1.5803 (0.314)
WFG3 (3) 1.7350 (0.025) 2.7167 (0.036) 412.2397 (17.685) 87.2683 (15.644)
WFG4 (3) 1.7633 (0.010) 2.9810 (0.040) 404.2377 (16.539) 78.2380 (14.106)
WFG5 (3) 1.7807 (0.014) 3.1817 (0.119) 402.1483 (16.008) 122.2553 (17.817)
WFG6 (3) 1.6670 (0.013) 2.6367 (0.115) 406.3600 (18.357) 95.7627 (14.819)
WFG7 (3) 2.1950 (0.011) 3.7967 (0.053) 404.4447 (17.979) 138.2930 (26.767)
WFG1 (4) 2.2793 (0.016) 3.1263 (0.028) 446.1657 (25.163) 55.2243 (6.841)
WFG2 (4) 1.5113 (0.188) 1.3700 (0.040) 361.7037 (13.118) 1.7497 (0.150)
WFG3 (4) 1.8777 (0.026) 2.3457 (0.082) 387.6740 (22.302) 37.7127 (6.090)
WFG4 (4) 2.0153 (0.021) 3.5377 (0.070) 452.5403 (25.090) 66.3593 (11.242)
WFG5 (4) 1.9810 (0.010) 3.3533 (0.029) 391.5327 (19.290) 75.2213 (11.970)
WFG6 (4) 1.8187 (0.009) 2.2033 (0.062) 380.4550 (20.296) 39.5240 (5.911)
WFG7 (4) 2.5327 (0.016) 4.1817 (0.043) 455.2317 (27.525) 85.7517 (9.854)
WFG1 (5) 2.4997 (0.018) 3.1180 (0.048) 1514.0497 (79.687) 25.0433 (3.385)
WFG2 (5) 1.7283 (0.237) 1.5483 (0.055) 269.0003 (38.875) 2.0567 (0.346)
WFG3 (5) 2.0820 (0.019) 1.8530 (0.023) 266.8000 (28.414) 2.7177 (0.374)
WFG4 (5) 2.2467 (0.011) 3.8390 (0.030) 1651.3397 (74.059) 52.2173 (8.366)
WFG5 (5) 2.1750 (0.011) 3.1130 (0.119) 336.6403 (25.775) 45.3483 (6.833)
WFG6 (5) 2.0200 (0.012) 1.8200 (0.014) 283.3267 (61.769) 3.6643 (0.604)
WFG7 (5) 2.9070 (0.013) 4.5740 (0.035) 1779.0997 (149.456) 49.3623 (6.280)
WFG1 (6) 2.6130 (0.015) 3.0127 (0.039) 13890.5980 (909.094) 13.4993 (1.680)
WFG2 (6) 1.9440 (0.201) 1.6703 (0.060) 231.7187 (18.578) 1.9280 (0.205)
WFG3 (6) 2.2267 (0.017) 1.9417 (0.018) 233.8433 (16.113) 2.9970 (0.399)
WFG4 (6) 2.4050 (0.019) 4.0547 (0.035) 14471.2413 (18.960) 47.5760 (7.722)
WFG5 (6) 2.2907 (0.029) 2.5957 (0.090) 331.3267 (23.342) 18.0147 (3.537)
WFG6 (6) 2.1507 (0.011) 1.9097 (0.022) 234.4510 (12.421) 2.7093 (0.111)
WFG7 (6) 3.0050 (0.012) 4.7223 (0.048) 14228.5130 (998.589) 44.0367 (6.551)
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Table 6: Statistical analysis using Wilcoxon’s rank sum. For this, we used IH , see Tables 2
and 4. P is the probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that
the null hypothesis can be rejected at the 5% level.


~f mc-moea & md-moea
P (H)


md-moea & mah-moea
P (H)


mah-moea & mh-moea
P (H)


DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.464273 (0)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.203559 (0)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.100764 (0)
DTLZ4 (3) 0.000000 (1) 0.000000 (1) 0.958731 (0)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.125965 (0)
DTLZ6 (3) 0.000000 (1) 0.784460 (0) 0.180900 (0)
DTLZ7 (3) 0.000002 (1) 0.000001 (1) 0.510598 (0)
DTLZ1 (4) 0.000168 (1) 0.000000 (1) 0.000002 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.048413 (1)
DTLZ3 (4) 0.000000 (1) 0.000586 (1) 0.428630 (0)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.355472 (0)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (4) 0.067869 (0) 0.000000 (1) 0.046756 (1)
DTLZ7 (4) 0.000000 (1) 0.000001 (1) 0.010763 (1)
DTLZ1 (5) 0.055546 (0) 0.002624 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000007 (1) 0.111927 (0) 0.183242 (0)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000015 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.010315 (1)
DTLZ6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000001 (1) 0.464273 (0)
DTLZ1 (6) 0.000038 (1) 0.006096 (1) 0.000000 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.039873 (1) 0.003337 (1) 0.000004 (1)
DTLZ4 (6) 0.000001 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000001 (1)
DTLZ7 (6) 0.000000 (1) 0.153667 (0) 0.428963 (0)
WFG1 (3) 0.129670 (0) 0.000000 (1) 0.277189 (0)
WFG2 (3) 0.007959 (1) 1.000000 (0) 1.000000 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.087710 (0)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.004033 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.446413 (0)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.332841 (0)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.420386 (0)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.728265 (0)
WFG2 (4) 0.946956 (0) 1.000000 (0) 1.000000 (0)
WFG3 (4) 0.000000 (1) 0.000003 (1) 0.005322 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000006 (1)
WFG6 (4) 0.000000 (1) 0.000004 (1) 0.813003 (0)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000077 (1)
WFG1 (5) 0.000000 (1) 0.000000 (1) 0.033874 (1)
WFG2 (5) 0.403538 (0) 1.000000 (0) 1.000000 (0)
WFG3 (5) 0.000000 (1) 0.841801 (0) 0.888303 (0)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.876635 (0)
WFG6 (5) 0.000000 (1) 0.006669 (1) 0.888303 (0)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.009883 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.001767 (1)
WFG2 (6) 0.055546 (0) 1.000000 (0) 1.000000 (0)
WFG3 (6) 0.000000 (1) 0.515261 (0) 0.374931 (0)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.264326 (0)
WFG5 (6) 0.000000 (1) 0.001680 (1) 0.074827 (0)
WFG6 (6) 0.000000 (1) 0.283778 (0) 0.807275 (0)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.024157 (1)
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Table 7: Results obtained in the DTLZ test problems with up to ten objective functions.
We compare MD-MOEA and MAH-MOEA with respect to ISC . In this case, A is the set
composed by all solutions found by MD-MOEA considering all 30 independent runs and B is
the set composed by all solutions found by MAH-MOEA considering all 30 independent runs.
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Number of times it came second


~f ISC(A,B) ISC(B,A)


DTLZ1 (3) 0.0040 0.0577
DTLZ2 (3) 0.0457 0.4613
DTLZ3 (3) 0.0320 0.1180
DTLZ4 (3) 0.0453 0.4700
DTLZ5 (3) 0.1610 0.4800
DTLZ6 (3) 0.6693 0.6390
DTLZ7 (3) 0.0903 0.2870
DTLZ1 (4) 0.0077 0.0283
DTLZ2 (4) 0.0227 0.2827
DTLZ3 (4) 0.0153 0.0773
DTLZ4 (4) 0.0213 0.2647
DTLZ5 (4) 0.0317 0.4537
DTLZ6 (4) 0.0137 0.9117
DTLZ7 (4) 0.0640 0.2723
DTLZ1 (5) 0.0110 0.0277
DTLZ2 (5) 0.0153 0.1567
DTLZ3 (5) 0.0063 0.0893
DTLZ4 (5) 0.0160 0.1377
DTLZ5 (5) 0.0193 0.5630
DTLZ6 (5) 0.0040 0.9790
DTLZ7 (5) 0.0433 0.1357
DTLZ1 (6) 0.0103 0.0553
DTLZ2 (6) 0.0067 0.1380
DTLZ3 (6) 0.0090 0.0880
DTLZ4 (6) 0.0067 0.1143
DTLZ5 (6) 0.0270 0.5767
DTLZ6 (6) 0.0000 0.9867
DTLZ7 (6) 0.0280 0.0650


~f ISC(A,B) ISC(B,B)


DTLZ1 (7) 0.0090 0.3713
DTLZ2 (7) 0.0013 0.1653
DTLZ3 (7) 0.0097 0.2893
DTLZ4 (7) 0.0023 0.0840
DTLZ5 (7) 0.0260 0.5730
DTLZ6 (7) 0.0000 0.9887
DTLZ7 (7) 0.0287 0.0373
DTLZ1 (8) 0.0253 0.8963
DTLZ2 (8) 0.0000 0.1813
DTLZ3 (8) 0.0060 0.7860
DTLZ4 (8) 0.0013 0.0617
DTLZ5 (8) 0.0227 0.5470
DTLZ6 (8) 0.0000 0.9867
DTLZ7 (8) 0.0173 0.0140
DTLZ1 (9) 0.1243 0.9667
DTLZ2 (9) 0.0000 0.3167
DTLZ3 (9) 0.0033 0.9230
DTLZ4 (9) 0.0023 0.0337
DTLZ5 (9) 0.0303 0.4677
DTLZ6 (9) 0.0000 0.9887
DTLZ7 (9) 0.0070 0.0073
DTLZ1 (10) 0.0773 0.9837
DTLZ2 (10) 0.0000 0.7277
DTLZ3 (10) 0.0017 0.9673
DTLZ4 (10) 0.0000 0.0370
DTLZ5 (10) 0.0387 0.2883
DTLZ6 (10) 0.0000 0.9817
DTLZ7 (10) 0.0033 0.0037
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Table 8: Results obtained in the DTLZ test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to IS . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
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~f md-moea
IS


mah-moea
IS


DTLZ1(3) 0.0383(0.051) 0.0227(0.014)
DTLZ2(3) 0.0494(0.003) 0.0519(0.005)
DTLZ3(3) 39.7739(16.843) 0.0835(0.114)
DTLZ4(3) 0.0485(0.004) 0.0534(0.005)
DTLZ5(3) 0.0107(0.001) 0.0149(0.002)
DTLZ6(3) 0.0477(0.050) 0.0244(0.015)
DTLZ7(3) 0.0515(0.012) 0.0548(0.011)
DTLZ1(4) 0.3313(1.026) 0.0716(0.139)
DTLZ2(4) 0.0821(0.010) 0.0976(0.007)
DTLZ3(4) 30.1241(24.519) 0.1443(0.152)
DTLZ4(4) 0.0852(0.008) 0.0979(0.007)
DTLZ5(4) 0.1303(0.028) 0.0871(0.009)
DTLZ6(4) 0.2187(0.036) 0.1289(0.020)
DTLZ7(4) 0.1223(0.015) 0.1222(0.018)
DTLZ1(5) 0.1476(0.311) 0.1434(0.437)
DTLZ2(5) 0.1128(0.011) 0.1406(0.012)
DTLZ3(5) 5.9726(12.907) 0.2318(0.270)
DTLZ4(5) 0.1160(0.013) 0.1379(0.011)
DTLZ5(5) 0.2209(0.029) 0.1379(0.021)
DTLZ6(5) 0.4020(0.044) 0.2472(0.058)
DTLZ7(5) 0.1837(0.033) 0.1735(0.030)
DTLZ1(6) 0.5147(1.209) 0.1094(0.109)
DTLZ2(6) 0.1471(0.015) 0.1782(0.016)
DTLZ3(6) 8.5028(15.487) 0.6253(2.037)
DTLZ4(6) 0.1416(0.012) 0.1777(0.018)
DTLZ5(6) 0.2670(0.033) 0.1933(0.026)
DTLZ6(6) 0.6232(0.066) 0.3207(0.070)
DTLZ7(6) 0.2478(0.047) 0.2520(0.055)


~f md-moea
IS


mah-moea
IS


DTLZ1(7) 4.7387(8.298) 0.1142(0.170)
DTLZ2(7) 0.1752(0.018) 0.2028(0.027)
DTLZ3(7) 17.6441(27.499) 0.6413(1.399)
DTLZ4(7) 0.1736(0.021) 0.2011(0.018)
DTLZ5(7) 0.3055(0.034) 0.2296(0.046)
DTLZ6(7) 0.7690(0.102) 0.3620(0.061)
DTLZ7(7) 0.2959(0.081) 0.2948(0.077)
DTLZ1(8) 44.9282(15.636) 3.1587(3.930)
DTLZ2(8) 0.2151(0.023) 0.2337(0.021)
DTLZ3(8) 121.0272(70.941) 2.0211(4.517)
DTLZ4(8) 0.1982(0.024) 0.2265(0.020)
DTLZ5(8) 0.3297(0.035) 0.2416(0.040)
DTLZ6(8) 0.8535(0.075) 0.3994(0.049)
DTLZ7(8) 0.3472(0.080) 0.3425(0.078)
DTLZ1(9) 53.2934(10.620) 9.9927(4.748)
DTLZ2(9) 0.2740(0.076) 0.2477(0.026)
DTLZ3(9) 163.9581(73.838) 0.8544(0.974)
DTLZ4(9) 0.2206(0.023) 0.2521(0.024)
DTLZ5(9) 0.3472(0.040) 0.2594(0.045)
DTLZ6(9) 0.9396(0.103) 0.4521(0.052)
DTLZ7(9) 0.5877(0.906) 0.5839(0.907)
DTLZ1(10) 56.1186(11.811) 13.1724(5.369)
DTLZ2(10) 0.4853(0.102) 0.2714(0.028)
DTLZ3(10) 186.9971(41.579) 3.5598(8.554)
DTLZ4(10) 0.2555(0.034) 0.2882(0.033)
DTLZ5(10) 0.3324(0.049) 0.2802(0.052)
DTLZ6(10) 0.9776(0.088) 0.4803(0.053)
DTLZ7(10) 0.9527(1.374) 0.8445(1.303)
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Table 9: Results obtained in the WFG test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to ISC . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
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WFG1 (3) 0.0000 0.0017
WFG2 (3) 0.6703 0.6703
WFG3 (3) 0.0140 0.5907
WFG4 (3) 0.0003 0.9870
WFG5 (3) 0.0000 0.2183
WFG6 (3) 0.0157 0.6220
WFG7 (3) 0.0153 0.1930
WFG1 (4) 0.0000 0.0000
WFG2 (4) 0.8647 0.8647
WFG3 (4) 0.0217 0.1677
WFG4 (4) 0.0000 0.6527
WFG5 (4) 0.0000 0.1337
WFG6 (4) 0.0300 0.2420
WFG7 (4) 0.0030 0.0010
WFG1 (5) 0.0000 0.0000
WFG2 (5) 0.8357 0.8357
WFG3 (5) 0.1807 0.1787
WFG4 (5) 0.0000 0.3083
WFG5 (5) 0.0000 0.0317
WFG6 (5) 0.3310 0.3520
WFG7 (5) 0.0000 0.0000
WFG1 (6) 0.0000 0.0000
WFG2 (6) 0.8113 0.8113
WFG3 (6) 0.3297 0.3210
WFG4 (6) 0.0000 0.1350
WFG5 (6) 0.0000 0.0020
WFG6 (6) 0.4010 0.3943
WFG7 (6) 0.0000 0.0000


~f md-moea
ISC


mah-moea
ISC


WFG1 (7) 0.0000 0.0000
WFG2 (7) 0.7737 0.7737
WFG3 (7) 0.2647 0.2687
WFG4 (7) 0.0007 0.0543
WFG5 (7) 0.0013 0.0020
WFG6 (7) 0.3477 0.3410
WFG7 (7) 0.0000 0.0000
WFG1 (8) 0.0000 0.0000
WFG2 (8) 0.7787 0.7787
WFG3 (8) 0.1923 0.1923
WFG4 (8) 0.0000 0.0267
WFG5 (8) 0.0013 0.0030
WFG6 (8) 0.2877 0.3213
WFG7 (8) 0.0000 0.0000
WFG1 (9) 0.0000 0.0000
WFG2 (9) 0.7750 0.7750
WFG3 (9) 0.1383 0.1383
WFG4 (9) 0.0000 0.0177
WFG5 (9) 0.0093 0.0103
WFG6 (9) 0.2753 0.2383
WFG7 (9) 0.0000 0.0000
WFG1 (10) 0.0000 0.0000
WFG2 (10) 0.7377 0.7377
WFG3 (10) 0.1050 0.1050
WFG4 (10) 0.0000 0.0057
WFG5 (10) 0.0147 0.0147
WFG6 (10) 0.2247 0.2097
WFG7 (10) 0.0000 0.0000
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Table 10: Results obtained in the WFG test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to IS . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.


 0


 10


 20


 30


 40


 50


 60


md-moea mah-moea


WFG Test Problems


Number of times it came fist
Number of times it came second


~f md-moea
IS


mah-moea
IS


WFG1(3) 0.0545(0.009) 0.0815(0.022)
WFG2(3) 0.0224(0.009) 0.0224(0.009)
WFG3(3) 0.0181(0.002) 0.0242(0.002)
WFG4(3) 0.1586(0.015) 0.1821(0.016)
WFG5(3) 0.0885(0.010) 0.1049(0.010)
WFG6(3) 0.0380(0.006) 0.0453(0.005)
WFG7(3) 0.1226(0.011) 0.1511(0.013)
WFG1(4) 0.0643(0.008) 0.0979(0.012)
WFG2(4) 0.0349(0.013) 0.0349(0.013)
WFG3(4) 0.0286(0.003) 0.0356(0.003)
WFG4(4) 0.3332(0.028) 0.4306(0.035)
WFG5(4) 0.1580(0.015) 0.1813(0.014)
WFG6(4) 0.0837(0.020) 0.0846(0.016)
WFG7(4) 0.2277(0.023) 0.3390(0.024)
WFG1(5) 0.0703(0.007) 0.0971(0.009)
WFG2(5) 0.0390(0.017) 0.0390(0.017)
WFG3(5) 0.0505(0.004) 0.0500(0.004)
WFG4(5) 0.5066(0.065) 0.7625(0.076)
WFG5(5) 0.2592(0.040) 0.2649(0.035)
WFG6(5) 0.1152(0.020) 0.1307(0.027)
WFG7(5) 0.3302(0.038) 0.5677(0.050)
WFG1(6) 0.0736(0.009) 0.0887(0.012)
WFG2(6) 0.0521(0.025) 0.0521(0.025)
WFG3(6) 0.0744(0.014) 0.0755(0.014)
WFG4(6) 0.7314(0.086) 1.1253(0.095)
WFG5(6) 0.4318(0.062) 0.4621(0.059)
WFG6(6) 0.1510(0.031) 0.1605(0.031)
WFG7(6) 0.4422(0.058) 0.6964(0.129)


~f md-moea
IS


mah-moea
IS


WFG1(7) 0.0807(0.011) 0.0824(0.009)
WFG2(7) 0.0516(0.018) 0.0516(0.018)
WFG3(7) 0.0900(0.024) 0.0906(0.024)
WFG4(7) 0.9768(0.112) 1.6140(0.152)
WFG5(7) 0.5441(0.072) 0.5752(0.083)
WFG6(7) 0.1831(0.039) 0.1833(0.042)
WFG7(7) 0.5718(0.056) 0.6547(0.141)
WFG1(8) 0.0877(0.013) 0.0908(0.016)
WFG2(8) 0.0614(0.017) 0.0614(0.017)
WFG3(8) 0.0950(0.016) 0.0950(0.016)
WFG4(8) 1.2455(0.117) 1.9606(0.270)
WFG5(8) 0.6427(0.061) 0.6614(0.072)
WFG6(8) 0.2072(0.046) 0.2139(0.041)
WFG7(8) 0.6796(0.066) 0.6442(0.171)
WFG1(9) 0.1019(0.014) 0.1016(0.013)
WFG2(9) 0.0754(0.033) 0.0754(0.033)
WFG3(9) 0.1036(0.020) 0.1036(0.020)
WFG4(9) 1.5718(0.213) 2.1582(0.318)
WFG5(9) 0.7540(0.080) 0.7505(0.081)
WFG6(9) 0.2350(0.039) 0.2381(0.045)
WFG7(9) 0.8251(0.106) 0.6846(0.161)
WFG1(10) 0.1149(0.014) 0.1149(0.014)
WFG2(10) 0.0761(0.030) 0.0761(0.030)
WFG3(10) 0.1129(0.026) 0.1129(0.026)
WFG4(10) 1.8951(0.216) 2.3724(0.330)
WFG5(10) 0.8311(0.100) 0.8390(0.115)
WFG6(10) 0.2894(0.052) 0.2653(0.041)
WFG7(10) 0.9441(0.105) 0.7823(0.177)
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Table 11: Results obtained in the DTLZ test problems with up to six objective functions.
We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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DTLZ1 (3) 1.1823 (0.003) 1.1896 (0.001) 1.2683 (0.001) 1.3128 (0.001)
DTLZ2 (3) 0.7319 (0.003) 0.7525 (0.002) 0.7203 (0.000) 0.7645 (0.002)
DTLZ3 (3) 1.3281 (0.000) 1.3263 (0.000) 1.3307 (0.000) 1.3309 (0.000)
DTLZ4 (3) 0.7304 (0.006) 0.7492 (0.004) 0.7255 (0.000) 0.7699 (0.002)
DTLZ5 (3) 0.2651 (0.000) 0.2661 (0.000) 0.2467 (0.001) 0.2662 (0.000)
DTLZ6 (3) 1.0989 (0.008) 1.0975 (0.009) 0.5129 (0.022) 0.5979 (0.012)
DTLZ7 (3) 0.5519 (0.041) 0.5638 (0.043) 0.4509 (0.027) 0.5366 (0.060)
DTLZ1 (4) 1.4375 (0.005) 1.4444 (0.002) 1.4134 (0.003) 1.4621 (0.001)
DTLZ2 (4) 1.1249 (0.010) 1.1647 (0.005) 0.9237 (0.001) 1.0700 (0.004)
DTLZ3 (4) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000) 1.4630 (0.001)
DTLZ4 (4) 1.1912 (0.010) 1.2252 (0.006) 0.9169 (0.001) 1.0645 (0.005)
DTLZ5 (4) 0.4668 (0.023) 0.5469 (0.004) 0.4921 (0.004) 0.5618 (0.004)
DTLZ6 (4) 1.2742 (0.024) 1.3600 (0.003) 1.2083 (0.006) 1.3085 (0.007)
DTLZ7 (4) 0.7062 (0.016) 0.7262 (0.018) 0.3875 (0.022) 0.6922 (0.043)
DTLZ1 (5) 1.6011 (0.003) 1.6031 (0.001) 1.6095 (0.000) 1.6103 (0.000)
DTLZ2 (5) 1.4063 (0.015) 1.4519 (0.006) 1.0345 (0.004) 1.2717 (0.017)
DTLZ3 (5) 1.6098 (0.000) 1.6098 (0.000) 1.6096 (0.000) 1.5998 (0.007)
DTLZ4 (5) 1.4801 (0.011) 1.5096 (0.007) 1.0317 (0.005) 1.2778 (0.016)
DTLZ5 (5) 0.8122 (0.033) 0.9180 (0.015) 0.7215 (0.022) 0.9540 (0.006)
DTLZ6 (5) 1.3396 (0.063) 1.5450 (0.005) 1.3358 (0.012) 1.4298 (0.009)
DTLZ7 (5) 0.8534 (0.009) 0.8699 (0.010) 0.1285 (0.089) 0.7547 (0.021)
DTLZ1 (6) 1.7652 (0.004) 1.7669 (0.001) 1.7696 (0.000) 1.7675 (0.009)
DTLZ2 (6) 1.6757 (0.014) 1.7114 (0.006) 1.0435 (0.010) 1.4695 (0.020)
DTLZ3 (6) 1.7710 (0.000) 1.7712 (0.000) 1.7702 (0.000) 1.7640 (0.007)
DTLZ4 (6) 1.7234 (0.008) 1.7407 (0.003) 1.0187 (0.007) 1.4427 (0.018)
DTLZ5 (6) 0.9563 (0.067) 1.1170 (0.041) 0.8622 (0.014) 1.2291 (0.006)
DTLZ6 (6) 1.0454 (0.174) 1.6984 (0.004) 1.4940 (0.021) 1.6855 (0.005)
DTLZ7 (6) 0.9319 (0.022) 0.9380 (0.026) 0.0255 (0.005) 0.7375 (0.009)
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Table 12: Results obtained in the DTLZ test problems with up to six objective functions. We
compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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DTLZ1 (3) 0.8317 (0.025) 26.5683 (6.888) 0.5180 (0.009) 1368.8483 (56.345)
DTLZ2 (3) 1.7247 (0.016) 80.2447 (11.191) 0.5732 (0.008) 3186.9297 (33.957)
DTLZ3 (3) 0.7897 (0.028) 26.4793 (5.165) 0.5092 (0.008) 2516.9973 (131.555)
DTLZ4 (3) 1.7187 (0.018) 77.7587 (9.585) 0.5839 (0.003) 3209.5767 (28.945)
DTLZ5 (3) 1.2467 (0.019) 9.6463 (2.308) 0.5773 (0.023) 485.1490 (13.942)
DTLZ6 (3) 1.0763 (0.020) 26.3760 (12.040) 0.5055 (0.025) 1872.8680 (494.697)
DTLZ7 (3) 1.0917 (0.036) 28.6033 (7.032) 0.5600 (0.034) 3047.7933 (245.354)
DTLZ1 (4) 1.0227 (0.015) 17.1963 (2.158) 0.5386 (0.013) 953.9040 (72.115)
DTLZ2 (4) 2.0807 (0.009) 56.9457 (9.412) 0.6048 (0.010) 2696.8443 (28.356)
DTLZ3 (4) 1.0830 (0.029) 23.3403 (2.858) 0.5312 (0.010) 1652.6900 (191.963)
DTLZ4 (4) 2.0533 (0.020) 52.1267 (9.269) 0.6281 (0.007) 3186.0707 (23.889)
DTLZ5 (4) 2.3523 (0.028) 50.0157 (6.454) 0.5903 (0.001) 1559.1663 (56.480)
DTLZ6 (4) 1.6473 (0.020) 49.7007 (6.381) 0.5942 (0.008) 1758.4097 (30.011)
DTLZ7 (4) 1.1903 (0.026) 16.5777 (2.984) 0.6512 (0.008) 3240.0063 (293.247)
DTLZ1 (5) 1.1693 (0.037) 12.5180 (1.662) 0.5706 (0.005) 1029.0453 (92.775)
DTLZ2 (5) 2.3043 (0.014) 29.8747 (3.466) 0.6248 (0.001) 1879.0867 (19.569)
DTLZ3 (5) 1.2967 (0.028) 17.2507 (2.455) 0.5796 (0.016) 1617.6280 (75.710)
DTLZ4 (5) 2.2767 (0.021) 28.0337 (3.063) 0.6812 (0.001) 2191.7757 (21.185)
DTLZ5 (5) 2.4603 (0.021) 44.2683 (5.359) 0.6527 (0.040) 1788.9270 (49.232)
DTLZ6 (5) 2.2447 (0.044) 46.6733 (5.942) 0.6370 (0.006) 1957.4123 (25.557)
DTLZ7 (5) 1.3070 (0.035) 7.3807 (1.137) 0.6935 (0.005) 2822.8597 (171.838)
DTLZ1 (6) 1.3033 (0.070) 10.5600 (1.946) 0.6036 (0.016) 1523.3607 (158.557)
DTLZ2 (6) 2.4600 (0.023) 19.9033 (1.739) 0.6551 (0.005) 1605.2567 (13.806)
DTLZ3 (6) 1.4473 (0.030) 15.7413 (2.575) 0.5999 (0.013) 1751.4160 (130.305)
DTLZ4 (6) 2.4343 (0.026) 18.3560 (2.040) 0.7307 (0.001) 1827.7093 (18.135)
DTLZ5 (6) 2.6093 (0.028) 37.3323 (5.122) 0.7436 (0.001) 1815.6567 (68.869)
DTLZ6 (6) 2.8480 (0.049) 44.0187 (5.048) 0.6892 (0.005) 2128.5127 (27.407)
DTLZ7 (6) 1.4347 (0.047) 3.7347 (0.632) 0.7247 (0.004) 2522.0583 (54.170)
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Table 13: Results obtained in the WFG test problems with up to six objective functions.
We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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Number of times it came fist
Number of times it came second


Number of times it came third
Number of times it came fourth


~f md-moea
IH


mah-moea
IH


moead
IH


sms-emoa
IH


WFG1 (3) 1.0043 (0.057) 1.1274 (0.049) 0.9178 (0.017) 1.2126 (0.024)
WFG2 (3) 0.7559 (0.091) 0.7559 (0.091) 0.1593 (0.204) 0.7460 (0.132)
WFG3 (3) 0.6156 (0.004) 0.6312 (0.002) 0.5001 (0.026) 0.6357 (0.002)
WFG4 (3) 0.6584 (0.008) 0.7414 (0.002) 0.5952 (0.013) 0.7515 (0.002)
WFG5 (3) 0.5325 (0.005) 0.5529 (0.001) 0.4715 (0.010) 0.5573 (0.002)
WFG6 (3) 0.5483 (0.003) 0.5602 (0.004) 0.4538 (0.007) 0.5639 (0.002)
WFG7 (3) 0.6099 (0.013) 0.7342 (0.005) 0.4908 (0.056) 0.7495 (0.004)
WFG1 (4) 1.0396 (0.027) 1.2045 (0.045) 1.1014 (0.061) 1.4089 (0.008)
WFG2 (4) 0.6338 (0.134) 0.6338 (0.134) 0.0577 (0.111) 0.1102 (0.139)
WFG3 (4) 0.5674 (0.009) 0.5801 (0.009) 0.2813 (0.035) 0.5665 (0.013)
WFG4 (4) 0.8193 (0.017) 0.9955 (0.007) 0.6576 (0.026) 1.0160 (0.004)
WFG5 (4) 0.5501 (0.008) 0.5870 (0.003) 0.3677 (0.015) 0.5913 (0.002)
WFG6 (4) 0.5510 (0.016) 0.5712 (0.010) 0.2890 (0.016) 0.5817 (0.008)
WFG7 (4) 0.6163 (0.018) 0.8623 (0.008) 0.2920 (0.036) 0.9224 (0.007)
WFG1 (5) 1.0896 (0.030) 1.2095 (0.031) 1.1550 (0.069) 1.4687 (0.010)
WFG2 (5) 0.6349 (0.203) 0.6349 (0.203) 0.1387 (0.148) 0.0001 (0.000)
WFG3 (5) 0.5753 (0.018) 0.5742 (0.018) 0.1566 (0.037) 0.2116 (0.092)
WFG4 (5) 0.9373 (0.022) 1.2076 (0.009) 0.6592 (0.024) 1.2305 (0.008)
WFG5 (5) 0.5744 (0.014) 0.6142 (0.008) 0.2357 (0.014) 0.6457 (0.003)
WFG6 (5) 0.5557 (0.023) 0.5735 (0.025) 0.2536 (0.015) 0.4463 (0.052)
WFG7 (5) 0.6113 (0.023) 0.9482 (0.019) 0.2163 (0.014) 1.0149 (0.012)
WFG1 (6) 1.2711 (0.036) 1.3288 (0.031) 1.0911 (0.030) 1.5042 (0.024)
WFG2 (6) 0.7530 (0.164) 0.7530 (0.164) 0.0839 (0.107) 0.0000 (0.000)
WFG3 (6) 0.5635 (0.027) 0.5575 (0.032) 0.1615 (0.050) 0.1057 (0.056)
WFG4 (6) 1.0276 (0.032) 1.4025 (0.015) 0.5982 (0.029) 1.4082 (0.009)
WFG5 (6) 0.5893 (0.023) 0.6099 (0.024) 0.1555 (0.017) 0.6664 (0.014)
WFG6 (6) 0.6030 (0.034) 0.6134 (0.032) 0.2319 (0.019) 0.4075 (0.057)
WFG7 (6) 0.6100 (0.023) 0.9036 (0.071) 0.1842 (0.014) 1.0398 (0.051)
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Table 14: Results obtained in the WFG test problems with up to six objective functions. We
compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA in terms of the running time
required by each MOEA to obtain the approximation of the Pareto optimal set. The results
are in seconds. We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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md-moea mah-moea moead sms-emoa


WFG Test Problems


Number of times it came fist
Number of times it came second


Number of times it came third
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~f md-moea
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time
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time
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time


WFG1 (3) 3.0037 (0.036) 97.5580 (11.196) 1.3196 (0.214) 4308.4217 (25.228)
WFG2 (3) 1.3063 (0.081) 1.5803 (0.314) 1.1146 (0.176) 1513.2233 (155.007)
WFG3 (3) 2.7167 (0.036) 87.2683 (15.644) 0.9307 (0.007) 2084.2703 (17.679)
WFG4 (3) 2.9810 (0.040) 78.2380 (14.106) 1.0456 (0.120) 4153.4260 (30.095)
WFG5 (3) 3.1817 (0.119) 122.2553 (17.817) 0.9530 (0.014) 3551.4573 (41.543)
WFG6 (3) 2.6367 (0.115) 95.7627 (14.819) 0.9624 (0.014) 3064.4163 (27.785)
WFG7 (3) 3.7967 (0.053) 138.2930 (26.767) 1.1576 (0.005) 5333.1087 (47.859)
WFG1 (4) 3.1263 (0.028) 55.2243 (6.841) 1.6046 (0.012) 2830.8050 (29.269)
WFG2 (4) 1.3700 (0.040) 1.7497 (0.150) 1.2374 (0.144) 1471.5220 (222.983)
WFG3 (4) 2.3457 (0.082) 37.7127 (6.090) 1.4797 (0.384) 1690.0347 (18.244)
WFG4 (4) 3.5377 (0.070) 66.3593 (11.242) 1.4224 (0.004) 3919.7280 (52.832)
WFG5 (4) 3.3533 (0.029) 75.2213 (11.970) 0.9704 (0.004) 3103.7243 (30.165)
WFG6 (4) 2.2033 (0.062) 39.5240 (5.911) 1.0423 (0.059) 2524.6620 (34.021)
WFG7 (4) 4.1817 (0.043) 85.7517 (9.854) 1.2276 (0.009) 3888.7363 (56.772)
WFG1 (5) 3.1180 (0.048) 25.0433 (3.385) 1.7252 (0.011) 1695.3017 (19.921)
WFG2 (5) 1.5483 (0.055) 2.0567 (0.346) 1.2578 (0.184) 1803.4930 (258.393)
WFG3 (5) 1.8530 (0.023) 2.7177 (0.374) 1.9463 (0.057) 1598.1797 (31.162)
WFG4 (5) 3.8390 (0.030) 52.2173 (8.366) 1.5348 (0.006) 2923.8940 (48.865)
WFG5 (5) 3.1130 (0.119) 45.3483 (6.833) 1.0555 (0.011) 3149.2743 (70.538)
WFG6 (5) 1.8200 (0.014) 3.6643 (0.604) 1.1502 (0.013) 2355.6050 (41.596)
WFG7 (5) 4.5740 (0.035) 49.3623 (6.280) 1.4021 (0.037) 2869.6150 (55.364)
WFG1 (6) 3.0127 (0.039) 13.4993 (1.680) 1.8216 (0.007) 1263.6903 (21.408)
WFG2 (6) 1.6703 (0.060) 1.9280 (0.205) 1.0977 (0.103) 2278.2863 (262.298)
WFG3 (6) 1.9417 (0.018) 2.9970 (0.399) 1.7925 (0.307) 1892.1680 (25.837)
WFG4 (6) 4.0547 (0.035) 47.5760 (7.722) 1.6597 (0.007) 2553.0097 (49.627)
WFG5 (6) 2.5957 (0.090) 18.0147 (3.537) 1.2348 (0.061) 2927.7660 (222.317)
WFG6 (6) 1.9097 (0.022) 2.7093 (0.111) 1.1737 (0.012) 2463.2440 (27.182)
WFG7 (6) 4.7223 (0.048) 44.0367 (6.551) 1.7574 (0.008) 2381.4430 (59.016)


55







Table 15: Statistical analysis using Wilcoxon’s rank sum. For this, we used IH , see Tables 11
and 13. P is the probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that
the null hypothesis can be rejected at the 5% level.


~f md-moea & moead
P (H)


md-moea & sms-emoa
P (H)


mah-moea & moead
P (H)


mah-moea & sms-emoa
P (H)


DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (3) 0.000068 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.332841 (0)
DTLZ6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (3) 0.000000 (1) 0.239850 (0) 0.000000 (1) 0.239850 (0)
DTLZ1 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (4) 0.000252 (1) 0.000000 (1) 0.135171 (0) 0.000001 (1)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (4) 0.000000 (1) 0.491783 (0) 0.000000 (1) 0.000000 (1)
DTLZ1 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000232 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (5) 0.264326 (0) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000030 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (3) 0.000000 (1) 0.599689 (0) 0.000000 (1) 0.599689 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000008 (1)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.000001 (1) 0.000000 (1)
WFG2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (4) 0.000000 (1) 0.923442 (0) 0.000000 (1) 0.000077 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000111 (1)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (5) 0.000081 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.141278 (0)
WFG5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
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