CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Departamento de Matematicas

Analisis de Heuristicas de Optimizacion
para Problemas Multiobjetivo

Tesis que presenta

Mario Alberto Villalobos Arias

Para obtener el grado de

Doctor en Ciencias

en la especialidad de

Matematicas

Directores de Tesis:  Dr. Onésimo Hernandez Lerma
Dr. Carlos A. Coello Coello

México, D.F. agosto de 2005



CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Departamento de Matematicas

Analisis de Heuristicas de Optimizacion
para Problemas Multiobjetivo

Tesis que presenta

Mario Alberto Villalobos Arias

Para obtener el grado de

Doctor en Ciencias

en la especialidad de

Matematicas

Directores de Tesis:  Dr. Onésimo Hernandez Lerma
Dr. Carlos A. Coello Coello

México, D.F. agosto de 2005



A Marcela, Maricruz y Josué.

A mis Papaés.

A mis Abuelos.

A mis Suegros.



i



Agradecimientos

Quiero agradecer al pueblo Mexicano que a través de su Secretaria de Relaciones Exteri-
ores me otorgd una beca para financiar, en parte, mis estudios.

Agradezco:
A mis asesores:
Dr. Onésimo Hernandez Lerma y Dr. Carlos A. Coello Coello

por su apoyo y el tiempo que me dedicaron para poder realizar esta tesis.
A los sinodales por el tiempo dedicado en revisar mi tesis y los consejos que me dieron.
A toda mi familia por el apoyo que me brindaron.

A todos los costarricenes (ticos) y mexicanos que han hecho que el tiempo que he
estado en México sea mas agradable.

A los companeros de matemaéticas por la ayuda y apoyo que me dieron.

A los companeros de computacién por la ayuda y apoyo que me dieron, especialmente
a Gregorio y Nareli.

A Hilda, Laura, Roxana, Anabel, Norma, Sofi y Flor por la ayuda que me brindaron.

Agradezco el apoyo de las siguientes instituciones:

A la Universidad de Costa Rica por la beca complementaria que me otorgd para
financiar mis estudios doctorales.

Al Consejo Nacional de Ciencia y Tecnologia (CONACyT) por la beca terminal que
se me otorgd a través del Proyecto # 34201-A a cargo del Dr. Carlos A. Coello Coello.

Al Departamento de Matematicas del CINVESTAV-IPN| y a este mismo, por todo el
apoyo y las facilidades que me dieron.

11l



iv



Contents

List of Figures

List of Tables

Abbreviations

Prefacio

Preface

Resumen

Abstract

1

Introduction
1.1 Motivation . . . . . . . ..
1.2 The Multiobjective Optimization Problem . . . . . . ... ... ... ...

Simulated Annealing Algorithm

2.1 Introduction . . . . . . . . ...

2.2 The Simulated Annealing Algorithm . . . . . .. ... .. ... .. ... ..
2.2.1  The Generation Probability . . . . . ... ... ... ... ... ..
2.2.2  The Acceptance Probability . . . . . .. .. ... ... ... ...
2.2.3 The Transition Probability . . . . . . .. ... ... .. ... .. ..

2.3 Main Result . . . . . . ...

2.4 Conclusions and Future Work . . . . . . . . . ...

Metaheuristic Algorithms

3.1 Introduction . . . . . . . . ...

3.2 Metaheuristic Algorithms . . . . . . . . . . . ...
3.2.1 The Mutation Probability . . . . . ... .. ... ... ... ....
3.2.2 Using Elitism . . . ... ... .

3.3 Main Results . . . . . . . . ..

3.4 Proofs . . . . .

vii

xi

xiii

XV

xvii

Xix



vi

3.5 Conclusions and Future Work . . . . .. .. ... ... ...

4 Multiobjective Artificial Immune System Algorithm

4.1 Introduction . . . . . . . . ...
4.2  The Artificial Immune System Algorithm . . . . . . .. ...
4.3 MISA: Simplified Model . . . . . .. ... ... ... ....

4.3.1 Main Results . . . ... ... ... ... ... ...

4.3.2 Proofs . . .. . . ...
4.4 MISA: General Model . . . . ... ... ... ... .. ...
4.5 Conclusions and Future Work . . . . . . .. ... ... ...

5 Using Stripes to Maintain Diversity in a MOPSO

5.1 Introduction . . . . . . . . . . ...
5.2 Previous Related Work . . . . . . . ... ... ... .. ...
5.3 Our Proposal . . .. .. ...
5.3.1 PSO with stripes . . . . .. ... ...
5.4 Comparison of Results . . . . . ... ... ... .......
5.4.1 ZDT1’s test function . . . . . . . ... .. ... ...
5.4.2 7ZDT2’s test function . . . . . .. .. ... ... ...
5.4.3 ZDT3’s test function . . . . . ... ... ... ....
5.4.4 An example with 3 objective function . . . . . . . ..
5.5 Conclusions and Future Work . . . . . . ... .. ... ...

6 Portfolio Optimization using PSO with Stripes

6.1 Description of the Model . . . . . . . ... ... ... ....
6.2 TheData . .. ... ... . ...
6.3 TheResults . . . .. ... . ... ... ... ..
6.4 Conclusions and Future Work . . . . ... .. ... ... ..

Conclusions and Future Work
A Tables of data for Chapter 6

B Graphs of the solutions

CONTENTS



List of Figures

1.1
2.1

2.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

6.1
6.2
6.3

Example of a Pareto front for two objective case. . . . . . . . ... .. .. 3

4

Graphical illustration of the “inconvenience” of the acceptance probability

Aii(c) proposed by Serafini [47]. . . .. ... 7
Comparison of Xy and P* . . . . . 0000000 13
This figure illustrates a situation that causes problems to the sigma method
proposed by Mostaghim et al. [34]. . . ... ... ... ... .. ... ... 32
An example in which the e-dominance approach retains the wrong point. . 33
F(P*) is contained in the “hyper-box” defined by F(z'), F(7*) . ... .. 34
Graphical representation of the stripes proposed in this chapter. . . . . . . 35
Distribution of the stripes center ford =3, nl=6 . . . . .. .. ... ... 36
An example of the type of distribution of non-dominated solutions produced

by our approach. . . . . .. .. 37
Pareto fronts produced by ST-MOPSO (left), e-MOEA (center) and NSGA-

IT (right) for the ZDT1’s test function. . . . . . .. ... ... ... .... 41
Pareto fronts produced by our ST-MOPSO (left), e-MOEA (center) and
NSGA II (right) for the ZDT2’s test function. . . . . . . . ... ... ... 43
Pareto fronts produced by ST-MOPSO (left), e-MOEA (center) and NSGA

IT (right) for the ZDT3’s test function. . . . . ... ... .. ... .. ... 45
Pareto fronts produced by ST-MOPSO (top), e-MOEA (center) and NSGA 11
(bottom) for the Viennet’s test function (3 objectives functions). . . . . . 47
Graphical illustration of the Pareto front for the POP . . . . . . . . . . .. 54
Example of the graph of a solution of POP . . . . . . ... ... ... ... 57
Graphic comparison of the IPyC and the solutions with minimal risk, a
medium risk and maximal risk. . . . .. ..o o000 60

vii



viii LIST OF FIGURES



List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1
6.2
6.3
6.4
6.5

6.6

Al
A2
A3
A4
A5
A6
AT

Results of the Two Set Coverage and Hyper Volume performance measures

for the ZDT1’s test function. . . . . . . . . . . .. .. ... ... ... .. 42
Results of the Inverted Generational Distance and Success Counting per-

formance measures for the ZDT1’s test function. . . . . . . . .. ... ... 42
Results of the Two Set Coverage and Hypervolume performance measures

for the ZDT2’s test function. . . . . . . . . . . ... ... ... ... .. .. 43
Results of the Inverted Generational Distance and Success Counting per-

formance measures for the ZDT2’s test function. . . . . . . . .. .. .. .. 44
Results of the Two Set Coverage and Hyper Volume performance measures

for the ZDT3’s test function. . . . . . . . .. . ... ... ... ... .. .. 45
Results of the Inverted Generational Distance and Success Counting per-

formance measures for the ZDT3’s test function. . . . . . . . .. ... ... 46
Results of the Two Set Coverage and Hyper Volume performance measures

for Viennet’s test function. . . . . . . .. .. ..o 48
Results of the Inverted Generational Distance and Success Counting per-

formance measures for the Viennet’s test function. . . . . . . . . .. .. .. 48
Example of table of prices. . . . . . . . ... ... 55
Example of table of returns. . . . . . . ... ... .. L 55
Example of a table of mean return p; and covariances o;; . . . . . . .. .. 56
Example of a solution (the values are percent) . . . . ... ... ... ... 56
Table of comparison of return of IPyC, the solution with minimal risk, a

medium risk and maximal risk. . . . .. ... o Lo 58
Table of comparison of investment of IPyC, the solution with minimal risk,

a medium risk and maximal risk. . . ... ..o 0oL 59
Table of prices. . . . . . . . . 71
Table of prices (cont.). . . . . . . . ... 72
Table of prices (cont.). . . . . . . . ... 73
Table of prices (cont.). . . . . . . . . 74
Table of returns . . . . . . . ... 75
Table of returns (cont.). . . . . . . . . ... 76
Table of returns (cont.). . . . . . . . . ... 7

1X



LIST OF TABLES

A.8 Table of returns (cont.). . . . . . . ... 78



Abbreviations

MOP Multiobjective optimization problem.

AIS Artificial immune systems.

EA Evolutionary algorithm.

SA Simulated annealing.

SAA Simulated annealing algorithm.

MhA Metaheuristic algorithms.

MISA Multi-objective immune system algorithm.
PSO Particle swarm optimizers

MOPSO Multi-objective particle swarm optimizers.
ST-MOPSO MOPSO with stripes.

TSC Two set coverage.

HV Hypervolume.

IGD Inverted generational distance.

SC Success counting.

POP Portfolio optimization problem .

BMYV Mexican Stock Market (Bolsa Mexicana de Valores).

IPyC Index of Prices and Quotations (Indice de Precios y Cotizaciones).

x1



xii

LIST OF TABLES



Prefacio

En esta tesis se estudia la convergencia de varios tipos de heuristicas de optimizacién para
problemas multiobjetivo (MOPs).

Las heuristicas de optimizacion son algoritmos computacionales basados en la simu-
lacion de ciertos procesos fisicos o bioldgicos, como son la evolucion de las especies, fun-
cionamiento del sistema inmune del cuerpo humano, comportamientos sociales de ciertos
animales, recocido de sélidos para formar cristales (annealing), etc. Estos procesos en
sl mismos, son procesos que optimizan, por lo que algunos investigadores los han simu-
lado por medio de computadoras y los algoritmos que resultan se aplican a problemas de
optimizacién.

Algunos de estos algoritmos y referencias relacionadas son:

e recocido simulado [23, 39],

e algoritmos genéticos [17],

e cstrategias evolutivas [45],

e programacion evolutiva [15, 14],

e sistema inmune artificial [6, 37],

e optimizacién por enjambre de particulas [22, 12].

Algunos de estos problemas resultan muy complicados para los “métodos tradicionales”
de optimizacion y en estos casos las heuristicas resultan de gran utilidad.

Por otro lado, existen situaciones en las que queremos obtener el maximo beneficio o
rendimiento, pero al mismo tiempo deseamos minimizar los costos o el tiempo de realizar
una cierta tarea. Usualmente, el mejorar el rendimiento conlleva que los costos o el tiempo
sean mayores, por lo que los objetivos estdn en conflicto. A estos problemas en los que
hay 2 o més objetivos es lo que llamamos un problema multiobjetivo (PMO).

En las aplicaciones, las heuristicas de optimizacion suelen dar buenos resultados, pero
no habia certeza en la convergencia de los algoritmos. Este es precisamente el propdsito
principal de este trabajo: demostrar la convergencia, en un sentido adecuado, de algunas
de las heuristicas de optimizacion para PMO.

xiil



xiv Prefacio

Una caracteristica de los PMO es que, como regla general, tienen un conjunto de
soluciones, que inclusive puede ser infinito, y entonces los algoritmos deben describir lo
mejor posible este conjunto. En este trabajo, ademas de la convergencia de las heuristicas,
proponemos algunas modificaciones que permiten obtener mejores representaciones de los
conjuntos solucién.

Para ilustrar nuestros resultados, consideramos el problema de seleccién de portafolio
(de inversién) de Markowitz. En este problema se desea encontrar un portafolio que
maximiza el rendimiento pero con riesgo minimo.

Este trabajo esté organizado como sigue: en el Capitulo 1 presentamos el problema de
optimizacién multiobjetivo. En el Capitulo 2 se introduce el algoritmo de recocido simu-
lado y la prueba de su convergencia, para el caso multiobjetivo. Después la convergencia
de una heuristica de optimizacién general, de nuevo para el caso multiobjetivo, se presenta
en el Capitulo 3. En el Capitulo 4 presentamos el algoritmo del sistema inmune artificial
y la correspondiente demostracion de convergencia. Un nuevo esquema para mantener
diversidad, basado en franjas, se presenta en el Capitulo 5. Finalmente, en el Capitulo 6
presentamos una aplicacién de nuestros resultados al problema de seleccion de portafolio
de Markowitz.



Preface

This thesis concerns the convergence of several heuristic algorithms for multiobjective
optimization problems.

A heuristic optimization algorithm is a computational algorithm that tries to imitate
some physical or biological processes such as the evolution of the species, the human
immune system, the social behavior of some animal groups (for instance, bees and ants),
and so on. These processes are themselves optimization processes and so they naturally
suggest computational algorithms applicable to mathematical optimization problems.

Some of these algorithms and related references are

e simulated annealing [23, 39],

e genetic algorithms [17],

e cvolution strategies [45],

e cvolutionary programming [15, 14],

e artificial immune system algorithm [6, 37],

particle swarm optimization [22, 12].

These heuristic techniques are extremely useful, in particular for optimization prob-
lems for which the traditional methods are difficult to apply.

As we already noted, our work deals with multiobjective optimization problems (MOPs).
A typical example is when we try to maximize a certain utility or revenue function, but
simultaneously we wish to minimize, say, an operation cost. Thus in a MOP we can have
objective functions representing conflicting interests. In many of these situations, the
heuristic algorithms usually perform quite well, but there were no mathematical results
ensuring the convergence of the algorithms. Here is where the main contribution of our
work comes in: we give conditions for the convergence, in a suitable sense, of some of the
most common heuristic algorithms for MOPs.

XV
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A feature of MOP is that, as a rule, the solution set can be quite large, possibly infinite,
and of course we would like our algorithms to describe as well as possible this set. Here
we propose some modified algorithms that allow us to obtain very good representations
of the solutions sets.

Finally, to illustrate our approach, we consider the Markowitz portfolio selection pro-
blem. This is an important problem in which one wishes to find an investment portfolio
that maximizes the expected return, with minimum risk.

This work is organized as follows: in Chapter 1 we present the multiobjective opti-
mization problem. The simulated annealing algorithm and the proof of its convergence,
for the multiobjective case, are in Chapter 2. The convergence of a general heuristic opti-
mization, again for the multiobjective case, appears in Chapter 3. Chapter 4 contains the
algorithm of the artificial immune system and its convergence. A new scheme to maintain
diversity, based on stripes, is presented in Chapter 5. Finally, in Chapter 6 we apply our
results to the Markowitz portfolio selection problem.



Resumen

Esta tesis presenta un andlisis de la convergencia de varios algoritmos heuristi-
cos de optimizacion para problemas multiobjetivo. Los algoritmos que conside-
ramos incluyen el recocido simulado, algunos algoritmos evolutivos y el sistema
mmune artificial. En el caso de los algoritmos evolutivos, nos referimos a
cualquier algoritmo en el que las probabilidades de transicion utilizan una regla
de mutacion uniforme. Demostramos que estos algoritmos convergen si se
utiliza elitismo.

Presentamos, ademds, un esquema para mantener la diversidad en este tipo de
metaheuristicas. Fste esquema se incorporo a un algoritmo de optimizacion
de enjambre de particulas, dando lugar a un nuevo algoritmo evolutivo multi-
objetivo. Finalmente, este nuevo algoritmo se aplico al problema de seleccion
de portafolio de Markowitz.
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Abstract

This thesis presents the asymptotic convergence analysis of several heuristic
algorithms for multiobjective optimization problems. The algorithms we con-
sider include simulated annealing, some evolutionary algorithms and artificial
immune system. In the case of evolutionary algorithms, we refer to any algo-
rithm in which the transition probabilities use a uniform mutation rule. We
prove that these algorithms converge if elitism is used.

In addition, we introduce a scheme to maintain diversity in this type of meta-
heuristics. This scheme is incorporated into a particle swarm optimization
algorithm, giving rise to a new multiobjective evolutionary algorithm. Finally,
this new algorithm is applied to the Markowitz problem of portfolio selection.
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Chapter 1

Introduction

1.1 Motivation

In real-world, there are many problems with several objectives that we aim to optimize
simultaneously. These problems are called “multiobjective” or “vector” optimization pro-
blems, and have been studied by many authors who have proposed a number of solution
techniques [2, 7, 16, 32, 51].

The solution of a multiobjective optimization problem requires a suitable definition of
“optimality” (usually called “Pareto optimality”). Such problems normally have not one,
but an infinite set of solutions, which represent possible trade-offs among the objectives
(such solutions constitute the so-called “Pareto optimal set”, defined in Section 1.2).

In these multiobjective optimization problems (MOPs) one wishes to optimize a vector
function, say F(x) = (fi(x),..., fu(z)). A typical way to approach these problems is to
transform the MOPs into single-objective (or “scalar”) problems (e.g., by using a linear
aggregating function). This approach indeed makes sense if the functions fi, ..., f,, are of
the same type and expressed in the same units, but otherwise (for instance, if f; denotes
distance, fy denotes time, and so on) the scalarized problem might be meaningless.

Diverse metaheuristics have been adopted to solve MOP [2]-[6], [9, 20]. In this thesis,
we study three of them: simulated annealing (SA) [23, 39], artificial immune systems
(AIS) [37] and general evolutionary algorithms (EA) [17, 13].

Metaheuristics such as those indicated above, have become a standard tool to solve
both single-objective and multiobjective optimization problems. In the single-objective
case, the convergence of a metaheuristic is reasonably well-understood [1, 40], under
suitable simplifications.

For the multiobjective case there are also some convergence proofs [41, 42], but they
are not quite rigorous. Most heuristics used for multiobjective optimization do not have
a convergence proof reported in the literature. This thesis intends to bridge this gap for
a class of algorithms.

For these metaheuristics that use a uniform mutation rule (see Section 3.3) we show
that the associated Markov chain converges geometrically to its stationary distribution,
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but not necessarily to the optimal solution set of the multiobjective optimization problem.
Convergence to the optimal solution set is ensured if elitism (whose definition is provided
in section 3.2.2, page 17) is used.

However, when dealing with multiobjective optimization problems, there is not much
work available in the literature, except for extremely particular cases (see for example
41, 42]).

Maintaining diversity in a population has been a problem that has attracted the at-
tention from many researchers since the origins of evolutionary computation. Due to
stochastic noise, evolutionary algorithms tend to converge to a single solution if run dur-
ing a sufficiently long time. Thus, the problem of diversity in the context of multiobjective
optimization basically focuses on blocking the selection mechanism of an evolutionary al-
gorithm as to avoid this sort of convergence to a single solution. Instead, some sort of bias
must be introduced in the selection mechanism as to allow the generation and maintenance
of different nondominated solutions in the population of an evolutionary algorithm.

When dealing with MOPs, all metaheuristics are required not only to converge as
closely to the true Pareto front as possible, but also to cover all the Pareto front (see Sec-
tion 1.2) with well-distributed points. It is obviously possible that the solutions produced
by a metaheuristic only cover a portion of the Pareto front, and this is an undesirable
behavior. In this thesis, we present a proposal to efficiently solve this problem.

1.2 The Multiobjective Optimization Problem

Let X beaset and F': X — IR? a given vector function with components f; : X — IR
foreachi € {1,...,d}. The multiobjective optimization problem (MOP) we are concerned
with is to find 2* € X such that

P(a®) = min F(z) = min[fi(2), ., fa(z)]. (L1)

where the minimum is understood in the sense of the standard Pareto order in which two
vectors in IR? are compared as follows.
If @ = (ug,...,uq) and ¥ = (vq,...,vq) are vectors in IRY, then

This relation is a partial order. We also write @ < v if ¥ = ¢ and & # v. In this case we
say that v dominates v. By example in Figure 1.1 point B dominates point E.

Definition 1.1 A point * € X is called a Pareto optimal solution for the MOP (1.1) if
there is no x € X such that F(x) < F(z*). The set

P*={x € X : z is a Pareto optimal solution}

is called the Pareto optimal set for the MOP (1.1), and its image under F, i.e.
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S

Figure 1.1: Example of a Pareto front for two objective case.

F(P*) = {F(x) : =€ P},

1s called the Pareto front.

In Figure 1.1 the Pareto front corresponds to the parts on the boundary of F(X)
joining the points A and B, and also the points C' and D.

Here we say that x dominates y when F(z) < F(y). Let Y C X and y € Y. If there is
no r € Y, that dominates y , we say that y is nondominated (with respect to Y'). Observe
that all the elements in the Pareto front are nondominated with respect to X.

As we are concerned with computational aspects, in the remainder of this thesis we
will assume that the set X in (1.1) is finite. For an EA and the AIS, in which the elements
are represented by strings of length [ with 0 or 1 at each entry, we take X = B!, with
B ={0,1}. For SA we only assume that X is finite.

Moreove, the algorithms we are concerned with will evolve as a Markov chains defined
on an underlying probability space, say (€2, F, IP).
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Chapter 2

Simulated Annealing Algorithm

In this chapter we consider a simulated annealing algorithm for multiobjective
optimization problems. With a suitable choice of the acceptance probabilities,
the algorithm is shown to converge, that is, the Markov chain that describes
the algorithm converges with probability one to the Pareto optimal set.

2.1 Introduction

Here, we consider a simulated annealing algorithm (SAA) for solving multiobjective op-
timization problems (MOPs). Under mild assumptions and a suitable choice of the ac-
ceptance probabilities, our SAA is shown to converge with probability one to the Pareto
optimal set of the problem.

The remainder of this chapter is organized as follows. In Section 2.2 we introduce the
SAA we are concerned with; we also briefly discuss the algorithm’s acceptance probabili-
ties, which are crucial for proving convergence. Our main result is stated in Section 2.3.
Finally, our conclusions and future work are provided in Section 2.4 together with some
general remarks.

As we are concerned with computational aspects, in the remainder of the chapter we
will replace the set X in (1.1) with a finite set S C IR™.

2.2 The Simulated Annealing Algorithm

Nicholas Metropolis et al. [31] originally proposed, in 1953, an algorithm to simulate the
evolution of a solid in a heat bath until it reached its thermal equilibrium. The process
started from a certain thermodynamic state of the system, defined by a certain energy and
temperature. Then the state was slightly perturbed. If the change in energy produced by
this perturbation was negative, the new configuration was accepted. If it was positive, it
was accepted with a certain probability. This process was repeated until a frozen state
was achieved [11, 44].
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About thirty years after the publication of Metropolis’ approach, Kirkpatrick et al. [23]
and Cerny [39] independently pointed out the analogy between this “annealing” process
and combinatorial optimization. Such analogy led to the development of an algorithm
called “Simulated Annealing” which is a heuristic search technique that has been quite
successful in combinatorial optimization problems (see [1] and [25] for details).

The SAA generates a succession of possible solutions of the optimization problem.
These possible solutions are the states of a Markov chain and the “energy” of a state is
the evaluation of the possible solution that it represents.

The temperature is simulated with a sequence of positive control parameters c.

A transition of the Markov chain occurs in two steps, given the value ¢, of the control
parameter. First, if the current state is ¢, a new state j is generated with a certain
probability G;(cx), defined below. Then an “acceptance rule” A;;(cy) is applied to j.
Our main result hinges on a suitable selection of the acceptance rule, which we now
discuss.

2.2.1 The Generation Probability

For each state i, let S; be a subset of S\ {i} called a neighborhood of i. We shall assume
that the number of elements in 5; is the same, say O, for all : € S, and also that the
neighbor relation is symmetric, that is, j € S; if and only if ¢ € S;. Then, denoting by
Xs; the indicator function of S; (i.e. xs,(j) := 1if j € S; and 0 otherwise), we define the
generation probability

Gij(ck) = @

forall¢,5 € S. (2.1)

2.2.2 The Acceptance Probability

The acceptance probability is crucial for the behavior of the SAA.

The idea of this probability or acceptance rule is that any new state that improves
the actual state will be accepted with probability 1, whereas the others are accepted with
certain probability that tends to zero as time goes to infinity.

When dealing with MOPs there are different options to define the acceptance rule.
For instance, Serafini [47] proposes to use the L., —Tchebycheff norm given by

A;j<c>:mm{1,exp< . /\s(fs(i)—fs(j)))}’

se{l,...,d} C

where the )\ are given positive parameters, and ¢ > 0 is the control parameter, that
simulates the temperature.

This acceptance probability has a possible drawback that if a single entry is improved
(i.e. fs(i) > fs(j) for some s) or has the same value, then the state j is accepted, which
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obviously is not very good. For example, in Figure 2.1, in which f;(7) = fi(¢), we have

A;; =1 although f5(j) is too “bad” in comparison with fo(2).

fo

7

S

Figure 2.1: Graphical illustration of the “inconvenience” of the acceptance probability

Aj;(c) proposed by Serafini [47].

On the other hand, Ulungu and coworkers [51, 52, 54, 53] use

d . .
Af(c) := min {l,exp (Z )\S(fS(Z)C_ ﬂ(]))) }

s=1

d +

where as usual, let a™ be the positive part of a number a € IR, namely

R if a >0,
"1 0 otherwise.

But again, in this case it is possible to have the acceptance probability depending on

the change of a single entry fq(i) — fs(j), s=1,...,d.
Here we shall use the acceptance probability [47]

Hmm{l oxp (L= LY
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which can be expressed in the simpler form

S (G) - fs(i))+> | (2.3)

c

Aij(c) = exp <—

This acceptance probability is obviously “better” than the one in (2.2) because only
the entries that do not improve are taken into account to calculate the probability; this
probability could be improved changing ¢ by an individual ¢, for each entry s =1,...,d.

For the last two acceptance rules, we will prove that the SAA converges. (See Theo-
rem 2.1)

2.2.3 The Transition Probability

Having the generation and the acceptance probabilities, we can now define the transition
probability from 7 to j as

Piler) = Gij(ck>Aij Cr) if i # j,
R 1— Zles,l;éi Pyley) ifi=j

where A4;; is as in (2.3) (or as in (2.2)).

Note that for theoretical purposes we can use f,(i) — fs(j) instead of \s(fs(i) — fs(j))
or (fs(i) — fs(4))/cs, because the last two expressions can be transformed into the first
one via the changes g; = A\ fs or g5 = fs/cs, respectively. Hence, at the remainder of this
work we will use the first one.

(2.4)

2.3 Main Result

In the proof of the main result of this chapter, we will use the following well-known
“scalarization” result.

Lemma 2.1 If ¥* € X is a solution of the weighted problem:

d d
minZwsfs(f), where wg >0 Vs € {1,...,d} and Zws =1,
s=1 s=1

reX

then ©* € P*.

We omit the proof of this lemma because it is trivial.

Now we introduce some notation that will be used later on. Let

Yopt ={r € X Z§:1 fs(z) = 2n},
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where

= mmes (2.5)

zeX

Then, by Lemma 2.1, the Pareto optimal set P* contains X, i.e.
Zo;ut C P* (26)

We next present our main result, which in particular states the convergence of the
SAA for the MOP (1.1). The convergence, in this chapter, is understood in the following
sense.

Definition 2.1 Let P(c) = (pij(c)) be the transition matriz associated with the SAA
defined by (2.1), (2.3), (2.4), and let {Xi(c),k =0,1,2,...} be the corresponding Markov
chain, at temperature c. The SAA is said to converge with probability 1 if

lim lim P{Xy(c) € P} =1.

c\,0 k—o0

The next theorem, which is the main result in this chapter, is an extension to MOPs
of the results presented in [1]. Here we use ideas similar to those in that paper, with the
appropriate changes.

In the proof of this theorem we show that the algorithm converges to the set X,,; C P*,
because of the particular transition probability we use.

Theorem 2.1 Let P(c) be as in Definition 2.1 and, moreover, suppose that G(c) is irre-
ducible. Then:

(a) The Markov chain has a stationary distribution ¢(c), whose components are
given by

gi(c) = — exp<—M> Vies, (2.7)

N0(0>
Y e ( i L >) 28)

JES

where

(b) For each i€ S
1

= li 7 T~ - )
QZ Cl\r%q ( ) |Zopt| Xzopt (Z)

where |Y,p:| denotes the number of elements in Xy

(c¢) The SAA converges with probability 1.
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These results remain valid if (2.3) is replaced with (2.2).
Before presenting the proof of Theorem 2.1 we state some preliminary results. First,
we note the following fact, which is due to a™ = a+ (—a)t (=a+a").

Lemma 2.2 For any real numbers ay, as, ... ,aq, by, b, ... by,

S (o )+ (z@k — aw) _ (Zm . bk>) |
k=1 ] k:ld dk::l

Z(ak — bk) + Z(bk — ak)+ = (ak — bk)+

k=1 k=1 k=1

We will need some properties of the limiting distribution, which we present next.
Recall that a probability distribution ¢ is called the limiting distribution of a Markov
chain with transition probability P = (p;;) if

¢ = klim P(X; =i|Xo=7) foralli,j € S.

If such a limiting distribution ¢ exists and a;(k) = IP(Xyx = 1), for i € S, denotes the
distribution of X}, then

. li_r)nooai(k) =gq; for alli € S.

Moreover, ¢ is an invariant (or stationary) distribution of the Markov chain, which
means that

q=qPpr; (2.9)
that is, ¢'is a left eigenvector of P with eigenvalue 1. A converse to this result (which is

true for finite Markov chains) is given in Lemma 2.4 below.
Observe that (2.9) trivially holds if ¢'is a probability distribution satisfying

q:Py; = q;P;; Vi,j€S. (2.10)

Equation (2.10) is called the detailed balance equation, and (2.9) is called the global balance
equation.

It is well known that in an irreducible Markov chain all states have the same period.
This observation yields the following.

Lemma 2.3 An irreducible Markov chain with transition matriz P = (p;;) is aperiodic
if there exists j € S such that p;; > 0.
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Lemma 2.4 ([27, pag.19]) Let P be the transition matriz of a finite, irreducible and
aperiodic Markov chain. Then the chain has a unique stationary distribution ¢, that is
q is the unique distribution that satisfies (2.9), and, in addition, ¢ is the chain’s limiting
distribution.

Now we present the proof of the main result of this chapter.

Proof of Theorem 2.1

(a) Since G(c) is irreducible, using Lemma 2.3 it can be seen that the Markov chain
associated to the SAA is irreducible and aperiodic (see [1, pag.39]). Hence, by Lemma
2.4 the chain has a unique stationary distribution. We now use (2.1) and (2.4) to see
that (2.10) holds for all ¢ # j. First note that

gi(c)Pij(c) = qi(c)Gij(c)Ay(c)
0 if 1 €85;.
Similarly,

() Pji(c) = q;(c)Gji(c)Aji(c)
%q]'(C)Aji C) if ¢ € Sj
0 ifi ¢ S;.
Thus, since ¢ € S; if and only if j € S;, to obtain (2.10) we only have to prove that

qi(c)Aij(c) = qjAji(c).

But this follows from (2.3), (2.7) and Lemma 2.2, because

qi(c)Aij(c) =
1 Yoy fli) S (fu) = f(0)*

- No(c) P _f) P <_ c )

_ U A E B0 () — £6)) + 6 (F0) — S0
No(c) P c P c

1 Yy f) YL () = £G)*

~ No(o) 7P _f) P <_ c )

= q;(c)Aji(c).
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This shows that (2.10) holds, which in turn yields part (a) in Theorem 2.1.

Note that this proof, with obvious changes, remains valid if the acceptance probability
is given by (2.2) rather than (2.3).

(b) Note that for each a <0

1 ita=0
: a/r __ )
i{%e N { 0 otherwise. (2.11)

Now, by (2.5), (2.7) and (2.8)
exp (_zizlc fs(i))

Z_ SeXp (_Zg:1f5(j))
J€ c
<2m—2‘§:1 fs(i)>

exp

4 ]
> ics €XD <—EM_ZZ:1 fsm)

d .
exp (m—zzzlfs(z))

<2m—2§:1 fs(9)

(Xope () + X5—50p (1))
ngs exp >

: (4)
S £ e
3 exp ((FntimU))

d .
exp <Em—22:1 fS(Z))

T (zm—z‘::lfs(j)) XS—Sope(1)-

Zjes €xp

Now let ¢ N\, 0. Then, by (2.11), the second term of the latter sum tends to 0, whereas
the denominator of the first term goes to |¥,,:|. Hence

1
lim ¢;(c)

= — 1) + 0 = qf,
C\O ‘Zopt|XEopt( ) ql

which completes the proof of part (b).

(c) By (b) and Lemma 2.4

lim lim P{X; =1} = limgi(c) = ¢,
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and so by (2.6)

N TR _ 1 ‘
£1{% ]}LIrOlO P{X;, e P} > £1<% kh_)ngo P{X,€Xy}t=1 (2.12)
Thus
i{%kh—g}op{Xk eP} =1,
and (c) follows. [ |

S

Figure 2.2: Comparison of ¥,,, and P*

2.4 Conclusions and Future Work

We have shown in Theorem 2.1 that a suitable choice of the acceptance probabilities
yields the convergence of the SAA. This is reassuring, of course, because it means that the
algorithm is indeed heading in the right direction. However, for computational purposes,
our approach might not be very useful.

Indeed, what we actually prove is that, as in (2.12), the underlying Markov chain
converges to the set X, which can be very “small” compared to the Pareto optimal set
P

This is illustrated in Figure 2.2 in which the Pareto front corresponds to the parts on
the boundary of S joining the points A and B, and also the points C' and D, whereas
F(X,,t) corresponds only to the points that give p; and ps.



14 Simulated Annealing Algorithm

To improve our SAA one possibility would be to introduce an “elite set” (see Section
3.2.2), which is a standard procedure in multiobjective evolutionary algorithms [2, 7]. At
each step of the algorithm, the elite set contains all the nondominated points generated
so far. Thus, by introducing the elite set, the idea would be to make the contents of such
elite set to converge to the Pareto optimal set.



Chapter 3

Metaheuristic Algorithms

In this chapter we analyze the convergence of metaheuristic algorithms for
multiobjective optimization problems in which the transition probabilities use
a uniform mutation rule. We prove that these algorithms converge only if
elitism is used.

3.1 Introduction

This chapter concerns the use of metaheuristic algorithms (MhAs) for solving multiob-
jective optimization problem (MOPs) as defined in (1.1). For MhAs that use a uniform
mutation rule we show that the associated Markov chain converges geometrically to its
stationary distribution, but not necessarily to the MOP’s optimal solution set. Conver-
gence to the optimal solution set is ensured only if elitism is used.

MhAs are a standard tool to study both single-objective and MOPs. The convergence
of a MhA in the single-objective case is reasonably well understood; see [40], for instance.
For MOPs, however, the situation is quite different, and as far as we can tell the existing
results deal with extremely particular cases; see, for example, [42]. This chapter is,
therefore, the first one dealing with the convergence of a general class of MhAs.

The rest of the chapter is organized as follows. The class of MhAs we are interested
in are described in Section 3.2, and the main results are presented in Section 3.3. These
results are proved in Section 3.4. We conclude in Section 3.5 with some general remarks.

As we are concerned with a MhA in which the elements are represented by strings of
length [ with 0 or 1 in each entry, in the remainder of the chapter we will replace X in
(1.1) with the finite set IB!, where IB = {0, 1}.

3.2 Metaheuristic Algorithms

The MhAs are techniques in which there is a population that evolves applying some
operations to the current population to obtain the next one. Some of these operations are

15
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e mutation
e selection
® Crossover

e reordering
Some examples of MhAs are

e genetic algorithms (see [17]),
e evolution strategies (see [45]),

e cvolutionary programming (see [15, 14]).

The MhAs we are interested in are modeled as Markov chains with transition proba-
bilities that use uniform mutation and possibly other operations. This mutation is made
with a parameter or probability p,,, which is positive and less than 1/2, i.e.

pm € (0,1/2). (3.1)

In some cases this mutation can be made with two or more parameters, namely the
population is divided in subpopulations to each of which a different mutation rate is
applied. For example in Chapter 4 we present the MISA algorithm that divides the
population in two sets, and in which two different mutation rules are applied.

The algorithm we are concerned with is modeled as a Markov chain {X; : £ > 0},
whose state space S is the set of all possible populations of n individuals, each one
represented by a bit string of length I. Hence S = (IB")* = IB™, where IB = {0,1} and
so S is the set of all possible vectors of n entries, each of which is a string of length [ with
0 or 1 in each entry.

Let i € S be a state, so that ¢ can be represented as

’i: (il,ig,...,in),

where each i, is a string of length [ of 0’s and 1’s.

The chain’s transition probabilities are given by
Pij = IP(Xp1 =7 | Xp =1).

Thus the transition matrix is of the form

P =(Py) = LM, (3.2)

where M is the transition matrix corresponding to the mutation operation and L repre-
sents the other operations.
Note that these matrices are stochastic, i.e. L;; > 0, M;; > 0 for all 7, j, and for each

1€ 8
> Li=1and Y M,=1. (3.3)

ses ses
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3.2.1 The Mutation Probability

The mutation probability is very important in the convergence analysis of the MhA. To
calculate it from state ¢ to state j we use that the individual i, is transformed into the
individual js applying uniform mutation, i.e. with a fixed probability p,,, then each
entry of 7, is transformed into the corresponding one of j; with probability 1 — p,, or p,,
depending on whether the corresponding entries are equal or different. Schematically we
have.

1 2 ... n
i [ [
mutation | | -+ |
J g2 ] |in]

Thus, for each individual in the population, the mutation probability can be calculated
as

pg(lsﬂs)(l — pm)l_H(is’js) VS - {1’ e ,n},

where H (is, js) is the Hamming distance between is and j;. Hence the mutation proba-
bility from ¢ to j is:

]\47/‘7 = prln(zsvjs)(]_ _ pm)l_H(is’jS)- (34)
s=1

3.2.2 Using Elitism

In our case, when dealing with MOPs, we say that we are using elitism in an algorithm if we
use an extra set, called the elite set, in which we put the “best” elements (nondominated
elements in our case) found. This elite set usually does not participate in the evolution
(although, there are multi-objective evolutionary algorithms that use the elite set in the
selection process, such as the Strength Pareto Evolutionary Algorithm [59]), since it is
used only to store the nondominated elements.

After each transition we apply an elitism operation that accepts a new state if there
is an element in the population that improves some element in the elite set (i.e., if there
is an element in the population that dominates, in the Pareto sense, some element in the
elite set). Additionally, all the elements in the elite set that are dominated by the new
element are taken off of the elite set.

If we are using elitism the representation of the states changes to the following form:

i = (i%0) = (i, iS00,y in),
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where 1§, - - - ,7¢ are the members of the elite set of the state, r is the number of elements
in the elite set. Of course, we assume that the cardinality of P* is greater than or equal
to r, and also that » < n.

Note that in general if,--- ¢ are not necessarily the “best” elements of the state 7,
but after applying the elitism operation in ¢ they are indeed the “best” elements.

Let P be the transition matrix associated with the new states. If all the elements in
the elite set of a state are Pareto optimal, then any state that contains an element in the
elite set that is not a Pareto optimal will not be accepted, i.e.

if {i,--- i} € P* and {5, --,j¢} ¢ P* then P; = 0. (3.5)

3.3 Main Results

Before stating our main results we introduce the definition of convergence of an algorithm,
which uses the following notation: if V' = (vy,vs,...,v,) is a vector, then {V'} denotes
the set of entries of V| i.e.

{V} ={v1,v9,...,0,}

Definition 3.1 Let {X} : k > 0} be the Markov chain associated to an algorithm. We
say that the algorithm converges to P* with probability 1 if

PH{{Xy}CP)—1 as k— oc.

In the case that we are using elitism we replace Xy, by Xp, the elite set of the state
(i.e. if X =1 then X| =1i°).

Our first result is related to the existence of a stationary distribution for the Markov
chain of the MhA.

Theorem 3.1 Let P be the transition matriz of a MhA. Then P has a stationary distri-
bution ™ such that

IPE—ml < (1—2"p)"" VijeS Vk=1,2,.... (3.6)

Moreover, m has all entries positive.

Theorem 3.1 states that P* converges geometrically to m. Nevertheless, in spite of
this result, the convergence of the MhA to the Pareto optimal set cannot be guaranteed.
In fact, from Theorem 3.1 and using the fact that 7 has all entries positive we will
immediately deduce the following.

Corollary 3.1 The MhA does not converge.

To ensure convergence of the MhA we need to use elitism.

Theorem 3.2 The MhA using elitism converges.
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3.4 Proofs

We first recall some standard definitions and results.
The next result gives an upper bound on the rate of convergence of P* as k — oo. We
will use it to show the existence of the stationary distribution in Theorem 3.1.

Lemma 3.1 Let N be the cardinality of S, and let Pf; be the entry ij of P*. Suppose
that there exists an integer v > 0 and a set J C S with N1 > 1 elements and such that

min P} =0 > 0.

1<i<n Y
JjeJ
Then there are numbers m, T, ..., TN, such that

]}LII;ORI;:Wj Vi=1,...,N, with 7; >3 >0, Vj € J,
and 7y, T, ..., TN, form a set of stationary probabilities. Moreover
PE—m| <(1=N§) ™ Wk=1,2,....
Proof See, for example, [10, p. 173].
The next lemma will allow us to use Lemma 3.1 to prove Theorem 3.1.

Lemma 3.2 Let P be the transition matriz of the MhA. Then

Py =p : .
min Py =pp > 0 (3.7)
Proof
By (3.1) we have
1
m < = <1—pp.
p 9 p

Thus, from (3.4), for all 4, j:

My = H pH(zs Js) )l—H(is,js)
> H(is,js) l H(is,js) _ - in
HP 81:[119

= pm_
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On the other hand, from (3.2) and (3.3), for all ¢, j:

Py = Y LiM,

seS
seS
= ph >0,
To verify (3.7), observe that P,; attains the minimum in (3.7) if ¢ has 0 in all entries and
j has 1 in all entries. Thus the desired conclusion follows. [ |

Proof of Theorem 3.1

Since inequality (3.7) holds for all j € S we have that Ny = N = 2" and v = 1 in
Lemma 3.1. Thus, by Lemma 3.1, P has a stationary distribution 7 with all entries
positive and we get (3.6). |

Theorem 3.2 is an extension of a result originally presented by Rudolph [40]. However
our proof is more general, because it is valid for any algorithm that uses uniform mutation
and it is valid for MOPs. Additionally, we do not make any assumptions regarding the
existence of a single optimal point, due to the use of essential and inessential states as
defined next.

Definition 3.2 Let X be as in section 1.2. We say that X is complete if for each
x € X \ P* there exists x* € P* such that F(x*) < F(z).

For instance, if X is finite then X is complete.

Definition 3.3 Let i,j € S be two arbitrary states, we say that i leads to j, and write
1 — j, if there exists an integer k > 1 such that Pi’; > 0. If 1 does not lead to 7 we write
i A

We call a state i inessential if there exists a state j such that i — j but j / 1.
Otherwise the state i is called essential.

We denote the set of essential states by E and the set of inessential states by I. Clearly,
S=FUI.

We say that the transition matrix P is in canonical form if it can be written as

P 0
P:(Rl Q).
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Observe that P can be put in this form by reordering the states, that is, the essential
states at the beginning and the inessential states at the end. In this case, P; is the
matrix associated with the transitions between essential states, R with transitions from
inessential to essential states, and () with transitions between inessential states.

Note also that P* has QF in the position of () in P, i.e.

PF 0
ko 1
P (o)
where Ry is a matrix that depends on Py, @) and R.
Now we present some results that will be necessary in the proof of Theorem 3.2.

Lemma 3.3 Let P be a stochastic matriz, and let () be the submatrix of P associated
with transitions between inessential states. Then, as k — o0,

QF — 0 elementwise geometrically fast.
Proof See, for instance, [46, p.120]. [ |

As a consequence of Lemma 3.3 we have the following.

Corollary 3.2 For any initial distribution,
P(X,el)—0 as k— oo.

Proof For any initial distribution vector pg, let po(I) be the subvector that corresponds
to the inessential states. Then, by Lemma 3.3,

P(X, €I)=py(I)Q"1 — 0 as k — oc. -

Proof of Theorem 3.2

By Corollary 3.2, it suffices to show that the states that contain elements in the elite set
that are not Pareto optimal are inessential states. To this end, first note that X = IB' is
complete, because it is finite.

Now suppose that there is a state 1 = (2¢;4) in which the elite set contains elements

ig,- -1, that are not Pareto optimal. Then, as X is complete, there are elements, say
Jes--+»Js, € P, that dominate 75 , ..., 15, , respectively.

Take j = (7% j) such that all Pareto optimal points of i¢ are in j¢ and replace the
other elements of ¢ with the corresponding j¢ ,...,j¢ . Thus all the elements in j¢ are
Pareto optimal.
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Now let
] = (jf,...,jf,i;,...,i;).
N—_——

n—r copies

By Lemma 3.2 we have ¢ — j. Hence with positive probability we can pass from
(1¢,7) to (3% 7), and then we apply the elitism operation to pass from (1¢,7) to (] . 7)-
This implies that ¢ — j. On the other hand, using (3.5), j 4 ¢ and, therefore, i is an
inessential state.

Finally, from Corollary 3.2 we have

PH{X;}CcP)=P(X,eE)=1-P(Xyel)—-1-0=1

as k — o0o. This completes the proof of Theorem 3.2. [ |

3.5 Conclusions and Future Work

We have presented a general convergence analysis of a MhA for MOPs in which uniform
mutation is used. It was proven in Theorem 3.2 that it is necessary to use elitism to
ensure that our algorithm converges. This result is of course reassuring, but it is not
quite complete in the sense that we have been unable to provide a result such as in (3.6),
on the speed of convergence. The latter fact as well as a convergence analysis of a MhA
with nonuniform mutation rule, require further research.



Chapter 4

Multiobjective Artificial Immune
System Algorithm

This chapter presents the convergence of a multiobjective artificial immune
system algorithm (based on clonal selection theory). An specific algorithm,
previously reported in the specialized literature, is adopted as a basis for the
mathematical model presented herein.

4.1 Introduction

It was until recent years that researchers on optimization problems became aware of the
potential of population-based heuristics such as artificial immune systems [18, 2]. The
main motivation for using population-based heuristics in solving multiobjective optimiza-
tion problems (MOPs) is because such a population makes possible to deal simultaneously
with a set of possible solutions (the so-called population), which allows us to find several
members of the Pareto optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of traditional mathematical programming
techniques [32]. Additionally, population-based heuristics are less susceptible to the shape
or continuity of the Pareto front (e.g., they can easily deal with discontinuous and concave
Pareto fronts), whereas these two issues are a real concern for mathematical programming
techniques [7, 2].

Despite the considerable amount of research related to artificial immune systems in the
last few years [6, 37|, there is still little work related to issues as important as mathematical
modelling (see for example [49, 43]). Other aspects, such as convergence, have been
practically disregarded in the current specialized literature.

This chapter studies the convergence of an artificial immune system algorithm used
for multiobjective optimization problems.

First, we present a simplified form of the algorithm for which the convergence proof is
somewhat similar to the one in the previous chapter. Afterwards we deal with the general
model.

23
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The remainder of this chapter is organized as follows. In Section 4.2 we briefly describe
the specific algorithm adopted for developing our mathematical model of convergence.
Then, in Subection 4.3.1, we present the results for the simplified model. The proofs are
presented in Subection 4.3.2. Section 4.4 deals with the general algorithm. Finally, our
conclusions and some possible paths for future research are presented in Section 4.5.

As we are concerned with the artificial immune system algorithm in which the elements
are represented by a string of length [ with 0 or 1 in each entry, in the remainder of the
chapter we will replace the set X in (1.1) with the finite set IB!, where B = {0,1}.

4.2 The Artificial Immune System Algorithm

The Artificial Immune System (AIS) algorithm is a technique that, as its name indicates,
simulates in a computer certain aspects of the human immune system. When an antigen
enters our immune system, it is immediately detected and generates a response from the
immune system. As a consequence, antibodies are generated by the immune system.
Antibodies are molecules that play the main role in the immune response. They are
capable of adhering to the antigens in order to neutralize and mark them for elimination
by other cells of the immune system. Successful antibodies are cloned and hypermutated.
This is called the clonal selection principle [36] and has been the basis for developing the
algorithm on which we base the work reported in this chapter.

For our mathematical model, we will consider the AIS (based on clonal selection theory
[36]) for multiobjective optimization proposed in [5], called a “Multi-objective Immune
System Algorithm” (MISA for short). Next, we will focus our discussion only on the
aspects that are most relevant for its mathematical modelling. For a detailed discussion
on this algorithm, readers should refer to [5].

In MISA the antigens are simulated with a population of strings of 0’s and 1’s. The
population is divided in two parts, a primary set and a secondary set; the primary set
contains the “best” individuals (or elements) of the population. The transition of one
population to another is made by means of two mutation rules and a reordering operation.
First, the elements of the primary set are copied several times, then in each of these copies
or clones a fixed number of bits are mutated, at random. Regarding the secondary set,
a uniform mutation with parameter p,, is applied. This parameter is positive and less
than 1/2, i.e. p,, € (0,1/2). After that, the elements are reordered, moving the “best”
individuals to the primary set.

MISA can be modeled by a Markov chain {X}, : k > 0}, with state space S = IB™,
where IB = {0,1}. Suppose that the primary set has n; individuals, so that the secondary
set has n — ny individuals. Let i € S be a state (population). Then we can express i as

2 B N S R . . .
i =(1",17) = (1,92, - -« y by by sy« -+ )y (4.1)
i, 2 represent the primary and the secondary set, respectively, whereas each i, is a string

of length [ of 0’s and 1’s.
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Use of Elitism

In [5], the elite set is called the secondary population, and again it is used only to store
the nondominated elements found along the process.

In our case, if we are using elitism, the representation of the states changes to the
following form:

'z: (Zevl) = (ie;i1>i2) = (Zia ,ifn;’l.l,"' ainp'énl—i-la"' >Zn)

where 7, - - - ,7¢ are the members of the elite set of the state; r is the number of elements
in the elite set, and of course we assume that the cardinality of P* is greater than r. In
addition we assume that r < n.

4.3 MISA: Simplified Model

In this model we do not “mutate” a fixed number of entries of the primary set; instead a
uniform mutation with probability p,, is applied to the copies of the primary set, whereas
a mutation with parameter p,, is applied to the secondary set. These parameters are
positive and less than 1/2, i.e.

Pons Pm € (0,1/2). (4.2)

Again, we model this algorithm with a Markov chain {X} : £ > 0}, with state space
S = B™, where IB = {0,1}. Hence S is the set of all possible vectors of n individuals
each one represented by a string of length [ with 0 or 1 in each entry.

In our model we omitted to make clones and the mutation is made directly to the
elements of the primary set. We do not use clones because this operation is not important
for our current purposes.

As in previous chapters the chain’s transition probability is denoted by

Py=P(Xp=j| Xp=1i)

We also write

The transition matrix is of the form
P = (PZ]) = RM>

where R and M are the transition matrices of reordering and mutation, respectively.
These matrices are stochastic, of course.
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The Mutation Probability

In order to calculate the mutation probability from state ¢ to state j we use that the
individual 7, is transformed into the individual j, by applying uniform mutation with
probability p,, or p,, depending on whether i, is part of i' or i?, as in the following
scheme.

1 ni ng+1 n
i L fa | dw [ ]
mutation | .-+ | o
7o Ll L [ gmea [ [ ]

Thus, for each individual in the primary set of the population, the mutation probability
is given by o o
pHG=ds) (1 — p VHOID s e (1) ny},

where H (ig, js) is the Hamming distance between is and j,. Similarly, for the secondary
set we have o o
pHlisds) (1 — p NVZHEG) s e ny +1,... n).
Hence the mutation probability from i to j is:

ni n
M;; = Hpg(zs,ys)(l _ pm)z—H(zS,ys) H pﬁ(zs,js)(]_ _ pm)l—H(zs,]S). (4.3)
s=1 s=n1+1

4.3.1 Main Results

For the simplified model of MISA our results and the corresponding proofs are similar to
those in the previous chapters. However, now the population is divided in two subpopu-
lations, and we introduce suitable changes. For instance, as in (3.6), we now obtain the
following.

Theorem 4.1 Let P be the transition matriz of MISA. Then P has a stationary distri-

bution w such that

1PE— i < (1 =2l pm) Vi jes VE=1,2,.... (4.4)

m Pm
Moreover, m has all its entries positive.
Hence, as in Corollary 3.1 of Theorem 3.1, we immediately deduce the following fact.

Corollary 4.1 The MISA does not converge.

Again, as in Chapter 3 to ensure convergence of the MISA we need to use elitism.

Theorem 4.2 The elitist version of MISA does converge.
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4.3.2 Proofs

We first recall some standard definitions and results.

Definition 4.1 A nonnegative matrix P is said to be primitive if there exists k > 0 such
that the entries of P* are all positive.

Definition 4.2 A Markov chain {Xy : k > 0} with transition matriz P is said to satisfy
a minorization condition if there is a pair (3, ) consisting of a positive real number (3
and a probability distribution p on S, and such that

P(i, A) > Bu(A) Vie S,VACS.

The following result gives an upper bound on the convergence rate of a Markov chain
that satisfies a minorization condition.

Lemma 4.1 Consider a Markov chain { Xy, : k > 0} with transition matriz P and sup-
pose that it satisfies a minorization condition (G,u). Then P has a unique stationary
distribution w. Moreover for any initial distribution we have

|PF—x||<(1-0)" VE=1,2,....
Proof see for example [19, pp. 56-57]

We will use the next result to show the existence of the stationary distribution in
Theorem 4.1.

Lemma 4.2 Let P be a stochastic primitive matriz. Then, as k — oo, P* converges to a
stochastic matriz P® = 1'p™, where 1’ is a column vector of 1’s and p>° = p°limy_,o P* =
p? P> has positive entries and it is unique, independently of the initial distribution p°.

Proof [21, p. 123]

The next lemma will allow us to use either Lemma 4.1 or Lemma 4.2.

Lemma 4.3 Let P be the transition matriz of the MISA. Then

min Py = pji!pli " > 0 (4.5)

and therefore P is primitive. Moreover, P satisfies a minorization condition (3, u) with

5 =gty = Ay g (4.6)

where |A| is the cardinality of A.
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Proof
The proof of the first is similar to the proof of Lemma 3.2.
By (4.2) we have
1 1
m < = <1—pm, m < =<1—=pp.
p 5 D p 5 P

Thus, from (4.3),
Mij _ HpH(zs Js) pm l H(is,js) H pH(Z.s Js)(1 _ pm)l—H(ist)

s=ni1+1
> Hpm H P

s=ni+1
n1l (n—n1)l

= Pm Pm

On the other hand, since P = RM, where R and M are stochastic matrices,

Py = Y RiM,

ses
2 pzbﬂp%z nllZRiS
ses
= pplplmt >0,

To verify (4.5), it suffices to note that P,; attains the minimum in (4.5) if 4 has 0 in
all entries and 7 has 1 in all entries.

Now we will show that the pair (3, ) given by (4.6) is a minorization condition for
P. Indeed, from (4.5) we have

A= Py = Y o

jeEA JEA
= |4 p?,;lpw’} )
— |A‘ I (n—n1)l
2nl m m
= [ u(A)
and the desired conclusion follows. [ ]

Now we are ready to present the proof of Theorems 4.1 and 4.2.
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Proof of Theorem 4.1

By Lemma 4.3, P is primitive. Thus, by Lemma 4.2, P has a unique stationary distribu-
tion 7 with all entries positive. Finally, using Lemma 4.1 and the minorization in (4.6),
we get (4.4). |

Proof of Theorem 4.2
The proof of Theorem 4.2 is same as the proof of Therorem 3.2 (see Chapter 3). [ |

4.4 MISA: General Model

In section 4.3 we presented the convergence of a simplified version of MISA.

Here, we present a proof of a more general version of MISA. Thus, to the clones of the
primary set a fixed number of bits are mutated, at random, and a uniform mutation is
applied to the elements of the secondary set.

The idea is similar to Theorem 3.2, and is presented in the next lemma and in Theorem
4.3.

Lemma 4.4 If any state in MISA has in its elite set an element that is not Pareto
optimal, then this state is inessential.

Proof. Note that X = IB' is complete, because it is finite.

Let i = (i 4!, i%) be a state in which the elite set contains elements that are not Pareto
optimal.

1. From 7!, a set of clones is generated. Next, a fixed number of (randomly chosen)
string positions of these clones are mutated. Then we change the initial positions in
all the strings of the clones (there exists a positive probability of doing this). The
set obtained from this process is called ClonesM (i').

2. Since a uniform mutation is applied to i?, we change whatever is necessary in all the
elements within this set, so that we can obtain the worst element of ClonesM (i').
As before, there exists a positive probability of doing this, so that none of these
elements enters the primary set.

3. Then, all the elements are rearranged and we select the nondominated elements and
they are placed in j'. Now, let j2 contain a number of individuals of the remainder
of the elements available, until completing n (n is the population size).

4. Applying elitism we obtain the set ;€.
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5. To the clones of j!, we mutate the same initial string positions. Then
ClonesM (j') C ClonesM (i*).

Therefore, the best elements of ClonesM (j') will be in j' again. When we apply
elitism to the elements of j!, we do not modify the set j°.

6. Let j¢,...,J¢, be the elements of j° that are not Pareto optimal. As X is complete,
there exist elements 7% ,...,7; € P* that dominate jg , ..., jS, , respectively.

7. Now, since we apply uniform mutation to j*, we can obtain i}, ..., j¥ from ji, ..., j7,
respectively, and the other elements of j2 are left as they were before.

8. Like ClonesM (j') and {jis1,. - -, jn, } had already been modified j¢, when applying
elitism we will not modify again j¢. Thus, the only part of j¢ that is modified will

be iy ,...,J;, and they will replace the nondominated elements of j¢.

9. Finally, let i" be the resulting state of this process. Using the previous process (1-8),
we can go from i to i' (i — '), but as in i there are only Pareto optimal solutions,
from (3.5) Py; =0 (i.e. i /> 1). This proves that ¢ is an inessential state. |

(2

From Lemma 4.4, the convergence of MISA is easily obtained as follows.

Theorem 4.3 The MISA using elitism converges.

Proof.
From Lemma 4.4 and Corollary 3.2 in chapter 3 we have

PH{X;}CcP)=P(X,eE)=1-P(Xyel)—-1-0=1

as k — oo. This completes the proof. [ |

4.5 Conclusions and Future Work

We have presented a proof of convergence of the multiobjective artificial immune system
algorithm (MISA) presented in [5]. The convergence analysis indicates that the use of
elitism (which is represented in the form of an elite set in the case of multiobjective
optimization) is necessary to guarantee convergence. To the author’s best knowledge, this
is the first proof of convergence presented for a multiobjective artificial immune system.

As part of our future work, we plan to extend our theoretical analysis to other types of
artificial immune systems [6]. We are also interested in defining a more general framework
for proving convergence of heuristics based on a mutation operator. Such a framework
would allow us to prove convergence of a family of heuristics that comply with a certain
(minimum) set of requirements, rather than having to devise a specific proof for each of
them.



Chapter 5

Using Stripes to Maintain Diversity
in a MOPSO

In this chapter, we propose a new mechanism to maintain diversity in multi-
objective optimization problems. The proposed mechanism is based on the use
of stripes that are applied on objective function space and that are independent
of the search engine adopted to solve the multi-objective optimization problem.
In order to validate the proposed approach, we included it in a multi-objective
particle swarm optimizer. QOur approach was compared with respect to two
multi-objective evolutionary algorithms which are representative of the state-of-
the-art in the area. The results obtained indicate that our proposed mechanism
1s a viable alternative to maintain diversity in the context of multi-objective
optimization.

5.1 Introduction

In the last few years, several multi-objective particle swarm optimizers (MOPSOs) have
been proposed in the specialized literature (see for example [4, 35, 48, 20, 28, 29, 50, 38]).

Most of this work, however, focuses mainly on the design of novel selection or archi-
ving mechanisms. Nevertheless, the design of effective mechanisms to maintain diversity
remains as a key issue when extending particle swarm optimizers so that they can deal
with multi-objective optimization problems.

In some recent work, a few authors have proposed or adopted novel mechanisms to
maintain diversity in their MOPSOs (e.g., [34, 33, 50]). Such approaches have led to the
development of very successful multi-objective particle swarm optimizers.

In this chapter, we propose a new mechanism to maintain diversity, which we show
to overcome the main drawbacks of other popular mechanisms such as e-dominance [26]
and the sigma method proposed in [34].

The remainder of the chapter is organized as follows. Section 5.2 presents the most
relevant previous related work. Our proposed approach is described in Section 5.3. Sec-

31
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tion 5.4 presents a comparison of the results produced by our approach (coupled to a
MOPSO) and two multi-objective evolutionary algorithms that are representative of the
state-of-the-art. Finally, in Section 5.5, we present our conclusions and some possible
paths for future research.

5.2 Previous Related Work

There are two main approaches to maintain diversity of MOPSOs that have been reported
in the specialized literature: the sigma method proposed by Mostaghim et al. [34] and
the e-dominance method proposed by Laumanns et al. [26].

Figure 5.1: This figure illustrates a situation that causes problems to the sigma method
proposed by Mostaghim et al. [34].

The sigma method uses the vector represented by the evaluation of F'(Z) of the particle
Z, and the leader of this particle is the individual in the elite set whose sigma is closest
to the sigma of 7 (sigma is a direction and is computed using an expression provided by
the authors of this method [34]). The core idea in the sigma method is to form clusters
using the particles in the elite set as the centers of such clusters. Note however that the
elite set could be very large. Since the number of elements in each cluster is not bounded,
there could be leaders with many “followers” and some leaders with no “followers”. In
consequence, the approach may fail to cover all the Pareto front. Also, the approach
requires that all the objective function values are positive (some sort of scaling is required
when this is not the case). Figure 5.1 shows a case in which the sigma method could fail.
In this figure, all the directions go to the portion of the Pareto front which is closer to



5.3. OUR PROPOSAL 33

the “ideal vector”. Thus, it is possible that the solutions generated do not cover all the
Pareto front.

Let us consider again the MOP (1.1).

The concept of e-dominance [26] refers to a relaxed form of dominance. A decision
vector x is said to e-dominate a decision vector xo for some € > 0 iff: fi(z1)/(1 +¢) <
filxe),Vi=1,....,d, and f;(z1)/(1 4+ ¢€) < fi(x2); for at least one i = 1, ...,d (d is the total
number of objective functions of the problem). It is worth noting that ¢ is a user-defined
parameter.

Figure 5.2: An example in which the e-dominance approach retains the wrong point.

This concept is normally used to fix the size of the external archive (or secondary
population) in which a multi-objective evolutionary algorithm retains the nondominated
vectors found during the search.

The main drawback of the e—dominance method is the number of comparisons and
distances that have to be computed. Another possible problem with the e-dominance
approach is shown in Figure 5.2 because . In this case, the point A is closer to the lower
lefthand corner than point B, but point B is closer to the Pareto front than point A. So,
in this case, the e-dominance approach retains point A. In contrast, our approach will
retain point B.

5.3 Our Proposal

Throughout the remainder of this chapter the functions fi,..., f; are supposed to be
bounded below.
First, we present the next result and definition that is part of our idea.
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0,0)

Figure 5.3: F(P*) is contained in the “hyper-box” defined by F(#'), F(7?)

Lemma 5.1 Let @', #2,...,2% € X be the minimizers of the functions fi, fa, ..., fq Te-

spectively. Then the Pareto front is contained in the “hyper-box” defined by the points
F(ZY, F(7?),..., F(79).

The proof of Lemma 5.1 is trivial and is, therefore, omitted here. The lemma is
illustrated in Figure 5.3, for the case in which d = 2 and the Pareto front corresponds to
the parts on the boundary of S joining the points A and B, and also the points C' and D,

Definition 5.1 Let Xi,..., Xy € IR? then the convex hull of these vectors is

d d
CH(Xl,...,Xd) = {ZQZXZ/ZQZ = 1,0@ 2 0,0éi S R} .
i=1 i=1

The core idea of the approach proposed in this chapter (which we call “stripes”) is that
the convex hull generated by the points F(7'), F(#?),..., F(7¢) (defined in Lemma 5.1)
is “similar” to the Pareto front (see Figures 5.4 and 5.5). Thus, we can use several points
(which we call stripe centers) uniformly distributed along this convex hull, and we assign
the individuals of the population to the nearest stripe center. This way, we are distributing
the individuals in several stripes determined by the stripe centers (see Figure 5.4). Now,
if we set an upper bound on the number of individuals in each stripe and on the number of
elements of the Pareto front, the approach will provide a distribution of points, avoiding
an excessive clustering in any particular region from those defined by the stripes.

In this chapter, we use the notion of clustering, but the center of each cluster is fixed
and uniformly distributed along the convex hull, as shown in Figures 5.4 and 5.5 (the
small circles are the centers of the clusters).
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Figure 5.4: Graphical representation of the stripes proposed in this chapter.

The stripe center set can be computed using;:

nl

.F_)Z
{Xil,...,idzzlj () [+ -+ ig =nl, il,...,idEJNU{O}},

Jj=1

where nl, a parameter provided by the user, is the number of points in each edge of the
convex hull.

Special case d = 2

In the case d = 2, we can do some simplifications that are presented next.
In this case the stripe center set can be computed using

{XZ- _ @) + (ns — 1 _i)F(iﬂ),z‘ € {0,1,...,ns— 1}}, (5.1)

ns — 1

where ns is the number of stripes, which is equal to nl.

In the case in which there are only two objective functions, d = 2, we can apply a
rotation to all elements in the population and to all elements in the elite set, such that
the vector F'(7!) — F(7?) is parallel to the z—axis. Then the stripe of every element in the
population is calculated using the coordinate z of the rotated element, as follows. Let 6
be the angle between the z—axis and the vector F/(7') — F(7?). Thus, this angle is what
we need to rotate all the elements. Further, if F"(Z) = (f](Z), f5(Z)) are the rotated
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F(#)

S

Figure 5.5: Distribution of the stripes center for d = 3, nl =6

coordinates of F'(Z) = (f1(Z), f2(¥)), we have

f1(Z) = cos(0)f1(Z) —sin(0) f2(7)

. : . . (5.2)
f3(Z) = sin(0)f1(Z) + cos(0) f2(T)

Now, to determine the stripe of the individual whose evaluation is F'(Z) we use the
following expressions. Let

- J1@) = fi(@) _ @ - fi@)

d hz=
ns —1 o h
Then
1 if h,f < 0.5
stripe(Z) =< [hz+1.5] if 05<hz<ns—05
ns if hz>ns—0.5,

where [r] denotes the integer part of r € IR.

This procedure to assign the stripe is simpler than the method for calculating distances
to the stripe center and for computing the minimum of these distances.

To illustrate the way in which our proposed approach works, we show in Figure 5.6 an
example for a problem with two objectives. In the figure, it can be seen that the approach
(which was coupled to the MOPSO proposed in [4]) gives a good representation of the
Pareto front.
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5.3.1 PSO with stripes

In order to validate the effectiveness of our proposed approach to maintain diversity, we
used as our search engine the MOPSO previously proposed in [4]. However, in this case,

the diversity maintenance scheme are the stripes proposed in this chapter instead of the
adaptive grid originally adopted [4]. We call our MOPSO with stripes ST-MOPSO.

0.92

0.83 °

073 - °

0.64 r °

0.55 r °

0.46 r °

0.37 r %

0.28 r °

0.18 r °o

0.09 r °o

0.00 _—
0.00 0.09 0.19 028 0.38 047 0.56 0.66 0.75 0.85 0.94

Figure 5.6: An example of the type of distribution of non-dominated solutions produced
by our approach.

Our proposal consists of using one leader in each stripe and to compute a weighted
sum determined by the points F(7'), F(7?),..., F(7%) defined in Lemma 5.1, to select
the leaders, where the leader of a stripe is the point that minimizes this weighted sum.

To compute the parameter of the scalarization we use the coefficients of the normal
vector 77 of the “affine subspace” (hyper—plane) that contains the points F(z1), F'(2?), . ..,

Thus for d = 2 the normal vector is:

it = (|f2(Z") = f2(&®)], | A1(Z") = f1(&®)]).

For the case d = 3 we will use the vector product as follows.
Let (a,b,c) = [F(7') — F(7*)] x [F(7') — F(2®%)] then

7i = (lal, [b], |c]).
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In the other cases we will use Gram-Schmidt orthogonalization process to obtain the nor-
mal vector or the orthogonal projection of some special vector on the “Affine Subspace”.
Thus, the leader of a stripe is the element that minimizes.

d
P =Y nifi(@), (5.3)
i=1

with 7 = (ny,...,nq).

From Lemma 2.1 of Chapter 2 if the leader is a minimal point of (5.3) it is in P*.
Thus, this form to select the leaders makes sense.

However, in the case in which d = 2, we have the rotated coordinates F"(Z) and the
parameters of the scalarization can be taken as:

ny = sin(f), and ny = cos(h),

the coefficients of the rotation. In this case the leader of a stripe is the particle in the
elite set that minimizes f; (the y-coordinate of F™)

5.4 Comparison of Results

Several test functions were taken from the specialized literature to validate our approach,
and here we will include results obtained by ST-MOPSO for three of these test functions
for two objetive problem. Our results are compared with respect to those produced by
two multi-objective evolutionary algorithms representative of the state-of-the-art in the
area: the NSGA-II [9] and e-MOEA [8].

After that, we present an example in which we consider a MOP with 3 objective
funcions (see subsection 5.4.4. Our results are, again, compared with NSGA II and e-
MOEA.

For the first three test funtions, in the results shown next, each approach performed
3000 fitness function evaluations. The results shown correspond to 30 independent runs.

For the example with 3 objectives function, each approach perform 4000 fitness func-
tion evaluations and in this case the results was obtained for 20 independent runs.

In order to allow a quantitative comparison of results we adopted the following per-
formance measures: two set coverage [59, 58], hypervolume [58], inverted generational
distance [55], and success counting (which is a variation of the performance measure
called “error ratio” [55]).

The definition of each of these performance measures is presented next.

Two Set Coverage (7'SC)

This performance measure can be termed relative coverage comparison of two sets.
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Definition 5.2 Let (X)) be the power set of X. Then T'SC is defined as follows:
TSC: O(X)x Q(X) —[0,1],

_ {z" e X"3 4 € X1 F(a!) < F(a")})
| X" ’

TSC(X', X" :

vV X', X" C X., where |A| denotes the cardinality of A

If all points in X’ dominate or are equal to all points in X", then by definition
TSC = 1. TSC = 0 implies that none of the points in X” is dominated by a point

in X’. In general, TSC(X’, X") and T'SC(X", X') both have to be considered due to set
intersections not being empty.

Hypervolume (HV)

This performance measure, denoted HV (A, B) for the algorithms A and B, was proposed
by Zitzler and Thiele [58].

Let P} be the solution (nondominated elements) of an algorithm A . First, we have to
define the hypervolume® of the region determined by the image (F'(P%)) of the solution
of the algorithm A and the origin.

For example, a vector & € P for a two-objective problem defines a rectangle bounded
by the origin and (fi(Z), f2(Z)). The area of the union of all such rectangles defined by
each vector in P’ is the hypervolume. Then the hypervolume V(P}) determined by the
algorithm A is defined as:

V(P34) := Hypervolume U ag ¢,

FePy

where az is the hyperbox determined by the components of F'(¥) and the origin.
Thus the comparative performance measure is defined as follows.

Definition 5.3 Let P} and Py be the solution of two algorithms A and B, respectively.
Then the performance measure HV is defined as
V(PLUPE) —VI(PL)

V(PLUP)

HV(A,B) =

Observe that this measure is not symmetric, hence we need to consider both HV (A, B)
and HV (B, A).

In the case that all elements in B are dominated by elements in A then HV (A, B) =0
and HV (B, A) > 0.

IThe hypervolume is the area under the curve for the 2-dimensional case or the volume under the
surface for the 3-dimensional case.
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Inverted Generational Distance (IGD)

The concept of generational distance was introduced by Van Veldhuizen & Lamont [55, 56|
as a way of estimating how far are the elements in the Pareto front produced by our
algorithm from those in the true Pareto front of the problem.

Definition 5.4 This measure is defined as:

N 1/2
GD=-~=_~ (5.4)

N

where N is the number of nondominated vectors found by the algorithm being analyzed and
d; is the Euclidean distance (measured in objective space) between each of these vectors
and the nearest member of the true Pareto front.

It should be clear that a value of GD = 0 indicates that all the elements generated
are in the true Pareto front of the problem. Therefore, any other value will indicate how
“far” we are from the global Pareto front of our problem. In our case, we implemented
an “inverted” generational distance measure (IGD) in which we use as a reference the
true Pareto front, and we compare each of its elements with respect to the front produced
by an algorithm. In this way, we are calculating how far are the elements of the true
Pareto front, from those in the Pareto front produced by our algorithm. Computing this
“inverted” generational distance value reduces the bias that can arise when an algorithm
does not fully cover the true Pareto front.

Success Counting (SC)

We define the success counting measure based on the idea of the measure called Error
Ratio proposed by Van Veldhuizen [55] which indicates the percentage of solutions (from
the nondominated vectors found so far) that are not members of the true Pareto optimal
set. In this case, we count the number of vectors (in the current set of nondominated
vectors available) that are members of the Pareto optimal set:

Definition 5.5 The success counting measure SC' is defined by

N
SC=>"s,
=1

where N is the number of vectors in the current set of nondominated vectors available;
s; = 1 if vector i is a member of the Pareto optimal set, and s; = 0 otherwise.
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Figure 5.7: Pareto fronts produced by ST-MOPSO (left), e-MOEA (center) and NSGA-II
(right) for the ZDT1’s test function.

It should then be clear that SC' = N indicates an ideal behavior, since it would mean
that all the vectors generated by our algorithm belong to the true Pareto optimal set of the
problem. For a fair comparison, when using this measure, all the algorithms should limit
their final number of non-dominated solutions to the same value. Note that SC avoids the
bias introduced by the Error Ratio measure, which normalizes the number of solutions
found (which belong to the true Pareto front) and, therefore, provides only a percentage
of solutions that reached the true Pareto front. This percentage does not provide any idea
regarding the actual number of non-dominated solutions that each algorithm produced.

Now we present the results obtained for these three test function.

5.4.1 ZDT1’s test function

Minimize (f1(Z), f2(2))

fi(@) = x
f(T) = g(Z) h(fi(T), g
1 i

+9i(mx

2

Y

(7))
1

h(l’,y) = 1-

<

where m = 30, and z; € [0,1].

Figure 5.7 shows the graphical results produced by ST-MOPSO, e-MOEA and the
NSGA-II in the first test function chosen. (The true Pareto front of the problem is shown
as a continuous line in the left-hand side image of Figure 5.7). Tables 5.1 and 5.2 show the
comparison of results among the three algorithms considering the performance measures
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TSC ST-MOPSO | e-MOEA | NSGA-II
ST-MOPSO - 0.999333 0.999666
e-MOEA 0 - 0.411102
NSGA-II 0 0.0983892 -
HV ST-MOPSO | --MOEA | NSGA-IT
ST-MOPSO = 0 0
e-MOEA 0.0203594 - 0.000509322
NSGA-II 0.0303835 0.0107699 -

Table 5.1: Results of the Two Set Coverage and Hyper Volume performance measures for

the ZDT1’s test function.

IGD ST-MOPSO | e-MOEA | NSGA-II
Best 0.000343805 | 0.00167212 | 0.0020484
Worst | 0.000670735 | 0.0190439 | 0.0276651
Mean | 0.000430186 | 0.00795849 | 0.00641032
Stdev 7.39891e-05 | 0.0050593 | 0.0052243
Median | 0.000419506 | 0.00655261 | 0.00495141

SC ST-MOPSO | e-MOEA | NSGA-II
Best 100 2 8
Worst 95 0 0
Mean 99.3 0.3 1.1
Stdev 1.20773 0.534983 1.66816
Median 100 0 1

Table 5.2: Results of the Inverted Generational Distance and Success Counting perfor-
mance measures for the ZDT1’s test function.

previously described. It can be seen that the performance of ST-MOPSO is the best
with respect to all the performance measures tested. By looking at the Pareto fronts
produced by each algorithm in this test function, it should be clear that ST-MOPSO was
the only algorithm that could reach the true Pareto front in most of the runs performed
(the output of the 30 independent runs was combined in a single file in order to generate
the plots from Figure 5.7).
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Figure 5.8: Pareto fronts produced by our ST-MOPSO (left), e-MOEA (center) and
NSGA 1I (right) for the ZDT2’s test function.

5.4.2 ZDT2’s test function

Minimize (f1(Z), f2(2))
[@) = m
L@ = ¢(@) h(fi(Z),9(7))
g(@) = 1+9Z(mx_’ 5
I

where m = 30, and z; €[0,1].
Figure 5.8 shows the graphical results produced by ST-MOPSO, the NSGA-II [9], and
e-MOEA [8] in the second test function adopted.

TSC ST-MOPSO | e-MOEA | NSGA-II
ST-MOPSO - 0.993918 0.993918
e-MOEA 0 - 0.485246
NSGA-II 0 0.012 -
HV ST-MOPSO | e-MOEA | NSGA-II
ST-MOPSO - 0 0
e-MOEA 0.0377096 - 0.000175564
NSGA-II 0.0610739 0.0235162 -

Table 5.3: Results of the Two Set Coverage and Hypervolume performance measures for
the ZDT2’s test function.

Tables 5.3 and 5.4 show the comparison of results among the three algorithms con-
sidering the performance measures previously indicated. As in the previous example, the
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performance of ST-MOPSO was the best with respect to all the performance measures
adopted.

Graphically (see Figure 5.8), it can be seen that in this case, our ST-MOPSO generated
a few points outside the true Pareto front in one of the runs. However, when looking at
the graphical output generated by the other algorithms, it is clear that our ST-MOPSO
had the most robust behavior in this problem, since the others produced a considerably
large number of solutions outside the true Pareto front of the problem.

IGD ST-MOPSO | e-MOEA | NSGA-II
Best 0.000346726 | 0.0038222 | 0.00461677
Worst 0.051142 0.0516044 | 0.0550343
Mean 0.0104091 0.016797 | 0.0373733
Stdev 0.0186685 0.0128839 | 0.0202878
Median | 0.000439715 | 0.0112029 | 0.0518229

SC ST-MOPSO | e-MOEA | NSGA-II
Best 100 0 0
Worst 1 0 0
Mean 75.6 0 0
Stdev 41.8384 0 0
Median 100 0 0

Table 5.4: Results of the Inverted Generational Distance and Success Counting perfor-
mance measures for the ZDT2’s test function.

5.4.3 ZDT3’s test function

Minimize  (£(Z), fo(2))
fl(f) = I
fo(Z) = g(%) h(f1,9)

¢(®) = 1+9Zﬁ

— % sin(107z)

< |8

where m = 30, and z; €[0,1].

Figure 5.9 shows the graphical results produced by the ST-MOPSO, the NSGA-II,
and e-MOEA in the third test function chosen.

Tables 5.5 and 5.6 show the comparison of results among the three algorithms consi-
dering the performance measures previously described.

Once more, our ST-MOPSO had the best performance with respect to all the per-
formance measures considered. Graphically (see Figure 5.9), it can be seen that in this
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Figure 5.9: Pareto fronts produced by ST-MOPSO (left), e-MOEA (center) and NSGA
IT (right) for the ZDT3’s test function.

case, our ST-MOPSO generated some points outside the true Pareto front in some of the
runs. However, when looking at the graphical output generated by the other algorithms,
it is clear that our ST-MOPSO had the most robust behavior in this problem, since the
others produced a considerably large number of solutions outside the true Pareto front of
the problem (this is corroborated by the values of the performance measures).

TSC ST-MOPSO | eMOEA | NSGA-II
ST-MOPSO - 0.934675 0.93291
e-MOEA 0 - 0.24594
NSGA-II 0 0.0680684 -
HV ST-MOPSO | e-MOEA | NSGA-II
ST-MOPSO - 0 0
e-MOEA 0.019099 - 0.000320688
NSGA-II 0.026448 0.0076528 -

Table 5.5: Results of the Two Set Coverage and Hyper Volume performance measures for
the ZDT3’s test function.

Summarizing our results, it can be seen that the performance of our ST-MOPSO is the
best with respect to all the performance measures tested. By looking at the Pareto fronts
of the three test functions adopted, it can be easily seen that most of the executions
of the ST-MOPSO algorithm reached the true Pareto front, which is an indicative of
the robustness of the approach. This contrasts with the other approaches, which not only
showed a higher variation of results, but were also unable to reach the true Pareto front in
most of the runs, which is due to the relatively low number of fitness function evaluations
considered. When using a larger number of evaluations the two other approaches are
able to reach consistently the true Pareto front of the test functions adopted. Note that
our ST-MOPSO was the only algorithm able to cover the entire Pareto front of the test
problems adopted in our comparative study.
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IGD ST-MOPSO | e-MOEA | NSGA-II
Best 0.000705166 | 0.00236056 | 00163111
Worst 0.0397353 0.0225697 | 0.0231257
Mean 0.0036884 0.00842278 | 0.0065121
Stdev 0.00707846 | 0.00397113 | 0.00445668

Median | 0.00203803 | 0.00804916 | 0.0059502
SC ST-MOPSO | e-MOEA | NSGA-II
Best 100 4 1

Worst 0 0 0
Mean 82.7333 0.566667 0.0666667
Stdev 25.8082 1.16511 0.253708
Median 88.5 0 0

Table 5.6: Results of the Inverted Generational Distance and Success Counting perfor-
mance measures for the ZDT3’s test function.

5.4.4 An example with 3 objective function

We presented in the previous subsections optimization problems with 2 objective functions
Now we present an example with 3 objectives, the so—called Viennet test funcion (see [2,
p. 458)):

Minimize (f1(Z), fo(T), f5(Z))
[(@) = 2i+ (2 - 1)°
fo(@) = 22+ (2 +1)2+1
f3(Z) = (21— 1)+ 2242

Figure 5.10 on page 47 shows the graphical representation of the solution produced
by the ST-MOPSO (only the nondominated elements are shown), the e-MOEA and the
NSGA-II for this optimization problem. (in each graphic the true Pareto front of the
problem is shown using dots)

We can see that the the solution obtained by e-MOEA is well distributed, but it
does reach the extrema of the Pareto front, whereas the solution of ST-MOPSO and
NSGA-II do it. Thus, this is a drawback of the e-dominance mechanism. Also we can see
NSGA-IT and ST-MOPSO obtain well distributed solutions with points covering all the
Pareto front.

Tables 5.7 and 5.8 show the comparison of results among the three algorithms consi-
dering the performance measures previously described.

We can observe that for TSC and IGD performance measures, the results from the
three algorithms are similar. However, for the SC metric, the best results were obtained
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Figure 5.10: Pareto fronts produced by ST-MOPSO (top), e-MOEA (center) and NSGA II
(bottom) for the Viennet’s test function (3 objectives functions).
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TSC ST-MOPSO | e-MOEA | NSGA-II

ST-MOPSO - 0.9920 0.9765

e-MOEA 0.9995 - 0.9990

NSGA-II 0.9175 0.9665 -

Hv ST-MOPSO | e-MOEA NSGA-II

ST-MOPSO - 0.002250206 | 0.02687405

e-MOEA 0.235307772 - 0.002490852
NSGA-II -0.000842701 | 0.256664038 -

Table 5.7: Results of the Two Set Coverage and Hyper Volume performance measures for
Viennet’s test function.

IGD ST-MOPSO | e-MOEA | NSGA-II
Best 0.0033421 0.00377578 | 0.0031531
Worst 0.0038932 0.00430738 | 0.0037456
Mean 0.0034570 0.00412982 | 0.0034246
Stdev 0.0001919 0.00015831 | 0.0002381
Median 0.0033956 0.00418837 | 0.0034085
SC ST-MOPSO | e-MOEA | NSGA-II
Best 100 100 88
Worst 90 93 it
Mean 95.7 96.81 83.05
Stdev 4.54336 2.2682 3.76235
Median 90 93.5 82

Table 5.8: Results of the Inverted Generational Distance and Success Counting perfor-
mance measures for the Viennet’s test function.

from e—MOEA. ST-MOPSO obtained the second place with very similar results. The
worst performance was obtained by the NSGA-II algorithm showing a significant difference
with the others.

On the other hand, if we consider the HV performance measure, we can observe that
the NSGA-II algorithm obtained the best results and ST-MPSO obtained similar results
to it. In this case e—MOEA shows poor results. A similar analysis could be obtained if
we observe the graphics in Figure 5.10.

Summarizing, if we consider the all four performance measures and the graphical
representation, we can conclude that ST-MOPSO outperforms the other algorithms, for
this function. But it is necessary to conduct more experiments in order to be able to
provide a more reliable assessment of the effectiveness of our approach
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5.5 Conclusions and Future Work

In this chapter, we have proposed a new mechanism to maintain diversity which is based
on the use of stripes. The mechanism was incorporated into a multi-objective particle
swarm optimizer (MOPSO) in order to validate its effectiveness. The results indicate that
the approach is a viable alternative to maintain diversity in a multi-objective evolutionary
algorithm (not necessarily a particle swarm optimizer).

As part of our future work, we would like to extend the approach to handle any number
of dimensions (i.e., objectives), since our current version only deals with optimization
problems with 2 or 3 objectives. We also intend to test this approach with other types of
multi-objective optimization heuristics, such as the artificial immune system [3]. Finally,
we are also developing a new performance measure based on the stripes introduced in
this chapter. The idea is that this new performance measure can be used to assess the
performance of multi-objective evolutionary algorithms regarding spread and distribution
of nondominated solutions.
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Chapter 6

Portfolio Optimization using PSO
with Stripes

As an aplication of ST-MOPSO, we consider the Portfolio Optimization Prob-
lem developed by Markowitz [30]. The basic assumption is that the investor
tries to mazimize his/her profit and at the same time wants to minimize the
risk. This problem is usually solved using a scalarization approach. Here we
solve it as a bi-objective optimization problem.

6.1 Description of the Model

We considere a market where s different securities (i.e. stocks) are traded. These se-
curities have prices pi,po,...,ps at the initial time ¢ = 0. We restrict ourselves to a
one-period model. This means that the investor makes his decisions at the beginning
of the period and is not allowed to revise his decisions until the end of the period. Let
Pi(T), Py(T), ..., Psy(T) be the prices of the securities at the final time ¢ = T', we assume
that these final prices are not foreseeable. Therefore, they are modeled as non-negative
random variables on a probability space (2, F,P).

The return of the stocks is given by the variables rq, 7, ..., r, given by
P(T) —pi .
ri:u, i1=1,...,s. (6.1)
bi

Observe that r; is also a random variable.
We assume that we know (or have estimated) their means, variances and covariances.

E(r)) = p; foralli=1,...,s,

Cov(ry,r;) = o0 foralli,j=1,... s (6.2)

Using the variables z; for the share of the i—th security on the portfolio, we can

ol
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calculate the return of the portfolio R, = R,(x1,...,xs) by

S
Rp: E Z;Ti,
i=1

with the restrictions on the shares

inzl and z; >0 ¢1=1,...,s.

=1

(6.3)

We have observed that the r; are random variables with means p; and covariances
oij = E(ri — E(r;))(r; — E(r;)). Thus the return of the portfolio R, is a random variable

as well, and its mean p, is given by

py = E(R,) = szE(TZ) = szﬂz
i=1 i=1

We measure the risk contained in the portfolio by the variance of its return

O']% =Var(R,) = E[{R, — E(R ZZIZO’”IJ =

7=1 =1
We will also impose the constraints

x; <¢, forall i=1,... s,

where the ¢; are constants.
Therefore, the investor wants to find a vector ¥ = (x1, 7o, . . .,

mean return
Z Tilbi = _fl f)

and at the same time minimizes the risk
S
E Z’il’jgij = fg(l’),
ij=1

subject to the constraints

inzl and 0 <z, <¢ Vi=1,...,s.

i=1

Thus, we have the next definition.

s
E TiljO45.

ij=1

xs) that maximizes the
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Definition 6.1 The classical portfolio optimization problem (POP) with two objective

functions is to find the vector ¥ = (xf, x5, ..., x%) such that

(fi@), fo(a)) = min (—Zwi Y :):,-:):ja,-j)
i=1 ij=1

subject to le =1, (6.4)
i=1

OSSL’ZSCZ Vizl,...,s.

Classical Solution

The classical way to solve this problem is by solving a single-objective (or scalar) problem,
(see for example, [24]). One can also consider several variants of (6.4).

For instance we may require a lower bound (R.) on the mean return, and then choose
the portfolio with minimal variance, that is

s
. 2 .
mfln O'p = H%,gln Z TiXj045
i,7=1
subject to tp > Re (6.5)

s
E T; = 1,
i=1

OSZ’ZSCZ Vizl,...,s

Alternatively, one can consider the dual problem of setting up an upper bound (o)
on the portfolio variance, and then maximize the mean return.

s

max ty, = maXE Xy s
z T < T
1=

subject to o: < 0. (6.6)

In any of these two forms of the POP, we usually find a single point of the Pareto
front. (see Figure 6.1).
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Still another variant of the POP is

S S
. 2 .
m;n(ap — {p) = min < E TiT;05 — g xm,)
X X
i=1

ij=1

subject to le =1, (6.7)
i=1
OSZIZ’Z SCZ' \V/'ézl,...,s.

Again, the solution of this single-objective problem gives only one point of the Pareto
front, and the investor does not have the option to select another portfolio with a similar
risk and/or a better return.

This situation is illustrated in Figure 6.1, which shows a classical Pareto front for the
POP. If the value of o, is close to 0, we can see that a small increase in the risk can give
a much higher return. In contrast, if 012, is large, then to obtain a small increase in the
return requires a large increase in the risk.

In the single-objective formulation of the POP, the investor cannot appreciate these
subtleties.

Hp

e

Oc o

iSE N

Figure 6.1: Graphical illustration of the Pareto front for the POP

6.2 The Data

To test our algorithm we took 20 securities (i.e. s = 20) from the “Mexican Stock Market”
(BMV = Bolsa Mexicana de Valores). These securities appear in the “Index of Prices and
Quotations” (IPyC = Indice de Precios y Cotizaciones).

We took the prices of the 20 stocks for 100 days (see Table 6.1; the whole data is
in Tables A.1, A.2, A.3, A4, in Appendix A). Then we calculated the return of each
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date AlfaA AmTelAl Amxl BImboA Cemex CPO Elektra Femsaubd gcarsoal
28/09/2004 | 42.090 23.800 22.027 24.752 63.800 76.200 50.200 51.843
29/09/2004 | 42.880 24.420 22.226 24.655 64.720 76.790 50.620 52.787
30/09/2004 | 43.060 24.600 22.206 24.439 64.090 76.480 50.300 51.992
01/10/2004 | 43.480 24.890 22.756 25.203 64.800 76.750 50.830 52.250
04/10/2004 | 43.280 25.250 23.185 25.350 65.760 76.400 50.870 52.558
05/10/2004 | 43.100 24.600 22.956 25.340 65.470 76.610 51.040 52.648
06/10/2004 | 42.860 24.300 22.526 25.144 67.140 76.690 51.140 52.518
07/10/2004 | 42.990 24.310 22.506 25.291 66.580 78.000 51.010 52.379
08/10/2004 | 42.150 23.810 22.007 24.214 65.120 79.500 50.920 52.131

Table 6.1: Example of table of prices.

Fecha AlfaA AmTelAl Amxl BImboA Cemex CPO Elektra Femsaubd gcarsoal
29/09/2004 | 1.877 2.605 0.907 -0.395 1.442 0.774 0.837 1.821
30/09/2004 | 0.420 0.737 -0.090 -0.873 -0.973 -0.404 -0.632 -1.506
01/10/2004 | 0.975 1.179 2.474 3.124 1.108 0.353 1.054 0.497
04/10/2004 | -0.460 1.446 1.888 0.583 1.481 -0.456 0.079 0.590
05/10/2004 | -0.416 -2.574 -0.991 -0.039 -0.441 0.275 0.334 0.170
06/10/2004 | -0.557 -1.220 -1.871 -0.772 2.551 0.104 0.196 -0.245
07/10/2004 | 0.303 0.041 -0.089 0.584 -0.834 1.708 -0.254 -0.265
08/10/2004 | -1.954 -2.057 -2.219 -4.257 -2.193 1.923 -0.176 -0.474

Table 6.2: Example of table of returns.

security, for each day, using equation (6.1). See Table 6.2, in tables A.5, A.6, A.7, A.8 in
Appendix A are the whole data.

To compute estimates of the mean returns and the covariances in (6.2) we used 5—day
moving averages, that is, using the data from day n — 4 to day n with n = 5,6,...,100.
This procedure gave us 95 matrices of order 21 x 20 whose first row are the mean returns.
An example of these matrices appears in Table 6.3.

Then to these data we applied the ST-MOPSO algorithm to obtain a Pareto front for
each of the 95 matrices. In each case we used the constraints ¢; = 0.2 forallt=1,...,s.

6.3 The Results

To apply the results obtained in the previous section, the idea was to use the 5-day data to
decide the portfolio for the sixth day. Hence for each of the 95 matrices we tried to obtain
a Pareto front with 100 points. The Table 6.4 is an example of the resulting solution, and
Figure 6.2 shows the corresponding graph. (Appendix B contains all the graphs). The
solutions tell us, according to the POP, the fraction (or the share (in percent)) of our
wealth that we should invest in each of the 20 securities.

Since each of the 100 points in the Pareto front is a possible portfolio, handling this
information turns out to be quite complicated. Therefore, we sorted the solutions accor-
ding to their risks and took only three solutions per day: the solution with the minimal
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0.48 0.68 0.84 0.48 0.52 0.11 0.33 0.31 0.78 1.08 0.52 1.02 0.26 1.36 0.81 0.27 0.16 0.60 -0.12 0.19
3.89 5.13 1.61 0.54 1.63 1.46 1.36 2.18 4.89 9.07 0.44 -0.05 -0.58 4.25 -0.14 2.89 1.30 1.30 10.88 1.23
5.13 15.14 7.65 1.32 5.85 0.40 1.08 3.57 12.53 11.03 5.41 0.43 1.90 11.16 0.25 8.03 2.89 1.42 9.91 4.39
1.61 7.65 7.99 6.58 5.18 0.02 1.84 2.64 6.23 1.75 6.97 3.74 2.84 -0.23 4.65 3.19 1.81 2.99 -2.37 2.19
0.54 1.32 6.58 9.87 3.36 0.61 2.74 1.73 1.61 -1.75 6.48 5.70 2.07 -8.08 7.23 -1.10 0.79 4.17 -6.42 -0.15
1.63 5.85 5.18 3.36 5.27 0.82 2.08 4.62 4.13 5.17 3.44 1.70 2.41 0.77 2.36 4.66 2.39 2.92 4.95 2.79
1.46 0.40 0.02 0.61 0.82 1.11 1.15 1.80 0.50 4.35 -0.62 0.13 -0.29 -0.18 0.30 0.95 0.71 1.22 6.10 0.35
1.36 1.08 1.84 2.74 2.08 1.15 1.77 2.58 0.94 3.80 1.03 1.37 0.55 -1.82 1.90 1.23 1.09 2.22 4.46 0.66
2.18 357 264 1.73 4.62  1.80  2.58 572 226 835  0.57 0.58 145 043  1.13 471 257  3.15 11.17  2.56
4.89 12.53 6.23 1.61 4.13 0.50 0.94 2.26 10.86 9.65 4.60 0.64 0.98 9.20 0.46 5.86 2.10 1.15 8.47 3.11
9.07 11.03 1.75 -1.75 5.17 4.35 3.80 8.35 9.65 25.47 -2.17 -2.10 -1.11 11.01 -2.40 9.46 4.23 3.52 33.95 4.24
0.44 5.41 6.97 6.48 3.44 -0.62 1.03 0.57 4.60 -2.17 6.81 3.86 2.40 -1.71 4.68 0.98 0.78 2.06 -7.50 1.03
-0.05 0.43 3.74 5.70 1.70 0.13 1.37 0.58 0.64 -2.10 3.86 3.34 1.23 -4.95 4.22 -1.01 0.26 2.20 -5.20 -0.25
-0.58 1.90 2.84 2.07 2.41 -0.29 0.55 1.45 0.98 -1.11 2.40 1.23 1.71 -1.02 1.65 1.45 0.79 1.08 -2.60 1.11
4.25 11.16 -0.23 -8.08 0.77 -0.18 -1.82 0.43 9.20 11.01 -1.71 -4.95 -1.02 17.07 -6.62 6.85 1.27 -3.02 14.28 3.22
-0.14 0.25 4.65 7.23 2.36 0.30 1.90 1.13 0.46 -2.40 4.68 4.22 1.65 -6.62 5.37 -1.12 0.46 2.98 -6.00 -0.23
2.89 8.03 3.19 -1.10 4.66 0.95 1.23 4.71 5.86 9.46 0.98 -1.01 1.45 6.85 -1.12 6.72 2.64 1.40 11.85 3.62
1.30 2.89 1.81 0.79 2.39 0.71 1.09 2.57 2.10 4.23 0.78 0.26 0.79 1.27 0.46 2.64 1.28 1.35 5.18 1.45
1.30 1.42 2.99 4.17 2.92 1.22 2.22 3.15 1.15 3.52 2.06 2.20 1.08 -3.02 2.98 1.40 1.35 2.93 3.55 0.86
10.88 9.91 -2.37 -6.42 4.95 6.10 4.46 11.17 8.47 33.95 -7.50 -5.20 -2.60 14.28 -6.00 11.85 5.18 3.55 48.78 5.02
1.23 4.39 2.19 -0.15 2.79 0.35 0.66 2.56 3.11 4.24 1.03 -0.25 1.11 3.22 -0.23 3.62 1.45 0.86 5.02 2.03
Table 6.3: Example of a table of mean return p; and covariances o;;
day\e; [1 2 3 4 5 6 7 8 © 10 11 12 13 14 15 16 17 18 19 20| var return
5 [0 0 0 0 0 0 0 0 0 13 0 20 151 20 20 0 0 20 0 00962696 0.788671
5 |00 0 0 0 0 0 0 0 31 0 2 120 20 2 0 0 20 0 0 |0994871 0.799627
5 [0 o 00 0 0 0 0 0 36 0 2 1L8 20 2 0 0 20 0 0| 1017500 0.804341
5 [0 0 L7 0 0 0 0 0 0 30 0 2 120 20 2 0 0 20 0 0| 1078990 0.812383
5 |o 0o 0 0 0 0 0 0 0O 48 0 20 137 20 20 0 0 20 0 0| 1111420 0.821429
5 {00 0 0 0 0 0 0 0 54 0 2 123 20 20 0 0 20 0 0| 1123690 0.823776
5 oo 0 0 0 0 0 0 0 61 0 20 115 20 20 0 0 20 0 0| 1LI51900 0.828414
5 [0 0 0 0 0 0 0 0 0 56 0 2 136 20 2 0 0 20 0 0| 1155620 0.829170
5 |00 00 0 0 0 0 0 71 0 2 90 2 20 0 0 20 0 0| L8270 0.832727
5 /00 0 0 0 0 0 0 0 67 0 2 121 20 20 0 0 20 0 0| 1200290 0.836255
5 {00 0 0 0 0 0 0 0 66 0 2 134 20 2 0 0 20 0 0| 1215770 0.838955
5 [0 0 34 0 0 0 0 0 0 56 0 20 63 20 2 0 0 20 0 01230710 0.838862
5 [0 0 0 0 0 0 0 0 0 78 0 20 8 2 2 0 0 20 0 01232530 0.839415
5 [0 0o 00 0 0 0 0 0 75 0 2 125 20 2 0 0 20 0 0| 1260490 0.845516
5 [0 0 1.6 0 0 0 0 0 0 66 0 2 11.6 20 20 0 0 20 0 0| 1271040 0.846919
5 |00 00 0 0 0 0 0 84 0 2 104 20 20 0 0 20 0 01296070 0.849498
5 [0 0 05 0 0 0 0 0 0 80 0 20 114 20 20 0 0 20 0 0| 1308080 0.852146
5 [0 0 59 0 0 0 0 0 0 46 0 20 87 20 20 0 0 20 0 0| 1342850 0.854090
5 |0 0 28 0 0 0 0 0 0 72 0 20 98 20 2 0 0 20 0 0| 1348560 0.858057
5 [0 0 29 0 0 0 0 0 0 8L 0 20 68 20 2 0 0 20 0 0| 1374120 0.860402
5 [0 0 5 0 0 0 0 0 0 59 0 20 80 20 20 0 0 20 0 01393930 0.863270
5 [0 0 45 0 0 0 0 0 0 69 0 20 86 20 2 0 0 20 0 0| 1407580 0.866164

Table 6.4: Example of a solution (the values are percent)
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Figure 6.2: Example of the graph of a solution of POP

risk, the solution with the maximal risk, and a solution with a medium risk. Then we
computed the return of for day 6 of these 3 solutions using equation 6.3, and we compared
the return of these three solutions with the return of the IPyC of the BMV. The results
are shown in Table 6.5.

To see how this would work in a real situation, we did an experiment beginning with
“one unit” of investment (say, one peso) and following the corresponding wealth day-per-
day; that is, every day we multiply the current value by 1 + r to obtain the value of
our investment the day after. The results are shown in the Table 6.6 and their graphical
representation appears in Figure 6.3. It can be seen that each of our three solutions gives
a better return than the IPyC-in some cases the return is up to 8% above the IPyC
return (day 72 of Table 6.6). Only in the last few days our solutions were similar to the
[PyC—perhaps because the IPyC was behaving “optimally”. For instance, from the Table
6.4 we can see that the IPyC return of 21.1% is very close to our solutions with minimal
and maximum risks, 20.7% and 21.0%, respectively, but below the 24.6% given by our
medium risk solution.
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min. med. max. min. med. max.

day IPyC risk risk risk || day IPyC risk risk risk
1 -0.24% 048% 0.23% -0.21% 48 1.11% 1.24% 2.01% 2.45%
2 0.06% 0.70% 0.37% 0.25% | 49 0.24% -0.29% -0.20% -0.53%
3 | -1.62% -0.81% -1.04% -1.39% | 50 1.13%  0.81% 0.52%  0.25%
4 0.49% 0.52% 0.42% 0.36% 51 0.50% 0.38% 0.80%  0.98%
5 0.43% 0.09% 0.09% -0.05% 52 0.09% -0.02% -0.22% -0.51%
6 | -0.74% -1.45% -1.47% -1.56% | 53 0.11% -0.23% -0.22% -0.13%
7 1-061% -0.58% -0.75% -0.41% || 54 | -0.06% 0.19% -0.17% -0.41%
8 1.05% 0.73% 0.83% 0.56% || 55 1.09% 0.79% 1.09% 0.62%
9 0.58% 0.30% 0.39% 0.77% 56 0.48%  0.55% 1.21% 1.26%
10 | -0.29% -0.13%  0.04%  0.04% 57 0.28% 0.21% 0.49% 0.67%
11 0.48% 1.12% 1.16% 1.34% 58 0.42% 0.26% 0.22%  0.07%
12 0.81% 1.00% 1.12% 1.15% || 59 0.13%  0.04% 0.43% 0.82%
13 0.53% 0.32% 0.59% 0.33% || 60 0.72% 0.80% 0.53% 0.51%
14 | -0.43% 0.28% -0.06% 0.19% 61 0.91% 0.65% 0.88% 0.85%
15 1.44% 1.29%  2.00% 1.94% 62 | -0.48% -0.60% -0.58% -0.68%
16 1.53% 053% 0.17% 0.37% 63 | -0.39% -0.22% -0.22% -0.18%
17 | -0.66% -0.11% -0.69% -1.38% | 64 0.81% -041% 0.35% 0.21%
18 1.05% 0.77% 0.90% 1.38% || 65 |-1.92% -1.66% -1.65% -2.47%
19 0.50% 0.41% 043% -0.09% || 66 | -1.48% -1.01% -1.47% -1.57%
20 | -0.10% -0.01% -0.10% -0.05% 67 0.88% 0.056% 0.28% 1.28%
21 1.32% 1.06% 1.61% 1.43% 68 | -2.01% -1.16% -1.10% -2.67%
22 0.83% 0.72% 0.85% 0.96% || 69 | -0.06% -0.45% -0.39% -0.49%
23 | -0.60% -0.50% -0.29% -0.61% || 70 | -1.88% -0.58% -0.44% -0.56%
24 | -0.29%  0.00% 0.05% -0.80% || 71 0.91% 0.57% 0.76%  0.83%
25 0.23% 1.05% 0.11% 047% 72 1.07% 1.38% 1.22% 1.19%
26 0.06% 0.67% 0.92%  0.40% 73 1.83% 1.27% 1.45% 1.56%
27 1.49%  0.19%  0.64% 1.14% 74 0.96% 0.70% 0.61% 0.61%
28 | -0.12% -0.22% -0.52% -0.10% || 75 1.63% 1.86% 1.83% 1.84%
29 |-0.02% 0.21% 0.29% 0.46% || 76 0.05% 047% -0.01% 0.38%
30 | -0.04% 0.05% 0.12%  0.05% 77 1 -2.08% -1.65% -2.05% -2.00%
31 0.58% 0.89% 0.45% 0.56% 78 | -0.76% -1.04% -1.20% -1.11%
32 0.15%  0.82% 1.01%  0.96% 79 0.55% 0.57% 0.66% 0.82%
33 | -1.69% -1.07% -1.44% -1.75% || 80 0.96% 048% 0.99% 0.33%
34 0.34%  0.32% 0.42% 0.46% || 81 1.37% 0.98% 0.75%  1.26%
35 | -0.03% -0.40% -0.10% 0.90% || 82 | -0.45% -0.43% -0.77% -0.75%
36 0.26% 0.17%  0.12% 1.09% 83 0.42% -0.14% 0.23%  0.25%
37 0.75% 0.83% 0.95% 1.09% 84 0.43% 0.45% -0.03% -0.35%
38 0.65% 1.07% 1.15% 1.21% || 85 1.82% 1.12% 1.31%  1.30%
39 0.99% 1.71% 1.98% 1.37% || 86 | -0.01% -0.31% -0.02%  0.02%
40 | -0.78% -0.18% -0.71% -0.22% || 87 0.75% 0.80% 0.91% 0.46%
41 1.07% 1.30% 1.57% 1.33% 88 0.06% -1.11% -0.88% -0.77%
42 | -0.97% -0.66% -0.70% -0.69% 89 0.22% 1.17% 1.06%  0.86%
43 | -0.06% -0.65% -0.29% -0.27% 90 0.23% -0.08% -0.26% -0.33%
44 0.66% -0.31% 0.28% 0.19% || 91 1.13%  0.46% 0.53%  0.72%
45 | -0.59% -0.46% -0.20% -0.01% || 92 0.34% 047% 0.15% -0.14%
46 | -0.04% 0.65% 0.54% 0.15% 93 0.04% -0.17%  0.04%  0.05%
47 0.09% 0.27% 0.59% 0.52% 94 | -1.10% -1.11% -1.16% -1.12%

Table 6.5: Table of comparison of

medium risk and maximal risk.

return of IPyC, the

solution with minimal

risk, a
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min. med. max. min. med. max.
day | IPyC risk risk risk || day | IPyC risk risk risk
0 1.000 1.000 1.000 1.000
1 0.998 1.005 1.002 0.998 || 48 1.100 1.152 1.172 1.174
2 10998 1.012 1.006 1.000 || 49 1.102 1.148 1.170  1.168
3 0982 1.004 0.996 0.987 || 50 1.115  1.158 1.176  1.171
4 10987 1.009 1.000 0.990 || 51 1.120 1.162 1.185 1.182
5 10991 1.010 1.001 0.990 | 52 1.121  1.162 1.183 1.176
6 | 0984 0.995 0.986 0.974 || 53 1.123 1.159 1.180 1.175
7 10978 0.989 0978 0.970 || 54 1.122  1.162 1.178 1.170
8 | 0.988 0.997 0.987 0.975 | 55 1.134 1171 1.191 1.177
9 10994 1.000 0.991 0.983 || 56 1.140 1.177 1.205 1.192

10 { 0991 0.998 0.991 0.983 || 57 1.143 1.180 1.211  1.200
11 |1 0.996 1.010 1.002 0.997 | 58 1.148 1.183 1.214 1.201
12 | 1.004 1.020 1.014 1.008 || 59 1.149 1.183 1.219 1.211
13 | 1.009 1.023 1.020 1.011 || 60 1.158 1.193 1.225 1.217
14 | 1.005 1.026 1.019 1.013 || 61 1.168 1.200 1.236  1.227
15 | 1.019 1.039 1.040 1.033 | 62 1.163 1.193 1.229 1.219
16 | 1.035 1.045 1.041 1.037 || 63 1.158 1.190 1.226 1.217
17 | 1.028 1.044 1.034 1.023 || 64 1.167 1.186 1.231 1.219
18 | 1.039 1.052 1.043 1.037 || 65 1.145 1.166 1.210 1.189
19 | 1.044 1.056 1.048 1.036 | 66 1.128 1.1564 1.193 1.170
20 | 1.043 1.056 1.047 1.035 | 67 1.138 1.155 1.196 1.185
21 | 1.057 1.067 1.064 1.050 | 68 1.115 1.141 1.183 1.154
22 | 1.066 1.075 1.073 1.060 || 69 1.115 1.136 1.178  1.148
23 | 1.059 1.069 1.070 1.054 | 70 1.094 1.130 1.173 1.142
24 |1 1.056 1.069 1.070 1.045 || 71 1.104 1.136 1.182 1.151
25 | 1.069 1.081 1.071 1.050 | 72 | 1.115 1.152 1.196 1.165
26 | 1.069 1.088 1.081 1.0564 | 73 1.136 1.166 1.214 1.183
27 | 1.075 1.090 1.088 1.066 || T4 1.147 1175 1.221  1.190
28 | 1.074 1.087 1.082 1.065 | 75 1.165 1.196 1.244 1.212
29 | 1.073 1.090 1.086 1.070 | 76 1.166  1.202 1.243 1.217
30 | 1.0v3 1.090 1.087 1.071 | 77 1.142  1.182 1.218 1.192
31 | 1.0v9 1.100 1.092 1.077 | 78 1.133 1170 1.203 1.179
32 | 1.081 1.109 1.103 1.087 | 79 1.139 1177 1.211  1.189
33 | 1.063 1.097 1.087 1.068 || 80 1.150 1.182 1.223 1.193
34 | 1.066 1.101 1.092 1.073 | 81 1.166 1.194 1.232 1.208
35 | 1.066 1.096 1.090 1.082 | 82 1.161 1.189 1.223 1.199
36 | 1.069 1.098 1.092 1.094 | 83 1.165 1.187 1.226  1.202
37 | 1.077 1.107 1.102 1.106 || 84 1.170 1.192 1.225 1.198
38 | 1.084 1.119 1.115 1.120 | 85 1.192 1.206 1.241 1.213
39 | 1.094 1.138 1.137 1.135| 86 1.192  1.202 1.241 1.214
40 | 1.086 1.136 1.129 1.132 || 87 1.201  1.212 1.252 1.219
41 | 1.098 1.151 1.147 1.147 || 88 1.201  1.198 1.241 1.210
42 | 1.087 1.143 1.138 1.139 || 89 1.204 1.212 1.255  1.220
43 | 1.086 1.136 1.135 1.136 || 90 1.207 1.211 1.251 1.216
44 | 1.094 1.132 1.138 1.139 | 91 1.220 1.217 1.258 1.225
45 | 1.087 1.127 1.136 1.138 || 92 1.224 1.222 1.260 1.223
46 | 1.087 1.135 1.142 1.140 || 93 1.225 1.220 1.260 1.224
47 | 1.088 1.138 1.149 1.146 || 94 1.211  1.207v 1.246 1.210

Table 6.6: Table of comparison of investment of IPyC, the solution with minimal risk, a
medium risk and maximal risk.
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Figure 6.3: Graphic comparison of the IPyC and the solutions with minimal risk, a
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6.4 Conclusions and Future Work

In this chapter we applied our ST-MOPSO algorithm to the Markowitz’ portfolio selection
problem. As shown in Section 6.3 our results seem to be quite good. But of course
before reaching any conclusions we need to do more experimental work. For instance,
we do not really know how good are our 5-day moving averages. It would be interesting
(and important!) to determine how sensitive our results are to the length of the moving
averages.
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Conclusions and Future Work

We have presented convergence proofs of three meta-heuristics that have been used for
solving MOPs: simulated annealing, an artificial immune system (based on clonal selection
theory), and a general evolutionary algorithm.

It is worth noting that in the case of the general MhAs, our convergence proof extends
previous proofs of convergence of genetic algorithms for single-objective optimization (e.g.,
[40]). Actually, our proof is valid for a more general class of MhAs that use uniform
mutation.

Regarding the artificial immune system, the proofs included here together with some of
our previous work [57] constitute the only attempts currently known to prove convergence
of such metaheuristic.

Finally, regarding simulated annealing, our proof relies on previous work by Laarhoven,
Aarts and Korst [1, 25], but it constitutes (to the best of our knowledge) the first proof
of convergence of simulated annealing in multiobjective optimization problems.

As part of our future work, we intend to extend these results to a more general case
in which not even uniform mutation is required. We also plan to analyze other types
of heuristics used for multiobjective optimization, and to try to determine bounds of
convergence for such algorithms.

In the final section of each of the Chapters 2 to 6 we already mentioned other possible
problems for further research.
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Appendix A

Tables of data for Chapter 6

This appendix contains the tables of all data considered in Chapter 6. These data were
obtained from the “Mexican Stock Market” (Bolsa Mexicana de Valores). The values
represent the closing prices, in mexican pesos (see Chapter 6 for details).

Alfa AmTel Amxl Bimbo Cemex Elektra Femsaubd Gcearso Gfinburo  Gfnorte
date A Al A CPO Al

28/09/2004 | 42.090 23.800 22.027 24.752  63.800 76.200 50.200 51.843 18.860 50.082
29/09/2004 | 42.880 24.420 22.226 24.655  64.720 76.790 50.620 52.787 19.300 52.799
30/09/2004 | 43.060 24.600 22.206 24.439  64.090 76.480 50.300 51.992 19.520 52.750
01/10/2004 | 43.480 24.890 22.756 25.203  64.800 76.750 50.830 52.250 19.820 53.319
04/10/2004 | 43.280 25.250 23.185 25.350  65.760 76.400 50.870 52.558 20.000 52.888
05/10/2004 | 43.100 24.600 22.956 25.340  65.470 76.610 51.040 52.648 19.600 52.780
06/10/2004 | 42.860 24.300 22.526 25.144  67.140 76.690 51.140 52.518 19.080 52.721
07/10/2004 | 42.990 24.310 22,506 25.291  66.580 78.000 51.010 52.379 19.360 52.966
08/10/2004 | 42.150 23.810 22.007 24.214  65.120 79.500 50.920 52.131 19.000 51.760
11/10/2004 | 42.610 24.100 22.057 24.567  65.000 81.000 50.910 52.210 19.200 51.877
12/10/2004 42.210 24.160 22.157 24.322 64.560 81.030 50.410 52.677 19.230 51.701
13/10/2004 | 41.460 24.400 22.127 24.576  62.960 81.120 50.430 51.982 19.300 51.230
14/10/2004 | 40.640 24.200 21.927 24.175  64.000 81.010 50.700 51.962 19.100 51.620
15/10/2004 | 41.440 24.400 22.386 24.420  64.640 82.000 50.700 51.445 19.000 51.200
18/10/2004 | 41.590 24.950 22.616 24.371  64.100 82.520 50.500 52.180 19.270 50.750
19/10/2004 | 41.260 25.150 22.606 24.449  63.430 83.490 49.990 52.578 19.200 50.980
20/10/2004 | 41.600 25.460 22.896 24.478  62.980 85.000 50.200 52.727 19.300 51.310
21/10/2004 | 42.320 25.440 22.676 24.469  64.780 86.400 50.400 53.463 19.380 52.820
22/10/2004 | 42.540 25.510 22.636 24.958  65.740 88.620 50.400 53.671 19.620 53.060
25/10/2004 | 43.280 25.260 22.396 24.801  65.080 89.990 50.600 53.771 19.800 53.780
26/10/2004 | 43.390 26.490 23.665 24.890  66.100 92.760 50.500 54.019 19.750 54.030
27/10/2004 | 43.440 27.750  25.073  24.860  66.880 92.770 50.410 53.473 19.800 53.500
28/10/2004 | 44.300 27.330 24.694 25.350  66.080 90.700 50.560 53.174 19.400 53.930
29/10/2004 | 44.850  27.890  25.443  25.438  66.680 90.920 50.980 54.546 19.290 54.200
01/11/2004 | 45.010 27.970 25.523 26.456  66.820 91.500 50.720 53.373 19.400 54.490
02/11/2004 | 44.890 27.930 25.093 26.827  66.570 91.850 50.440 53.254 19.330 54.400
03/11/2004 | 46.140 28.310 25.683 27.385  67.500 92.650 50.990 52.926 19.500 54.950
04/11/2004 | 48.540 28.700 25.992 27.434  68.130 92.500 52.020 54.616 19.520 54.850
05/11/2004 | 48.520 28.350 25413 27.336  67.930 92.700 51.970 53.801 19.590 55.090
08/11/2004 | 48.310 27.980 25.083 27.307  68.800 92.660 52.180 54.039 19.570 55.040
09/11/2004 | 49.000 27.870 25.263 27.591  68.630 92.230 52.180 55.510 19.550 54.860
10/11/2004 | 49.490 27.890 25.123 27.806  67.470 92.200 52.560 55.749 19.650 56.730

Table A.1: Table of prices.
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Alfa AmTel Amxl Bimbo Cemex Elektra  Femsaubd Gcarso Gfinburo  Gfnorte
date A Al A CPO Al

11/11/2004 | 50.600 28.240 25.483 27.591  68.910 92.270 52.790 56.454 20.200 58.200
12/11/2004 | 50.600 28.050 25.333 27.630  69.230 92.000 52.350 56.653 20.490 57.220
15/11/2004 | 50.120 27.860  25.133 27.990  70.100 92.250 51.880 57.150 20.730 58.340
16/11/2004 | 49.850 27.620 25.113 27.750  69.990 92.600 52.000 57.490 20.890 58.150
17/11/2004 | 50.990 27.900 25.133 27.800  70.620 92.750 51.700 56.790 21.000 60.250
18/11/2004 | 51.790 27.600 25.233 27.690  70.540 93.990 51.610 57.400 21.000 60.650
19/11/2004 | 51.410 27.100 24.594 27.340  70.180 93.500 51.130 56.990 20.680 58.360
22/11/2004 | 51.500 27.210 24.774  27.500  70.120 94.110 51.400 56.850 20.700 58.740
23/11/2004 | 53.760  27.020 24.604 27.270  71.080 95.040 51.360 55.790 20.690 59.710
24/11/2004 | 55.740  27.090 24.744  27.250  71.180 95.300 51.900 55.900 20.700 59.250
25/11/2004 | 56.870  27.000 25.043 27.330  71.910 96.380 51.900 56.200 20.940 59.980
26/11/2004 | 57.210 27.150  25.373  27.480  71.870 98.500 52.110 56.690 20.980 60.000
29/11/2004 | 57.040 27.870 26.052 27.650  71.600  104.200 53.590 55.790 21.070 59.870
30/11/2004 | 55.620 27.900 26.082 27.010 72.230  105.740 53.700 54.950 20.950 63.020
01/12/2004 | 57.050 28.430 26.322 27.020 74.710  108.420 54.130 55.200 20.990 62.200
02/12/2004 | 56.570  28.040 25.883 27.560 74.240  108.020 55.200 54.490 20.830 62.600
03/12/2004 | 55.830 28.360 26.192 27.920 73.900  107.700 54.900 53.900 20.800 62.530
06/12/2004 | 54.860 28.590 26.991 28.390 74.600  107.300 55.090 53.900 20.800 61.550
07/12/2004 | 53.610 28.800 26.931 28.400 74.500  107.000 55.400 53.370 20.200 61.110
08/12/2004 | 55.110 28.500 26.692 28.400 74.970  105.040 55.900 53.410 20.000 62.780
09/12/2004 | 55.690 28.500 26.422 28.350  75.020  103.130 56.440 54.420 20.720 62.780
10/12/2004 | 57.230 28.810 26.872 28.390  76.990  105.000 56.820 54.590 21.000 63.950
13/12/2004 | 57.350 28.990 27.101 28.390 76.170  105.850 56.500 55.500 20.640 63.880
14/12/2004 | 57.640 29.700 28.140 28.530 76.290  105.090 56.860 56.200 20.750 63.280
15/12/2004 | 57.560 29.670  28.100 28.500 77.200  105.900 57.680 56.000 20.960 64.850
16/12/2004 | 57.340  29.760  28.060 28.500  78.240  105.910 59.020 56.080 20.810 65.800
17/12/2004 | 57.060 29.950 28.540 28.600 78.160  104.500 58.360 56.000 20.970 65.670
20/12/2004 | 56.700 29.810 28.330 28.720 78.610  105.000 58.230 56.000 20.840 66.200
21/12/2004 | 56.450  30.100 28.730 28.780  79.960  104.890 58.610 56.890 20.990 66.250
22/12/2004 | 56.530  30.260 28.730 28.710  80.100  104.300 58.900 57.320 20.750 68.200
23/12/2004 | 57.690  30.300 28.780 28.520  80.850  103.910 58.910 57.360 20.600 68.460
24/12/2004 | 57.800  30.500 28.990 28.460  81.040  105.440 58.900 57.500 20.900 68.500
27/12/2004 | 57.590  30.600 29.000 28.280  80.620  103.560 58.850 59.000 20.990 69.810
28/12/2004 | 57.640 31.000 29.190 28.200 81.490 103.310 58.280 58.990 21.000 69.790
29/12/2004 | 57.540  32.470 29.460 28.800  81.910  103.490 59.600 59.950 20.980 69.270
30/12/2004 | 57.170 32.010 29.300 28.590 81.490  103.400 59.170 60.030 20.570 70.240
31/12/2004 | 57.000 31.920 29.120 28.160 81.230  103.500 58.510 60.000 20.510 70.140
03/01/2005 | 57.390 32.600 30.050 28.300 81.390  100.770 59.250 59.920 20.950 69.070
04/01/2005 | 56.410 31.140 28.970 28.390  81.320 95.810 59.880 59.460 20.800 67.110
05/01/2005 | 55.140  30.420 28.400 28.490  79.260 94.280 59.270 58.160 20.470 65.950
06/01/2005 | 55.780  30.950 28.590 28.740  79.760 95.280 58.870 59.280 21.130 66.070
07/01/2005 | 54.880 29.910 27.900 28.860  78.190 95.510 57.700 58.000 20.580 65.460
10/01/2005 | 53.460 29.940 27.570 28.010  79.300 93.660 57.980 57.930 20.510 64.930
11/01/2005 | 51.540 28.820 26.820 28.190  78.870 92.000 57.020 56.680 20.420 64.000
12/01/2005 | 51.900 29.270 27.030 28.680  80.230 91.000 57.230 56.940 20.670 64.630
13/01/2005 | 53.390 29.510 27.510 29.810  80.810 91.940 57.700 57.470 20.650 67.870
14/01/2005 | 55.070  30.500 28.350 29.750  83.110 94.300 59.350 57.460 20.850 69.620
17/01/2005 | 56.250  30.980 28.600 29.800  84.680 95.940 59.300 58.700 21.000 70.130
18/01/2005 | 56.900 32.180 29.020 31.200  84.200 96.580 60.090 61.190 21.950 70.000
19/01/2005 | 56.380 32.970 29.160 30.920  82.900 96.590 60.500 64.000 22.710 69.980
20/01/2005 | 55.080  31.750  28.090  30.250  81.650 95.960 59.890 62.500 22.390 69.500
21/01/2005 | 53.770  31.200 27.830 29.720  81.300 96.450 59.500 60.520 22.500 68.760
24/01/2005 | 53.850  31.750  27.730  30.720  80.610 97.060 59.250 60.500 23.090 68.150
25/01/2005 | 55.040  32.290 28.460 30.700  81.360 96.250 58.930 61.330 22.850 68.330
26/01/2005 | 56.140  33.090 29.210 30.790  82.550 95.380 59.250 61.740 23.040 69.970
27/01/2005 | 55.680 32.530 28.810 30.710  83.660 95.500 59.390 61.310 22.580 69.960
28/01/2005 | 56.910  32.750  29.520 30.700  83.540 95.400 59.460 61.210 22.360 70.660
31/01/2005 | 57.570  32.650 29.600 31.250  83.890 95.450 60.140 62.590 22.460 71.970
01/02/2005 | 58.450  33.130 30.320 32.340  86.160 95.790 61.500 62.780 22.620 72.330
02/02/2005 | 58.150  33.010 30.550 33.520  86.550 95.460 61.450 61.940 22.750 71.740
03/02/2005 | 58.800  33.630 30.900 34.600  85.940 95.800 61.780 62.170 23.330 72.110
04/02/2005 | 58.140  33.850 31.220 33.550  86.020 96.000 62.710 62.000 22.850 71.680
07/02/2005 | 59.460 33.920 31.440 34.470  85.960 94.850 62.870 61.920 22.730 71.500
08/02/2005 | 58.400 34.050 31.140 33.950  86.960 94.120 63.080 61.440 22.360 71.980
09/02/2005 | 59.070  34.680 31.840 33.810  86.820 94.620 62.890 61.510 22.400 71.450
10/02/2005 | 62.440 34.770 31.310 33.900 86.710 94.940 63.500 61.550 22.310 71.900
11/02/2005 | 62.130 34.510 31.270 33.950 87.180 96.280 63.390 61.540 22.260 71.920
14/02/2005 | 60.860 33.850 31.050 33.420  86.990 95.790 62.940 61.330 22.050 71.470

Table A.2: Table of prices (cont.).



73

Gmexico Gmodelo Kimber Penfioles Soriana  Telecom  Telmex  Televisa Vitro ‘Walmex
date B C A B Al CPO A \%
28/09/2004 45.960 27.490 32.628 49.580 37.000 16.650 18.152 29.850 10.640 38.390
29/09/2004 45.900 27.580 32.667 51.420 37.000 17.010 18.320 30.150 11.270 38.800
30/09/2004 45.950 27.670 32.521 53.000 36.910 16.910 18.221 29.940 11.070 38.660
01/10/2004 46.960 28.370 32.688 52.740 37.900 16.870 18.271 30.430 10.920 38.650
04/10/2004 47.660 28.700 33.093 53.490 38.290 17.040 18.340 30.590 10.600 38.960
05/10/2004 47.160 28.910 33.044 53.000 38.510 16.870 18.301 30.750 10.550 38.750
06,/10/2004 47.390 28.870 33.034 53.510 38.570 16.800 18.241 31.200 10.460 38.610
07/10/2004 47.400 28.800 32.995 54.890 38.690 16.700 18.152 31.050 10.630 38.890
08/10/2004 48.190 28.610 32.935 53.630 39.080 16.330 17.983 30.240 10.510 38.120
11/10/2004 48.510 28.800 32.955 53.000 39.000 16.400 18.073 30.450 10.530 38.340
12/10/2004 48.000 28.790 32.856 52.700 39.700 16.630 18.182 30.720 10.480 39.050
13/10/2004 45.720 28.850 32.590 51.470 39.500 16.400 18.231 30.510 10.450 38.630
14/10/2004 45.520 28.850 32.560 51.500 39.000 16.350 18.201 30.330 10.310 37.870
15/10/2004 46.260 29.070 32.570 51.500 39.200 16.510 18.489 30.600 10.500 38.570
18/10/2004 45.990 29.150 32.787 51.500 39.260 16.990 18.588 30.650 10.350 38.680
19/10/2004 45.750 29.020 32.985 52.000 38.580 16.930 18.519 30.700 10.350 38.430
20/10/2004 45.610 29.180 32.886 51.990 37.940 17.000 18.876 30.570 10.330 38.180
21/10/2004 46.110 29.270 32.935 51.710 38.310 17.540 19.193 31.230 10.770 38.090
22/10/2004 48.600 29.220 32.748 51.530 38.700 17.680 19.223 31.570 10.550 38.020
25/10/2004 49.210 29.170 32.629 52.400 38.690 17.500 18.985 31.010 10.500 38.140
26/10/2004 49.450 29.200 32.886 51.310 39.080 17.700 19.242 31.130 10.280 37.600
27/10/2004 48.570 29.680 33.083 51.920 38.700 17.750 19.460 31.470 10.210 37.910
28/10/2004 47.430 29.600 33.330 52.850 37.290 17.650 19.510 31.400 10.250 37.660
29/10/2004 47.660 29.570 34.091 52.710 37.070 17.750 19.619 31.770 10.300 37.750
01/11/2004 48.260 29.590 34.792 51.670 37.940 17.880 19.946 32.070 10.250 37.740
02/11/2004 47.760 30.010 34.861 51.350 38.160 17.990 19.946 32.090 10.390 38.100
03/11/2004 47.660 29.950 34.851 51.220 38.400 18.480 20.244 32.300 10.450 38.690
04/11/2004 48.820 30.230 34.525 52.850 38.240 18.600 20.244 32.490 10.390 38.700
05/11/2004 49.880 30.120 34.486 53.510 38.100 18.760 20.263 32.030 10.060 38.370
08/11/2004 50.550 30.000 34.644 53.850 38.120 18.600 20.045 31.440 10.200 38.600
09/11/2004 51.000 30.050 35.049 53.600 37.800 18.500 20.006 31.960 10.460 38.630
10/11/2004 51.990 30.090 35.197 53.710 37.800 18.620 20.016 31.900 10.670 38.700
11/11/2004 52.560 30.260 35.305 53.520 38.090 19.000 20.501 32.810 10.830 39.100
12/11/2004 52.180 30.170 35.157 53.500 38.240 18.840 20.392 32.960 10.610 39.550
15/11/2004 52.390 30.080 35.256 53.680 38.400 18.970 20.422 33.120 10.570 38.950
16/11/2004 52.460 29.910 35.207 54.440 39.090 18.900 20.353 33.150 10.490 38.830
17/11/2004 53.870 29.890 35.157 56.350 39.650 19.000 20.382 33.100 10.360 38.990
18/11/2004 53.970 29.570 35.256 58.940 39.600 19.000 20.293 33.510 10.290 38.890
19/11/2004 52.990 29.010 34.871 59.000 38.500 18.480 19.867 33.440 10.100 38.470
22/11/2004 53.360 29.100 35.207 59.000 39.150 18.480 19.857 33.470 10.150 38.590
23/11/2004 52.950 29.450 35.296 58.000 38.700 18.000 19.788 33.740 10.190 38.790
24/11/2004 53.870 29.550 35.839 58.580 38.430 18.090 19.480 33.910 10.220 38.820
25/11/2004 54.170 29.750 35.997 59.180 38.640 18.280 19.510 34.020 10.540 38.980
26/11/2004 54.360 29.580 36.342 59.270 39.010 18.390 19.629 34.860 10.430 39.100
29/11/2004 54.700 29.580 37.034 60.600 39.160 18.640 19.679 34.910 10.620 39.330
30/11/2004 54.260 29.430 37.034 58.620 38.600 17.810 19.441 34.870 10.350 38.530
01/12/2004 54.600 29.600 37.320 60.750 38.900 18.220 19.609 34.860 10.580 38.780
02/12/2004 52.640 29.180 37.330 59.120 38.240 18.040 19.540 34.240 10.540 38.100
03/12/2004 52.520 29.180 37.300 59.580 38.300 17.810 19.431 33.550 10.450 38.120
06/12/2004 52.280 29.240 37.700 58.500 38.100 17.840 19.679 33.420 10.600 38.100
07/12/2004 51.540 29.450 37.870 57.070 37.630 17.330 19.351 33.560 10.570 38.040

Table A.3: Table of prices (cont.).
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Gmexico Gmodelo Kimber Penfioles Soriana  Telecom  Telmex  Televisa Vitro Walmex
date B C A B Al CPO A A%
08/12/2004 50.640 29.710 37.400 55.440 37.890 17.400 19.322 33.450 11.000 38.010
09/12/2004 50.330 29.750 37.210 56.620 37.710 17.420 19.441 32.880 11.320 38.170
10/12/2004 51.890 30.150 36.470 58.380 38.500 17.540 19.480 32.710 12.450 38.380
13/12/2004 53.000 30.140 36.510 58.300 38.410 17.650 19.510 33.180 12.330 38.330
14/12/2004 53.220 30.000 36.610 58.000 38.500 18.100 19.590 33.570 12.250 38.860
15/12/2004 54.190 29.830 36.540 60.120 39.240 18.200 19.670 33.440 12.900 38.880
16/12/2004 54.340 29.960 36.550 59.000 38.800 18.490 19.800 33.320 12.780 38.340
17/12/2004 54.090 30.200 36.540 59.000 38.850 18.280 19.740 33.140 12.700 38.210
20/12/2004 54.710 30.090 36.530 58.770 38.950 18.320 19.760 33.000 12.350 38.460
21/12/2004 56.000 30.200 36.750 60.250 38.340 18.610 20.320 33.110 11.880 38.700
22/12/2004 55.930 30.130 37.500 60.500 38.300 19.010 20.940 32.960 12.000 38.500
23/12/2004 56.010 30.530 37.470 59.510 38.450 19.250 21.080 33.060 12.000 38.330
24/12/2004 56.190 30.550 37.750 60.240 38.830 19.200 21.080 33.190 12.100 38.390
27/12/2004 56.510 30.790 37.500 60.000 38.980 19.430 21.290 33.090 11.990 38.150
28/12/2004 56.440 30.790 37.810 60.140 39.490 19.710 21.540 34.170 11.900 38.250
29/12/2004 56.270 31.180 38.400 59.900 40.300 19.910 21.620 34.240 11.800 38.410
30/12/2004 56.720 31.000 38.390 59.900 40.020 19.920 21.570 33.750 11.850 38.250
31/12/2004 56.220 30.660 38.500 60.000 39.980 19.850 21.420 33.640 11.620 38.290
03,/01/2005 56.700 31.030 38.470 59.610 39.790 19.910 21.420 33.710 11.750 38.240
04,/01/2005 53.920 31.000 37.810 57.740 38.850 19.540 21.230 33.040 10.930 38.260
05,/01/2005 54.000 31.220 37.030 58.480 39.250 19.050 20.830 32.770 10.890 38.080
06,/01/2005 54.610 31.100 36.900 57.860 39.200 19.560 20.870 33.070 11.210 38.290
07/01/2005 54.500 30.070 36.400 57.330 38.370 18.760 20.510 32.430 11.130 38.050
10/01/2005 54.610 30.170 36.020 57.880 38.500 18.900 20.640 32.620 11.020 38.060
11/01/2005 54.130 29.710 35.500 57.710 37.520 18.350 20.280 31.670 10.800 37.860
12/01/2005 54.150 30.180 36.810 57.710 38.000 18.470 20.380 32.240 11.120 37.960
13/01/2005 54.180 30.170 36.520 57.590 38.330 18.650 20.630 32.100 11.290 38.370
14/01/2005 54.710 30.310 36.390 57.750 38.720 19.050 20.760 33.040 11.480 38.780
17/01/2005 54.540 30.320 36.400 57.750 38.750 19.360 20.870 33.400 11.400 38.940
18/01/2005 56.000 30.450 36.390 58.960 39.240 19.850 21.110 33.950 11.480 39.400
19/01/2005 55.190 30.400 36.200 57.730 38.760 20.120 20.830 33.920 11.350 38.920
20/01/2005 53.770 30.250 35.700 55.360 38.590 19.800 20.720 33.180 11.240 38.210
21/01/2005 54.030 30.190 35.880 56.000 38.360 19.800 20.470 32.490 11.520 38.020
24/01/2005 54.800 29.880 36.150 56.990 38.930 20.150 20.680 32.550 11.300 38.030
25/01/2005 55.210 30.120 36.500 57.620 39.100 20.230 20.930 32.640 12.300 38.380
26/01/2005 56.490 30.100 36.500 58.170 39.250 20.420 20.970 33.490 12.930 38.750
27/01/2005 56.580 30.010 36.340 59.000 39.040 20.390 20.980 33.220 12.220 38.370
28/01/2005 55.990 30.460 36.240 59.480 39.150 20.370 20.960 32.760 12.400 38.220
31/01/2005 56.390 30.210 36.310 58.700 39.580 20.380 20.890 33.010 12.210 38.620
01,/02/2005 57.190 30.280 36.190 57.720 39.560 20.620 21.270 34.040 12.150 39.270
02,/02/2005 57.480 30.060 36.090 57.180 39.700 20.320 21.200 34.200 12.190 38.920
03,/02/2005 56.840 30.340 36.010 57.580 39.600 20.700 21.480 34.250 12.220 39.380
04,/02/2005 56.480 30.670 36.270 57.040 39.000 20.220 21.490 34.630 12.240 39.400
07,/02/2005 57.000 30.410 36.180 56.200 39.200 20.150 21.520 35.030 11.890 39.050
08,/02/2005 56.820 30.740 36.270 55.920 39.580 20.290 21.570 35.080 12.230 40.360
09/02/2005 56.770 30.820 37.350 56.500 41.300 20.740 22.360 34.940 12.030 40.870
10/02/2005 57.400 31.000 37.230 58.990 42.490 20.800 22.370 35.580 12.150 41.290
11/02/2005 57.140 31.600 37.330 60.430 42.800 20.880 22.490 35.490 12.130 41.190
14/02/2005 56.590 31.900 37.240 58.020 41.470 20.490 22.430 34.940 12.010 40.800

Table A.4: Table of prices (cont.).
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Alfa  AmTel Amxl Bimbo Cemex Elektra Femsaubd Gcarso Gfinburo  Gfnorte
date A Al A CPO Al
29/09/2004 1.877 2.605 0.907  -0.395 1.442 0.774 0.837 1.821 2.333 5.425
30/09/2004 0.420 0.737 -0.090 -0.873 -0.973 -0.404 -0.632 -1.506 1.140 -0.093
01/10/2004 0.975 1.179 2.474 3.124 1.108 0.353 1.054 0.497 1.537 1.078
04/10/2004 | -0.460 1.446 1.888 0.583 1.481 -0.456 0.079 0.590 0.908 -0.809
05/10/2004 | -0.416 -2.574  -0.991 -0.039 -0.441 0.275 0.334 0.170 -2.000 -0.204
06/10/2004 | -0.557 -1.220 -1.871 -0.772 2.551 0.104 0.196 -0.245 -2.653 -0.112
07/10/2004 0.303 0.041 -0.089 0.584 -0.834 1.708 -0.254 -0.265 1.468 0.465
08/10/2004 | -1.954 -2.057 -2.219 -4.257 -2.193 1.923 -0.176 -0.474 -1.860 -2.278
11/10/2004 1.091 1.218 0.227 1.455 -0.184 1.887 -0.020 0.153 1.053 0.227
12/10/2004 | -0.939 0.249 0.453  -0.996 -0.677 0.037 -0.982 0.895 0.156 -0.340
13/10/2004 | -1.777 0.993 -0.135 1.046 -2.478 0.111 0.040 -1.321 0.364 -0.911
14/10/2004 | -1.978 -0.820 -0.903  -1.633 1.652 -0.136 0.535 -0.038 -1.036 0.761
15/10/2004 1.969 0.826 2.096 1.012 1.000 1.222 0.000 -0.995 -0.524 -0.814
18/10/2004 0.362 2.254 1.026  -0.200 -0.835 0.634 -0.394 1.430 1.421 -0.879
19/10/2004 | -0.793 0.802 -0.044 0.321 -1.045 1.175 -1.010 0.762 -0.363 0.453
20/10/2004 0.824 1.233 1.281 0.120 -0.709 1.809 0.420 0.284 0.521 0.647
21/10/2004 1.731 -0.079  -0.960  -0.040 2.858 1.647 0.398 1.395 0.415 2.943
22/10/2004 0.520 0.275 -0.176 2.000 1.482 2.569 0.000 0.390 1.238 0.454
25/10/2004 1.740 -0.980 -1.059  -0.627 -1.004 1.546 0.397 0.185 0.917 1.357
26/10/2004 0.254 4.869 5.665 0.355 1.567 3.078 -0.198 0.462 -0.253 0.465
27/10/2004 0.115 4.757 5.952  -0.118 1.180 0.011 -0.178 -1.012 0.253 -0.981
28/10/2004 1.980 -1.514 -1.514 1.968 -1.196 -2.231 0.298 -0.558 -2.020 0.804
29/10/2004 1.242 2.049 3.034 0.348 0.908 0.243 0.831 2.579 -0.567 0.501
01/11/2004 0.357 0.287 0.314 4.002 0.210 0.638 -0.510 -2.150 0.570 0.535
02/11/2004 | -0.267 -0.143  -1.683 1.406 -0.374 0.383 -0.552 -0.223 -0.361 -0.165
03/11/2004 2.785 1.361 2.349 2.080 1.397 0.871 1.090 -0.616 0.879 1.011
04/11/2004 5.202 1.378 1.206 0.179 0.933 -0.162 2.020 3.192 0.103 -0.182
05/11/2004 | -0.041 -1.220  -2.229  -0.357 -0.294 0.216 -0.096 -1.492 0.359 0.438
08/11/2004 | -0.433 -1.305 -1.297  -0.107 1.281 -0.043 0.404 0.443 -0.102 -0.091
09/11/2004 1.428 -0.393 0.717 1.039 -0.247 -0.464 0.000 2.722 -0.102 -0.327
10/11/2004 1.000 0.072  -0.554 0.780 -1.690 -0.033 0.728 0.430 0.512 3.409
11/11/2004 2.243 1.255 1.431 -0.774 2.134 0.076 0.438 1.266 2.799 2.591
12/11/2004 0.000 -0.673  -0.588 0.142 0.464 -0.293 -0.833 0.352 1.436 -1.684
15/11/2004 | -0.949 -0.677  -0.789 1.303 1.257 0.272 -0.898 0.877 1.171 1.957
16/11/2004 | -0.539 -0.861  -0.079  -0.857 -0.157 0.379 0.231 0.595 0.772 -0.326
17/11/2004 2.287 1.014 0.080 0.180 0.900 0.162 -0.577 -1.218 0.527 3.611
18/11/2004 1.569 -1.075 0.397  -0.396 -0.113 1.337 -0.174 1.074 0.000 0.664
19/11/2004 | -0.734 -1.812 -2.534 -1.264 -0.510 -0.521 -0.930 -0.714 -1.524 -3.776
22/11/2004 0.175 0.406 0.731 0.585 -0.085 0.652 0.528 -0.246 0.097 0.651
23/11/2004 4.388 -0.698 -0.685  -0.836 1.369 0.988 -0.078 -1.865 -0.048 1.651
24/11/2004 3.683 0.259 0.568  -0.073 0.141 0.274 1.051 0.197 0.048 -0.770
25/11/2004 2.027 -0.332 1.211 0.294 1.026 1.133 0.000 0.537 1.159 1.232
26/11/2004 0.598 0.556 1.316 0.549 -0.056 2.200 0.405 0.872 0.191 0.033
29/11/2004 | -0.297 2.652 2.677 0.619 -0.376 5.787 2.840 -1.588 0.429 -0.217
30/11/2004 | -2.489 0.108 0.115  -2.315 0.880 1.478 0.205 -1.506 -0.570 5.261
01/12/2004 2.571 1.900 0.919 0.037 3.433 2.535 0.801 0.455 0.191 -1.301
02/12/2004 | -0.841 -1.372  -1.670 1.999 -0.629 -0.369 1.977 -1.286 -0.762 0.643
03/12/2004 | -1.308 1.141 1.196 1.306 -0.458 -0.296 -0.543 -1.083 -0.144 -0.112
06/12/2004 | -1.737 0.811 3.051 1.683 0.947 -0.371 0.346 0.000 0.000 -1.567
07/12/2004 | -2.279 0.735  -0.222 0.035 -0.134 -0.280 0.563 -0.983 -2.885 -0.715
08/12/2004 2.798 -1.042  -0.890 0.000 0.631 -1.832 0.903 0.075 -0.990 2.733
09/12/2004 1.052 0.000 -1.010 -0.176 0.067 -1.818 0.966 1.891 3.600 0.000

Table A.5: Table of returns
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Alfa  AmTel Amxl Bimbo Cemex Elektra Femsaubd Gcarso Gfinburo  Gfnorte
date A Al A CPO Al
10/12/2004 2.765 1.088 1.701 0.141 2.626 1.813 0.673 0.312 1.351 1.864
13/12/2004 0.210 0.625 0.855 0.000 -1.065 0.810 -0.563 1.667 -1.714 -0.109
14/12/2004 0.506 2.449 3.833 0.493 0.158 -0.718 0.637 1.261 0.533 -0.939
15/12/2004 | -0.139 -0.101  -0.142 -0.105 1.193 0.771 1.442 -0.356 1.012 2.481
16/12/2004 | -0.382 0.303 -0.142 0.000 1.347 0.009 2.323 0.143 -0.716 1.465
17/12/2004 | -0.488 0.638 1.709 0.351 -0.102 -1.331 -1.118 -0.143 0.769 -0.198
20/12/2004 | -0.631 -0.467  -0.735 0.420 0.576 0.478 -0.223 0.000 -0.620 0.807
21/12/2004 | -0.441 0.973 1.412 0.209 1.717 -0.105 0.653 1.589 0.720 0.076
22/12/2004 0.142 0.532 0.000 -0.243 0.175 -0.562 0.495 0.756 -1.143 2.943
23/12/2004 2.052 0.132 0.174  -0.662 0.936 -0.374 0.017 0.070 -0.723 0.381
24/12/2004 0.191 0.660 0.730  -0.210 0.235 1.472 -0.017 0.244 1.456 0.058
27/12/2004 | -0.363 0.328 0.034  -0.632 -0.518 -1.783 -0.085 2.609 0.431 1.912
28/12/2004 0.087 1.307 0.655  -0.283 1.079 -0.241 -0.969 -0.017 0.048 -0.029
29/12/2004 | -0.173 4.742 0.925 2.128 0.515 0.174 2.265 1.627 -0.095 -0.745
30/12/2004 | -0.643 -1.417  -0.543  -0.729 -0.513 -0.087 -0.721 0.133 -1.954 1.400
31/12/2004 | -0.297 -0.281 -0.614  -1.504 -0.319 0.097 -1.115 -0.050 -0.292 -0.142
03,/01/2005 0.684 2.130 3.194 0.497 0.197 -2.638 1.265 -0.133 2.145 -1.526
04/01/2005 | -1.708 -4.479  -3.594 0.318 -0.086 -4.922 1.063 -0.768 -0.716 -2.838
05/01/2005 | -2.251 -2.312  -1.968 0.352 -2.533 -1.597 -1.019 -2.186 -1.587 -1.729
06,/01/2005 1.161 1.742 0.669 0.878 0.631 1.061 -0.675 1.926 3.224 0.182
07/01/2005 | -1.613 -3.360 -2.413 0.418 -1.968 0.241 -1.987 -2.159 -2.603 -0.923
10/01/2005 | -2.587 0.100 -1.183  -2.945 1.420 -1.937 0.485 -0.121 -0.340 -0.810
11/01/2005 | -3.591 -3.741  -2.720 0.643 -0.542 -1.772 -1.656 -2.158 -0.439 -1.432
12/01/2005 0.698 1.561 0.783 1.738 1.724 -1.087 0.368 0.459 1.224 0.984
13/01/2005 2.871 0.820 1.776 3.940 0.723 1.033 0.821 0.931 -0.097 5.013
14/01/2005 3.147 3.355 3.063  -0.201 2.846 2.567 2.860 -0.017 0.969 2.578
17/01/2005 2.143 1.574 0.882 0.168 1.889 1.739 -0.084 2.158 0.719 0.733
18/01/2005 1.156 3.873 1.469 4.698 -0.567 0.667 1.332 4.242 4.524 -0.185
19/01/2005 | -0.914 2.455 0.482  -0.897 -1.544 0.010 0.682 4.592 3.462 -0.029
20/01/2005 | -2.306 -3.700 -3.669  -2.167 -1.508 -0.652 -1.008 -2.344 -1.409 -0.686
21/01/2005 | -2.378 -1.732  -0.926  -1.752 -0.429 0.511 -0.651 -3.168 0.491 -1.065
24/01/2005 0.149 1.763  -0.359 3.365 -0.849 0.632 -0.420 -0.033 2.622 -0.887
25/01/2005 2.210 1.701 2.633  -0.065 0.930 -0.835 -0.540 1.372 -1.039 0.264
26/01/2005 1.999 2.478 2.635 0.293 1.463 -0.904 0.543 0.669 0.832 2.400
27/01/2005 | -0.819 -1.692  -1.369  -0.260 1.345 0.126 0.236 -0.696 -1.997 -0.014
28/01/2005 2.209 0.676 2.464  -0.033 -0.143 -0.105 0.118 -0.163 -0.974 1.001
31/01/2005 1.160 -0.305 0.271 1.792 0.419 0.052 1.144 2.255 0.447 1.854
01,/02/2005 1.529 1.470 2.432 3.488 2.706 0.356 2.261 0.304 0.712 0.500
02/02/2005 | -0.513 -0.362 0.759 3.649 0.453 -0.345 -0.081 -1.338 0.575 -0.816
03,/02/2005 1.118 1.878 1.146 3.222 -0.705 0.356 0.537 0.371 2.549 0.516
04/02/2005 | -1.122 0.654 1.036  -3.035 0.093 0.209 1.505 -0.273 -2.057 -0.596
07,/02/2005 2.270 0.207 0.705 2.742 -0.070 -1.198 0.255 -0.129 -0.525 -0.251
08/02/2005 | -1.783 0.383 -0.954  -1.509 1.163 -0.770 0.334 -0.775 -1.628 0.671
09/02/2005 1.147 1.850 2.248  -0.412 -0.161 0.531 -0.301 0.114 0.179 -0.736
10/02/2005 5.705 0.260 -1.665 0.266 -0.127 0.338 0.970 0.065 -0.402 0.630
11/02/2005 | -0.496 -0.748 -0.128 0.147 0.542 1.411 -0.173 -0.016 -0.224 0.028
14/02/2005 | -2.044 -1.912 -0.704 -1.561 -0.218 -0.509 -0.710 -0.341 -0.943 -0.626

Table A.6: Table of returns (cont.).



77

Gmexico Gmodelo Kimber Penfioles Soriana  Telecom  Telmex  Televisa Vitro  Walmex
date B C A B Al CPO A \%
29/09/2004 -0.131 0.327 0.119 3.711 0.000 2.162 0.929 1.005 5.921 1.068
30/09/2004 0.109 0.326 -0.447 3.073 -0.243 -0.588 -0.541 -0.697 -1.775 -0.361
01/10/2004 2.198 2.530 0.516 -0.491 2.682 -0.237 0.272 1.637 -1.355 -0.026
04/10/2004 1.491 1.163 1.239 1.422 1.029 1.008 0.380 0.526  -2.930 0.802
05/10/2004 -1.049 0.732 -0.149 -0.916 0.575 -0.998 -0.216 0.523 -0.472 -0.539
06,/10/2004 0.488 -0.138 -0.030 0.962 0.156 -0.415 -0.325 1.463 -0.853 -0.361
07/10/2004 0.021 -0.242 -0.120 2.579 0.311 -0.595 -0.489 -0.481 1.625 0.725
08/10/2004 1.667 -0.660 -0.180 -2.296 1.008 -2.216 -0.928 -2.609 -1.129 -1.980
11/10/2004 0.664 0.664 0.060 -1.175 -0.205 0.429 0.496 0.694 0.190 0.577
12/10/2004 -1.051 -0.035 -0.300 -0.566 1.795 1.402 0.603 0.887 -0.475 1.852
13/10/2004 -4.750 0.208 -0.812 -2.334 -0.504 -1.383 0.273 -0.684 -0.286 -1.076
14/10/2004 -0.437 0.000 -0.091 0.058 -1.266 -0.305 -0.163 -0.590 -1.340 -1.967
15/10/2004 1.626 0.763 0.030 0.000 0.513 0.979 1.580 0.890 1.843 1.848
18/10/2004 -0.584 0.275 0.667 0.000 0.153 2.907 0.536 0.163 -1.429 0.285
19/10/2004 -0.522 -0.446 0.602 0.971 -1.732 -0.353 -0.373 0.163 0.000 -0.646
20/10/2004 -0.306 0.551 -0.299 -0.019 -1.659 0.413 1.927 -0.423  -0.193 -0.651
21/10/2004 1.096 0.308 0.150 -0.539 0.975 3.176 1.681 2.159 4.259 -0.236
22/10/2004 5.400 -0.171 -0.570 -0.348 1.018 0.798 0.155 1.089 -2.043 -0.184
25/10/2004 1.255 -0.171 -0.362 1.688 -0.026 -1.018 -1.238 -1.774  -0.474 0.316
26/10/2004 0.488 0.103 0.787 -2.080 1.008 1.143 1.358 0.387 -2.095 -1.416
27/10/2004 -1.780 1.644 0.601 1.189 -0.972 0.282 1.133 1.092 -0.681 0.824
28/10/2004 -2.347 -0.270 0.746 1.791 -3.643 -0.563 0.255 -0.222 0.392 -0.659
29/10/2004 0.485 -0.101 2.281 -0.265 -0.590 0.567 0.559 1.178 0.488 0.239
01/11/2004 1.259 0.068 2.057 -1.973 2.347 0.732 1.668 0.944 -0.485 -0.026
02/11/2004 -1.036 1.419 0.199 -0.619 0.580 0.615 0.000 0.062 1.366 0.954
03/11/2004 -0.209 -0.200 -0.028 -0.253 0.629 2.724 1.491 0.654 0.577 1.549
04/11/2004 2.434 0.935 -0.935 3.182 -0.417 0.649 0.000 0.588 -0.574 0.026
05/11/2004 2.171 -0.364 -0.114 1.249 -0.366 0.860 0.098 -1.416 -3.176 -0.853
08/11/2004 1.343 -0.398 0.458 0.635 0.052 -0.853 -1.076 -1.842 1.392 0.599
09/11/2004 0.890 0.167 1.169 -0.464 -0.839 -0.538 -0.198 1.654 2.549 0.078
10/11/2004 1.941 0.133 0.423 0.205 0.000 0.649 0.050 -0.188 2.008 0.181
11/11/2004 1.096 0.565 0.309 -0.354 0.767 2.041 2.427 2.853 1.500 1.034
12/11/2004 -0.723 -0.297 -0.420 -0.037 0.394 -0.842 -0.532 0.457 -2.031 1.151
15/11/2004 0.402 -0.298 0.281 0.336 0.418 0.690 0.146 0.485 -0.377 -1.517
16/11/2004 0.134 -0.565 -0.140 1.416 1.797 -0.369 -0.340 0.091 -0.757 -0.308
17/11/2004 2.688 -0.067 -0.140 3.508 1.433 0.529 0.146 -0.151  -1.239 0.412
18/11/2004 0.186 -1.071 0.281 4.596 -0.126 0.000 -0.438 1.239 -0.676 -0.256
19/11/2004 -1.816 -1.894 -1.092 0.102 -2.778 -2.737 -2.101 -0.209 -1.846 -1.080
22/11/2004 0.698 0.310 0.963 0.000 1.688 0.000 -0.050 0.090 0.495 0.312
23/11/2004 -0.768 1.203 0.252 -1.695 -1.149 -2.597 -0.349 0.807 0.394 0.518
24/11/2004 1.737 0.340 1.539 1.000 -0.698 0.500 -1.553 0.504 0.294 0.077
25/11/2004 0.557 0.677 0.441 1.024 0.546 1.050 0.153 0.324 3.131 0.412
26/11/2004 0.351 -0.571 0.960 0.152 0.958 0.602 0.610 2.469 -1.044 0.308
29/11/2004 0.625 0.000 1.902 2.244 0.385 1.359 0.253 0.143 1.822 0.588
30/11/2004 -0.804 -0.507 0.000 -3.267 -1.430 -4.453 -1.209 -0.115  -2.542 -2.034
01/12/2004 0.627 0.578 0.773 3.634 0.777 2.302 0.867 -0.029 2.222 0.649
02/12/2004 -3.590 -1.419 0.026 -2.683 -1.697 -0.988 -0.354 -1.779  -0.378 -1.753
03/12/2004 -0.228 0.000 -0.080 0.778 0.157 -1.275 -0.558 -2.015 -0.854 0.052
06,/12/2004 -0.457 0.206 1.072 -1.813 -0.522 0.168 1.276 -0.387 1.435 -0.052
07/12/2004 -1.415 0.718 0.451 -2.444 -1.234 -2.859 -1.662 0.419 -0.283 -0.157
08/12/2004 -1.746 0.883 -1.241 -2.856 0.691 0.404 -0.154 -0.328 4.068 -0.079
09/12/2004 -0.612 0.135 -0.508 2.128 -0.475 0.115 0.616 -1.704 2.909 0.421

Table A.7: Table of returns (cont.).
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Gmexico Gmodelo Kimber Penfioles Soriana  Telecom  Telmex  Televisa Vitro  Walmex
date B C A B Al CPO A \%
10/12/2004 3.100 1.345 -1.989 3.108 2.095 0.689 0.204 -0.517 9.982 0.550
13/12/2004 2.139 -0.033 0.110 -0.137 -0.234 0.627 0.153 1.437  -0.964 -0.130
14/12/2004 0.415 -0.464 0.274 -0.515 0.234 2.550 0.410 1.175 -0.649 1.383
15/12/2004 1.823 -0.567 -0.191 3.655 1.922 0.552 0.408 -0.387 5.306 0.051
16/12/2004 0.277 0.436 0.027 -1.863 -1.121 1.593 0.661 -0.359  -0.930 -1.389
17/12/2004 -0.460 0.801 -0.027 0.000 0.129 -1.136 -0.303 -0.540 -0.626 -0.339
20/12/2004 1.146 -0.364 -0.027 -0.390 0.257 0.219 0.101 -0.422 -2.756 0.654
21/12/2004 2.358 0.366 0.602 2.518 -1.566 1.583 2.834 0.333 -3.806 0.624
22/12/2004 -0.125 -0.232 2.041 0.415 -0.104 2.149 3.051 -0.453 1.010 -0.517
23/12/2004 0.143 1.328 -0.080 -1.636 0.392 1.262 0.669 0.303 0.000 -0.442
24/12/2004 0.321 0.066 0.747 1.227 0.988 -0.260 0.000 0.393 0.833 0.157
27/12/2004 0.569 0.786 -0.662 -0.398 0.386 1.198 0.996 -0.301  -0.909 -0.625
28/12/2004 -0.124 0.000 0.827 0.233 1.308 1.441 1.174 3.264 -0.751 0.262
29/12/2004 -0.301 1.267 1.560 -0.399 2.051 1.015 0.371 0.205 -0.840 0.418
30/12/2004 0.800 -0.577 -0.026 0.000 -0.695 0.050 -0.231 -1.431 0.424 -0.417
31/12/2004 -0.882 -1.097 0.287 0.167 -0.100 -0.351 -0.695 -0.326 -1.941 0.105
03,/01/2005 0.854 1.207 -0.078 -0.650 -0.475 0.302 0.000 0.208 1.119 -0.131
04,/01/2005 -4.903 -0.097 -1.716 -3.137 -2.362 -1.858 -0.887 -1.988 -6.979 0.052
05/01/2005 0.148 0.710 -2.063 1.282 1.030 -2.508 -1.884 -0.817 -0.366 -0.470
06,/01/2005 1.130 -0.384 -0.351 -1.060 -0.127 2.677 0.192 0.915 2.938 0.551
07/01/2005 -0.201 -3.312 -1.355 -0.916 -2.117 -4.090 -1.725 -1.935 -0.714 -0.627
10/01/2005 0.202 0.333 -1.044 0.959 0.339 0.746 0.634 0.586  -0.988 0.026
11/01/2005 -0.879 -1.525 -1.444 -0.294 -2.545 -2.910 -1.744 -2.912  -1.996 -0.525
12/01/2005 0.037 1.582 3.690 0.000 1.279 0.654 0.493 1.800 2.963 0.264
13/01/2005 0.055 -0.033 -0.788 -0.208 0.868 0.975 1.227 -0.434 1.529 1.080
14/01/2005 0.978 0.464 -0.356 0.278 1.017 2.145 0.630 2.928 1.683 1.069
17/01/2005 -0.311 0.033 0.027 0.000 0.077 1.627 0.530 1.090 -0.697 0.413
18/01/2005 2.677 0.429 -0.027 2.095 1.265 2.531 1.150 1.647 0.702 1.181
19/01/2005 -1.446 -0.164 -0.522 -2.086 -1.223 1.360 -1.326 -0.088 -1.132 -1.218
20/01/2005 -2.573 -0.493 -1.381 -4.105 -0.439 -1.590 -0.528 -2.182  -0.969 -1.824
21/01/2005 0.484 -0.198 0.504 1.156 -0.596 0.000 -1.207 -2.080 2.491 -0.497
24/01/2005 1.425 -1.027 0.753 1.768 1.486 1.768 1.026 0.185 -1.910 0.026
25/01/2005 0.748 0.803 0.968 1.105 0.437 0.397 1.209 0.276 8.850 0.920
26/01/2005 2.318 -0.066 0.000 0.955 0.384 0.939 0.191 2.604 5.122 0.964
27/01/2005 0.159 -0.299 -0.438 1.427 -0.535 -0.147 0.048 -0.806 -5.491 -0.981
28/01/2005 -1.043 1.500 -0.275 0.814 0.282 -0.098 -0.095 -1.385 1.473 -0.391
31/01/2005 0.714 -0.821 0.193 -1.311 1.098 0.049 -0.334 0.763 -1.532 1.047
01,/02/2005 1.419 0.232 -0.330 -1.670 -0.051 1.178 1.819 3.120 -0.491 1.683
02,/02/2005 0.507 -0.727 -0.276 -0.936 0.354 -1.455 -0.329 0.470 0.329 -0.891
03,/02/2005 -1.113 0.931 -0.222 0.700 -0.252 1.870 1.321 0.146 0.246 1.182
04,/02/2005 -0.633 1.088 0.722 -0.938 -1.515 -2.319 0.047 1.109 0.164 0.051
07/02/2005 0.921 -0.848 -0.248 -1.473 0.513 -0.346 0.140 1.155 -2.859 -0.888
08,/02/2005 -0.316 1.085 0.249 -0.498 0.969 0.695 0.232 0.143 2.860 3.355
09/02/2005 -0.088 0.260 2.978 1.037 4.346 2.218 3.662 -0.399 -1.635 1.264
10/02/2005 1.110 0.584 -0.321 4.407 2.881 0.289 0.045 1.832 0.998 1.028
11/02/2005 -0.453 1.935 0.269 2.441 0.730 0.385 0.536 -0.253  -0.165 -0.242
14/02/2005 -0.963 0.949 -0.241 -3.988 -3.107 -1.868 -0.267 -1.550 -0.989 -0.947

Table A.8: Table of returns (cont.).




Appendix B

Graphs of the solutions

This appendix includes the graphs of the solutions obtained in chapter 6 (see this chapter

for details).
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