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Abstract

This paper analyzes the convergence of metaheuristics used for
multiobjective optimization problems in which the transition proba-
bilities use a uniform mutation rule. We prove that these algorithms

converge only if elitism is used.
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1 Introduction

This paper concerns metaheuristic algorithms (MhAs) for multiobjective op-
timization problems (MOPs) (see [1]). For MhAs that use a uniform mutation
rule we show that the associated Markov chain converges geometrically to its
stationary distribution, but not necessarily to the MOP’s optimal solution
set. Convergence to the optimal solution set is ensured only if elitism is used.

MhAs are a standard tool to study both single-objective and MOPs. The
convergence of a MhA in the single-objective case is reasonably well un-
derstood; see [8], for instance. For MOPs, however, the situation is quite
different, and to the best of the authors’ knowledge, the existing results deal
with extremely particular cases; see for example, [9]. This paper is then, the
first attempt to deal with the convergence of a general class of MhAs in the
context of multiobjective optimization.

The remainder of this paper is organized as follows. Section 2 introduces
the MOP we are concerned with. The class of MhAs we are interested on
are described in Section 3, together with our main results. These results are
proved in Section 4. We conclude in Section 5 with some general remarks

and some possible paths of future research.



2 The Multiobjective Optimization Problem

To compare vectors in IR? we will use the standard Pareto order defined as

follows.

If @ = (ui,...,uq) and ¥ = (vy,...,vq) are vectors in IR¢, then

U0 <= uy <y Vie{l, ..., d}.

This relation is a partial order. We also write 4@ < ¥ <= 4 <X ¥ and 4 # v.

Definition 1:
Let X be aset and F: X — IR? a given vector function with compo-
nents f; : X — IRforeachi € {1,...,d}. The multiobjective optimization

problem (MOP) we are concerned with is to find z* € X such that

F(z") = min F(z) = min[fi(x), ..., fa(z)], (1)

reX reX

where the minimum is understood in the sense of the Pareto order.

Definition 2:



A point z* € X is called a Pareto optimal solution for the MOP (1) if

there is no x € X such that F(z) < F(z*). The set

P*={x € X : zis a Pareto optimal solution}

is called the Pareto optimal set, and its image under F i.e.

F(P*) := {F(z) : z€P*},

is the Pareto front.
As we are concerned with a MhA in which the elements are represented
by strings of length [ with 0 or 1 in each entry, in the remainder of this paper

we will replace X with the finite set IB', where IB = {0,1}.

3 Metaheuristic Algorithms

The MhAs are techniques in which there is a population that evolves applying
some operations to the current population to obtain the next one. Some of

these operations are:

e mutation



e selection

® Crossover

e reordering

The MhAs we are interested on are modeled as Markov chains with tran-
sition probabilities that use uniform mutation and possibly other operations.
This mutation is made with a parameter or probability p,,, which is positive

and less than 1/2, i.e.

Pm € (0,1/2). (2)

In some cases this mutation can be made with two or more parameters,
namely the population is divided into subpopulations to each of which a
different mutation parameter is applied.

Some examples of this MhAs are

e genetic algorithms (see [6]),

e evolution strategies (see [10]),

e evolutionary programming (see [5, 4]),
e artificial immune systems (see [2, 7]).



The algorithm we are concerned with is modeled as a Markov chain
{Xk : k > 0}, whose state space S is the set of all possible populations
of n individuals, each one represented by a bit string of length /. Hence
S = B™, where IB = {0,1} and S is the set of all possible vectors of n
entries, each of which is a string of length [ with 0 or 1 in each entry.

Let 7 € S be a state, so that ¢ can be represented as

i = (i1,12, -, 0n),

where each i, is a string of length [ of 0’s and 1’s.

The chain’s transition probability is given by

Pyj = P(Xjp1=J | X =1).

Thus the transition matrix is of the form

P=(Py)=LM, 3)

where M is the transition matrix corresponding to the mutation operation

and L represents the other operations.



Note that these matrices are stochastic, i.e. L;; > 0, M;; > 0 for all ¢, 7,

and for each 7 € S

ZLZ'S =1 and ZMZS =1. (4)

SES SES

The Mutation Probability

To calculate the mutation probability from the state ¢ to state ;7 we use
that the individual 7, is transformed into the individual j; applying uniform
mutation (i.e., each entry of i is transformed into the corresponding one of

Js with probability p,,), as in the following scheme.

1 2 n

1 11 | 19 in
mutation | | --- |
J n j2 In

Thus, for each individual in the population the mutation probability can



be calculated as

pHada) (1 — p, VoHEG) s € {1,...,n},

where H (is, j5) is the Hamming distance between i, and j.

Hence the mutation probability from 7 to j is:

n

M’i' — H p'an(ZSJS)(]‘ _ pm)l_H(isajs) (5)

s=1

Using Elitism

We say that we are using elitism in an algorithm (or a MhA in our case) if
we use an extra set, called the elite set, in which we put the “best” elements
(i.e., the nondominated elements of the state in our case). This elite set
usually does not participate in the evolution, since it is used only to store
the nondominated elements.

After each transition, we apply an elitism operation that accepts a new
state if there is an element in the population that improves some element in
the elite set.

If we are using elitism, the representation of the states changes to the



following form:

where i, - - -, 7¢ are the members of the elite set of the state, r is the number
of elements in the elite set and we assume that the cardinality of P* is greater
than or equal to . In addition we assume that r < n.

Note that in general 7, - -, ¢ are not necessarily the “best” elements of
the state 7, but after applying the elitism operation in ¢ they are the “best”
elements of the state.

Let P be the transition matrix associated with the new states. If all the
elements in the elite set of a state are Pareto optimal, then any state that
contains an element in the elite set that is not a Pareto optimal will not be

accepted, i.e.

if {4, ---,i¢} C P* and {jf,--,jc} ¢ P* then Py =0. (6)

10



Main Results

Before stating our main results we introduce the definition of convergence of
an algorithm, which uses the following notation: if V = (v, vy,...,v,) is a

vector, then {V'} denotes the set of entries of V, i.e.

{V} ={v1,v9,...,0,}

Definition 3:
Let {Xj : £ > 0} be the Markov chain associated to an algorithm. We

say that the algorithm converges to P* with probability 1 if

P({Xy} CP)—>1 as k— 0.

In the case that we are using elitism we replace X by X[, the elite set
of the state (i.e. if Xy =4 then X§ = i°)
In the rest of the paper we will assume, for greater generality, that the

population of the MhA is divided in two subsets on which we apply different

11



mutation parameters. In the first subset we apply the parameter p,, and in

the second p,,,. We assume that

Pm; pm € (0,1/2). (7)

Let’s assume that the first subset has n; individuals, so that the second
subset has n — n; individuals. Thus, for each individual in the first subset of

the population the mutation probability can be calculated as

pg(is,js)(l _ pm)lfH(is,js) Vs € {1’ . nl},

and for the second subset we have

pg(is’j“')(l — pm)lfH(is’js) Vse{n +1,...,n}

Now, instead of (5) the mutation probability from ¢ to j is:

Hp (is,7s) _ l H(is,js) H pH(Zs,js pm)lfH(is,js) (8)

s=ni1+1

12



Theorem 1:
Let P be the transition matrix of a MhA. Then P has a stationary dis-

tribution 7 such that

Ph-ml<(1-¢"" Vijes Vk=12.., )

where ¢ = 2niprilp(n=m1)lMoreover, 7 has all entries positive.

Theorem 1 states that P* converges geometrically to 7. Nevertheless in
spite of this result, the convergence of the MhA to the Pareto optimal set
cannot be guaranteed. In fact, from Theorem 1 and using the fact that w

has all entries positive we will immediately deduce the following.

Corollary 1:

The MhA does not converge.

To ensure convergence of the MhA we need to use elitism.

Theorem 2:

The MhA using elitism converges.

13



4 Proofs

We first recall some standard definitions and results.

Definition 4:

A stochastic matrix P is said to be primitive if there exists £ > 0 such
that the entries of P* are all positive.

The next result gives an upper bound on the rate of convergence of P* as
k — oo. We will use it to show the existence of the stationary distribution

in Theorem 1.

Lemma 1:
Let N be the cardinality of S, and let P be the entry ij of P*. Suppose

that there exists an integer v > 0 and a set J of N; > 1 values of j such that

min P =4 > 0.
1<i<n Y
jed

Then there are a numbers m,m9, ..., Ty, such that
Jim Pt=m;Vi=1,...,N, with m; >6 >0, Vj € J,
—00

14



and 7y, 7o, ..., Ty, form a set of stationary probabilities. Moreover

k
v

|Pf—m| <(1-MNé)v™' Ve=1,2,....

Proof See, for example, [3, p. 173].

The next lemma will allow us to use Lemma 1.

Lemma 2:

Let P be the transition matrix of the MhA. Then

min Pj; = p:‘,;lpgg_"l)l >0 Vi,j €8,
1,JES

and therefore P is primitive.
Proof

By (7) we have

1 1
pm<§<1_pm> pm<§<1_pm-

15
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Thus, from (8),

M;; = pr,ﬂ(“’“)(l—pml H(is,js) H pH(zs,Js 1— pm )l H(is,js)

s=ni1+1

> Hpm H Phn

s=ni1+1

nil (n—n1)l

= Pm Pm

On the other hand, by (3) and (4)

Pz'j = Z RisMsj

seS
> prlpln=ml N R,
SES
= ppiplt > 0,

To verify (10), observe that P;; attains the minimum in (10) if 7 has 0 in all

entries and j has 1 in all entries. Thus the desired conclusion follows. [ |

Proof of Theorem 1

From Lemma 2, P is primitive. Moreover, because (10) holds for all j € S we

have that N; = N = 2™ and v = 1. Thus, by Lemma 1, P has a stationary

16



distribution 7 with all entries positive and we get (9). n

Before proving Theorem 2 we give some definitions and preliminary re-

sults.

Definition 5:

Let X be as in Definition 1. We say that X is complete if for each
x € X \ P* there exists z* € P* such that F(z*) < F(z). For instance, if X
is finite then X is complete.

Let 4,7 € S be two arbitrary states, we say that i leads to 7, and write
1 — 7, if there exists an integer £ > 1 such that PZ’; > 0. If 7 does not lead
to j we write i /4 j.

We call a state i inessential if there exists a state j such that ¢ — j but
j # 1. Otherwise, the state ¢ is called essential.

We denote the set of essential states by E and the set of inessential states
by I. Clearly,

S=FEUI

17



We say that P is in canonical form if it can be written as

P 0
P =

R @

Observe that P can put in this form by reordering the states, that is,
the essential states at the beginning and the inessential states at the end. In
this case, P; is the matrix associated with the transitions between essential
states, R with transitions from inessential to essential states, and ) with
transitions between inessential states.

Note that P*¥ has a QF in the position of Q in P, i.e.

e | FEO

R, QF

where Ry is a matrix that depends of P, @ and R.

Now we present some results that will be essential in the proof of Theorem

Lemma 3:

Let P be a stochastic matrix, and let () be the submatrix of P associated

18



with transitions between inessential states. Then, as £k — oo,

Q* — 0 elementwise geometrically fast.

Proof See, for instance, [11, p.120]. [ |

As a consequence of Lemma 3 we have the following.

Corollary 2:

For any initial distribution,

P(X,el)—0 as k — oc.

Proof
For any initial distribution vector pg, let po(I) be the subvector that

corresponds to the inessential states. Then, by Lemma 3,

P(X €1)=po(I)Q¥1 — 0 as k — oco.

Proof of Theorem 2
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By Corollary 2, it suffices to show that the states that contain elements
in the elite set that are not Pareto optimal are inessential states. To this
end, first note that X = IB' is complete, because it is finite.

Now suppose that there is a state 2 = (i%; i) in which the elite set contains

elements i ,...,7; that are not Pareto optimal. Then, as X is complete,
there are elements, say jg ,...,j; € P*, that dominate i , ..., , respec-
tively.

Take j = (j¢;7) such that all Pareto optimal points of ¢ are in j¢ and
replace the other elements of ¢* with the corresponding j¢ , ..., j,. Thus all
the elements in j¢ are Pareto optimal.

Now let

. e e -e .e
.7 - (]17"'7.%77’51:"'7251)'
———

n—r copies

By Lemma 2 we have ©+ — j. Hence with positive probability we can pass
from (i¢,4) to (i¢,7), and then we apply the elitism operation to pass from
(i, 7) to (j¢,4). This implies that ¢ — 7. On the other hand, using (6), j 4 1
and therefore 7 is an inessential state.

Finally, from Corollary 2 we have

PEUXCP)=P(X, €E)=1-P(X;€l)>1-0=1

20



as k — oo. This completes the proof of Theorem 2. [ |

5 Conclusions and Future Work

We have presented a general convergence analysis of a MhA for MOPs in
which uniform mutation is used. It was proven in Theorem 2 that it is
necessary to use elitism to ensure that our algorithm converges. This result
is of course reassuring, but it is not quite complete in the sense that we have
been unable to provide a result such as in (9), on the speed of convergence.
The latter fact as well as a convergence analysis of a MhA with nonuniform

mutation rule, require further research.
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