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Abstract

In this paper, we present several constraint-handling techniques based on
evolutionary multiobjective optimization concepts. Some basic definitions
are presented as well as the way in which a global nonlinear optimization
problem is transformed into an unconstrained multiobjective optimization
problem. A taxonomy of methods is proposed and each one is described.
Some interesting findings regarding common features of such approaches
are also discussed.

1 Introduction

Nowadays, evolutionary algorithms (EAs) have become a popular choice to solve
different types of optimization problems [1, 2, 3]. In fact, this paper points out
the application of some ideas originally designed to solve an specific type of op-
timization problem using EAs which are now applied to solve a different type of
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problem. Despite being considered powerful search engines, EAs, in their origi-
nal versions, lack a mechanism to incorporate constraints into the fitness function
in order to solve constrained optimization problems. Hence, several approaches
have been proposed to deal with this issue. Michalewicz [4] and Coello [5] have
presented comprehensive surveys about techniques added to EAs working in con-
strained search spaces. The most popular method adopted to handle constraints in
EAs was taken from the mathematical programming literature: penalty functions
(mostly exterior penalty functions). The aim is to decrease (punish) the fitness of
infeasible solutions as to favor those feasible individuals in the selection and re-
placement processes. The main advantage of the use of penalty functions is their
simplicity; however, their main shortcoming is that penalty factors, which deter-
mine the severity of the punishment, must be set by the user and their values are
problem-dependent [6, 5].

This has motivated the design of alternative techniques like those based on
special coding and operators [7, 8] and repair algorithms [9]. Unlike penalty func-
tions, which combine the objective function and the constraints values into one fit-
ness value, there are other approaches which handle these two values separately.
The most representative approaches, which work based on this idea are: satisfying
constraints based on a lexicographic order [10], the superiority of feasible points
[11, 12] and the methods based on evolutionary multiobjective optimization con-
cepts. This paper focuses on the last type of techniques (those based on multiob-
jective optimization concepts) and describes and criticizes them. The idea of using
the Pareto dominance relation to handle constraints was originally suggested by
Fonseca and Fleming [13, 14] back in 1995. We propose a classification of these
methods, based on the way they transform the nonlinear programming problem
(NLP) into a multiobjective optimization problem (MOP):

1. Approaches which transform the NLP into an unconstrained bi-objective
optimization problem (the original objective function and the sum of con-
straint violation).

2. Techniques which transform the NLP into an unconstrained MOP where
the original objective function and each constraint of the NLP are treated
as separate objectives. From this category, we observed two sub-categories:
(1) those methods which use non-Pareto concepts (mainly based on multiple
populations) and (2) techniques which use Pareto concepts (ranking and
dominance) as selection criteria.

The paper is organized as follows: In Section 2 we present the general NLP,

2



some multiobjective optimization concepts used in this survey and the transfor-
mation of the NLP into a MOP. After that, in Section 3 those approaches which
solve the problem as a bi-objective problem (using the original objective func-
tion and the sum of constraint violation) are presented. Later on, Section 4 shows
techniques based on solving the problem by taking the original objective function
and each of the constraints of the problem as different objectives, either by us-
ing Pareto and non-Pareto concepts. In Section 5, we highlight interesting issues
found in our research. Finally, Section 6 presents some conclusions and future
paths of research in the area.

2 Problem definition and transformation

In the following definitions we will assume minimization (without loss of gener-
ality). The general NLP is defined as to:

Find X which minimizesf(X) (1)

subject to:

gi(X) � 0; i = 1; : : : ;m (2)

hj(X) = 0; j = 1; : : : ; p (3)

whereX 2 IRn is the vector of solutionsX = [x1; x2; : : : ; xn]T , where each
xi; i = 1; : : : ; n is bounded by lower and upper limitsLi � xi � Ui which
define the search spaceS,F is the feasible region andF � S; m is the number of
inequality constraints andp is the number of equality constraints (in both cases,
constraints could be linear or nonlinear).

Now, we enumerate some multiobjective optimization concepts used in tech-
niques to handle constraints in EAs to solve the NLP.

The general multiobjective optimization problem (MOP) is defined as to:

Find X which minimizesF(X) = [f1(X); f2(X); : : : ; fk(X)]T (4)

subject to:

gi(X) � 0; i = 1; : : : ;m (5)

hj(X) = 0; j = 1; : : : ; p (6)
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whereX 2 IRn is the vector of solutionsX = [x1; x2; : : : ; xn]T , where each
xi; i = 1; : : : ; n is bounded by lower and upper limitsLi � xi � Ui which
define the search spaceS,F is the feasible region andF � S; m is the number of
inequality constraints andp is the number of equality constraints (in both cases,
constraints could be linear or nonlinear).

When solving NLPs with EAs, equality constraints are usually transformed
into inequality constraints of the form:

jhj(~x)j � � � 0 (7)

where� is the tolerance allowed (a very small value). In the rest of the paper we
will refer only to inequality constraints because we will assume this transforma-
tion.

In a multiobjective problem, the optimum solution consists on a set of (“trade-
off”) solutions, rather than a single solution as in global optimization. This opti-
mal set is known as the Pareto Optimal set and is defined as follows:

P� := fX 2 F j :9 X0 2 F F(X0) � F(X)g (8)

where the Pareto dominance (denoted by�) is defined as follows:
A vectorU = (u1; : : : ; uk) is said to dominateV = (v1; : : : ; vk) (denoted by

U � V) if and only if U is partially less thanV, i.e., 8i 2 f1; : : : ; kg; ui �
vi ^ 9i 2 f1; : : : ; kg : ui < vi.

Two different ways to transform the NLP into a MOP have been found in the
literature, giving us an option to propose a classification of techniques. The first
approach transforms the NLP into an unconstrained bi-objective problem. The
first objective is the original objective function and the second one is the sum of
constraint violation as follows: optimizeF(X) = (f(X); G(X)), whereG(X) =Pm+pi=1 max (0; gi(X)). Unlike typical MOPs, when solving a transformed NLP,
we are not looking for a set of solutions (as described in Equation 8). Instead, we
seek a unique solution, the global constrained optimum, where:f(X) � f(Y)
for all feasibleY andG(X) = 0.

The second approach transforms the problem into an unconstrained MOP,
in which we will havek + 1 objectives, wherek is the total number of con-
straints (m + p) and the additional objective is the original NLP objective func-
tion. Then, we can apply multiobjective optimization concepts to the new vector
F(X) = (f(X); g1(X); : : : ; gm+p(X)), whereg1(X); : : : ; gm+p(X) are the origi-
nal constraints of the problem.
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As mentioned before, we are looking for the global constrained optimum in-
stead of a set of trade-off solutions. Then, we require the following:gi(X) = 0
for 1 � i � (m+ p) andf(X) � f(Y) for all feasibleY.

This change on the ultimate goal of the technique prompts to changes in the
way the multiobjective concepts are applied i.e. how nondominance, Pareto rank-
ing and multipopulation-based techniques are used. In the next Sections we will
describe those approaches proposing different ways to deal with this issue.

3 Techniques solving a bi-objective optimization prob-
lem

Surry & Radcliffe [15] proposed COMOGA (Constrained Optimization by Multi-
objective Optimization Genetic Algorithms) where individuals are Pareto-ranked
based on the sum of constraint violation. Then, solutions can be selected using
binary tournament selection based either on their rank or their objective function
value. This decision is based on a parameter calledPcost whose value is modified
dinamically. The aim of the proposed approach to solve this bi-objective problem
is based on reproducing solutions which are good in one of the two objectives
with other competitive solutions in the other objective e.g. constraint violation (as
Shaffer’s VEGA promoted to solve MOPs [16]). COMOGA was tested on a gas
network design problem providing slightly better results than those provided by
a penalty function approach. Its main drawbacks are that it requires several extra
parameters and that it has not been tested extensively.

Camponogara & Talukdar [17] proposed to solve the bi-objective problem in
the following way: Based on the Pareto Sets generated, an operator that substitutes
crossover takes two Pareto setsSi andSj wherei < j and two solutionsxi 2 Si
andxj 2 Sj wherexi dominatesxj. With these two points a search direction is
defined using:

d = (xi � xj)
jxi � xjj (9)

A line search begins by projectingd over one variable axis on decision vari-
able space in order to find a new solutionx which dominates bothxi andxj. At
pre-defined intervals, the worst half of the population is replaced with new random
solutions to avoid premature convergence. This indicates some of the problems
of the approach to maintain diversity. Additionally, the use of line search within
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a GA adds some extra computational cost. Furthermore, it is not clear what is the
impact of the segment chosen to search in the overall performance of the algo-
rithm.

Coello [18] proposed a ranking procedure based on a counter which was incre-
mented based on the number of individuals in the population which dominated a
given solution based on several criteria (feasibility, sum of constraint violation and
number of constraints violated). The approach was tested on a set of engineering
design problems providing competitive results. Some adaptive mechanism was
implemented to tune their parameters. Its main drawback is the computational
cost of the technique and its difficulties to handle equality constraints [19].

Zhou et al. [20] proposed a ranking procedure based on Pareto Strength [21]
for the bi-objective problem, i.e. to count the number of individuals which are
dominated for a given solution. Ties are solved by the sum of constraint violation
(second objective in the problem). The Simplex crossover (SPX) operator is used
to generate a set of offspring where the individual with the highest Pareto strength
and also the solution with the lowest sum of constraint violation are both selected
to take part in the population for the next generation. The approach was tested on
a subset of the well-known benchmark for evolutionary constrained optimization
[22]. The results were competitive but using different set of parameters for differ-
ent functions, which made evident the sensitivity of the approach to the values of
its parameters.

Wang and Cai [23] used a framework similar to the one proposed by Zhou et
al. [20] because they also used the SPX with a set of parents to generate a set
of offspring. However, instead of using just two offspring from the set of off-
spring, all nondominated solutions (in the bi-objective space) are used to replace
the dominated solutions in the parent population. Furthermore, they use an ex-
ternal archive to store infeasible solutions with a low sum of constraint violation
in order to replace some random solutions in the current population. The idea is
to maintain infeasible solutions close to the boundaries of the feasible region in
order to sample this region as to find optimum solutions located there [24]. The
approach provided good results in13 well-known test problems. However, differ-
ent set of values for the parameters were used, depending of the dimensionality of
the problem.

Venkatraman and Yen [25] proposed a generic framework to solve the NLP.
Their approach is divided in two phases: The first one treats the NLP as a con-
straint satisfaction problem i.e. the goal is to find at least one feasible solution.
To achieve that, the population is ranked based only on the sum of constraint vi-
olation. The second phase starts when the first feasible solution was found. Now
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both objectives (original objective function and the sum of constraint violation)
are taken into account and nondominated sorting [26] is used to rank the popula-
tion (alternatively, the authors proposed a preference scheme based on feasibility
rules [12], but nondominated sorting provided better results). Also, to favor diver-
sity, a niching scheme based on the distance of the nearest neighbors to each solu-
tion is applied. To decrease the effect of differences in values, all constraints are
normalized before calculating the sum of those which are violated. The approach
used a typical GA as a search engine with10% elitism. The approach provided
good quality results in11 well-known benchmark problems and in some problems
generated with the Test-Case Generator tool [27], but lacked consistency due to
the fact that the way to approach the feasible region is mostly at random because
of the first phase which only focuses on finding a feasible solution, regardless of
the region from which the feasible region is approached.

Wang et al. [28] also solved the bi-objective problem but using selection cri-
teria based on feasibility very similar to those proposed by Deb [12], where a fea-
sible solution is preferred over an infeasible one; between two feasible solutions,
the one with the best objective function value is selected and finally, between two
infeasible solutions, the one with the lowest sum of constraint violation is chosen.
Furthermore, they proposed a new crossover operator based on uniform design
methods [28]. This operator is able to explore regions closer to the parents. Fi-
nally, a Gaussian noise is used as a mutation operator. The approach was tested
on a subset of the well-known benchmark used to test evolutionary algorithms in
constrained optimization [22]. No details are given in the paper about the influ-
ence of the extra parameters required to control the crossover operator (q) and the
number of offspring generated (r).

4 Techniques solving a multiobjective problem with
objective function and constraints as separate ob-
jectives

4.1 Techniques based on non-Pareto schemes

Parmee & Purchase [29] used the idea proposed in VEGA [16] to guide the search
of an evolutionary algorithm to the feasible region of an optimal gas turbine design
problem with a heavily constrained search space. The aim of VEGA is to divide
the population into sub-populations, and each sub-population will have the goal to
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optimize one objective. In this case, the set of objectives are only the constraints
of the problem. Genetic operators are applied to all solutions regardless of the
sub-population of each solution. In Parmee’s approach, once the feasible region is
reached, special operators are used to improve feasible solutions. The use of these
special operators that preserve feasibility make this approach highly specific to
one application domain rather than providing a general methodology to handle
constraints.

Coello [30] also used VEGA’s idea [16] to solve NLPs. At each generation,
the population was split intom + 1 sub-populations of equal fixed size, wherem
is the number of constraints of the problem. The additional sub-population han-
dles the objective function of the problem and the individuals contained within
it are selected based on the unconstrained objective function value. Them re-
maining sub-populations take one constraint of the problem each as their fitness
function. The aim is that each of the sub-populations tries to reach the feasible
region corresponding to one individual constraint. By combining these differ-
ent sub-populations, the approach will reach the feasible region of the problem
considering all of its constraints. The main drawback of the approach is that the
number of sub-populations increases linearly with respect to the number of con-
straints.

This issue was indeed tackled by Liang and Suganthan [31], where a dynamic
particle multi-swarm optimization was proposed. They also used VEGA’s idea
to split the swarm into sub-swarms and each sub-swarm optimized one objective.
However, in this case, the sub-swarms are assigned dynamically. In this way,
the number of sub-swarms depends on the complexity of the constraints to be
satisfied instead of the number of constraints. The authors also included a local
search mechanism based on sequential quadratic programming to improve values
of a set of randomly chosenpbestvalues. The approach provided competitive
results in the extended version of a well-known benchmark adopted for evolution-
ary constrained optimization [31]. The main drawbacks of the approach are that
it requires extra parameters to be tuned by the user and it also presented a strong
dependency on the local search mechanism.

4.2 Techniques based on Pareto schemes

Jiménez et al. [32] proposed an approach that transforms the NLP (and also the
constraint satisfaction and goal programming problems) into a MOP by assign-
ing priorities. Regarding the NLP, constraints are assigned a higher priority than
the objective function. Then, a multiobjective algorithm based on a pre-selection
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scheme is applied. This algorithm generates from two parents a set of offspring
which will be also mutated to generate another set. The best individual from the
first set of offspring (non-mutated) and the best one of the mutated ones, will re-
place each of the two parents. The idea is to favor the generation of individuals
close to their parents and to promote implicit niching. Comparisons among in-
dividuals are made by using dominance. A real-coded GA was used as a search
engine with two types of crossover operators (uniform and arithmetic) and two
mutation operators (uniform and non-uniform). The results on11 problems taken
from a well-known benchmark [22] were promising. The main drawback of the
approach is the evident lack of knowledge about the effect of the parameter “q” re-
lated with the pre-selection scheme and also the number of evaluations performed
by the approach in each test problem because such information is not provided.

Ray et al. [33, 34] proposed the use of a Pareto ranking approach that oper-
ates on three spaces: objective space, constraint space and the combination of
the two previous spaces. This approach also uses mating restrictions to ensure
better constraint satisfaction in the offspring generated and a selection process
that eliminates weaknesses in any of these spaces. To maintain diversity, a niche
mechanism based on Euclidean distances is used. This approach can solve both
constrained or unconstrained optimization problems with one or several objective
functions. The mating restrictions used by this method are based on the informa-
tion that each individual has about its own feasibility. Such a scheme is based on
an idea proposed by Hinterding and Michalewicz [35]. The main advantage of this
approach is that it requires a very low number of fitness function evaluations with
respect to other state-of-the-art approaches. Its main drawback is that its imple-
mentation is considerably more complex than that of any of the other techniques
previously discussed.

Ray extended his work to a simulation of social behavior [36, 37], where a
societies-civilization model is proposed. Each society has its leaders which influ-
ence their neighbors. Also, the leaders can migrate from one society to another,
promoting exploration of new regions of the search space. Constraints are handled
by a nondominated sorting mechanism [26] in the constraints space. A leader cen-
tric operator is used to generate movements of the neighbors influenced by their
leaders. The main drawback of the approach is its high computational cost derived
from the nondominated sorting and a clustering technique required to generate the
societies. Results reported on some engineering design problems are very com-
petitive. However it has not been compared against state-of-the-art approaches
adopting the same benchmark [22].

Coello and Mezura [38] implemented a version of the Niched-Pareto Genetic
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Algorithm (NPGA) [39] to handle constraints in single-objective optimization
problems. The NPGA is a multiobjective optimization approach in which indi-
viduals are selected through a tournament based on Pareto dominance. However,
unlike the NPGA, Coello and Mezura’s approach does not require niches (or fit-
ness sharing [40]) to maintain diversity in the population. Instead it requires an
additional parameter calledSr that controls the diversity of the population.Sr
indicates the proportion of parents selected by four comparison criteria (based on
Deb proposal [12]), but when both solutions are infeasible, a dominance criterion
in the constraints space is used to select the best solution. The remaining1 � Sr
parents will be selected by a pure probabilistic approach. Results indicated that
the approach was robust, efficient and effective. However, it was also found that
the approach had scalability problems (its performance degrades as the number of
decision variables increases).

The use of dominance to select between two infeasible solutions was taken to
Differential Evolution by Kukkonen and Lampinen [41]. In their approach, when
the comparison between parent and offspring is performed and both of them are
infeasible, a dominance criterion is applied. The results on the extended version
of the benchmark [41] were very competitive.

Angantyr et al. [42] proposed to assign a fitness value to solutions based on
a two-ranking mechanism. The first rank is assigned according to the objective
function value (regardless of feasibility). The second rank is assigned by using
nondominated sorting [26] in the constraints space. These ranks have adaptive
weights when defining the fitness value. The aim is to guide the search to the
unconstrained optimum solution if there are many feasible solutions in the current
population. If the rate of feasible solutions is low, the search will be biased to
the feasible region. The goal is to promote an oscillation of the search between
the feasible and infeasible regions of the search space. A typical GA with BLX
crossover was used. The main advantage of this approach is that it does not add
any extra parameter to the algorithm. However, it presented some problems when
solving functions with equality constraints [42].

Hernandez et al. [43] proposed an approach named IS-PAES which is based
on the Pareto Archive Evolution Strategy (PAES) originally proposed by Knowles
and Corne [44]. IS-PAES uses an external memory to store the best set of so-
lutions found. Furthermore, IS-PAES requires a shrinking mechanism to reduce
the search space. The multiobjective concept is used in this case as a secondary
criterion (Pareto dominance is used only to decide whether or not a new solution
is inserted in the external memory). The authors acknowledge that the most im-
portant mechanisms of IS-PAES are its shrinking procedure and the information
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provided by the external memory which is used to decide the shrinking of the
search space. Furthermore, despite its good performance as a global optimizer,
IS-PAES is an approach far from simple to implement.

Runarsson and Yao [45] presented a comparison of two versions of Pareto
ranking in constraint space: (1) considering the objective function value in the
ranking process and (2) without considering it. These versions were compared
against a typical over-penalized penalty function approach. The authors found in
their work that using Pareto Ranking leads to bias-free search, then, they con-
cluded that it causes the search to spend most of the time searching in the infea-
sible region; therefore, the approach is unable to find feasible solutions (or finds
feasible solutions with a poor value of the objective function).

Oyama et al. [46] used a similar approach than the proposed by Mezura and
Coello [38]. However, the authors propose to use a set of criteria based on fea-
sibility to rank all the population (instead of using them in a tournament [38]).
Moreover, this approach is designed to solve also constrained multiobjective opti-
mization problems. A real-coded GA with BLX crossover was used as the search
engine. This technique was used to solve one engineering design problem and
also a real-world NLP. No further experiments or comparisons were provided.

5 Remarks

Based on the features found in each of the methods, we highlight the following
findings:

� At least in our research, the number of methods which use a MOP, with the
objective function and constraints as separate objectives is higher than the
total number of approaches that used the bi-objective problem.

� The use of sub-populations has been the less popular.

� There is certain preference to use mean-centric crossover operators (BLX
[42, 46], random-mix [33, 34], SPX [23, 20]) over using parent-centric
crossover (uniform design methods [28], leader centric operator [36, 37])
when using real-coded GAs. Furthermore, other authors used more than
one crossover operator (uniform and arithmetic [32]). This choice may
contradict the findings about competitive crossover operators when using
other constraint-handling techniques as GENOCOP and penalty functions
[47, 48].

11



� The use of diversity mechanisms is found in most approaches [15, 17, 23,
25, 33, 34, 36, 37, 38, 42, 43].

� The use of explicit local search mechanisms is still scarce ([31]).

� The difficulty of using Pareto concepts when solving the NLP pointed out
by Runarsson and Yao [45] has been confirmed by other researchers like
Mezura and Coello [19]. However, the methods described in this survey
provide several alternatives to deal with the inherent shortcoming for the
lack of bias provided by Pareto ranking.

6 Conclusions

A detailed survey of constraint-handling techniques based on multiobjective opti-
mization concepts has been presented. A classification of techniques depending of
the type of transformation made from the NLP to either a bi-objective (objective
function and sum of constraint violation) or a MOP (with the objective function
and each constraint considered as separate objectives) has been proposed. We
have presented a discussion about the main features of each method (selection
criteria, diversity handling, genetic operators, advantages and disadvantages, ex-
perimentation). Furthermore, some interesting findings about all methods have
been summarized and briefly discussed. Based precisely of these issues found, we
visualize the following paths of future research in the area: (1) a more intensive
use of explicit local search mechanisms, (2) an in-depth study of the influence of
the genetic operators used in these types of methods, (3) novel and more effective
proposals of diversity mechanisms, (4) the combination of multiobjective con-
cepts (Pareto methods with population-based techniques) in one single approach.
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