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Abstract

Fitness inheritance is an enhancement technique used to reduce the
computational cost of evolutionary algorithms. What fitness inheritance
does is, with certain probability, to avoid evaluating an individual. In-
stead, such individual gets assigned a fitness value which is somehow ob-
tained from the fitness values of its parents. The probability of applying
fitness inheritance to an individual is called inheritance proportion. Such
parameter is usually given by the user, and its value determines the sav-
ings on the number of evaluations performed. In this paper, we propose
a dynamic mechanism to vary the value of the inheritance proportion
through the run in order to obtain a greater reduction in computational
cost, without dramatically affecting the quality of the results. We apply
our proposed approach into a multi-objective particle swarm optimizer
with a fitness inheritance technique previously proposed by the authors.
Several functions to adapt the inheritance proportion through the run
are tested using functions taken from the specialized multi-objective op-
timization literature. The results obtained show that it is possible to
reduce the computational cost by 32% without affecting the quality of the
obtained Pareto front. Also, the proposed approaches are able to obtain
very good approximations of the true Pareto front even when reducing
the computational cost by 78%.
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1 Introduction

Since function evaluation in real world applications is usually very expensive, the
use of Evolutionary Algorithms (EAs), which are population-based techniques,
becomes very expensive, too. Fitness inheritance is an enhancement technique
that has been proposed to improve the performance of EAs [11]. In fitness
inheritance, the fitness value of an offspring is obtained from the fitness values
of its parents. When using fitness inheritance, we do not need to evaluate
every individual at each generation, and the computational cost is reduced.
When a fitness inheritance technique is incorporated into an EA, the user has
to fix a new parameter called inheritance proportion. Such parameter indicates
the probability with which an individual is going to inherit its fitness from its
parents. In this way, a fixed value of inheritance proportion determines how
much the computational cost is going to be reduced.

In this paper, we propose a mechanism to adapt the value of the inheritance
proportion in a dynamic way through the run, in order to analyze how much
can we reduce the computational cost without dramatically deteriorating the
quality of the obtained results. The proposed approach is incorporated into a
Multi-Objective Particle Swarm Optimization (MOPSO) algorithm previously
proposed in [7]. We use four well-known multi-objective test functions in order
to test the performance of the proposed mechanism.

This paper is organized as follows. In Section 2, we define the problem
that we want to solve. A brief introduction to fitness inheritance is given in
Section 3. Section 4 introduces the MOPSO algorithm in which the fitness in-
heritance technique and the proposed mechanism are incorporated. The fitness
inheritance technique used is described in Section 5. The dynamic mechanism
proposed to adapt the value of inheritance proportion is presented in Section
6. In Section 7 and 8 we present the obtained results and their discussion, re-
spectively. Finally, the conclusions and future work are described in Section
9.

2 Statement of the Problem

We are interested in solving problems of the type:

minimize [fi(Z), f2(Z), ..., fx(Z)] (1)

subject to:
G@ <0 i=12....m (2)
hi(F) =0 i=1,2...,p (3)
where k is the number of objective functions f; : R — R. We call ¥ =
[z1,Z2,... ,:cn]T the vector of decision variables. We thus wish to determine

from the set F of all the vectors that satisfy (2) and (3) to the vectors =7, 3, . .., z}
that are Pareto optimal.



We say that a vector of decision variables £* € F is Pareto optimum if there
does not exist another ¥ € F such that f;(Z) < fi(&*) for every ¢ = 1,...,k
and f;(Z) < f;(@*) for at least one j. The vectors &* corresponding to the
solutions included in the Pareto optimal set are called nondominated. The
objective function values corresponding to the elements of the Pareto optimal
set are called the Pareto front of the problem.

3 Fitness Inheritance

The use of fitness inheritance to improve the performance of GAs was originally
proposed by Smith et al. [11]. The authors proposed two possible ways of
inheriting fitness: the first consists of taking the average fitnesses of the two
parents and the other consists of taking a weighted (proportional) average of the
fitnesses of the two parents. The second approach is related to how similar the
offspring is with respect to its parents (this is done using a similarity measure).
They applied inheritance to a very simple problem (the OneMax problem) [11]
and found that the weighted fitness average resulted in a better performance
and indicated that fitness inheritance was a viable alternative to reduce the
computational cost of a genetic algorithm.

Fitness inheritance is applied to an individual with certain probability (like
the crossover or the mutation operator). Otherwise, the individual is evaluated
using the true fitness function. This probability is called inheritance proportion.
The inheritance proportion is a parameter that has to be fixed by the user, and
its value determines the number of evaluations that are going to be saved. For
example, if the inheritance proportion has the value of 0.1, it means that the
corresponding EA is going to save a 10% of the total number of evaluations (this
is an approximate value).

Sastry et al. [10] provided some theoretical foundations for fitness inheri-
tance. They investigated convergence times, population sizing and the optimal
inheritance proportion for the OneMax problem. Chen et al. [2] investigated
fitness inheritance as a way to speed up multi-objective GAs and EAs. They
extended the analytical model proposed by Sastry et al. for multi-objective
problems. Convergence and population-sizing models are derived and compared
with respect to experimental results. The authors concluded that the number
of function evaluations can be reduced with the use of fitness inheritance.

Salami et al. [9] proposed a “Fast Evolutionary Algorithm” in which a
fitness and associated reliability value are assigned to each new individual that
is only evaluated using the true fitness function if the reliability value is below a
threshold. Also, they incorporated random evaluation and error compensation
strategies. The authors obtained an average reduction of 40% in the number of
evaluations while obtaining solutions of similar quality. In the same work, they
presented an application of fitness inheritance to image compression obtaining
reductions between 35% and 42% of the number of evaluations.

Bui et al. [1] performed a comparison of the performance of anti-noise
methods, particularly probabilistic and re-sampling methods, using NSGA-II



[3]- They applied the concept of fitness inheritance to both types of methods in
order to reduce calculation time. The authors obtained a substantial amount of
savings in computational time (reaching 30% in the best case), without deteri-
orating the performance.

4 Multi-Objective Particle S warm Optimization

In this paper, we incorporate our proposed approach into a MOPSO that was
previously proposed in [7] and updated in [6]. The MOPSO proposed in [7, 6]
is based on Pareto dominance, since it considers every non-dominated solution
as a new leader. Additionally, the approach also uses a crowding factor [3] as
a second discrimination criterion which is also adopted to filter out the list of
available leaders. For each particle, a leader is selected in the following way:
97% of the time a leader is randomly selected if and only if that leader dominates
the current particle, and, the remaining 3% of the time, the selection is done
by means of a binary tournament based on the crowding value of the available
set of leaders. If the size of the set of leaders is greater than the maximum
allowable size, only the best leaders are retained based on their crowding value.
This approach also uses different mutation (or turbulence) operators which act
on different subdivisions of the swarm. This is done by means of a scheme by
which the swarm is subdivided in three parts (of equal size): the first sub-part
has no mutation at all, the second sub-part uses uniform mutation and the third
sub-part uses non-uniform mutation. The available set of leaders is the same for
each of these sub-parts. Finally, this MOPSO approach also incorporates the
e-dominance concept [5] to fix the size of the set of final solutions produced by
the algorithm. Figure 1 shows the pseudocode of the MOPSO algorithm used
in this work.

In Figure 1, the symbol (=) indicates the line in which the concept of fitness
inheritance (or approximation) is incorporated. As we said before, the inheri-
tance proportion, p;, indicates the proportion of individuals in the population
whose fitness is inherited. It is very important to note that a particle that has
inherited its objective values cannot enter into the final Pareto front, since a
final solution must have true objective values.

5 Fitness Inheritance in MOPSO

The first attempt to incorporate the concept of fitness inheritance to a real-
coded MOPSO was proposed in [6]. After testing the performance of weighted
average fitness inheritance on a well-known test suite of multi-objective opti-
mization problems [12], the authors concluded that fitness inheritance reduces
the computational cost without decreasing the quality of the results in a signif-
icant way [6]. Also, the fitness inheritance technique used was able to generate
non-convex and discontinuous Pareto fronts. These conclusions were somewhat
surprising since, previous to the work presented in [6], Ducheyne et al. [4] tested



Begin
Initialize swarm. Initialize leaders.
Send leaders to e-archive
crowding(leaders), g = 0
While g < gmaz
For each particle
Select leader. Flight. Mutation.
= If(p;) Inherit Else Evaluation.
Update pbest.
EndFor
Update leaders, Send leaders to e-archive
crowding(leaders), g++
EndWhile
Report results in e-archive
End

Figure 1: Pseudocode of the MOPSO algorithm.

the performance of average and weighted average fitness inheritance on the same
test suite, using a binary GA, and they concluded that although fitness inheri-
tance efficiency enhancement techniques could be used to reduce the number of
fitness evaluations, they found that if the Pareto surface was not convex or if
it was discontinuous, the fitness inheritance strategies failed to reach the true
Pareto front.

In this work, we use a fitness inheritance technique previously proposed [8].
In [8], the authors studied several different techniques for inheriting the fitness
of individuals in the MOPSO algorithm previously described. In this paper, we
use the fitness inheritance technique that was found to obtain the best results.
As we know, in PSO, the position of each particle in the search space is updated
using the formula:

Ti(t) = Zi(t — 1) + v;(t)

ﬁz(t) = W'l_;z(t - ]-) + 017'1 (-’i;’pbesti - fl(t)) + C2T2 (fgbest,’ - f’l(t))

In [8], the authors proposed an analogous formula to update the position of each
particle in the objective space:

£(t) = £(t — 1) + vEi(t)
vii(t) = Wit — 1) + Ciry (Fopest; — fi(1)) + Cora (Fapest; — fi(t))

where f_';, fpbesti and f"gbesti are the values of the objective function ¢ for the
current particle, its pbest and gbest, respectively. The values of W, Cy, r1, Co
and ry are the same previously used for the flight in the decision variable space.



The fitness inheritance technique that gave the best results in [8], called FI5,
is based on the flight formula for the objective space. However, the authors found
the best performance of technique FI5 when the corresponding flight formula
ignores the previous direction of the particle (W = 0):

-

V-i‘i (t) = Cl 1 (fpbesti - ﬁ(t)) + CQTQ (ngesti - fi (t))

6 Proposed Approach

From the work presented in [6, 8], the authors concluded that fitness inheritance
techniques are able to reduce the computational cost significantly without de-
creasing the quality of the results in a dramatic way. However, in all the previous
experiments performed, the savings in the number of evaluations was completely
determined by the value of inheritance proportion p;.

With the aim of obtaining more savings in the number of evaluations per-
formed, we decided to study the possibility of setting the value of the inheritance
proportion parameter p; following a dynamical scheme.

From the previous work, we concluded that the use of fitness inheritance
decreases the quality of the results as we increase the value of the parameter
pi [6, 8]. So, our main idea is to increase the savings in number of function
evaluations but setting the value of p; in such a way that fitness inheritance can
be less harmful.

We proceeded to analyze the behavior of the MOPSO approach previously
described, with respect to the improvement on the current Pareto front through
the evolutionary process, that is, through the generations. With this aim, we
use the following binary measure of performance:

Two Set Coverage (SC): This metric was proposed in [12]. Consider
X', X" as two sets of phenotype decision vectors. SC is defined as the mapping
of the order pair (X', X") to the interval [0, 1]:

SC(XI7XII) — |{a”€X”;3CL’€X’ . al < a”}|/|X”|

where < means “dominates”. If all points in X' dominate or are equal to all
points in X"'| then by definition SC(X', X") =1. SC(X',X") = 0 implies the
opposite.

Given the current Pareto front in generation ¢, PF(t), and the Pareto front
in the previous generation PF (¢t — 1), we calculate the value of the SC measure:

SC(PF(t), PF(t — 1))

In this way, we can know “how much” better is the current Pareto front with
respect to the front of the previous generation.

We performed 30 runs of the MOPSO approach without inheritance and
using function ZDT1 (whose definition is given in the next section), 100 particles
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Figure 2: Average value of SC(PF(t), PF(t — 1)) at each generation.

and 200 generations, and we obtained the average of SC(PF(t), PF(t — 1)) at
each generation. Figure 2 shows the obtained results. As we can see, the
most important improvement takes place during the first quarter of the total
of generations (the first 50 generations in this case). In this way, we concluded
that at the beginning of the process it is not convenient to use too much fitness
inheritance. However, towards the end of the process, fitness inheritance is more
suitable.

Thus, given the previous conclusions, we propose to set the value of the
parameter p; dynamically with respect to the current generation number. The
main idea is to increase the use of fitness inheritance through the evolutionary
process. In this way, we propose six different functions to adapt the value of the
inheritance proportion with respect to the number of the current generation:
Let gen be the number of the current generation and Gmaz the total number
of generations:

e nonlinearl: p;(gen) = (2 )4

e nonlinear2: p;(gen) = (_g‘en )2

Gmazx
H sin( 21T 252
e nonlinear3: p;(gen) = Z=2 — ( G.gmm)
e linear: p;(gen) = Z-"-

1
nonlineard: p;(gen) = (Z=2-)*

1
e nonlinear5: p;(gen) = (Z&2-)*

The six previous functions (that we will call adaptive functions) are de-
signed in such a way that the value of inheritance proportion increases through
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Figure 3: Plot of the six different functions proposed to adapt the value of the
inheritance proportion (p;) through the evolutionary process.

the evolutionary process. Nevertheless, it is important to note that gen =
0,...,Gmaz — 1, and that p; = 0 when gen = 0, since fitness inheritance must
not be applied when gen = 0. Figure 3 presents a plot of the six adaptive
functions.

The adaptive functions are numbered following an ascending order with re-
spect to the savings on the total number of evaluations that they define. In this
way, the adaptive function nonlinearl is the one that defines the least savings
on the total number of evaluations. On the other hand, the adaptive function
nonlinear5 is the one that defines the greatest savings on the total number of
evaluations. See Figure 3.

7 Results

In order to test the mechanism proposed to set the value of the parameter p;, we
proceeded to incorporate it into the MOPSO approach and we performed the
following experiments. We ran the algorithm 30 times using functions ZDT1,
ZDT2, ZDT3 and ZDT4:

o Test Function ZDT1 [12]:

Minimize(f1 (%), f2(%))

[1(E) = 21, f2(Z) = g(¥)h(f1,9
9@ =1+9Y ", z;/(m—1),
where m = 30, and z; €[0,1].

)
Mil,9)=1-+f/g

e Test Function ZDT2 [12]:



Minimize( f1 (%), f2(%))

fl(f) =1, f2(f) = g(a?’)h(fl,g)

9@ =149 7", z:i/(m=1), h(fl,9) =1 - (f1/9)?
where m = 30, and z; €[0,1].

o Test Function ZDT3 [12]:

Minimize(f1 (%), f2(Z))

[1(@) = 21, fo(Z) = g(@)h(f1,9)

9@ =1+9Y ", zi/(m—1), h(fl,9) =1—/fi/9 — (f1/9)sin(107 f1)
where m = 30, and z; €[0,1].

o Test Function ZDT4 [12]:

Minimize(f; (), f2(Z))
f1(@) = 21, f2(F) = g(F)h(f1,9)
9(@) =1+10(m —1) + 3", (27 — 10cos(47x;)), h(fl,9) =1—+/fi/g

where m = 10, z; €[0,1] and z; €[-5,5], i = 2, ...,m.

Functions ZDT1 and ZDT4 have convex Pareto fronts, ZDT2 has a non-
convex Pareto front and ZDT3 has a non-convex and discontinuous Pareto front.

The parameters used were 200 particles, 100 generations and 100 points in
the final Pareto Front. In this way, the total number of evaluations is 20200
in the absence of fitness inheritance. As we said before, in all the experiments
performed we used the fitness inheritance technique FI5, since it was found to
be the best among the inheritance techniques proposed in [8]. For our compar-
ative study, we implemented two unary measures of performance:

Success Counting (SCC): This measure counts the number of vectors, in the
current set of nondominated vectors available, that are members of the Pareto
optimal set:

n
SCC =Y s,
i=1
where n is the number of vectors in the current set of nondominated vectors
available; s; = 1 if vector ¢ is a member of the Pareto optimal set, and s; = 0

otherwise.

Inverted Generational Distance (IGD): This measure indicates how far is
the true Pareto front from the obtained Pareto front:

n 2
n

where n is the number of elements in the true Pareto front and d; is the Eu-
clidean distance (measured in objective space) between each of these and the



Table 1: Obtained results for all the adaptive functions, for test function ZDT1.

Function ZDT1
no-inherit | nonlinearl | nonlinear2 | nonlinear3

best 99 99 94 97
median 93 87 79 76
SCC worst 47 38 16 29
mean 87 84 74 71
st. dev. 12.5 12.6 21 18.6

best 0.00091 0.00091 0.00091 0.00091
median | 0.00097 0.00097 0.00097 0.00096
IGD | worst 0.00100 0.00104 0.00198 0.04922

mean 0.00096 0.00096 0.00103 0.00313
st. dev. | 0.00003 0.00003 0.00024 0.00890

evaluations 20200 16306 13640 10295
savings 0% 19.3% 32.5% 49%
no-inherit linear nonlinear4 | nonlinearb
best 99 95 81 62
median 93 75 55 17
SCC | worst 47 12 10 1
mean 87 68 53 21
st. dev. 12.5 22.7 21.6 13.5

best 0.00091 0.00092 0.00092 0.00099
median | 0.00097 0.00096 0.00103 0.00141
IGD | worst 0.00100 0.03182 0.04922 0.08305

mean 0.00096 0.00280 0.00388 0.00838
st. dev. | 0.00003 0.00693 0.00979 0.01803
evaluations 20200 10303 6966 4319

savings 0% 49% 65.5% 78.6%

nearest member of the set of nondominated vectors found by the algorithm.

Tables 1, 2, 3 and 4 present the results obtained using the unary measures.
For each test function, we present first the results obtained by the MOPSO
approach without inheritance and then, the results of the approach with in-
heritance with each one of the adaptive functions, from function nonlinearl to
function nonlinear5. For each approach, we present the best, median, worst,
mean and standard deviation values with respect to the two unary measures
implemented. Also, we show the average number of evaluations performed on
each case and the corresponding percentage of savings obtained.

On the other hand, for each test function, we selected the Pareto fronts cor-
responding to the median value with respect to the SCC measure to represent
each approach. In this way, Table 5 presents the results obtained when ap-
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Table 2: Obtained results for all the adaptive functions, for test function ZDT2.

Function ZDT?2
no-inherit | nonlinearl | nonlinear2 | nonlinear3

best 100 100 100 99
median 96 94 94 91
SCC worst, 35 69 47 0
mean 92 93 89 83
st. dev. 12.9 6.1 12.2 21.7

best 0.00063 0.00063 0.00063 0.00063
median | 0.00065 0.00065 0.00066 0.00067
IGD | worst 0.00096 0.00076 0.00081 0.00587

mean 0.00067 0.00066 0.00067 0.00092
st. dev. | 0.00006 0.00002 0.00004 0.00100

evaluations 20200 16304 13641 10295
savings 0% 19.3% 32.5% 49%
no-inherit linear nonlinear4 | nonlineard
best 100 100 98 95
median 96 93 79 46
SCC | worst 35 2 0 0
mean 92 84 69 45
st. dev. 12.9 22.9 26.6 34.2

best 0.00063 0.00063 0.00063 0.00067
median 0.00065 0.00067 0.00070 0.00111
IGD worst 0.00096 0.00353 0.06777 0.04557

mean 0.00067 0.00078 0.00516 0.00378
st. dev. 0.00006 0.00053 0.01390 0.00904
evaluations 20200 10298 6968 4316

savings 0% 49% 65.5% 78.6%
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Table 3: Obtained results for all the adaptive functions, for test function ZDT3.

Function ZDT3
no-inherit | nonlinearl | nonlinear2 | nonlinear3

best 91 91 93 86
median 78 74 74 57
SCC worst, 42 38 9 4
mean 76 73 72 53
st. dev. 12.7 11.6 15.9 21.5

best 0.00076 0.00081 0.00079 0.00085
median | 0.00086 0.00090 0.00093 0.00186
IGD | worst 0.00134 0.00198 0.01586 0.05416

mean 0.00090 0.00101 0.00200 0.00742
st. dev. | 0.00014 0.00027 0.00322 0.01375

evaluations 20200 16312 13622 10290
savings 0% 19.2% 32.6% 49.1%
no-inherit linear nonlinear4 | nonlineard
best 91 89 69 48
median 78 60 37 11
SCC | worst 42 17 10 2
mean 76 59 37 16
st. dev. 12.7 16.2 18 12.6

best 0.00076 0.00082 0.00083 0.00167
median 0.00086 0.00112 0.00282 0.01291
IGD | worst 0.00134 0.02734 0.04911 0.05052

mean 0.00090 0.00232 0.01085 0.01779
st. dev. | 0.00014 0.00490 0.01371 0.01473
evaluations 20200 10304 6966 4336

savings 0% 49% 65.5% 78.5%
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Table 4: Obtained results for all the adaptive functions, for test function ZDT4.

Function ZDT4
no-inherit | nonlinearl | nonlinear2 | nonlinear3

best 100 99 98 99
median 97 97 96 94
SCC | worst 78 69 74 49
mean 96 94 93 89
st. dev. 4.8 6.6 6.0 12.6

best 0.00090 0.00090 0.00090 0.00091
median | 0.00097 0.00097 0.00097 0.00096
IGD | worst 0.00098 0.00098 0.00098 0.00100

mean 0.00096 0.00096 0.00096 0.00095
st. dev. | 0.00002 0.00002 0.00002 0.00003

evaluations 20200 16287 13626 10315
savings 0% 19.4% 32.5% 48.9%
no-inherit linear nonlinear4 | nonlineard
best 100 99 95 81
median 97 95 83 48
SCC | worst 78 28 3 2
mean 96 90 77 47
st. dev. 4.8 14.2 18.1 22.6

best 0.00090 0.00090 0.00092 0.00096
median 0.00097 0.00100 0.00096 0.00110
IGD | worst 0.00098 0.00100 0.00139 0.00212

mean 0.00096 0.00100 0.00098 0.00124
st. dev. | 0.00002 0.00003 0.00008 0.00032
evaluations 20200 10304 6958 4315

savings 0% 49% 65.6% 78.6%
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Table 5: Success Counting measure.

Function ZDT1
X nll nl2 nl3 lin nl4 | nl5
SC(no-inh,X) | 0.33 | 0.23 | 0.25 | 0.25 | 0.23 | 0.66
SC(X,no-inh) | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00
Function ZDT2
X nll nl2 nl3 lin nl4 | nl5
SC(no-inh,X) | 0.37 | 0.21 | 0.29 | 0.20 | 0.39 | 0.30
SC(X,no-inh) | 0.03 | 0.07 | 0.05 | 0.04 | 0.00 | 0.00
Function ZDT3
X nll nl2 | nl3 lin nl4 | nl5
SC(no-inh,X) | 0.27 | 0.20 | 0.34 | 0.37 | 0.40 | 0.67
SC(X,no-inh) | 0.14 | 0.08 | 0.02 | 0.01 | 0.00 | 0.00
Function ZDT4
X nll nl2 nl3 lin nl4 | nl5
SC(no-inh,X) | 0.21 | 0.12 | 0.19 | 0.13 | 0.11 | 0.30
SC(X,no-inh) | 0.05 | 0.14 | 0.06 | 0.01 | 0.01 | 0.01

plying the SC measure to the Pareto fronts that represent each approach. For
each case, we compare the Pareto front corresponding to the approach without
inheritance against the Pareto fronts corresponding to the approaches with in-
heritance, using adaptive functions nonlinearl to nonlinear5. Also, for each case
we compare the Pareto fronts corresponding to the approaches with inheritance
against the Pareto front of the approach without inheritance.

Finally, Figures 4, 5, 6 and 7 show the Pareto fronts that represent each
approach. For each test function, we present three plots. The first one, shows the
Pareto fronts from the approach without inheritance and the approaches with
inheritance and adaptive functions nonlinearl and nonlinear2. The second plot
shows the Pareto fronts from approaches with inheritance and adaptive functions
nonlinear3 and linear. Finally, the third plot shows the Pareto fronts from
approaches with inheritance and adaptive functions nonlinear4 and nonlinear5.

8 Discussion of Results

As we can see in Tables 1, 2, 3 and 4, for all the test functions, when the appli-
cation of the inheritance increases, the quality on the results is more affected.
This behavior can be observed more dramatically in functions ZDT1 and ZDT3.
In functions ZDT2 and ZDT4, the quality of the results is less affected by the
application of fitness inheritance. In fact, in function ZDT4, we can see that
the results with respect to the IGD measure are almost of the same quality,
even when a 78% of evaluations are saved. Function ZDT4 is the one with the
lowest number of variables. In this way, we may argue that the use of fitness
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inheritance is less harmful when the decision variable space has low dimension-
ality. Actually, in function ZDT4 we argue that, considering both measures of
performance, it is possible to save even a 65% of function evaluations without
affecting the quality of the results.

Taking into account both unary measures of performance, we consider that
the quality of the results is maintained when at least one of the measures indi-
cates so. In this way, we can conclude that in general, it is possible to save even
a 32% of evaluations without affecting the quality of the obtained solutions.
That is, adaptive functions nonlinearl and nonlinear2, seem to be good options
to save evaluations without deteriorating the quality of the results.

On the other hand, as it was expected from their definition, adaptive func-
tions nonlinear3 and linear, provide the same percentage of savings in the num-
ber of evaluations. In general, the results when using function linear are better
than the corresponding results using function nonlinear3. Since both adaptive
functions (nonlinear3 and linear) provide the same amount of savings, we con-
clude that given their corresponding definition, the obtained results indicate
that it is important to maintain the true evaluations at the end of the run, even
if we try not to apply inheritance at the beginning of the evolutionary process.

As we can see, adaptive functions that save more than a 50% of the to-
tal number of evaluations, nonlinear4 and nonlinear5, affect the results more
dramatically. That is, the damage on the quality of the results increase more
rapidly when the savings are greater than a 50% of the evaluations.

Very similar conclusions can be obtained from the results obtained using
measure SC. In Table 5, we can see again that the percentage of dominated so-
lutions by the Pareto front corresponding to the approach without inheritance
grows when we increase the use of fitness inheritance. In functions ZDT2 and
ZDT4, the quality of the results is less affected by the use of inheritance, spe-
cially in the case of function ZDT4. In the case of adaptive functions nonlinearl
and nonlinear2, the results in Table 5 indicate that the Pareto fronts obtained
using function nonlinear2 are better. On the other hand, results from adaptive
functions nonlinear3 and linear are very similar, but we can conclude again that
function linear provides better results that function nonlinear3. Finally, it is
very clear that the use of adaptive functions nonlinear4 and nonlinear5 affects
dramatically the obtained results, specially in the case of functions ZDT1 and
7ZDT3.

From Table 5, we can conclude that it may be possible to save a 65% of the
total number of evaluations expecting to lose a 40% of quality, in the worst case.
Also, it seems very harmful to save a 78% of evaluations, since in the worst case
the quality was reduced by 67%.

Finally, as we can see in Figures 4 to 7, the Pareto fronts generated by the
approaches with inheritance are very similar to the Pareto front from the ap-
proach without inheritance, even when a 49% of the total number of evaluations
is saved. It is only in the case of the approaches with inheritance and adaptive
functions nonlinear4 and nonlinear5 in which we can observe Pareto fronts of
relatively low quality. However, even in those cases, we can see that the obtained
Pareto fronts are very good approximations of the true Pareto front.
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In general, from the obtained results shown in Tables 1, 2, 3, 4 and 5, we
can conclude that it is possible to save a 32% of the total number of evaluations
without significantly affecting the quality of the obtained solutions. Also, the
quality of the results when having savings of 49% of the evaluations, is very
acceptable. Finally, in the case of reducing the total number of evaluations by
more than a 50%, the quality of the results is more affected. However, as we can
see in the Pareto fronts shown, even with a 78% of savings, the approach with
inheritance still provides very good approximations of the true Pareto front.
In this way, although it seems to be very harmful to save such percentage of
evaluations, if the real world application is very expensive to evaluate and we
are interested only on a few optimal solutions, the proposed approach may be
a suitable choice.

9 Conclusions and Future Work

Fitness inheritance is applied using a parameter called inheritance proportion.
Such parameter is the probability with which an individual inherits its fitness
value from its parents. Otherwise, the individual is evaluated using the true
fitness function. On the other hand, when a fitness inheritance technique is
incorporated into an evolutionary algorithm, the inheritance proportion also
determines the number of evaluations (approximately) that are going to be
saved.

We have proposed a mechanism to adapt the value of the inheritance pro-
portion in a dynamical way, through the evolutionary process. Six different
functions to adapt the inheritance proportion were proposed, each one defining
a different percentage of savings, from 19% to 78% of the total number of evalu-
ations. The proposed approach was incorporated into a MOPSO algorithm that
was previously proposed and using an inheritance technique that is also part of
previous work. The mechanism was tested using four different functions taken
from the specialized literature of multi-objective optimization.

From the obtained results, we conclude that, in general, the use of fitness
inheritance affects the quality of the provided Pareto fronts as we increase the
number of true evaluations saved. However, such effect was less noticeable in
the test function with the decision space of lowest dimensionality. On the other
hand, we conclude that it is possible to save until a 32% of the total number of
evaluations without significantly deteriorating the quality of the results. When
the proposed approaches save a 49% of evaluations, the effect on the quality of
the results is more noticeable. However, the provided results are of very good
quality. Finally, although the quantitative quality of the Pareto fronts provided
by the approaches that save 65% and 78% of evaluations is more affected, the
corresponding plots show that such approaches are able to generate very good
approximations of the true Pareto front.

As part of our future work, we plan to test the proposed approaches on
different test functions and also to design new adaptive functions in order to
analyze two possibilities: (1) to increase the savings obtained without deterio-
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Test Function ZDT1
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Figure 4: Pareto fronts obtained for function ZDT1.
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Test Function ZDT2
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Figure 5: Pareto fronts obtained for function ZDT2.
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Test Function ZDT3
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Figure 6: Pareto fronts obtained for function ZDT3.
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Test Function ZDT4
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Figure 7: Pareto fronts obtained for function ZDT4.
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rating more the quality of the results (2) to improve the quality of the obtained
results while keeping constant the percentage of savings. The last possibility is
related to the design of functions with the same integral value. Also, it would
be very interesting to incorporate the proposed approaches into a different evo-
lutionary algorithm in order to study how is the quality of the results affected
when a high percentage of evaluations is saved.

References

[1]

[2]

[3]

[4]

[8]

Lam T. Bui, Hussein A. Abbass, and Daryl Essam. Fitness inheritance for
noisy evolutionary multi-objective optimization. In Proc. of the Genetic
and Evolutionary Computation Conference, pages 25-29. ACM, 2005.

Jian-Jung Chen, David E. Goldberg, Shinn-Ying Ho, and Kumara Sastry.
Fitness Inheritance in Multi-Objective Optimization. In W.B. Langdon
et.al., editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2002), pages 319-326, San Francisco, California, July
2002. Morgan Kaufmann Publishers.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic Algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2):182-197, 2002.

Els I. Ducheyne, Bernard De Baets, and Robert De Wulf. Is Fitness Inher-
itance Useful for Real-World Applications? In C. M. Fonseca et.al., editor,
Evolutionary Multi-Criterion Optimization. Second International Confer-
ence, EMO 2003, pages 31-42, Faro, Portugal, April 2003. Springer. Lec-
ture Notes in Computer Science. Volume 2632.

Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler.
Combining convergence and diversity in evolutionary multi-objective op-
timization. Evolutionary Computation, 10(3):263-282, 2002.

Margarita Reyes-Sierra and Carlos A. Coello Coello. Fitness inheritance in
multi-objective particle swarm optimization. In IEEE Swarm Intelligence
Symposium, pages 116-123. IEEE Service Center, 2005.

Margarita Reyes-Sierra and Carlos A. Coello Coello. Improving PSO-based
multi-objective optimization using crowding, mutation and e-dominance. In
Third International Conference on FEvolutionary Multi- Criterion Optimiza-
tion, pages 505-519. LNCS 3410, Springer-Verlag, 2005.

Margarita Reyes-Sierra and Carlos A. Coello Coello. A study of fitness in-
heritance and approximation techniques for multi-objective particle swarm
optimization. In Congress on Evolutionary Computation, pages 65—72.
IEEE Service Center, 2005.

21



[9]

[10]

[11]

[12]

Mehrdad Salami and Tim Hendtlass. A Fast Evaluation Estrategy for
Evolutionary Algorithms. Applied Soft Computing, 2(3):156-173, 2003.

Kumara Sastry, David E. Goldberg, and Martin Pelikan. Don’t Evaluate,
Inherit. In Lee Spector et.al., editor, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pages 551-558, San
Francisco, California, USA, 7-11 2001. Morgan Kaufmann.

Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in
genetic algorithms. In Proceedings of the 1995 ACM Symposium on Applied
Computing, pages 345-350. ACM Press, 1995.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multi-
objective evolutionary algorithms: Empirical results. Ewvolutionary Com-
putation, 8(2):173-195, 2000.

22



