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Abstract

We propose a new version of a multiobjective coevolutionary algorithm. The
main idea of the proposed approach is to concentrate the search effort on promising
regions that arise during the evolutionary process as a product of a clustering mech-
anism applied on the set of decision variables corresponding to the known Pareto
front. The proposed approach is validated using several test functions taken from
the specialized literature and it is compared with respect to two approaches that are
representative of the state-of-the-art in evolutionary multiobjective optimization.

1 Introduction

Despite the considerable volume of research on evolutionary multiobjective optimiza-
tion [5], little emphasis has been placed on certain algorithmic design aspects such
as efficiency [6, 10, 4]. Additionally, the use of coevolutionary mechanisms (which
have strong links to game theory [1]) has been scarce in the evolutionary multiobjec-
tive optimization literature. As in our original proposal, the main motivation of the
work reported here it is precisely to take advantage of some coevolutionary concepts to
design a multi-objective evolutionary algorithm (MOEA) that can be more efficient (in
terms of fitness function evaluations). The main idea of the proposed algorithm is to
obtain information along the evolutionary process as to focus the search in the “promis-
ing” sub-regions, and then to use a subpopulation for each of these subregions. At each
generation, these different subpopulations (which evolve independently using Fonseca
and Fleming’s ranking scheme [7]) “cooperate” and “compete” among themselves and
from these different processes we obtain a single Pareto front. Each individual con-
tained in the Pareto optimal set has a label that indicates the subpopulation to which
it belongs. These labels are used to determine which subpopulations contributed with
more solutions. The size of each subpopulation is adjusted based on their contribution
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to the current Pareto front (i.e., subpopulations which contributed more are allowed a
larger population size and viceversa). The proposed approach uses the adaptive grid
proposed in [10] to store the nondominated vectors obtained along the evolutionary
process, enforcing a more uniform distribution of such vectors along the Pareto front.
This new version of our algorithm performs a clustering analysis on the set of decision
variables of the current Pareto front to find the promising regions of the search space.
In this way, the number of populations needed does not exceeds the total number of
members on the true Pareto front.

2 Statement of the Problem

We are interested in solving problems of the type:

minimize
� ��������
	�� ��
������	���������� ���������	�� (1)

subject to: ��� �����	����! #"%$��'&(���������*) (2)+ � �����	,"-�. /"%$��'&(���������10 (3)

where 2 is the number of objective functions
� �43�57698:5

. We call
��;" � � � �*� 
 ���������*� 6 �=<

the vector of decision variables. We thus wish to determine from the set > of all the
vectors that satisfy (2) and (3) to the vectors �@?� �*��?
 ���������*��?6 that are Pareto optimal. We
say that a vector of decision variables

��@?BA > is Pareto optimum if there does not exist
another

��CA > such that
� � �����	ED � � �����?�	 for every  F"G$���������� 2 and

��H������	EI ��H������?�	
for at least one J . The vectors

��@? corresponding to the solutions included in the Pareto
optimal set are called nondominated. The objective function values corresponding to
the elements of the Pareto optimal set are called the Pareto front of the problem.

3 Coevolution

Coevolution refers to a reciprocal evolutionary change between species that interact
with each other. The relationships between the populations of two different species can
be described considering all their possible types of interactions. Such interaction can be
positive or negative depending on the consequences that such interaction produces on
the population. Evolutionary computation researchers have developed several coevo-
lutionary approaches in which normally two or more species relate to each other using
any of the possible relationships, mainly competitive (e.g., [11]) or cooperative (e.g.,
[13]) relationships. Also, in most cases, such species evolve independently through a
genetic algorithm. The key issue in these coevolutionary algorithms is that the fitness
of an individual in a population depends on the individuals of a different population.

4 Previous Work

There are very few references in the literature in which coevolutionary concepts are
used to solve multiobjective optimization problems. We will review the main ones in
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this section.
Parmee and Watson [12] proposed a collaborative scheme in which they use one

population to optimize each of the objective functions of a problem. The method is
really created to converge to a single (ideal) trade-off solution. However, through the
use of penalties the algorithm can maintain diversity in the population. These penalties
relate to variability in the decision variables’ values. The authors also store solutions
produced during the evolutionary process so that the user can analyze the historical
paths traversed by the algorithm.

Barbosa and Barreto [2] proposed a cooperative approach for solving a graph layout
generation problem. The approach uses two populations (a separate genetic algorithm
is used for each of them and information is exchanged through a shared fitness func-
tion): a graph layout population (i.e., individuals that contain the coordinates of all
vertices in the graph) and a population of weights (i.e., individuals that contain, each
one, a set of weights to be applied on the different aesthetic objectives imposed on the
problem). Each of the solutions produced by the system are presented to a user who
ranks them based on (subjective) preferences. This ranking is used to determine fitness
of the population of weights.

Keerativuttitumrong et.al [9] proposed a cooperative scheme in which one popula-
tion is defined for each decision variable of the problem. The evolution of each of these
populations is controlled through Fonseca and Fleming’s MOGA [7]. In order to eval-
uate an individual in any population, individuals from the other populations must be
selected in order to complete a solution (this is because each population only encodes
one decision variable).

Coello and Reyes [3] proposed a collaborative and cooperative scheme in which,
after a stage that explores the whole search space, the search space is splitted based on
a simple analysis of the current Pareto front. After that, a population is assigned to each
one of the subparts. The non-dominated individuals of each populations cooperate and
compete to form a single Pareto front. The sources (individuals) of each population
depend on the corresponding contribution to the current Pareto front.

5 Description of Our Approach

As in [3], the main idea of our approach is to focus the search efforts only towards
the promising regions of the search space. Such “promising” regions are determined
using clustering analysis of the current Pareto front. The evolutionary process of our
approach is divided in two main stages. The first stage takes place during the first
quarter of the total of generations. After that, in the second stage (the rest of the
generations) we perform what we call a checkpoint in specific moments that will be
mentioned later.
First Stage. During the first stage, the algorithm is allowed to explore all of the search
space, by using a population of individuals which are selected using Fonseca and Flem-
ing’s Pareto ranking scheme [7]. Additionally, the approach uses the adaptive grid pro-
posed in [10]. At the end of this first stage, the algorithm analyses the current Pareto
front (stored in the adaptive grid) in order to determine the promising regions of the
search space.
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1.
��� � " �

2. 0��'0����
	��� 
����� " $
3. while (

��� � I��7)�	 � ) �
if
� ��� � ���7)�	 ����� 	

4. if
� ��� � "��7)�	 ����� ���7)�	 ����& �����7)�	 ����� or� � A 0 �'0 !#"
$&% 3 � A current Pareto front 	�

5. check active populations()
6. clustering algorithm()
7. construct new subpopulations()'
8. for

�  4" $�(* ,D 0 �'0 ���)	��� 
������(*  *+*7	
9. if (0 �'0 ���)	��� ,���  contributes

to the current Pareto front)
10. evolve and compete(  )
11. elitism()
12. reassign resources()
13.

��� �-*+* '

Figure 1: Pseudocode of our algorithm.

In this new version, we perform a clustering analysis on the set of values of the
decision variables corresponding to the current Pareto front. The aim is to determine
the promising regions of the search space (line 6, Figure 1). This analysis is performed
independently for each decision variable. Once that we know the clusters of the values
corresponding to each one of the decision variables, we proceed to form a set of new
populations. This process is illustrated in Figure 2. A cluster is a set of values, so for
each cluster of each variable, we obtain the limits that bound that cluster. Once that we
know the limits of each cluster, we have a set of intervals for each variable. Then, a
set of sub-regions is created in the following way. For each point in the current Pareto
front, we proceed to locate the interval on each variable to which it belongs. This
process give us a region in the search space. For each point in the current Pareto front
we first check if it belongs to any region already located. If the point belongs to an
existing region, we continue with the next point. Otherwise, we proceed to create the
corresponding region. And so on. After that, we assign a new population to each region
created, i.e., those that have individuals in the current Pareto front (line 7, Figure 1). In
this way, in the worst case we will have as many populations as points in the current
Pareto front. Finally, we use one extra population (call population zero) that continues
searching for good solutions on the whole search space. This population is initialized
with an 80% of points of the current Pareto front and a 20% of random points (with the
aim of generate intermediate points on the current Pareto front while adding diversity).
Second Stage. When reaching the end of the first stage, the algorithm consists of a
certain number of populations looking each at different regions of the search space.
At each generation, the evolution of all the populations takes place independently and,
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Figure 2: Mechanism used to locate the promising regions of the search space. A
population will be assigned to each located promising region.
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Figure 3: Resources reassignment: Each population is assigned or removed individuals
such that its final size is proportional to its contribution to the current Pareto front.

later on, the nondominated elements from each population are sent to the adaptive grid
where they “cooperate” and “compete” in order to conform a single Pareto front. After
this, we count the number of individuals that each of the populations contributed to the
current Pareto front. Our algorithm is elitist (line 11, Figure 1), because after the first
generation of the second stage, all the populations that do not provide any individual to
the current Pareto front are automatically eliminated and the sizes of the other popula-
tions are properly adjusted (line 12, Figure 1). Each population is assigned or removed
individuals such that its final size is proportional to its contribution to the current Pareto
front. These individuals to be added or removed are randomly generated/chosen. This
process is illustrated in Figure 3. Thus, populations compete with each other to get as
many extra individuals as possible. Note that it is, however, possible that the sizes of
the populations “converge” to a constant value once their contribution to the current
Pareto front no longer changes.
Checkpoint. During the second stage, we perform a checkpoint in specific moments
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of the evolution process (line 4, Figure 1). The checkpoint takes place as before (see
Figure 1) [3], but also when the population zero includes a new individual in the adap-
tive grid, that is, in the current Pareto front. When the checkpoint happens, we perform
a check on the current populations in order to determine how many (and which) of
them can continue (i.e., those populations which continue contributing individuals to
the current Pareto front, which are the “good” populations) (line 5, Figure 1). As at the
end of the first stage, we perform again the clustering analysis on the set of values of
the decision variables corresponding to the current Pareto front, and proceed to form a
set of new populations. The non-dominated individuals from the “good” populations
are kept. All the good individuals are distributed across the newly generated popula-
tions. The elitist process continues takes place and the size of each population will be
adjusted based on the same criteria as before. Note however, that we define a minimum
population size and this size is enforced for all populations after each checkpoint.

1.choose random centroids
2.place each point in its corresponding cluster
3. � 6 "�� " sum of distances between each point and its centroid
4. � %���� "��� � � �
)	� ��

5.while ( � 6 "�� I � %��
� ) �
6. centroids=means, place points
7. (if needed) increase-eliminate-correct centroids, place points
8. � %���� " � 6 "��
9. update � 6 "�� '

Figure 4: Pseudocode of our clustering algorithm.

Clustering Analysis. We implemented a clustering algorithm based on the nature
of the 2�� ) � 	���� algorithm [8] (Figure 4). This algorithm begins with 2 random
centroids and puts every point of the analyzed set on the cluster corresponding to the
nearest centroid. After that, the means of each cluster are calculated and the process
repeat until no further changes are done. The algorithm stops when the minimum of
the sum of the distances between each point to its corresponding centroid is found.
This algorithm has two disadvantages: (1) it depends on the initial centroids and (2) it
requires the number of clusters needed. For this reason, we made two modifications to
overcome these drawbacks.

Regarding the first disadvantage, we look for a point that could be a new centroid:
Let � � a point that belongs to a cluster with centroid � � , and ��� � 6 the minimum distance
between two centroids. If � ��� ��� � 6 , � � will be a new centroid. To maintain the
number of clusters constant, once we have selected a point to be a new centroid, we
choose one of the closest centroids to be eliminated (line 7, Figure 4). With respect
to the second disadvantage, we use the following mechanism [8]: Let � � a point that
belongs to cluster � (with centroid ��� ) and � the current total number of clusters. The
average distance between � � and the � centroids is: �� � " � $�� � 	���� ��� � � � � � � � � 	 We
create a new cluster with centroid � � when: � � � � � � � � 	 � �� � � D �� �"! where

!
is such

that ��I ! I $ . As big is the value of
!

, as big is the number of clusters created
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(line 7, Figure 4). Since the previous mechanism creates new clusters, we use a simple
mechanism to also eliminate clusters when the corresponding centroids are very close
(line 7, Figure 4): If the distance between two centroids is less that

!
times the average

distance between centroids, one of them is eliminated.
Parameters Required. Our proposed approach requires the following parameters (The
parameter

!
of the clustering algorithm used was fixed to

! "%$ ):
1. Crossover rate (0�� ) and mutation rate (0 � ).

2. Maximum number of generations ( �7)�	 � ).

3. Size of the initial population (0��'0��� �� ��� 6 � � ) to be used during the first stage and
minimum size of the secondary population (0 �'0��� �� � � "�� ) to be used during the
further stages.

6 Results

To validate our approach, we used the methodology normally adopted in the evolution-
ary multiobjective optimization literature [5]. We performed both quantitative compar-
isons (adopting four metrics) and qualitative comparisons (plotting the Pareto fronts
produced) with respect to two MOEAs that are representative of the state-of-the-art
in the are: the Nondominated Sorting Genetic Algorithm II (NSGAII) [6], and the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [18]. For our comparative study,
we implemented the four following metrics:

Error Ratio (ER): This metric was proposed by Van Veldhuizen [15] to indicate
the percentage of solutions (from the nondominated vectors found so far) that are not
members of the true Pareto optimal set:

� 5 "
	��
���� " 
6 � where � is the number of
vectors in the current set of nondominated vectors available;

���
= 0 if vector  is a

member of the Pareto optimal set, and
��� " $ otherwise. It should then be clear that� 5 " � indicates an ideal behavior, since it would mean that all the vectors generated

by our algorithm belong to the true Pareto optimal set of the problem.
Generational Distance (GD): The concept of generational distance was introduced

by Van Veldhuizen & Lamont [16] as a way of estimating how far are the elements
in the Pareto front produced by our algorithm from those in the true Pareto front of

the problem. This metric is defined as: ��� "�� 	 �
���� ���
6 where � is the number of
nondominated vectors found by the algorithm being analyzed and � � is the Euclidean
distance (measured in objective space) between each of these and the nearest member
of the true Pareto front. It should be clear that a value of ��� " � indicates that all
the elements generated are in the true Pareto front of the problem. Therefore, any other
value will indicate how “far” we are from the global Pareto front of our problem.

Spacing (SP): This metric was proposed by Schott [14] as a way of measuring the
range (distance) variance of neighboring vectors in the Pareto front known. This metric

is defined as: ��� "�� �6�� � � 6� � � � �� � � � 	 
 where � � " ); ,� H�� � � � � � � �
�
� � �

H
� � 	 , '� J " $���� � � � � , ) is the number of objectives, �� is the mean of all � � , and � is the

number of vectors in the Pareto front found by the algorithm being evaluated. A value
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of zero for this metric indicates all the nondominated solutions found are equidistantly
spaced.

Two Set Coverage (SC): This metric was proposed in [17], and it can be termed
relative coverage comparison of two sets. Consider ��� � ��� � as two sets of phenotype
decision vectors. SC is defined as the mapping of the order pair

� � � � � � � 	 to the interval� � ��$�� : ��� � ��� � ��� � 	�� � � � 	 � �
	���� � ( � 	 ��	���� 3 	 ��
 	 � � ' � 	 � � � ��� �"� 	 . If all points in ���
dominate or are equal to all points in ��� � , then by definition ��� "%$ . ��� " � implies
the opposite. In general, ��� � ��� � ��� � 	 and ��� � ��� � � ��� 	 both have to be considered
due to set intersections not being empty. Of course, this metric can be used for both
spaces (objective function or decision variable space), but in this case we applied it in
objective function space.

For each of the test functions shown below, we perform 30 runs per algorithm
and a total of 10,000 evaluations. The parameters for NSGAII were 0 �'0��� �� � =100
and 100 generations and for SPEA2 were � "�� "��-":$���� and 100 generations.
All the algorithms used real representation, a bit mutation probability (0 � ) equal to$�� � � � � �� �� � (Parameter Based Mutation) and a crossover probability (0 � ) equal 0.8
(Simulated Binary Crossover). The Pareto fronts that we will show correspond to the
median of the 30 runs with respect to the

� 5
metric.

Regarding constraint-handling, we used the original scheme provided in the case
of the NSGAII. However, since the other two algorithms (including our own) don’t
have such a mechanism, we implemented a simple penalty function over the value of
objective functions of each unfeasible individual.

6.1 Test Function 1 (Deb)

Minimize
����� � � �*� 
 	 " � �

Minimize
��
�� � � �*� 
 	 " � � � � � � 
 	 + � � � � � 
 	

subject to: � � � � �*� 
 	,"%$�$ * � 

 � $�� � � � � &���� 
 	
+ � � � �*� 
 	,"

� $ � � � ����� ��� � ���� � � �!� � ��� ����� � � � � 
 	 D � � � � �*� 
 	
� otherwise� � � DC� � D $�� �

� ��� � � D�� 
 D+��� � �
In this example, our approach used: 0��'0��� �� � � 6 � � " $���� , 0 �'0��� �� � $ " �," ��� (38 gen).

Table 1 shows the values of the metrics for each of the MOEAs compared.
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Figure 5: Pareto fronts obtained by our approach (CO-MOEA), the NSGAII [6] and
the SPEA2 [18], for test function 1.

6.2 Test Function 2 (Kursawe)

Minimize
��� � ��	 "


� � �#� � � $��
� ����� 
 ? � � �
�� � �
���� 	

Minimize
� 
 � ��	 " 	� � �#� � � �

� � ��� 
 *�� �� ,� � � 	
� 	*	

subject to:

� � � � D � � � � 
 �*� 	
D
� � �

In this case, our approach used: 0��'0��� �� ��� 6 � � " $���� , 0��'0��� �� � $&"�� " ��� (40 gen).
Table 2 shows the values of the metrics for each of the MOEAs compared.
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Test Function 1
CO-MOEA NSGAII SPEA2

best 0.02 0.00 0.02
median 0.10 0.07 0.05���
worst 0.44 0.47 0.39

average 0.15 0.13 0.08
std. dev. 0.1112 0.1289 0.0856

best 0.0001 0.0047 0.0048
median 0.0040 0.0056 0.0056���
worst 0.0910 0.0061 0.6116

average 0.0159 0.0055 0.0829
std. dev. 0.0249 0.0004 0.1303

best 0.0045 0.0064 0.0027
median 0.0090 0.0073 0.0041���
worst 0.9069 0.0084 1.9915

average 0.1344 0.0073 0.4252
std. dev. 0.2491 0.0006 0.6227

Two Set Coverage Metric
�
	

� �
	
� ������� �
	
� ��������� �
	
� ���������
�

CO-MOEA 0.00 0.00 0.00���
NSGAII 0.02 0.00 0.01�����
SPEA2 0.00 0.03 0.00

Average 1% 2% 0%

Table 1: Comparison of results between our approach (denoted by CO-MOEA), the
NSGAII [6] and the SPEA2 [18] for test function 1.

Test Function 2
CO-MOEA NSGAII SPEA2

best 0.12 0.16 0.19
median 0.23 0.27 0.26���
worst 0.35 0.37 0.36

average 0.24 0.28 0.25
std. dev. 0.0578 0.0578 0.0412

best 0.0028 0.0032 0.0028
median 0.0032 0.0036 0.0033���
worst 0.0038 0.0044 0.0035

average 0.0032 0.0037 0.0032
std. dev. 0.0002 0.0004 0.0002

best 0.0519 0.0450 0.0991
median 0.1100 0.0553 0.0867���
worst 0.1534 0.1060 0.0801

average 0.1069 0.0606 0.0866
std. dev. 0.0306 0.0156 0.0042

Two Set Coverage Metric
�
	

� �
	
� ������� �
	
� ��������� �
	
� ���������
�

CO-MOEA 0.00 0.07 0.17���
NSGAII 0.07 0.00 0.14�����
SPEA2 0.07 0.09 0.00

Average 7% 8% 16%

Table 2: Comparison of results between our approach (denoted by CO-MOEA), the
NSGAII [6] and the SPEA2 [18] for test function 2.
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Figure 6: Pareto fronts obtained by our approach (CO-MOEA), the NSGAII [6] and
the SPEA2 [18], for test function 2.

6.3 Test Function 3 (Kita)

Minimize
����� � � � � 
 	 " � �


 � * � 

Minimize

� 
 � � � � � 
 	 " $
& � � * � 
 *-$

subject to:

� � � � � �*� 
 	," $
� � � * � 
 � $ �& DC�

� 
 � � � �*� 
 	," $
& � � * � 
 �

$ �
& DC��

	
� � � �*� 
 	 " ��� � * � 
 � ��� DC�� � � D�� � �*� 
 D��(� �

In this example, our approach used: 0��'0��� �� ��� 6 � � " $���� , 0 �'0��� �� � $ " � " ��� (40 gen).
Table 4 shows the values of the metrics for each of the MOEAs compared.
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Figure 7: Pareto fronts obtained by our approach (CO-MOEA), the NSGAII [6] and
the SPEA2 [18], for test function 3.

6.4 Test Function 4 (Tanaka)

Minimize
����� � � � � 
 	 " � �

Minimize
��
�� � � � � 
 	 " � 


subject to:
� � � � � �*� 
 	," � �


 � � �


 * $ * � � $ � � � � $ � 	 
 � � 	�� �

�
� 
 	 DC�� 
�� � � � � 
 	," � � � � $& 	


 * � � 
 � $& 	


� $& DC�� � � DC� � �*� 
 D �

In this example, our approach used: 0��'0��� �� ��� 6 � � " $���� , 0 �'0��� �� � $ " � " ��� (40 gen).
Table 4 shows the values of the metrics for each of the MOEAs compared.
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Test Function 3
CO-MOEA NSGAII SPEA2

best 0.37 0.30 0.27
median 0.52 0.44 0.33���
worst 0.67 0.58 0.43

average 0.51 0.46 0.35
std. dev. 0.0793 0.0624 0.0455

best 0.0025 0.0019 0.0026
median 0.0056 0.0025 0.0038���
worst 0.1980 0.5224 0.1569

average 0.0239 0.0627 0.0222
std. dev. 0.0411 0.1412 0.0395

best 0.0351 0.0192 0.0190
median 0.0539 0.0248 0.0284���
worst 0.1868 2.8625 1.3698

average 0.0636 0.1513 0.1504
std. dev. 0.0295 0.5286 0.3025

Two Set Coverage Metric
�
	

� �
	
� ������� �
	
� ��������� �
	
� ���������
�

CO-MOEA 0.00 0.15 0.14���
NSGAII 0.28 0.00 0.07�����
SPEA2 0.39 0.29 0.00

Average 34% 22% 11%

Table 3: Comparison of results between our approach (denoted by CO-MOEA), the
NSGAII [6] and the SPEA2 [18] for test function 3.

Test Function 4
CO-MOEA NSGAII SPEA2

best 0.05 0.01 0.02
median 0.16 0.08 0.06���
worst 0.29 0.17 0.10

average 0.15 0.08 0.06
std. dev. 0.0461 0.0339 0.0216

best 0.0009 0.0008 0.0010
median 0.0012 0.0013 0.0012���
worst 0.0015 0.0016 0.0014

average 0.0012 0.0012 0.0012
std. dev. 0.0001 0.0002 0.0001

best 0.0047 0.0065 0.0037
median 0.0085 0.0099 0.0052���
worst 0.0185 0.0155 0.0079

average 0.0092 0.0101 0.0053
std. dev. 0.0027 0.0022 0.0009

Two Set Coverage Metric
�
	

� �
	
� ������� �
	
� ��������� �
	
� ���������
�

CO-MOEA 0.00 0.14 0.18���
NSGAII 0.17 0.00 0.17�����
SPEA2 0.34 0.20 0.00

Average 26% 17% 18%

Table 4: Comparison of results between our approach (denoted by CO-MOEA), the
NSGAII [6] and the SPEA2 [18] for test function 4.
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Figure 8: Pareto fronts obtained by our approach (CO-MOEA), the NSGAII [6] and
the SPEA2 [18], for test function 4.

7 Discussion of Results

In the first function, the three algorithms have similar results with respect to the ER
metric, however the SPEA2 algorithm has the best results on average. In the case of
the GD and SP metrics, although our algorithm and the SPEA2 algorithm respectively
have better best and median results than the other algorithms, the best results on average
are from the NSGAII algorithm in both cases given its low standard deviation. Finally,
regarding the SC metric all the algorithms have very similar results (between 0 and
2%).

In the case of the second function, with respect to the ER and GD metrics, the
three algorithms have very similar results, being our algorithm marginally the best.
Regarding the SP metric, the NSGAII algorithm has the best results. Finally, in this
case with respect to the SC metric, our algorithm has the best results with an average
of 7% of its points dominated by other algorithms. In this case, the percentages of
NSGAII and SPEA2 are: 8% and 16%, respectively.

In the third function, there are clear differences between the three algorithms in the
values of the ER metric: the best is SPEA2 followed by NSGAII and our algorithm.
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With respect to the GD metric, although our algorithm has the best value, on average
the SPEA2 has the best results, followed by our algorithm and the NSGAII. In the
case of the SP metric, although the better best and median results are from SPEA2
and NSGAII, the best results on average are from our algorithm given its low standard
deviation. Regarding the SC metric, SPEA2 has the best results with an average of 11%
of its points dominated by other algorithms. In this case, the percentages of NSGAII
and our algorithm are: 22% and 34%, respectively.

In the case of the fourth function, the best results on average with respect to the
ER metric are from SPEA2, followed by NSGAII and our algorithm. With respect
to the GD metric, the results of the three algorithms are almost equal. In the case of
the SP metric, the best results on average are from SPEA2, followed by our algorithm
and NSGAII. Regarding the SC metric, NSGAII has the best results with an average
of 17% of its points dominated by other algorithms. In this case, the percentages of
SPEA2 and our algorithm are: 18% and 26%, respectively.

In general, in the first two functions our algorithm obtained very good results. The
values of the metrics on these two functions indicate that our algorithm was able to
approximate the true Pareto front in each case as good as the other algorithms. This is
reflected in the values of the SC metric too. In the case of the third and fourth functions,
our algorithm obtained results somehow poor against the other algorithms with respect
to the ER metric. This means that our algorithm couldn’t find as many points of the true
Pareto front as the other algorithms, and this is the reason for the relatively high values
of our algorithm in the SC metric. However, the values obtained in these cases on the
GD metric indicate that our algorithm was as close of the true Pareto front as the other
algorithms. Regarding the distribution (SP metric), except in the fourth function, the
values of our algorithm are not as good as the other algorithms. This is an improvement
that we have to do as part of our future work.

8 Conclusions and Future Work

We have presented a new version of a coevolutionary multi-objective evolutionary al-
gorithm whose main idea is to detect the most “promising” sub-regions of the search
space and focus the search on them. With this aim, the proposed algorithm applies a
clustering algorithm on the set of decision variables of the known Pareto front. The pro-
posed approach was validated using several test functions taken from the specialized
literature. Our comparative study showed that the proposed approach is competitive
with respect two other algorithms that are representative of the state-of-the-art in the
area. Since we are proposing a coevolutive scheme that uses MOGA as search en-
gine, we consider it is an interesting idea in to use some more efficient multiobjective
algorithm in order to improve the obtained results.
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