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A B ST R A C T


Many problems in engineering, industry, and in many other fields, involve
the simultaneous optimization of several objectives. These types of problems
are called Multiobjective Optimization Problems (MOPs). A distinctive char-
acteristic of a MOP is that its objectives have some degree of conflict among
them (i.e., one objective cannot be improved without deterioration of at least
any other objective). While in single-objective optimization a single (global)
optimal solution is aimed for, in multiobjective optimization, a set of alterna-
tives with different trade-offs among the objectives is usually achieved. The
method most commonly adopted in multiobjective optimization to compare
solutions is the Pareto dominance relation. Hence, optimal solutions are called
Pareto optimal solutions. The evaluation of these solutions using the objective
functions is collectively known as Pareto optimal front.


One of the most successful approaches for solving MOPs is the use of
Multiobjective Evolutionary Algorithms (MOEAs), which are stochastic search
and optimization methods that simulate the natural evolution process. In
many cases, MOEAs have been applied to MOPs with 2 or 3 objectives.
Nonetheless, recent experimental and analytical studies have shown that
the effectiveness of Pareto-based MOEAs is deteriorated as the number of
objectives increases. A widely accepted explanation for this deterioration is
that the proportion of equivalent solutions, in terms of the Pareto dominance
relation, quickly increases with the number of objectives. Another difficulty
is that the number of points to approximate a Pareto front usually increases
exponentially with the number of objectives.


In this thesis we present several techniques to remedy some difficulties to
solve MOPs with a high number of objectives (many-objective problems). The
proposed techniques can be classified in two main classes: i) reduction of the
number of objectives of the problem during the search or, a posteriori, and
ii) new preference relations to order Pareto-equivalent solutions. First, we
proposed two algorithms to reduce the number of objectives. The underlying
idea of these objective reduction algorithms is to identify the nonconflicting
objectives in order to discard them. Based on experimental evidence, we can
say that our techniques outperformed similar objective reduction algorithms.
Further, they have a lower time complexity. Later on, we incorporated an
objective reduction algorithm into a MOEA in order to approximate the entire
Pareto front. From this proposal we can conclude that reducing the number
of objectives during the search improves the scalability of MOEA in terms of
the number of objectives. Another important finding is that simultaneously


vii







searching in different objective subsets also improves the search ability of a
MOEA.


We also develop a new preference relation based on a reference point
approach. This relation offers an easy way to integrate decision maker’s
preferences into a MOEA without modifying its basic structure. Additionally,
the proposed reference relation was used to deal with many-objective prob-
lems. The experimental results indicate that the proposed relation is less
affected by an increase in the number of objectives than Pareto dominance.
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R E S U M E N


Muchos problemas en ingeniería, en la industria, y en muchas otras áreas,
plantean la optimización simultánea de varios objetivos. Problemas de este
tipo son conocidos como problemas de optimización multiobjetivo (MOPs).
Una característica distintiva de un MOP es que entre sus objetivos existe
cierto grado de conflicto (i.e., un objetivo no puede ser mejorado sin deteri-
orar al menos otro objetivo). Mientras que en optimización mono-objetivo
se busca una única solución óptima (global), en la optimización multiob-
jetivo, usualmente se obtiene un conjunto de soluciones alternativas que
representan diferentes niveles de compromiso entre los objetivos. El método
que comúnmente se utiliza en optimización multiobjetivo para comparar
soluciones es la relación de dominancia de Pareto. De aquí que las soluciones
óptimas sean llamadas soluciones óptimas de Pareto. La evaluación de estas
soluciones a través de las funciones objetivo son denominadas frente de
Pareto.


Uno de los enfoques más exitosos para resolver MOPs es el uso de los algo-
ritmos evolutivos multiobjetivo (MOEAs), los cuales son métodos estocásticos
de búsqueda y optimización que simulan el proceso de evolución natural. En
muchos casos, los MOEAs han sido aplicados a MOPs con 2 ó 3 objetivos. No
obstante, estudios experimentales y analíticos recientes han mostrado que la
efectividad de los MOEAs basados en la dominancia de Pareto se deteriora
conforme el número de objetivos aumenta. Una explicación comúnmente
aceptada para este deterioro es que la proporción de soluciones equivalentes,
en términos de la dominancia de Pareto, se incrementa rápidamente con
el número de objetivos. Otra dificultad es que el número de puntos para
aproximar un frente de Pareto usualmente se incrementa exponencialmente
con el número de objetivos.


Nosotros presentamos varias técnicas para contrarrestar algunas dificul-
tades planteadas por los MOPs con muchos objetivos. Las técnicas propuestas
se pueden clasificar en dos clases: i) reducción del número de objetivos del
problema durante la búsqueda o a posteriori, y ii) utilización de nuevas
relaciones de preferencia para jerarquizar soluciones equivalentes en cuanto
a la dominancia de Pareto.


Inicialmente propusimos dos algoritmos para reducir el número de ob-
jetivos. La idea básica de estos algoritmos es identificar los objetivos no
conflictivos para descartarlos. Basados en la evidencia experimental, pode-
mos decir que nuestras técnicas superan a otros algoritmos de reducción
similares previamente propuestos. Además, nuestros algoritmos tienen una
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complejidad de tiempo menor. Más adelante, incorporamos uno de nue-
stros algoritmos de reducción en un MOEA con el fin aproximar el frente
de Pareto. De esta propuesta podemos concluir que reducir el número de
objetivos durante la búsqueda mejora la escalabilidad del MOEA con respecto
al número de objetivos. Otro descubrimiento importante es que explorando
simultáneamente en diferentes subconjuntos de objetivos también mejora la
capacidad de búqueda de un MOEA.


Finalmente, desarrollamos una nueva relación de preferencia basada
en un enfoque de punto de referencia. Esta relación ofrece una manera
sencilla de integrar preferencias del tomador de decisiones en un MOEA sin
modificar su estructura básica. Además, la relación de preferencia propuesta
fue usada para tratar con problemas con muchos objetivos. Los resultados
experimentales indican que la relación es menos afectada al incrementar el
número de objetivos que la dominancia de Pareto.
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In many industrial and research fields such as Engineering, Science, Chem-
istry, and Biology, just to name a few, there is a need for finding the


values that minimize a certain cost required or maximize some benefit. As
an example, let us consider the design of a chopper motorcycle frame carried
out by Rodríguez et al. [95, 96]. In that work, the design was focused to
optimize two objectives: (i) minimize the frame mass, and (ii) minimize
the maximum structural stress. The first objective is related to motorcycle’s A first example of a


multiobjective
optimization problem


weight and savings in manufacturing materials. If the mass is minimized, of
course, the motorcycle’s weight is reduced, however the cost of the materials
increases since lighter types of steel are more expensive. In turn, the second
objective, has to do with the safety factor of the motorcycle. A high structural
stress increases the chances of an abrupt breaking of the frame.
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Figure 1: Set of alternative solutions for the optimization example of a chopper
motorcycle frame.
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Problems like this, in which several objectives are considered simultane-
ously, are called Multiobjective Optimization Problems (MOPs) or multi-criteria
optimization problems. A distinctive feature of MOPs is that the objectives are
defined in incomparable units, and they present some degree of conflict
among them (i.e., one objective cannot be improved without deterioration
of at least another objective). In the example of the design of a motorcycle
frame, the objectives are in conflict, since if the mass decreases it is expected
that the maximum structural stress increases. In other words, as the motor-
cycle’s weight is decreased, the chances for an abrupt breaking of the frame
increase. Figure 1 shows several alternative solutions for the motorcycle
design. The plot in the figure shows the performance of each solution in
each of the objectives. As we can see, the mass is given in kilograms (Kg),
while the structural stress is given in mega pascals (Mpa). That space, in
which each axis corresponds to one objective, is known as objective function
space. It is also interesting to note that those solutions in the objective space
represent different trade-offs between the objectives. For instance, in the
lower-right region of the plot, we can find the design with the best structural
stress, but the heaviest frame. In contrast, in the upper-left region of the plot,
there is the solution with the worst structural stress, but the lighter frame.
Between those solutions, we can see the remainder trade-off solutions, i.e.,
one objective is improved, while the other is worsened. The interested reader
is referred to [20] for a comprehensive collection of real-world multiobjective
optimization applications.


One important element both in single- and multi-objective optimization is
the preference relation to compare solutions in the objective search space
in order to guide the search, and eventually, converge to optimal solutions.
In single objective optimization the “less or equal than” relation (assuming
minimization) is usually used. Therefore, the result of the search is a singleNotion of


“optimality” in
multiobjective


optimization


optimum, i.e., a solution less or equal than any other solution in the scalar
objective function space. In contrast, in multiobjective optimization, the
solutions are compared in an objective function space composed of vectors
(one component per objective). The common preference relation used in this
case, is the Pareto dominance relation. By using this relation there is usually
not a single optimal solution, but a set of alternatives representing different
trade-offs among the objectives (e.g., those solutions in the example of the
design of a motorcycle frame). Those alternative solutions (represented by
the values of the variables of the problem) are called Pareto optimal solutions
and their image in objective function space is known as Pareto optimal front
(see Figure 1).


In summary, a MOP has a set of several optimal solutions. Nevertheless,
in practice, only one solution should be selected from the set of Pareto
optimal solutions. Therefore, multiobjective optimization also differs from







introduction 3


single-objective optimization in that the former is composed of two different
tasks to solve the problem: a searching task whose goal is to find Pareto
optimal solutions, and a decision making task in which a most preferred
solution is chosen from the set of Pareto optimal solutions. For instance, in
our example, although there are several trade-off designs for the motorcycle
frame, only one of the designs should be built. The particular chosen design
depends on the particular purposes of the motorcycle. If the prime goal is
to produce a light frame, a higher priority must be given to minimize the
frame’s mass, although that means an increase in material cost, and, further,
the safety would be compromised. On the other hand, if a reduction in the
cost of materials and a high safety factor are more important, then the search
must emphasize the minimization of structural stress.


There are plenty of types of real-world MOPs depending on the char-
acteristics of their components. There are, for example, constrained and
unconstrained problems, or problems with continuous or discrete search
spaces. This situation gives rise to different optimization methods intended
to solve an specific type of MOP. Despite the variety of optimization tech-
niques proposed, in real-world situations there are some types of MOPs in
which traditional mathematical programming techniques (see, for example
Section 2.2) present a poor performance, or they are not even applicable to
those problems. Some examples of these types of problems are the following.
Problems in which the objective functions are not given in a closed form, but
they are defined by a simulation model. What is more, in some problems
the hardware device to be optimized is directly used to evaluate a candidate
solution. An additional common characteristic in real-life problems is the
presence of noise in objective functions, or dynamic objective functions.


These complexities call for alternative approaches to deal with these types
of MOPs. Among these alternative approaches we can find Evolutionary
Algorithms (EAs), which are stochastic search and optimization methods
that simulate the natural evolution process. In 1984, David Schaffer [100] pro-
posed the first actual implementation of what it is now called Multiobjective
Evolutionary Algorithm (MOEA). From that moment on, many researchers [21, Evolutionary


algorithms to solve
multiobjective
problems


107, 128, 58, 48, 70] have proposed their own MOEAs. Since EAs work with
sets of solutions (or population), they are able to find several Pareto optimal
solutions in a single run. One important feature of most of these MOEAs is
that they use the Pareto dominance relation to compare solutions in objective
function space. Specifically, the solutions in the population are ranked using
the Pareto dominance relation and the best solutions are combined and
varied to generate solutions closer to the Pareto optimal set.


Although MOEAs have been successfully applied to solve many real-world
problems, most of these applications consider a small number of objectives.
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As we will see in the next section, Pareto-based MOEAs struggle to solve
problems with a large number of objectives.


1.1 PROBLEM STATEMENT


Nowadays, MOEAs have shown a remarkable performance in many real-life
problems with 2 or 3 objectives. However, recent experimental [61, 117, 92]
and analytical [69, 113] studies have shown that MOEAs based on the Pareto
dominance relation scale poorly in MOPs with a high number of objectives
(4 or more). Although this limitation seems to affect only to Pareto-based
MOEAs, optimization problems with a large number of objectives (also known
as many-objective problems) introduce some difficulties common to any other
multi-objective optimizer. In summary, three of the most serious difficulties
due to high dimensionality are the following:


1. Deterioration of the search ability. A commonly accepted reason for this
problem is that the proportion of nondominated solutions (i.e., solu-
tions not worst than any other according to the Pareto dominance
relation) in a population increases rapidly with the number of objec-
tives [42]. According to Bentley et al. [6] the number of nondominated
k-dimensional vectors on a set of size n is O(lnk−1 n). As a conse-
quence, in a many-objective problem, the selection of solutions is
carried out almost at random or guided by diversity criteria.


2. Dimensionality of the Pareto front. The number of points required to
represent accurately a Pareto front increases exponentially with the
number of objectives. Specifically, the number of points necessary to
represent a Pareto front with k objectives and resolution r is given
by krk−1 (e.g., see [103]). This poses a challenge both to the data
structures to efficiently manage that number of points and to the
density estimators to achieve an even distribution of the solutions
along the Pareto front.


3. Visualization of the Pareto front. Clearly, with more than three objectives
is not possible to plot the Pareto front as usual. Several visualization
techniques have been proposed for high-dimensional Pareto fronts (see
e.g., [119, 90]), but none of them is widely used and practically all of
them are non-intuitive. Visualization is important because it plays a
key role in decision making.
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1.2 GENERAL AND SPECIFIC GOALS OF THE THESIS


This thesis deals with the design of new methods to improve Pareto-based
MOEAs in order to deal with many-objective problems. Most of the methods
proposed are specifically designed to cope with the deterioration of the
search ability of Pareto-based MOEAs. Nonetheless, they can also be consid-
ered as a remedy to deal with a high dimensionality in the Pareto front, and
its corresponding visualization.


1.2.1 Main Goal


The main goal of this research is to advance the state-of-the-art with respect
to the effectiveness of Pareto optimality in problems with many objectives.
Since Pareto optimality is also used in classical optimization techniques
the contributions of this study may also useful to the Operations Research
community.


1.2.2 Specific Goals and Contributions of the Thesis


In order to accomplish its main goal, This thesis is divided in four specific
goals. The contributions of this thesis are a direct result of the accomplish-
ment of the specific goals. It is worth noting that the specific goals are
described next in the order in which they are presented in this document,
and not by their relevance.


1. Development of new techniques to deal with many-objective prob-
lems. The first contribution proposes two objective reduction tech-
niques intended to be used a posteriori, i.e., once an approximation of
the set of Pareto optimal solutions has been found. Both reduction
techniques are based on a feature selection technique whose main
goal is to identify the redundant objectives to remove them in order to
obtain a smaller objective subset. In a decision making scenario these
techniques can allow the decision maker to work with a moderate
number of objectives in such a way that it is still possible, for instance,
to plot the Pareto front approximation. According to the results, the
reduction algorithms are effective and efficient compared with two re-
duction algorithms that have been recently proposed. This contribution
has been published in [78].


In another contribution, we proposed two different approaches to
integrate one of the proposed reduction techniques into a MOEA. In
particular, the conflict information was used during the search in order
to improve the search ability of the MOEA. The first approach gradually
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reduces the number of objective during the search and at the end of
the search it incorporates all the objectives to obtain a final approxi-
mation of the entire Pareto front. The resulting MOEA outperformed
the original MOEA in all the test problems studied. Therefore, the ob-
jective reduction during the search is an excellent choice to deal with
many-objective problems. We have published this contribution in [79].
In the second approach, instead of removing the non-conflicting objec-
tives, the conflict information is used to group objectives in terms of
their degree of conflict. This way all objectives are used during all the
search. Both schemes have shown a better scalability with respect to
the number of objectives than a regular MOEA. This contribution has
been published in [81]. Later on, an improvement of this method was
published in [82].


2. Development of an alternative preference relation to Pareto opti-
mality. Regarding alternative preference relations, we present a com-
parative study of some preference relations proposed to deal with
many-objective problems. The main goal of this study is to identify
the advantages and disadvantages of the current relations in order to
propose a new preference relation. One important discovery of the
study was the fact that the preference relations converge to different
regions of the Pareto front. Thus, to determine the effectiveness of a
Pareto relation we have to take into account both the speed of con-
verge and the location of the optimal subset achieved by the relation.
This study was first published in [80]. Afterwards, in [77] we have
published additional results.


After this study, we propose a preference relation designed to solve
many-objective problems. Since a limitation of some preference rela-
tions is the fact that the emphasized region was fixed, our proposed
preference relation is based on a reference point approach. This way,
the decision maker can decide the emphasized region during the
search. Another advantage of this new preference relation is that it is
able to rank nondominated solutions (i.e., equivalent solution accord-
ing to the Pareto dominance relation). Thus, a MOEA can further select
solutions based on the closeness to the Pareto front. This and the next
contribution have been published in [76].


3. Development of a new scheme to deal with many objective prob-
lems that takes into account the decision maker’s preferences. Based
on the proposed preference relation we designed an interactive scheme
to incorporate preferences into a MOEA. The scheme allows the deci-
sion maker to gradually provide his preferences in order to gradually
reduce the region of interest on the Pareto front. The experimental
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evaluation shows that the interactive scheme was able to improve
the search ability of the reference MOEA in many-objective problems.
Besides, an interactive scheme reduces the number of function evalua-
tions since only solutions in the region of interest are evaluated.


4. Gain knowledge about the sources that cause problems for MOEAs
based of Pareto optimality. Along the contribution presented in the
following chapters we have found some interesting results about scal-
ability in many-objective problems. The most important is that not
all MOPs become harder as the number of objectives is increased (see
Chapter 8). The difficulty of some problems is practically the same
regardless of the number of objectives. Another finding is that the con-
flict among the objectives plays an important role in the difficulty of
many-objective problems. Problems in which the differences of conflict
among the objective is small are harder.


1.3 STRUCTURE OF THE THESIS


This thesis is organized in 9 chapters. The first 4 chapters describe back-
ground concepts required to understand the rest of this thesis. The last 5


chapters present the thesis contributions and their corresponding results
and conclusions.


Chapter 2 presents a brief introduction to multiobjective optimization
problems. This chapter also introduces the traditional Pareto dominance
relation which is commonly used in multiobjective optimizers.


In Chapter 3, we describe the two most important groups of optimization
methods to solve MOPs, namely mathematical programming methods, and
multiobjective evolutionary algorithms. We also describe the main elements
required to design a multiobjective evolutionary algorithm.


Chapter 4 introduces the challenges posed by multiobjective optimization
problems with a large number of objectives. We also present a brief review
of the current proposals found in the specialized literature to deal with this
type of problems.


The first contribution of this thesis work is presented Chapter 5. In this
chapter we describe the design and results of the two objective reduction
algorithms. Besides of the fact that these algorithms can be directly used
during the decision making process, they also constitute the basis of the
two schemes proposed in Chapter 6. These schemes use one of the objective
reduction methods that adopt conflict information to improve the search
ability in many-objective problems.


In Chapter 7 we present a comparative study of some preference rela-
tion techniques. Later on, in Chapter 8 we present our proposal of a new
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preference relation to deal with many-objective problems. That relation
was incorporated in an interactive method so that the decision maker can
gradually provide his\her preferences to reduce the region of interest. The
proposed relation was also used in a scheme in order to find the entire
Pareto front.


Finally, in Chapter 9 we present the conclusions obtained regarding our
contributions. Also, we describe future paths of research.
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M U LT I O B J E C T I V E O P T I M I Z AT I O N
P R O B L E M S


CONTENTS
2.1 Notions of Optimality in a MOP 10
2.2 Approaches to Solve a MOP 14


Many problems in engineering, industry, and in many other fields,
involve the simultaneous optimization of many objectives. In many


cases, the objectives are defined in incomparable units, and they present
some degree of conflict among them (i.e., one objective cannot be improved
without deterioration of at least any other objective). These problems are
called multiobjective or multicriteria problems. Let us consider, for example, a
shipping company which is interested in minimizing the total duration of its
routes to improve customer service. Additionally, the company also wants
to minimize the number of trucks used in order to reduce operating costs.
Clearly, these objectives are in conflict since adding more trucks reduces
the duration of the routes, but increases operation costs. In addition, the
objectives of this problem are expressed in different measurement units.


In single-objective optimization, it is possible to determine between any
given pair of solutions if one is better than the other. As a result, we usually
obtain a single optimal solution (i.e., the global optimum). However, in
multiobjective optimization there does not exist a straightforward method
to determine if a solution is better than other. The method most commonly
adopted in multiobjective optimization to compare solutions is called Pareto
dominance relation [91] which, instead of a single optimal solution, leads to
a set of alternatives with different trade-offs among the objectives. These
solutions are called Pareto optimal solutions or non-dominated solutions.


Next, we present some general concepts and notations used in the re-
mainder of this document. These concepts are repeatedly used in several of
the further chapters, whereas concepts only used in particular chapters, are
defined when they are used in order to facilitate the reading of this thesis.


9
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Definition 1 (Multiobjective Optimization Problem). Formally, a Multiobjective
Optimization Problem (MOP) is defined as:


“Minimize” f(x) = [f1(x), f2(x), . . . , fk(x)]T


subject to x ∈ X.
(2.1)


The vector x ∈ Rn is formed by n decision variables representing the
quantities for which values are to be chosen in the optimization problem.
The feasible set X ⊆ Rn is implicitly determined by a set of equality and
inequality constraints of the form gi(x) 6 0, and hi(x) = 0, respectively.
The vector function f : X → Rk is composed by k > 2 scalar objective
functions fi : Rn → R (i = 1, . . . ,k). In multiobjective optimization, the sets
Rn and Rk are known as decision variable space and objective function space,
respectively. The image of X under the function f is a subset of the objective
function space denoted by Z = f(X) and referred to as the feasible set in
the objective function space. Figure 2 presents an example with 2 decision
variables and 2 objective functions. In that figure we can appreciate how the
vector-valued function f maps solutions in the feasible set, X, into the feasible
set, Z, in the objective function space. The objective function space attracts a
lot of attention in multiobjective optimization since the performance of each
solution is evaluated in that space.


Decision variable space Objective function space


X ⊆ Rn Z ⊆ Rk


f : Rn → Rk


Figure 2: Search spaces in multiobjective optimization problems.


2.1 NOTIONS OF OPTIMALITY IN A MOP


In order to define more precisely the multiobjective optimization problem
stated in definition 1 we have to establish the meaning of minimizing in
Rk. That is to say, it is required to define how vectors f(x) ∈ Rk have to be
compared for different solutions x ∈ Rn. The relation “less than or equal”
(6) is used in single-objective optimization to compare the scalar objective







2.1 notions of optimality in a mop 11


values. By using this relation there may be many different optimal solutions In
single-optimization
we can impose a
total order on the
solutions


x ∈ X, but only one optimal value fmin = min {f(x) | x ∈ X} since the relation
6 induces a total order in R (i.e., every pair of solutions is comparable
so we can sort solutions from the best to the worst one). In contrast, in
multiobjective optimization problems, there is no canonical order on Rk,
and thus, we need weaker definitions of order to compare vectors in Rk. There is no canonical


order on Rk in
multiobjective
optimization


In multiobjective optimization, the Pareto dominance relation originally
proposed by Edgeworth in 1881 [39], and later generalized by the french-
italian economist Vilfredo Pareto in 1896 [91] is usually adopted.


Definition 2 (Pareto Dominance relation). It is said that a vector z1 dominates
vector z2, denoted by z1 ≺pareto z2, if and only if:


∀i ∈ {1, . . . ,k} : z1i 6 z2i and ∃i ∈ {1, . . . ,k} : z1i < z
2
i . (2.2)


z2


z3


z1


f1


f2


z4


Figure 3: Illustration of the concept of Pareto dominance relation.


Figure 3 illustrates the Pareto dominance relation with an example with
four 2-dimensional vectors. Vector z3 is strictly less than z2 in both objectives,
therefore z3 ≺pareto z2. Vector z3 also Pareto-dominates z1 since with respect
to f1 those vectors are equal, but in f2, z3 is strictly less than z1. Since ≺pareto


is not a total order, some elements can be incomparable like is the case with
z1 and z4, i.e., z1 ⊀pareto z4 and z4 ⊀pareto z1. The remainder comparisons
are the following: z3 ≺pareto z4, z1 ≺pareto z2, and z4 ≺pareto z2.


Thus, to find the optimal solutions of a MOP we have to find those solutions
x ∈ X whose images, z = f(x), are not Pareto-dominated by any other vector
in the feasible space. In the example of Figure 3, no vector dominates z3,
and, therefore, we say that z3 is nondominated. If for two solutions, z1 and
z2, happens that z1 ⊀pareto z2 and z2 ⊀pareto z1, then it is said that those
solution are mutually nondominated.
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Definition 3 (Pareto Optimality). A solution x∗ ∈ X is said to be Pareto optimal
if there does not exist another solution x ∈ X such that f(x) ≺pareto f(x∗).


The set of Pareto optimal solutions and its image in objective space is
defined as follows.


Definition 4 (Pareto optimal set). The Pareto optimal set, Popt, is defined as:


Popt = {x ∈ X |@y ∈ X : f(y) ≺pareto f(x)}. (2.3)


Definition 5 (Pareto front). For a Pareto optimal set, Popt, the Pareto front, PFopt,
is defined as:


PFopt = {f(x) = (f1(x), . . . , fk(x)) | x ∈ Popt}. (2.4)


Figure 4 illustrates the concept of Pareto optimal set and its image in the
objective space, the Pareto front. Darker points denote Pareto optimal vectors.
In variable space, these vectors are referred to as Pareto optimal decision
vectors, while in objective space, they are called Pareto optimal objective
vectors. As we can see in the figure, the Pareto front is only composed by
nondominated vectors.


Pareto front


x1 f1


x2 f2


Decision variable space Objective function space


f : Rn → Rk


Ω ⊆ Rn


Pareto frontOptimal Pareto set


Λ ⊆ Rk


Figure 4: Illustration of the Pareto optimal set and its image, the Pareto front.


In multiobjective optimization there is another commonly employed vari-
ant of the Pareto dominance relation. This variant relaxes the relation so that
the resulting optimal set contains additional solutions compared with the
Pareto optimal set. Next, we define that alternative preference relation, and
its corresponding optimal set.


Definition 6 (Strict Pareto dominance). A vector z1 strictly dominates a vector
z2, denoted by z1 ≺≺pareto z2, if and only if:


∀i ∈ {1, . . . ,k} : z1i < z
2
i . (2.5)
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In the example shown in Figure 3, we saw that solution z3 Pareto domi-
nates 3 solutions, namely, z2, z1 and z4. However, solution z3 is not strictly
better than solutions z1 and z4 in all the objectives. Consequently, solution
z3 only strictly Pareto dominates solution z2, i.e., z3 ≺≺pareto z2. In general,
if we look for a solution x∗ ∈ X such that there is no x ∈ X that strictly
dominates it, then we are requiring less for x∗ than in the case of Pareto
optimality. Therefore, the optimality in terms of the relation ≺≺ is known
as weak Pareto optimality.


Definition 7 (Weak Pareto Optimality). A solution x∗ ∈ X is said to be weak
Pareto optimal if there does not exist another solution x ∈ X such that f(x) ≺≺pareto


f(x∗).


Definition 8 (Weak Pareto optimal set). The weak Pareto optimal set, Pweak, is
defined as:


Pweak = {x ∈ X |@y ∈ X : f(y) ≺≺ f(x)}. (2.6)


If x∗ ∈ Popt, that means that there is no solution x ∈ X, f(x) 6= f(x∗), such
that f(x) 6 f(x∗). Clearly, it also holds that there is no solution x ∈ X such
that f(x) < f(x∗). Therefore, from definitions 3 and 7 we can see that x∗ is
also a weak Pareto optimal solution. In other words, Popt is a subset of Pweak.


In [44] it is provided a general definition of optimality, given a MOP


defined by a binary relation R, and the feasible sets X, Z.


Definition 9 (General Optimality). A solution x∗ ∈ X is said to be an optimal
solution of a MOP if there does not exist another solution x ∈ X, x 6= x∗, such that
f(x) R f(x∗).


Definition 10 (General Optimal Set). The optimal set of a MOP is defined as:


Opt = {x ∈ X |@y ∈ X : f(y) R f(x)}. (2.7)


As we mentioned before, Pareto dominance is the most common prefer-
ence relation used in multiobjective optimization. However, it is only one
of a set of useful preference relations available. For instance, in [44] the
lexicographic relation and its complement, the lexicographic optimality, are
presented.


Definition 11 (Lexicographic relation). It is said that a vector z1 is lexicograph-
ically preferred to vector z2, denoted by z1 �lex z2, if and only if:


z1k∗ < z
2
k∗ or z1 = z2, (2.8)


where k∗ = min{k : z1k 6= z2k}.
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This preference relation is useful when there exists a natural order of
importance among the objectives. For example, let us consider the MOP


to select a car we want to buy where the objectives are price, gasoline
consumption, and power. In this example, the price might be more important
than gasoline consumption, and this, in turn, can be more important than
power. Thus, if two cars have the same price, then they are compared
w.r.t. gasoline consumption, and so on. Note that the lexicographic relation
is a total order since it is reflexive (z1 �lex z1), antisymmetric (z1 �lex


z2 ∧ z2 �lex z1 ⇒ z1 = z1 ) and connected (z1 �lex z2 ∨ z2 �lex z1).
As in the case of the Pareto dominance relation, for the lexicographic


relation, a notion of optimality can be defined.


Definition 12 (Lexicographic optimality). A solution x∗ ∈ X is lexicographi-
cally optimal if f(x∗) �lex f(x) for all x ∈ X.


In chapter 7 we present other preference relations proposed or used in the
context of MOPs with a large number of objectives.


2.2 APPROACHES TO SOLVE A MOP


In most MOPs, the Pareto optimal set is composed of a large or even an
infinite number of solutions. Nevertheless, in practice, only one solution
should be selected from the Pareto optimal set. The person who has the
task of selecting the most preferred solution from the set of Pareto optimal
alternatives is known as decision maker (DM). The preferences of the DM are
incorporated in order to induce a total order among the solutions of PFopt.


There are several approaches in which DM’s preferences can be incorpo-
rated (or articulated). For instance, the DM can rank the set of objectives
according to their importance. Another possibility is to obtain a sample of
the Pareto front, and then, select a solution from this sample. A common
classification of the techniques to solve MOPs takes into account the moment
at which the DM is required to provide preference information [87, 22]. The
classification is the following:


1. The preference information is incorporated after a representative sam-
ple of the entire Pareto front is obtained (a posteriori approaches).


2. The preference information is incorporated before the search process
(a priori approaches). Thus, only a subset of the Pareto front, defined
by the preferences, is attained.


3. The DM is iteratively asked to proportionate his/her preferences during
the search (interactive approaches). In this way, the search is focused
on a subset of the Pareto front that is gradually reduced.
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Since the size of the Pareto optimal set might be infinite, in practice, the
goal of an a posteriori approach is finding an approximation set of the Pareto
optimal front with the “best” quality.


Definition 13 (Pareto front approximation). A Pareto front approximation,
denoted by PFapprox, is a subset of the objective space Z composed of mutually
nondominated vectors. I.e., for any two vectors z1, z2 ∈ PFapprox, z1 ⊀ z2 ∧ z2 ⊀
z1.


Currently, it is well accepted that the quality of an approximation set is
determined by i) the closeness to the Pareto optimal front, and ii) the spread
over the entire Pareto optimal front [130, 22].


In interactive optimization methods it is useful to know the lower and
upper bounds of the Pareto front. The ideal point represents the lower bounds
and is defined by z?i = minz∈Z(zi), ∀i = 1, . . . ,k. In turn, the upper bounds
are defined by the nadir point, which is given by znad


i = maxz∈PFopt(zi),
∀i = 1, . . . ,k. In order to avoid some problems when the ideal and nadir
points are equal or very close, a point strictly better than the ideal point
is usually defined. This point is called the utopian point and is defined by
z??
i = z?i − ε, ∀i = 1, . . . ,k, where ε > 0 is a small scalar.


In Section 6.2, a common methodology to assess the quality of a Pareto
front approximation is presented.
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In this chapter we present two families of optimization methods to solve
Multiobjective Optimization Problems (MOPs). The first group of methods


is collectively known as mathematical programming methods and were
proposed by the Multi-criteria Decision Making (MCDM) community. The
other family of methods are the Multiobjective Evolutionary Algorithms
(MOEAs), which are stochastic optimizers, proposed in the Evolutionary
Algorithm (EA) field.


3.1 MATHEMATICAL PROGRAMMING METHODS


In this section we present a brief description of some of the most popular
MCDM techniques. These methods are organized in a priori methods, a poste-
riori methods, and interactive methods. A wider selection of methods, and a
detailed description of them can be found in [87, 40].


3.1.1 A Priori Preference Articulation


3.1.1.1 Goal Programming


In this method, developed by Charnes and Cooper [17], the decision maker
(DM) has to assign targets or goals that wishes to achieve for each objective.
These values are incorporated into the problem as additional constraints.
The objective function then tries to minimize the absolute deviations from
the targets to the objectives.


In addition, goal programming provides the flexibility to deal with cases
that have multiple conflicting goals. Essentially, the goals may be ranked in
order of importance to the problem solver. Note that this technique yields a
nondominated solution if the goal point is chosen in the feasible space.


17
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3.1.1.2 Lexicographic Method


In this method, the objectives are ranked in order of importance by the
decision maker (from best to worst). The optimal value f?i (i = 1, . . . ,k) is
then obtained by minimizing the objective functions sequentially, starting
with the most important one and then proceeding according to the order of
importance of the objectives. Additionally, the optimal value found for each
objective is added as a constraint for subsequent optimizations. This way,
the optimal value of the most important objectives is preserved. Only in the
case of several optimal solutions in the single optimization of the current
objective, the rest of the objectives are considered. Therefore, in the worst
case, we have to carry out k single objective optimizations. In [87, 40] it is
proved that the optimal solution obtained by the lexicographic problem is
Pareto optimal.


3.1.2 A Posteriori Preference Articulation


3.1.2.1 Linear Combination of Weights


In this method, the general idea is to associate each objective function with
a weighting coefficient and minimize the weighted sum of the objectives. In
this way, the multiobjective problem is transformed into a single objective
problem. Some important properties of this method are the following [87].
The solution to the weighting problem is a weakly Pareto optimal solution.
However, it is possible to achieve a Pareto optimal solution if the weighting
coefficients are positive for all the objectives, or if the problem has a unique
solution. Additionally, the method of linear combination of weights can
generate any Pareto optimal solution of a convex MOP (i.e., if all the objective
functions and the feasible region are convex).


3.1.2.2 ε-Constraint Method


The ε-constraint method is one of best known scalarization techniques
to solve multiobjective problems. In this approach one of the objectives is
minimized while the others are used as constraints bound by some allowable
levels εi. In order to find several Pareto optimal solutions, we need to solve
the ε-constraint problem using multiple different values for εi. The general
scheme is an iterative optimization process in which the user needs to
provide the range of the reference objective. In addition, it must be provided
the increment for the constraints imposed by ε. This increment determines
the number of Pareto optimal solutions generated. In [40] and [87] it is
proved that the optimal solution of the ε-constraint problem is weakly
Pareto optimal.
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3.1.3 Interactive Preference Articulation


3.1.3.1 Chebyshev Method


The Chebyshev method proposed in [109], is an interactive method based
on the minimization of a function value. The metric to be used for measur-
ing the distances to an utopian objective vector is the weighted Chebyshev
metric. Thus, the multiobjective optimization problem is transformed into
a single-objective optimization problem. Every Pareto optimal solution of
any multiobjective optimization problem can be found by solving the new
single-objective problem. However, with this approach, some of the solutions
may be weakly Pareto optimal solutions. This negative aspect is solved by
formulating the distance minimization problem as a lexicographic problem.
In each iteration, the Chebyshev method provides different subsets of non-
dominated solutions. These solutions consist of P(≈ n) representative points,
generated by using the lexicographic Chebyshev problem, from which the
DM is required to select one as his most preferred.


3.1.3.2 Reference Point Methods


The reference point approach, proposed by Wierzbicki [121, 122], is an
interactive multiobjective optimization technique based on the definition of
an achievement scalarization function.


Definition 14 (Achievement scalarizing function). An achievement scalariz-
ing function is a parameterized function szref(z) : Rk → R, where zref ∈ Rk


is a reference point representing the decision maker’s aspiration levels. Thus, the
multiobjective problem is transformed into the following scalar problem:


Minimize szref(z)


subject to z ∈ Z.
(3.1)


The basic idea of this technique is the following. First, the DM is asked to
give a reference point. Then, the solutions that better satisfy the aspiration
levels are computed using the achievement scalarization function. If the DM


is satisfied with the current solution, the interactive process ends. Otherwise,
the DM must provide another reference point.


3.1.3.3 Light Beam Search


The light beam search method proposed by Jaszkiewicz and Słowiński [65],
is an iterative method which combines the reference point idea and tools of
Multi-attribute Decision Analysis (MADA). In each iteration, a finite sample
of nondominated points is generated. The sample is composed of a current
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point called middle point, which is obtained in the previous iteration, and
J nondominated points from its neighborhood. A local preference model
in the form of an outranking relation S is used to define the neighborhood
of the middle point. It is said that a outranks b (aSb), if a is considered
to be at least as good as b. The outranking relations are defined by the
DM, which specify three preference thresholds for each objective. They are
indifference threshold, preference threshold and veto threshold. The DM has the
possibility to scan the inner area of the neighborhood along the objective
function trajectories between any two characteristic neighbors or between a
characteristic neighbor and the middle point.


3.2 EVOLUTIONARY MULTIOBJECTIVE ALGORITHMS


MOPs can be classified in different groups depending on the characteristics
of their components, i.e., whether the objective functions are convex or not,
or whether the decision space is continuous or discrete. The following list
presents a possible classification for MOPs based on the nature of some key
elements. The following classification does not pretend to be exhaustive, but
to simply provide a good idea of the common components that guide the
design of an optimization method.


• Constraints on the variables. An optimization problem can have no
constraints on the decision variables, or it can have equality or inequal-
ity constraints.


• Nature of the decision space. A problem is called an integer multiob-
jective optimization problem if some of the variables can only take integer
values. On the other hand, if all the variables can take real values, the
problem is known as a continuous multiobjective optimization problem.


• Geometry of the objective functions and feasible space. A MOP is
convex if all the objective functions and the feasible variable space are
convex.


• Nature of the objective functions and constraints. When all the ob-
jective functions and constraints are linear, then the MOP is called linear.
If at least one objective or constraint is nonlinear the problem is called
nonlinear MOP.


In many cases, the development of a new optimization technique is
the result of the need to solve some kind of real-life MOP. Therefore, the
design of that new technique is oriented to take advantage of the particular
characteristics of the given problem. For instance, there are many techniques
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specialized for solving linear multiobjective optimization problems (see
e.g., [125]), or techniques devoted to solve convex MOPs (see e.g., [46]).


In real-world situations there are some types of MOPs in which traditional
mathematical programming techniques (e.g., those presented in Section 2.2)
present a poor performance, or they are not even applicable. Some examples
are the following. Problems in which the objective functions are not given in
a closed form, but they are defined by a simulation model (e.g., [96, 111]).
What is more, in some problems the hardware device to be optimized
is directly used to evaluate a candidate solution (e.g., [123, 11, 110, 72]).
An additional common characteristic in real-life problems is the presence
of noise in the objective functions (e.g., [66, 60, 4]), or dynamic objective
functions (e.g., [5, 115]).


These complexities call for alternative approaches to deal with these
types of MOPs. Among these alternative approaches we can find EAs, which
are stochastic search and optimization methods that simulate the natural
evolution process. At the end of the 1960s, Rosenberg [97] proposed the use
of genetic algorithms to solve MOPs. However, it was until 1984, when David
Schaffer [100] proposed the first actual implementation of what it is now
called MOEA. From that moment on, many researchers [21, 107, 128, 58, 48,
70] have developed their own MOEAs.


As other stochastic search strategies (e.g., simulated annealing, ant colony
optimization, or particle swarm optimization), EAs do not guarantee to find
the Pareto optimal set but try to find a nondominated set whose vectors are
as close as possible to the Pareto optimal front. On the other hand, EAs are
particularly well-suited to solve MOPs because they work in parallel with a
set of potential solutions (i.e., the population). This feature makes them to
find several solutions of the Pareto optimal set (or a good approximation) in
a single run. Furthermore, EAs are less susceptible to the shape or continuity
of the Pareto front, than traditional mathematical programming techniques.


Some researchers [19, 28, 47, 86] have identified some limitations of tradi-
tional mathematical programming algorithms to solve MOPs. Some of them
are the following:


1. We need to run many times those algorithms to find several elements
of the Pareto optimal set.


2. Many of them need domain knowledge about the problem to be solved.


3. Some of those algorithms are sensitive to the shape or continuity of
the Pareto front.


Single objective EAs and MOEAs share a similar structure. The major differ-
ence is the fitness assignment mechanism since a MOEA deals with fitness
vectors of dimension k (k > 2). As pointed out by different authors [128, 22],
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finding an approximation to the Pareto front is by itself a bi-objective prob-
lem whose objectives are:


• Minimize the distance of the generated vectors to the Pareto optimal
front, and


• Maximize the diversity of the achieved Pareto front approximation.


Therefore, the fitness assignment must consider these two objectives.
Algorithm 1 describes the basic structure of a multiobjective evolutionary
algorithm.


Algorithm 1 Pseudocode of a Multiobjective Evolutionary Algorithm.
1: t← 0


2: Generate an initial population P(t)
3: while the stopping criterion is not fulfilled do
4: Evaluate the objective vector f for each individual in P(t)
5: Assign a fitness for each individual in P(t)
6: Select from P(t) a group of parents P ′(t) preferring the fitter ones
7: Recombine individuals of P ′(t) to obtain an offspring population P ′′(t)
8: Mutate individuals in P ′′(t)
9: Combine P(t) and P ′′(t) and select the best individuals to get P(t+ 1)


10: t← t+ 1


Usually, the initial population is generated in a random manner. However,
if we have some knowledge about the characteristics of a good solution, it
is wise to use this information to create the initial population. The fitness
assignment requires ranking the individuals according to a preference rela-
tion and then, assigning a scalar fitness value to each individual using such
rank. The selection for reproduction (line 6) is carried out as in the single
objective case, for instance, using tournament selection. In contrast, the selec-
tion for survival (line 9), intended to maintain the best solutions so far (i.e.,
elitism), uses a preference relation to remove some solutions and maintain
the population size constant. To ensure diversity of the approximation set,
the selection mechanism is also based on a density estimator of the objective
function space.


3.2.1 Key Elements of a MOEA


In this section we will describe in detail the most important elements of a
MOEA that should to be taken into account for its design.
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3.2.1.1 Fitness Assignment


In a MOEA we need an additional process to transform a fitness vector into
a scalar value. Mainly, there are three schemes to carry out this process,
namely: criterion-based, aggregation-based, and preference-based.


criterion-based. This approach alternately chooses each of the objective
functions during the selection stage. That is, to select an individual
or group of individuals only one objective is considered. For instance,
the Vector Evaluated Genetic Algorithm (VEGA) [100] divides the pop-
ulation into k equally-sized subpopulations and a different objective is
used to assign fitness within each subpopulation.


aggregation-based. In this method, the objective functions are aggre-
gated or combined into a single scalar value. During the optimization
process, the parameters are systematically varied to generate different
elements of the Pareto optimal set. Note that, although an aggregation-
based approach can be formulated as a preference relation, the so-
lutions are not compared in objective function space. That is to say,
vectors are mapped from Rk to R before the comparison.


preference-based. In this scheme a preference relation is used to induce
a partial order of the population in objective function space. Then,
a scalar score (rank) is assigned to each solution based on how the
solution compares with respect to the other solutions. For example,
dominance-rank schemes count the number of individuals by which a
given individual is dominated. In the dominance-count schemes the
fitness of an individual corresponds to the number of individuals that
it dominates. As we noticed in a previous section, Pareto dominance
is the preference relation most commonly adopted in MOEAs.


3.2.1.2 Elitism


Elitism is the mechanism intended to prevent the loss of the best solutions
found during the search due to stochastic effects. This concept plays a
major role in modern MOEAs since, along with mutation, guarantees global
convergence. In multiobjective optimization, the implementation of elitism
is more complex than in single objective optimization. Since we count with
limited memory resources, if more nondominated solutions arise than those
that can be stored, then some good solutions have to be discarded. Therefore,
the adopted elitist strategy determines if the MOEA is globally convergent
or not. Currently, we can mainly distinguish two approaches to implement
elitism. One of them is to combine the old and the new populations, and
then use a deterministic selection to preserve the best solutions in the
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next generation [32]. The other approach is to maintain an external set of
individuals called “archive” that stores the nondominated solutions found
during the search process. Figure 5 illustrates these two approaches.


Scheme 1: without archive


offspringold population offspringold population archive


new


Scheme 2: with archive


population
new
archive


new
population


Figure 5: Schemes to implement elitism.


3.2.1.3 Density Estimators


One of the goals in MOEAs is to obtain a set of nondominated solutions which
are well distributed along the Pareto front. In the following, we describe
some techniques to maintain diversity in the population.


fitness sharing. The goal of fitness sharing [56] is to form and maintain
subpopulations (niches) distributed over objective function space. The
idea is to consider fitness as a resource that needs to be shared among
individuals in the same niche. Thus, the larger the number of individ-
uals in the niche, the smaller the fitness assigned to each individual.
Formally, the shared fitness fsi of individual i is defined by:


fsi =
fi∑N


j=1φ(dij)
, (3.2)


where fi is the fitness of individual i, and φ(dij) is the sharing function,
defined by:


φ(dij) =


 1−
(
dij
σsh


)
, dij < σshare


0 , otherwise
(3.3)


where σshare is the niche radius and dij is the distance between
individuals i and j.


hypergrids. A hypergrid divides objective function space in regions called
hypercubes. Each nondominated solution occupies a hypercube as it is
shown in Figure 6. The idea is only to accept nondominated solutions
belonging to underpopulated hypercubes. Although the number of
divisions in the hypergrid in each dimension is constant, the position
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kt


tj


ti


f 2


f 1


Figure 6: Hypergrid to maintain diversity in the archive. In this figure we can see
how the hypergrid changes during the search.


and extension of the grid can be adapted during the search process
(see Figure 6).


clustering The objective of a clustering algorithm is to partition a set of
points in such a way that: (a) each group contains points very similar
to each other; and (b) the points of one group are very different from
the points of other groups. In a MOEA we use clustering to preserve
diversity in the archive and reduce its size. This process consists of
three steps (Figure 7):


1. Partition the archive using a clustering algorithm.


2. Select a representative individual of each group, i.e., the centroid.


3. Remove all the other individuals in the cluster.
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Figure 7: Clustering technique to maintain diversity in the archive.
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3.2.2 MOEAs based on Pareto Optimality


multi-objective genetic algorithm (moga). Fonseca and Fleming [48]
proposed the Multiobjective Genetic Algorithm (MOGA), which is based
on the scheme proposed by Goldberg [55]. This algorithm ranks the
population based on nondominance. Thus, the rank of an individual xi


at generation t is equal to the number of solutions, p(xi, t), by which
it is dominated, namely rank(xi, t) = 1+ p(xi, t).


non-dominated sorting genetic algorithm (nsga). Srinivas and
Deb [107] implemented Goldberg’s idea in a more straightforward
way. The Nondominated Sorting Genetic Algorithm (NSGA) ranks the
population in different nondominated layers or fronts with respect
to nondominance. The first front (the best ranked) is composed by
the nondominated individuals of the current population. The second
front is the set composed of the nondominated individuals excluding
individuals in the first rank. In general, each front is computed only
using the unranked individuals in the population. Deb et al. [32] later
proposed a new version of the algorithm called NSGA-II. This algorithm
improves the efficiency of the original NSGA by reducing the number
of times that the population needs to be ranked, and incorporates an
elitist selection scheme, as well as a crowded-comparison operator.


niched pareto genetic algorithm (npga). Horn and Nafpliotis [58]
combined tournament selection and Pareto dominance. In this method
two individuals are randomly selected in order to compare them
against a subset of the population. The individual that results nondom-
inated is selected as a parent. On the other hand, if both individuals
are dominated or nondominated, then the winner is decided by means
of a fitness sharing function.


strength pareto evolutionary algorithm (spea). The Strength
Pareto Evolutionary Algorithm (SPEA) was developed by Zitzler and
Thiele [128] as a way to combine the most successful techniques of
different MOEAs. SPEA uses the individuals stored in the archive to
rank the individuals in the current population. For each individual
in the archive a value is computed (referred to as strength) that is
equal to the number of population members that are dominated by the
corresponding archive member. Finally, the fitness of each individual
x is computed by adding up the strength of all archive members
that dominate x. This scheme tries to guide the search towards the
Pareto front and, at the same time, preserves the diversity of the
nondominated solutions.
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Since the first implementation of a Multiobjective Evolutionary Algorithm
(MOEA) in the mid 1980s [101], a wide variety of new MOEAs have been


proposed, gradually improving in both their effectiveness and efficiency to
solve Multiobjective Optimization Problems (MOPs) [22]. However, most of
these algorithms have been evaluated and applied to problems with only
two or three objectives, in spite of the fact that many real-world problems
have more than three objectives [51, 62].


Recent experimental [61, 117, 92] and analytical [113, 69] studies have
shown that MOEAs based on Pareto optimality [91] scale poorly in MOPs
with a high number of objectives (4 or more). Although this limitation seems
to affect only to Pareto-based MOEAs, optimization problems with a large
number of objectives (also known as many-objective problems) introduce
some difficulties common to any other multi-objective optimizer.


The goal of this chapter is presenting a general view of the difficulties
posed by many-objective problems for Pareto-based MOEAs. Specifically,
we present a review of the potential sources of difficulty currently found
in the specialized literature. Likewise, we present a brief review of the
current proposals to deal with these sources of difficulty. Since some of these
proposals are based on conflict information among the objectives, first some
definitions of conflict are provided.


4.1 NOTIONS OF CONFLICT AMONG OBJECTIVES


One important condition of a multiobjective problem is the conflict among
their objectives. If the objectives have no conflict among them, then we
could solve the problem optimizing each objective function independently.
Nonetheless, it has been found that in some problems, although a conflict ex-
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ists elsewhere, some objectives behave in a non-conflicting manner. Although
different authors have proposed definitions for conflict among objectives
(see, e.g. [16, 93, 112, 12]), in this thesis we only present the employed or
relevant to this document.


Definition 15. Let be SX a subset of X, then, according to Carlsson and Fullér,
two objectives can be related in the following ways (assuming minimization):


1. fi is in conflict with fj on SX if fi(x1) 6 fi(x2) implies fj(x1) > fj(x2) for
all x1, x2 ∈ SX.


2. fi supports fj on SX if fi(x1) > fi(x2) implies fj(x1) > fj(x2) for all
x1, x2 ∈ SX.


3. fi and fj are independent on SX, otherwise.


In the cases 2 and 3, those objectives are also called nonconflicting ob-
jectives. When SX = X, it is said that fi is in conflict with (or supports) fj
globally. However, in many MOPs the relation among the objectives changes
when comparing different subsets of X. Figure 8 shows an example in which
two functions are in conflict in some subsets of X, while in others, they
support each other.


f1(x)


f2(x)


x


Conflict Support


Figure 8: Two objective functions can be in conflict in some subsets of the feasible
space, and can be supportive in other subsets.


Nonconflicting objectives are also known as nonessential or redundant
objectives because, as pointed out by Gal and Hanne [52], when a noncon-
flicting objective is removed from the original set of objectives, the resulting
Pareto front does not change. Based on the notion of nonessential objectives,
Brockhoff and Zitzler [12] proposed a conflict definition that verifies whether
the Pareto dominance relation changes when some objectives are removed,
or not. The Pareto dominance relation induced by a given set F of objectives
is defined as �F= {(x, y) |∀fi ∈ F : fi(x) 6 fi(y) ∧ ∃i : fi(x) < fi(y)}.
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Definition 16. Let F1, F2 ⊆ Φ be two subsets of objectives, where Φ is the entire
set of objectives Φ = {f1, f2, . . . , fk}. Then, we call F1 nonconflicting with F2 iff
(�F1⊆�F2) ∧ (�F2⊆�F1).


In other words, F1 and F2 are called nonconflicting if and only if the cor-
responding relations �F1 and �F2 are identical, but not necessarily F1 = F2.
The nonconflicting definition is useful since if F and F ′ ⊂ F are noncon-
flicting, then we can replace F with F ′ and obtain the same Pareto optimal
front. The objectives in F ′ are then called essential objectives, whereas the
objectives in F \ F ′ are known as nonessential or redundant objectives.


In practice, however, one is often interested in a further objective reduction
at the cost of slight changes in the dominance relation. Brockhoff and Zitzler
proposed a measure, based on the additive ε-dominance relation, to compute
the change between two dominance relations. The ε-dominance relation
induced by a set F is defined by �εF= {(x, y) |∀fi ∈ F : fi(x) − ε 6 fi(y) ∧ ∃i :


fi(x) − ε < fi(y)}.


Definition 17. Let F1, F2 ⊆ F be two subsets of objectives, where F is the en-
tire set of objectives. Then, we call F1 δ-nonconflicting with F2 iff (�F1⊆�εF2) ∧


(�F2⊆�εF1).


In this case, if an objective subset F ′ ⊂ F is δ-nonconflicting with F, then
we can omit all objectives in F \ F ′ without causing a larger error than δ in
the omitted objectives.


4.2 SOURCES OF DIFFICULTY WHEN SOLVING MANY-OBJECTIVE PROBLEMS


4.2.1 Deterioration of the Search Ability


One of the reasons for this problem is that the proportion of nondominated
solutions (i.e., equally good solutions) in a population increases rapidly with
the number of objectives [42]. Figure 9 shows the nondominated regions
with respect to a given solution z. As we can see, for 2 objectives 1/2 of the
search space is composed of nondominated regions, whereas for 3 objectives
3/4 of the search space is composed of nondominated regions.


In general, the expression to denote the proportion, e, of nondominated
regions and the whole search space [42] is given by e = (2k − 2)/2k, where
k is the number of objectives. This proportion goes to infinity when the
number of objectives approaches infinity. According to Bentley et al. [6]
the number of nondominated k-dimensional vectors on a set of size n is
O(lnk−1 n). As a consequence, in many-objective problems, the selection of
solutions is carried out almost at random or guided by diversity criteria.
In fact, Mostaghim and Schmeck [89] have shown that a random search
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Figure 9: Nondominated regions with respect to a given solution z.
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Figure 10: Illustration of some Dominance Resistant Solutions in problem DTLZ2.


optimizer achieves better results than the NSGA-II [32] in a problem with
10 objectives. Another possible source of the poor scalability of MOEAs is
the increment of the number of Dominance Resistant Solutionss (DRSs) as
the number of objectives is increased [71, 57, 34, 59]. Dominance resistant
solutions are those with a poor value in at least one of the objectives, but with
near optimal values in the others. In other words, those are nondominated
solutions, but far from the Pareto optimal front. Figure 10 shows an example
of DRSs in the well-known test problem DTLZ2. Although solutions marked
as DRSs seem to be dominated by some solution in the lower part of the
circled solutions, they achieve marginal improvements in objectives f1 or f2,
and therefore, they are nondominated solutions, but having poor values in
objective f3, though.
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4.2.2 Dimensionality of the Pareto front


Due to the ‘curse of dimensionality’, the number of points required to
represent accurately a Pareto front increases exponentially with the num-
ber of objectives. Formally, the number of points necessary to represent
a Pareto front with k objectives and resolution r is bounded by O(krk−1)


(e.g., see [103]). This expression is derived assuming that each solution is
contained inside a hypercube to preserve an even distribution. As can be
seen in Figure 11, the number of hypercubes determines the resolution of
the Pareto front, i.e., r is the number of hypercubes per dimension. An
example of the shortest connected and non-degenerated 2-objective Pareto
front (the straight line) is shown on the left side of Figure 11. The figure
also shows a bound for the largest Pareto front for 2 and 3 objectives. In
general, the bounding Pareto front is formed by k hyperplanes containing
rk−1 hypercubes each (see, for example, the 3-objective case shown on the
right side of Figure 11). This way, the maximum number of points of a
2-objective Pareto front with resolution r = 6 is 2 · 62−1 = 12, whereas for 3


objectives and r = 5 is 3 · 53−1 = 75. Table 1 shows the maximum number of
points required to represent a Pareto front for different number of objectives
using a resolution of r = 25, which is a conservative number considering
that a resolution of r = 50 is usually used in several studies to obtain 100


solutions in 2-objective problems. Notwithstanding, for 5 objectives, we
would require approximately 2 million points to represent a Pareto front
with resolution r = 25. There are other formulations leading to a similar
exponential expression with respect to k. For example, using the concept of
ε-dominance, Laumanns et al. [74] give a similar exponential bound for the
size of an approximation of a Pareto front.


Figure 11: Number of points required to represent a Pareto front with a resolution
r, i.e., the number of hypercubes per dimension.


This poses some difficulties to solve many-objective problems. The most
important one is the number of function evaluations required to deal with
a large number of solutions. This is a serious issue since some real-world
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problems (e.g., [18]), due to time constraint reasons, have a small budget of
function evaluations. In fact, there is an important research effort towards
designing MOEAs that generate good approximations of the Pareto front
using less than 1000 function evaluations (e.g., [41, 68, 54, 124]). Other
challenges are related to the design of both data structures to efficiently
manage that number of points, and density estimators to achieve an even
distribution of the solutions along the Pareto front. Unfortunately, even if
we could efficiently obtain an accurate approximation of the Pareto front,
the selection of one solution among such a huge number of solutions would
be a very difficult task for the decision maker (DM).


4.2.3 Visualization of the Pareto front


Clearly, with more than three objectives it is not possible to plot the Pareto
front as usual. This is a serious problem since visualization plays a key
role for a proper decision making process. Parallel coordinates [119] and
self-organizing maps [90] are some of the methods proposed to ease decision
making in high dimensional problems. However, more research in this field
is still required.


4.3 CURRENT APPROACHES TO DEAL WITH MANY-OBJECTIVE PROBLEMS


Besides studies about the scalability of Pareto-based MOEAs, in the current
literature we can find several proposals to overcome those scalability issues.
The most common approaches can be categorized as follows:


1. Adopt or propose a preference relation that yields a finer solution
ordering than the one yielded by Pareto optimality. In other words,
these relations are able to further rank nondominated solutions. In
addition, most of these preference relations share the property that
their optimal set of solutions is a subset of the Pareto optimal set.


k Points


2 50


4 62 500


5 1 953 125


7 1 708 984 375


Table 1: Bound for the number of points required to represent a Pareto front with
resolution r = 25.
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Therefore, these techniques can also be used as a remedy to cope with
the dimensionality of Pareto fronts in many-objective problems.


2. Reduce the number of objectives of the problem during the search
process or, a posteriori, once an approximation of the Pareto front
has been found [31, 12, 78]. The main goal of this kind of reduction
techniques is to identify the nonconflicting objectives (at least to a
certain extent) in order to discard them.


3. Incorporation of preference information interactively during the search.
By incorporating preferences we can cope with many-objective prob-
lems in two aspects. First, the search can be focused on the decision
maker’s region of interest, avoiding this way, the evaluation of a huge
number of solutions. Second, the preference relations usually used
in interactive methods help to deal with a large number of objectives
since they are able to rank incomparable nondominated solutions.


In the remainder of this section some of the most relevant approaches to
deal with many-objective problems are presented.


4.3.1 Preference Relations to Deal with Many-Objective Problems


Bentley and Wakefield [7] proposed the Average Ranking (AR) and the
Maximum Ranking (MR) preference relations. The AR relation computes, for
each solution, a different rank considering each objective independently. The Average and


Maximum ranking.final rank is obtained by summing up the ranks on each objective. In turn,
the MR relation takes the best rank as the global rank. Clearly, this method
favors extreme solutions, i.e., solutions with high performance in some of
the objectives, although with poor overall performance. Although it is less
evident, the average ranking relation also favors extreme solutions.


In the favour relation, proposed by Drechsler et al. [37], a vector z1 is
preferred to vector z2 with respect to the favour relation (z1 ≺favour z2), if
and only if: Favour preference


relation.
]{i : z1i < z


2
i , 1 6 i 6 k} > ]{j : z1j > z


2
j , 1 6 j 6 k}.


In other words, the favoured vector is that which outperforms the other
one in more objectives. Unfortunately, this relation emphasizes extreme
solutions.


The Preference Order Relation (POR), developed by di Pierro [36], is based
on the concept of efficiency of order proposed by Das [27], which states that:
A vector z∗ is efficient of order q if it is not dominated by any other vector
in all the


(
k
q


)
objective subsets of size q. Preference order


relation.
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Based on that definition, it is said that vector z1 is preferred to vector z2


(z1 ≺POR z2), if and only if, for some integer q and ∀I ⊆ {1, 2, . . . ,k} such
that |I| = q:


z1i 6 z2i ∀i ∈ I, and ∃i ∈ I : z1i < z
2
i .


In other words, if z1 and z2 do not dominate each other, then the solutions
are compared in a lower-dimensional space in order to break the tie.


Sato, Aguirre and Tanaka [98] proposed a preference relation to control the
dominance area of solutions. This method controls the degree of expansion
or contraction of the dominance area by modifying each objective vector z
with the expression:Expansion


preference relation.


z ′i =
r · sin(ωi + si · π)


sin(si · π)
∀ i = 1, 2, . . . ,k,


where s ∈ Rk is a user-defined vector, r = ||z||, and ωi is the declination
angle between z and the axis of fi.


If the user adopts values si < 0.5 (∀ i = 1, 2, . . . ,k), the dominance area
is expanded and produces a more fine-grained ranking of solutions which
would strengthen the selection process. Thus, we can say that vector z is
preferred to vector y with respect to the expansion relation (z ≺expansion y), if
and only if z ′ ≺pareto y ′.


Farina and Amato [43] proposed an alternative relation which takes
into account the number of improved objectives between two solutions.
This relation employs three quantities, nb(x1, x2),ne(x1, x2) and nw(x1, x2),
which denote the objectives where x1 is better, equal or worse than x2,
respectively. Using these quantities the concepts of (1− k)-Dominance andk-optimaltiy relation.


k-Optimality are defined. A solution x1 (1− k)-dominates x2 if and only if{
ne(x1, x2) < M


nb(x1, x2) > M−ne
k+1


In a similar way to Pareto optimality, a solution x∗ is k-optimum if and
only if there is no x in the decision variable space such that x k-dominates
x∗.


4.3.2 Objective Reduction Approaches


Deb and Saxena [31] proposed a method for reducing the number of ob-
jectives based on principal component analysis. The main assumption is
that if two objectives are negatively correlated (taking the generated Pareto
front as the data set), then these objectives are in conflict with each other.
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To determine the most conflicting objectives (i.e., the most essential), the
authors analyze in turn the eigenvectors (i.e., the principal components)
of the correlation matrix. That is, by picking the most-negative and the
most-positive elements from the first eigenvector, we can identify the two
most important conflicting objectives. To aggregate more objectives to the
set of essential objectives the remainder of the eigenvectors are analyzed in
a similar way until the cumulative contribution of the eigenvalues exceeds
a threshold cut (TC). This method is incorporated into an iterative scheme
which uses a multiobjective optimizer (the actual implementation uses Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [32]) to obtain a reduced
objective set containing only the non-redundant objectives according to the
analysis of the eigenvectors. In this scheme, the evolutionary multiobjective
optimizer is first run and then, the correlation analysis is carried out to
obtain a reduced set of objectives. This process is repeated using the new
reduced set of objectives. The process stops when the current subset is equal
to the subset generated in the previous iteration.


Brockhoff and Zitzler [12] defined two kinds of objective reduction prob-
lems and two corresponding algorithms to solve them. The problems pro-
posed are the following:


1. The δ-MOSS problem. Given a multiobjective optimization problem,
the δ-minimum objective subset problem is defined as follows.


• Input: A Pareto front approximation of the MOP and a δ ∈ R.


• Task: Compute the minimum objective subset F ′ ⊆ F such that F ′


is δ-nonconflicting with F.


2. The k-EMOSS problem. Given a multiobjective optimization problem,
the problem of finding the minimum objective subset of size k with
minimum error is defined as follows.


• Input: A Pareto front approximation of the MOP and a k ∈ R.


• Task: Compute an objective subset F ′ ⊆ F with size |F ′| 6 k, such
that F ′ is δ-nonconflicting with F with the minimum possible δ.


Since both problems are NP-hard, the authors proposed both an exact
and a greedy algorithm for each of them. The exact algorithms for both
problems have time complexity O(m2k· 2s), where m is the size of the
given nondominated set and k is the number of objectives. On the other
hand, the greedy algorithm for the δ-MOSS problem has time complexity
O(min{m2k3,m4k2}), while the greedy algorithm for the k-EMOSS problem
has time complexity O(m2k3).
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4.3.3 Preference Incorporation Approaches


Among the earliest attempts to incorporate preferences in a MOEA, we
can find Fonseca and Fleming’s proposal [48, 50]. This proposal consisted
of extending the ranking mechanism of Multiobjective Genetic Algorithm
(MOGA) [49] using a new relation called preferability relation. This relation
accommodates goal information (equivalent to a reference point in other
methods) and priorities in a single preference relation. The DM should
define goal values and group objectives according to its priority. Using the
preferability relation two solutions are first compared in terms of the group
of objectives with the highest priority. If the objectives of both solutions
meet all their goal values or, contrarily, violate some or all of their goal
values in a similar way, the next priority objective group is considered. This
process continues until reaching the lowest priority group, where solutions
are compared using the Pareto dominance relation. By setting particular
goals and priorities the authors derived the following special cases: the usual
Pareto relation, lexicographic relation, constrained optimization, and goal
programming. One disadvantage of this relation is that is affected by the
feasibility of the goal provided by the decision maker. If the given goal is far
away from the feasible region, then the solutions will be mainly compared
in terms of the objective priorities, reducing the relation to the lexicographic
relation. In addition, if two solutions either do or do not meet their goals, the
relation does not take into account the degree of under- or over-attainment.


Deb [29] proposed a technique to transform goal programming problems
into multiobjective optimization problems which are then solved using a
MOEA. In goal programming the DM has to assign goals that wishes to achieve
for each objective, and these values are incorporated into the problem as
additional constraints. The objective function then attempts to minimize
the absolute deviations from the goals to the objectives. Unfortunately, as
the previous method, this approach is sensitive to the feasibility of the goal
values. If the goal is contained in the feasible space, it could prevent the
generation of a better solution. On the other hand, if the goal is located
far away from the feasible space, the effect of the method is practically
nonexistent.


Branke et al. [8] proposed an approach called Guided MOEA which models
DM’s preferences using the trade-off between pairs of objectives. That is, for
each pair of objectives, the DM has to indicate how many units of objective
fi he/she is willing to trade-off in exchange of one unit of objective fj,
and vice versa. The authors determine a new preference relation that uses
these pairs of trade-offs. By setting appropriate trade-offs it is possible to
focus the search to any subregion of the Pareto front. The main drawback
of this approach is the difficulty to determine the trade-offs as the number
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of objectives increases, since the DM has to provide k(k − 1) trade-offs.
Furthermore, this method is only applicable in problems with a convex
Pareto front.


Cvetković and Parmee [25, 24] proposed the use of binary preference
relations that can be expressed qualitatively (i.e., using words such as “less
important” or “don’t care”). These preferences are translated to quantitative
terms (i.e., weights) to guide the search towards certain region of interest
of the Pareto front. The weights generated can be used with a simple
aggregating approach (i.e., a sum of weights) or with Pareto ranking. In the
second case, the weights are used to modify the definition of nondominance
used by the ranking scheme of the MOEA. There may be some practical
issues to take into account if this approach is used interactively, since the
DM is asked a considerably high number of questions to make it possible to
translate qualitative preferences into quantitative values. This could become
too expensive (computationally speaking) if done repeatedly along the
evolutionary process.


More recently, Deb and Sundar [31] incorporated a reference point ap-
proach into the NSGA-II [33]. They introduced a modification in the crowding
distance operator in order to select from the last nondominated front the so-
lutions that would take part of the new population. They used the Euclidean
distance to sort and rank the population accordingly (the solution closest
to the reference point receives the best rank). This method was designed to
take into account a set of reference points. The drawback of this scheme is
that it only guarantees weak Pareto optimality. That is to say, besides Pareto
optimal solutions, the method might generate some weakly Pareto optimal
solutions, particularly in MOPs with disconnected Pareto fronts. A similar
approach was also proposed by Deb and Kumar [30], in which the light
beam search procedure [65] was incorporated into the NSGA-II. Similar to
the previous approach, they modified the crowding operator to incorporate
DM’s preferences. They used a weighted achievement function to assign a
crowding distance to each solution in each front. Thus, the solution with
the least distance will have the best crowding rank. Like in the previous
approach, this algorithm finds a subset of solutions around the optimum of
the achievement function adopting the usual outranking relation. A vector
z1 outranks vector z2 if z1 is considered to be at least as good as z2. In [65]
three kinds of thresholds are defined to determine if one solution outranks
another one, namely, indifference, preference, and veto threshold. However,
in [30] the veto threshold is the only one used. This relation depends on
the crowding comparison operator. In contrast, the new preference relation
presented in this work does not depend on external methods, and, therefore,
it can be used in every Pareto-based MOEA.
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Recently, Thiele et al. [114] proposed a variant of the Indicator-Based
Evolutionary Algorithm (IBEA) [127], in which preference information is
incorporated by means of an achievement scalarization function. The basic
idea is to divide the original indicator value (which is to be maximized) by
the achievement value (which is to be minimized). Thus, solutions with a
smaller achievement value will be preferred since the modified indicator
value is larger. The approach of [114] is similar to the one proposed in
Chapter 8. However, their approach was designed for IBEAs [127]. In contrast,
our approach can be used both in IBEAs and Pareto-based MOEAs. Later, the
new IBEA of Thiele et al. was used in [45] in order to approximate the entire
Pareto front by defining several reference points.
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In some problems, it is possible that although a conflict exists between
some objectives, others behave in a non-conflicting manner. In this case,


we can discard these objectives to obtain a lower-dimensional problem. An
objective reduction technique can be helpful both in the decision making
process and during the search. That is, the decision maker would have to
analyze fewer objectives and a lower number of nondominated solutions.
On the other hand, Pareto-based optimizers can be improved if the number
of objectives is reduced during the search.


In this section we present an algorithm to reduce the number of objec-
tives of a given problem by removing the non-conflicting objectives (also
called, non-essential or redundant objectives). The algorithm is based on
an unsupervised feature selection technique proposed by Mitra et al. [88]
where the goal is to identify the subset of essential objectives of a problem.
We developed two variants of the algorithm, namely: i) an algorithm that
finds the minimum subset of objectives with the minimum error possible,
and ii) an algorithm that finds a subset of objectives of a given size and that
yields the minimum error possible.


5.1 PROPOSED OBJECTIVE REDUCTION ALGORITHMS


We propose an unsupervised feature selection technique to identify the
most conflicting objectives in order to reduce the number of objectives of
an optimization problem. The technique employed was originally proposed
by Mitra et al. [88] to preprocess data prior to classification by selecting a
subset of the original features.


As in Deb and Saxena’s approach [31] (see section 4.3.2), this technique
also uses a correlation matrix to measure the conflict between each pair
of objectives. This matrix is computed using an approximation set of the


39
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Pareto front generated by some optimizer, for instance, a multiobjective
evolutionary algorithm.


The original algorithm as proposed by Mitra et al., used 1 − |ρ(x,y)|
(where ρ(x,y) is the correlation coefficient between random variables x and
y) as the similarity measure between features, which only determines the
degree of correlation (positive or negative) between features (objectives in
our context) x and y. However, in the case of objective selection we are
interested in measuring only the negative correlation between objectives in
an approximation of the Pareto Front. For this purpose, we used 1−ρ(x,y) ∈
[0, 2] instead. Thus, a result of zero indicates that objectives x and y are
completely positively correlated and a value of 2 indicates that x and y are
completely negatively correlated.


A negative correlation between a pair of objectives means that one ob-
jective increases while the other decreases and vice versa. On the other
hand, if the correlation is positive, then both objectives increase or decrease
at the same time. This way, we could interpret that the more negative the
correlation between two objectives, the more the conflict between them.


We propose the following algorithms to identify the essential objectives in
a multiobjective problem:


1. An algorithm that finds a minimum subset of non-redundant objectives
with the minimum error possible. We denote this algorithm as MOSSA.


2. An algorithm that finds a k-size subset of non-redundant objectives,
yielding the minimum error possible. We refer to this algorithm as
KOSSA.


The central part of the two algorithms can be divided in three steps:


1. Divide the objective set into homogeneous neighborhoods of size q
around each objective. The conflict between objectives takes the role of
the distance. That is, the more the conflict between two objectives, the
more distant they are in the “conflict” space. Figure 12(a) shows only
two neighborhoods of a hypothetical situation with eight objectives
and q = 2.


2. Select the most compact neighborhood. That is, the neighborhood
with the minimum distance to its q-th neighbor (i.e., the farthest one
in the neighborhood). Figure 12(b) shows the farthest neighbor for
each of the two neighborhoods. As it can be seen in the example, the
neighborhood on the left is the most compact one.


3. Retain the center of that neighborhood and discard its q neighbors
(the objectives with least conflict in the current set). In this process, the
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distance to the q-th neighbor can be thought of as the error caused by
removing the q objectives (see Figure 12(c)).
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error committed


(a) Divide the objective
set into neighborhoods
around each objective.


(b) Select the most com-
pact neighborhood.


(c) Retain the center and
remove the neighbors.


Figure 12: Basic strategy of the objective reduction method employed.


The process described above is repeated until some stopping criterion is
met. It is important to mention that the size of the neighborhoods q is a
parameter that is reduced during the search.


Algorithm MOSSA is described in Figure 13, where ri,q is an entry of the
correlation matrix denoting the conflict between objective fi and its q-th
nearest-neighbor. Since the correlation matrix is computed at the beginning
of algorithm MOSSA, we do not have to compute the ri,q value each time
we need it, but just take it from the corresponding entry of the correlation
matrix. It is worth noting that in Step 6 the size, q, of the neighborhood is
reduced iteratively in order to find a new error smaller than the previous
one.


Finally, we have to make some changes to the correlation matrix in order
to use it to select the most conflicting objectives properly. If we use this
matrix, it is possible that some important conflicting objectives are discarded.
For instance, if objective f2 is in conflict with f3 but not with f1, then f2
will be very close to f1 and, thus f2 can be removed even if it is one of the
most conflicting objectives. To overcome this problem we carried out the
following process to the correlation matrix:


• Find the maximum conflict value cmaxi of each row i in the matrix (i.e.,
the maximum negative correlation value for each objective).


• Add the value cmaxi to the column i. This means that we are assuming
that if objective fi is in conflict with some objectives, then it is in
conflict with all the objectives.
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Algorithm KOSSA mainly differs from algorithm MOSSA in the stopping
criterion and in the input parameters. Figure 14 shows the modifications
required to obtain algorithm KOSSA.


The main advantage of both algorithms is their low-computational com-
plexity since unlike other algorithms (e.g., Brockhoff and Zitzler’s algorithm
presented in Sec. 4.3.2), the search for the best subset is not involved. Re-
garding the number of objectives, the proposed algorithms have complexity
O(k2), where k is the number of objectives of the given nondominated set.
The computation of the correlation for each pair of objectives has complexity
O(m), where m is the size of the nondominated set. Thus, the total com-
plexity of both algorithms is O(mk2). For comparison purposes, Table 2


summarizes the complexities of our two objective reduction approaches, and
those of the algorithms proposed by Brockhoff and Zitzler [12], and Deb
and Saxena [31] (see Sec. 4.3.2). The time complexity of Deb and Saxena’s
algorithm corresponds to only one iteration, since the number of iterations
depends on the threshold cut parameter. Usually, when this parameter is


Input: Set of nondominated solutions, A


Initial objective set F = {fi, i = 1, ...,k}.


Number of neighbors q 6 |F| − 1.


Step 0: Compute the correlation matrix using A


Step 1: F ′ ← F.


Step 2: Find objective fmin
i which corresponds to


rmin
i,q ← minfi∈F ′ {ri,q}.


Step 3: Retain fmin
i and discard its q neighbors.


Let error← rmin
i,q .


Step 4: If q > |F ′| − 1 then q← |F ′| − 1.


Step 5: If q = 1 then go to Step 8 to stop.


Compute again rmin
i,q ← minfi∈F ′ {ri,q}


Step 6: While rmin
i,q > error do:


q← q− 1.


rmin
i,q ← minfi∈F ′ {ri,q}.


If q = 1 then go to Step 8.


Step 7: Go to Step 2.


Step 8: Return set F ′ as the reduced objective set.


Figure 13: Pseudocode of the proposed objective reduction algorithm MOSSA.
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near to one, more iterations are required to converge. Also, we are consider-
ing that the NSGA-II is used as the optimizer of the overall algorithm. The
second term of the complexity corresponds to the NSGA-II as was published
in [32], where g is the number of generations.


For practical purposes, Figure 15 shows the running times of Deb and
Saxena’s algorithm (DS algorithm), Brockhoff and Zitzler’s algorithm for k-
EMOSS (BZ algorithm), and KOSSA. The three algorithms were implemented
in MATLAB1. In a first experiment we set the size of the input nondominated
set to 240 solutions and, for the DS algorithm, we used 50 generations for
each run of NSGA-II. As we can see in the upper-left plot of Figure 15, the
running time of the DS algorithm is many times larger than those of the other
two algorithms. For this reason, in a second experiment we only analyze in


1 Only in the running time comparison we used the MATLAB implementation of NSGA-II avail-
able at http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10429.
For the remainder experiments we used the C code available at
http://www.iitk.ac.in/kangal/codes.shtml.


Input: Nondominated set A.


Initial objective set F = {fi, i = 1, ...,k}.


Number of neighbors q 6 |F| − k.


Size of the desired objective subset, k.


Step 0: Compute the correlation matrix using A.


Step 1: F ′ ← F.


Step 2: Find objective fmin
i which corresponds to


rmin
i,q ← minfi∈F ′ {ri,q}.


Step 3: Retain fmin
i and discard its q neighbors from F ′.


Let error← rmin
i,q .


Step 4: If q > |F ′| − k then q← |F ′| − k.


Step 5: If |F ′| = k then go to Step 8 to stop.


Compute again rmin
i,q ← minfi∈F ′ {ri,q}.


Step 6: While rmin
i,q > error and q > 1 do:


q← q− 1.


rmin
i,q ← minfi∈F ′ {ri,q}.


Step 7: Go to Step 2.


Step 8: Return set F ′ as the reduced objective set.


Figure 14: Pseudocode of the objective reduction algorithm KOSSA.
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Algorithm Complexity


Brockhoff & Zitzler (δ-MOSS) O(min{m2k3,m4k2})


Brockhoff & Zitzler (k-EMOSS) O(m2k3)


Deb & Saxena† O(mk2 + k3) +O(gm2k)


MOSSA & KOSSA O(mk2)


†Complexity of each iteration of the algorithm.


Table 2: Complexity of the objective reduction algorithms considered in this study
(m is the size of the nondominated set, k the number of objectives and g
the number of generations for each run of NSGA-II).


detail the BZ algorithm and KOSSA, setting m = 300 (upper-right and bottom
plots, respectively). Each of these plots shows the running time for the worst,
“median” and best cases, depending on the size of the final objective subset
size (k). Note that the worst and best cases for these algorithms occur with
opposite values of k. Leaving trivial cases aside, for KOSSA, the worst case
is presented when k = 2, while for the BZ algorithm the worst case occurs
when k = k− 1. For both algorithms, the median case occurs when k = k/2


for even values of k.
We want to end this section with two important remarks. First, it should


be noted that although KOSSA is intended to solve the k-EMOSS problem,
MOSSA, as shown, does not solve the δ-MOSS problem, but a slightly different
problem. Besides the difference between the semantic of the error involved,
the δ-MOSS problem asks for the minimum subset with a given δ error,
while MOSSA finds the minimum subset with the minimum error that the
algorithm can achieve. Second, we have to note that the two algorithms
proposed follow a top-down approach instead of a bottom-up approach like
in the BZ algorithm2 or in the DS algorithm. In other words, our algorithms
start with the whole set of objectives and iteratively remove some objectives
until the minimum non-redundant objective set is obtained. In contrast, the
other algorithms start with an empty set to which some objectives are added
at each iteration.


2 There exists a top-down version of the BZ algorithm. However, in this study we adopted the
bottom-up version.
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Figure 15: Running times of the three objective reduction algorithms. The upper-left
plot shows the running times of the three algorithms using k = k/2,
and m = 240, and, for the DS algorithm, 50 generations for NSGA-II. The
other plots show the running times for the worst (k = k− 1, 2), median
(k = k/2) and best (k = 2,k− 1) cases for the BZ algorithm and KOSSA,
respectively.


5.2 COMPARATIVE STUDY


5.2.1 Evaluation of MOSSA


To evaluate the effectiveness of MOSSA, we compare its results against those
obtained by the approach proposed by Deb and Saxena (DS algorithm) and
the greedy algorithm proposed by Brockhoff and Zitzler to solve the δ-MOSS
(with δ = 0). In this experiment, we employed a variation of the well-known
DTLZ5 problem defined in [31]. This variation, denoted by DTLZ5(I,M), allows
to fix a priori the number of essential objectives, I, from the total number of
objectives, M.


We apply the three algorithms to four instances of the DTLZ5(I,M) problem,
namely: DTLZ5(2,3), DTLZ5(2,5), DTLZ5(2,10), DTLZ5(3,10). For the proposed
approach and for Brockhoff and Zitzler’s algorithm we use as input data
a nondominated set of 500 solutions generated by the NSGA-II. We use an
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Problem Reduced set of objectives


DTLZ5(2,3) f1, f3
DTLZ5(2,5) f1, f5
DTLZ5(2,10) f1, f10
DTLZ5(3,10) f1, f9, f10


Table 3: Essential objectives identified by the proposed MOSSA, Deb and Saxena’s
algorithm and Brockhoff and Zitzler’s algorithm.


implementation of Deb and Saxena’s algorithm following the instructions
in [31] and for each run of NSGA-II we use a population size of 500, and 300
generations (i.e., 150 000 evaluations).


In all problems, the three algorithms were able to identify the essential
objectives. Table 3 shows the essential objectives identified in each case.


5.2.2 Evaluation of KOSSA


The validation of KOSSA, intended to solve problem k-EMOSS (see Sec-
tion 4.3.2), was carried out comparing its results with respect to the greedy
algorithm proposed by Brockhoff and Zitzler (BZ algorithm) to solve the
same problem. We also used Deb and Saxena’s algorithm in this problem.
However, since it does not address the k-EMOSS problem directly, we tried
different values of the threshold cut (TC) to obtain different sizes of the final
reduced objective set. In this comparison we considered two problems. First,
we adopted two instances with 10 and 20 objectives of the 0/1 knapsack
problem with 100 items. Second, we used two instances with 10 and 20


objectives of a variation, proposed in [13], of the well-known problem DTLZ2,
which is denoted here by DTLZ2BZ.


For the proposed approach and the BZ algorithm we used as input a
nondominated set with 500 solutions generated by the NSGA-II, while for
Deb and Saxena’s approach we employed a population of 500 individuals
and 400 generations (i.e., a total of 200 000 evaluations) for each run of the
NSGA-II. We had to use this higher number of evaluations in order to obtain
a good approximation of the optimal Pareto front and therefore achieve a
good effectiveness of the algorithm.


In this evaluation, we adopted two different measures. First, we used the
δ-error defined by Brockhoff and Zitzler [12]. This error measures the degree
of change between the dominance relation induced by a subset of objectives
F ′ and the whole set of objectives, F, with respect to a given solution set.
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Thus, a value of 0 in this metric means that the subset F ′ contains only
essential objectives since the dominance relation does not change.


The δ-error is ideal to assess the effectiveness of an objective reduction
algorithm in a decision making problem. However to evaluate an algorithm
of this kind with respect to the overall search process, we think that a well-
known convergence quality indicator can be useful. Ultimately, when we
remove some objectives from a problem, we would want that the obtained
Pareto front by using the objective subset is as near as possible to the
Pareto front of the original problem (i.e., that obtained considering all the
objectives). Thus, we can evaluate the quality of two reduced subsets using
some quality indicators usually adopted to measure the convergence of a
generated Pareto front (PFapprox) to the optimal Pareto front (PFopt). The
detailed process to make such a comparison is the following. First, we have
to obtain PFapprox using the two objective subsets. Then, we evaluate the
two corresponding sets of Pareto optimal solutions using all the objectives
of the original problem to obtain a new PFapprox. The closeness of these
PFapprox sets to PFopt can be used as a measure of quality of the reduced
objective subsets. Besides the closeness to the optimal Pareto front we are
interested in how well it is covered by the PFapprox sets obtained by each
subset of objectives. These two objectives are taken into account by the
inverted generational distance, so this is a natural candidate to evaluate the
quality of two objective subsets.


The inverted generational distance (IGD), which is a variation of a quality


indicator proposed in [116], is defined by: IGD =
(√∑n


i=1 d
2
i


)
/n, where


n = |PFopt| and di is the Euclidian distance between each vector of PFopt and
the nearest member of PFapprox. In addition, this quality indicator measures
the spread of PFapprox onto PFopt. That is, a nondominated set whose vectors
are located on a reduced area of PFopt set, will be penalized in the value
of this metric even though its vectors belong (or are near) to PFopt. Lower
values are preferred for this quality indicator.


5.2.2.1 Evaluation Using the Change in the Dominance Relation


The results corresponding to the 0/1 knapsack problem with a total of 10


objectives and using the δ-error measure, are shown in Table 4. The first
column indicates the size of the obtained reduced objective set. Additionally,
the best results of each row are shown in boldface.


The results show that the proposed algorithm obtained its best results
when the number of objectives removed was small (from 1 to 5 objectives).
In this problem, the BZ algorithm achieved the best result in 5 of the 8


cases, our approach obtained the best result in 3 cases, and the DS algorithm
obtained the best result in only 1 case. Thus, with respect to the δ-error,
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δ-error


# obj BZ DS KOSSA


2 1458 1466 1595


3 1412 1513 1596


4 1331 1533 1466


5 1158 1362 1148


6 954 859 988


7 881 1148 822


8 822 1148 822


9 569 859 614


Table 4: Comparison with respect to the δ-error using the 0/1 knapsack problem
with 10 objectives.


we can consider that the BZ algorithm had the best performance on this
particular instance, while the DS algorithm had the worst performance.


In the instance with 20 objectives (see Table 5), KOSSA obtained the best
result in 12 of the 18 cases, while BZ algorithm achieved the best result in
7 cases. On the other hand, the DS algorithm obtained the worst result in
14 cases. We conclude that, in this instance, KOSSA had the best performance
and the DS algorithm the worst one.


Table 6 shows the results for the problem DTLZ2BZ using a total of 10


objectives. In this instance, the proposed algorithm achieved the best results
in 5 of the 8 cases, the BZ algorithm obtained the best results in 3 cases,
and the DS algorithm obtained the best result only once. From these results,
we can say that the proposed algorithm had the best performance on this
problem. However, it is not clear which algorithm had the worst performance.
On the one hand, the DS algorithm obtained the worst result in 2 cases and,
on the other, although the BZ algorithm achieved the best result in 3 cases, it
showed the worst result in 4 cases. Additionally, it is interesting to note that
for a subset of 9 objectives, unlike the two reference algorithms, KOSSA was
unable to find a subset with a δ-error equal to zero. That is to say, a subset
that does not change at all the dominance relation.


With respect to the instance DTLZ2BZ with a total of 20 objectives (see
Table 7), the BZ algorithm obtained the best performance achieving the
best result in 12 cases, while the proposed algorithm achieved the best
result in 10 of the 18 cases. One more time, the DS algorithm was the worst
algorithm since it obtained the worst results in 10 cases. In this problem we
can observe that 4 objectives are completely redundant, since the dominance
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δ-error


# obj BZ DS KOSSA


2 1467 1599 1589


3 1434 1580 1304


4 1388 1433 1304


5 1286 1406 1304


6 1243 1405 1304


7 1164 1233 1100


8 1158 1225 1003


9 1149 1164 993


10 1075 1075 918


11 1056 1055 804


12 993 1153 804


13 937 918 804


14 871 1036 804


15 793 843 785


16 785 805 785


17 699 793 785


18 359 586 785


19 41 104 785


Table 5: Comparison with respect to the δ-error using the 0/1 knapsack problem
with 20 objectives.
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δ-error


# obj BZ DS KOSSA


2 0.6959 0.7353 0.7353


3 0.6688 0.7051 0.7051


4 0.6610 0.6239 0.5455


5 0.6051 0.5890 0.4908


6 0.5916 0.5799 0.4682


7 0.5707 0.5799 0.3787


8 0.5151 0.5130 0.3054


9 0.0000 0.0000 0.3054


Table 6: Comparison of the three algorithms with respect to the δ-error, using the
DTLZ2BZ problem with 10 objectives.


relation does not change absolutely from 16 to 20 objectives. Brockhoff and
Zitzler’s approach was the only algorithm that reflected this fact, while the
DS algorithm and KOSSA found a subset with zero δ-error up to sizes of 19


and 18, respectively.


5.2.2.2 Evaluation Using the Inverted Generational Distance


In order to use the IGD metric to evaluate the quality of the objective
subsets obtained by the reduction algorithms we need an optimizer to obtain
the corresponding PFapprox sets using each objective subset. The objective
subsets employed in this section are the same used in the previous section
to compute the δ-error. Likewise, in the present study the PFapprox sets
were obtained using the NSGA-II. For each objective subset the following
parameters were used: 500 individuals and 1000 generations. The large
number of generations was intended to produce Pareto fronts with a small
standard deviation of IGD for each subset. For the two knapsack problems
the standard deviation was at least 1 × 10−1, whereas for the DTLZ2BZ


problems it was at least 1× 10−5. Each IGD value shown in this section is
the average of 20 runs for each objective subset. Moreover, instead of using
the optimal Pareto front, we used the nondominated set resulting from the
union of the PFapprox sets generated using the objective subsets of the three
algorithms, as well as the PFapprox set used as input in the objective reduction
algorithms in the previous section.


Table 8 shows the results for the 0/1 knapsack problem with 10 objec-
tives with respect to the IGD metric. As we can see, in 4 of the 8 cases, the
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δ-error


# obj BZ DS KOSSA


2 0.5931 0.7442 0.7326


3 0.5925 0.7326 0.5761


4 0.5570 0.6275 0.5761


5 0.4818 0.5059 0.4818


6 0.4441 0.5171 0.3706


7 0.3257 0.4799 0.2877


8 0.3056 0.3257 0.2877


9 0.2877 0.4532 0.2877


10 0.2461 0.3036 0.2877


11 0.0569 0.3706 0.0279


12 0.0532 0.4125 0.0216


13 0.0068 0.4125 0.0216


14 0.0038 0.3056 0.0216


15 0.0001 0.1014 0.0216


16 0.0000 0.3056 0.0216


17 0.0000 0.0038 0.0068


18 0.0000 0.0038 0.0000


19 0.0000 0.0000 0.0000


Table 7: Comparison of the three algorithms with respect to the δ-error, using the
DTLZ2BZ problem with 20 objectives.
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IGD


# obj BZ DS KOSSA


2 5.7834 7.5759 5.7452


3 7.5212 8.9904 7.5425


4 5.8694 5.4537 5.8445


5 3.7525 5.2474 3.7406


6 3.4633 3.6170 3.4318


7 3.2607 3.6615 3.2473


8 3.1893 3.7855 3.2001


9 3.1521 3.3678 3.1541


Table 8: Comparison of the three algorithms with respect to the inverted genera-
tional distance (IGD), using the 0/1 knapsack problem with 10 objectives.


proposed algorithm achieved the best results, while the BZ and DS algo-
rithms obtained the best result in 3 and 1 cases, respectively. With respect
to the IGD metric the proposed approach had the best performance on this
problem. It is worthwhile to remember that regarding the δ-error, in this
instance the BZ algorithm obtained the best performance. This shows a
clear inconsistency between the results based on the performance measure
adopted. In particular, the DS algorithm obtained the worst result for the
subset of 4 objectives using the δ-error, while it achieved the best result with
respect to the IGD performance measure.


Regarding the 0/1 knapsack instance with 20 objectives (see Table 9), we
can clearly see that the proposed algorithm had the best performance, which
agrees with the conclusion obtained using the δ-error. However, the DS
algorithm had the second best performance in this instance, while it was the
worst algorithm with respect to the δ-error.


With respect to the DTLZ2BZ with 10 objectives, both KOSSA and the DS
algorithm obtained the best IGD values in 5 of the 9 cases (see Table 10).
Algorithm BZ obtained the best result in 3 cases, although it presented the
worst result in 5 cases.


Nonetheless, we can observe a discrepancy between some results obtained
by the two performance measures. On the one hand, using the δ-error, the
DS algorithm showed the worst performance, but on the other hand, it is
the best algorithm, along with KOSSA, regarding the IGD metric.


In the DTLZ2BZ instance using 20 objectives (see Table 11), the BZ algorithm
showed the best performance. It obtained the best results in 13 cases. The
proposed algorithm obtained the second best performance achieving the
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IGD


# obj BZ DS KOSSA


2 7.7657 8.0942 10.0344


3 6.7232 6.4659 6.9511


4 5.8777 5.1232 5.4373


5 4.8191 4.4417 4.1027


6 5.0627 4.8973 4.7977


7 5.1815 4.9218 4.4888


8 4.8017 5.0338 4.7557


9 4.8552 4.6459 4.6217


10 5.0189 5.0132 4.9704


11 4.7852 4.6779 4.6470


12 4.8673 4.8582 4.7358


13 4.9812 4.7996 4.8880


14 5.2370 5.0018 4.9121


15 5.1767 5.1215 4.9753


16 5.1166 5.0791 4.9389


17 5.0209 5.0534 5.0534


18 5.2423 5.1553 5.1639


19 5.1714 5.1661 5.2538


Table 9: Comparison of the three algorithms with respect to the inverted genera-
tional distance (IGD), using the 0/1 knapsack problem with 20 objectives.
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IGD


# obj BZ DS KOSSA


2 0.00226 0.00089 0.00089


3 0.00243 0.00071 0.00080


4 0.00082 0.00089 0.00082


5 0.00115 0.00092 0.00090


6 0.00115 0.00099 0.00102


7 0.00093 0.00102 0.00114


8 0.00093 0.00082 0.00082


9 0.00077 0.00077 0.00077


Table 10: Comparison of the three algorithms with respect to the inverted gen-
erational distance (IGD), using the DTLZ2BZ problem with a total of 10


objectives.


best results in 5 cases. Finally, the DS algorithm obtained the worst results in
13 cases. Therefore, it was the worst algorithm in this instance considering
the IGD metric.


5.2.3 Final Remarks


Since KOSSA follows a top-down approach one would expect that it would
achieve its best results when the size of the objective subset is close to the
total number of objectives, specially when k = k− 1. However for this case,
in 3 of the problems considered (both knapsack instances and DTLZ2BZ with
10 objectives), KOSSA was unable to obtain the least δ-error.


Although in general, IGD tends to decrease as the size of the objective
subset increases, in some particular cases the IGD values increase when an
objective is added. One possible reason for this behavior is that the number
of objectives affects the optimizer degrading its performance as the number
of objectives is increased. The results showed that the proposed algorithms
are very competitive with respect to two other similar algorithms recently
proposed [31, 12]. One advantage of the proposed algorithms over the two
reference algorithms is their low computational time. MOSSA was able to
identify all the essential objectives of the problems considered. With regard
to the δ-error, KOSSA achieved the best performance in 2 of the 4 problem
instances included (0/1 knapsack with 20 objectives and DTLZ2BZ with 10


objectives), whereas with respect to the IGD metric, it showed the best
performance in 2 of the 4 instances (0/1 knapsack with 10 and 20 objectives)
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IGD


# obj BZ DS KOSSA


2 0.00235 0.00115 0.00115


3 0.00144 0.00253 0.00078


4 0.00104 0.00233 0.00094


5 0.00094 0.00110 0.00103


6 0.00115 0.00124 0.00148


7 0.00126 0.00115 0.00128


8 0.00115 0.00104 0.00110


9 0.00103 0.00123 0.00120


10 0.00100 0.00104 0.00102


11 0.00097 0.00104 0.00099


12 0.00094 0.00108 0.00097


13 0.00094 0.00104 0.00095


14 0.00092 0.00107 0.00097


15 0.00091 0.00095 0.00092


16 0.00094 0.00101 0.00098


17 0.00095 0.00096 0.00095


18 0.00092 0.00093 0.00093


19 0.00092 0.00093 0.00092


Table 11: Comparison of the three algorithms with respect to the inverted gen-
erational distance (IGD), using the DTLZ2BZ problem with a total of 20


objectives.
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and, along with the DS algorithm, it obtained the best performance in the
DTLZ2BZ problem with 10 objectives. Although, in general, the performance
measures yielded consistent results, in some specific cases they yielded
contradictory results. A possible explanation for this behavior is that a good
performance of an objective reduction algorithm with respect to decision
making does not imply a good performance with respect to the search
process in general. However, further experimentation is required to either
validate or refute this statement.
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In the previous chapter, two objective reduction methods were presented.
Those methods can be directly used in the decision making process, i.e.,


once an approximation of the Pareto front has been obtained. In contrast, in
this chapter we present and analyze two different approaches for incorporat-
ing objective reduction methods into a Pareto-based MOEA in order to cope
with many-objective problems during the search, i.e., in an online fashion.


In the first approach the number of objectives is gradually reduced during
the search until the required objective subset size has been reached. In
each reduction phase, one of the objective reduction methods presented in
the previous section is applied on the current Pareto front approximation.
Towards the end of the search, the original objective set is used again
to approximate the entire Pareto front. The second approach consists in
partitioning the objective space into several subspaces so that a different
portion of the population focuses the search on a different subspace. The
partitioning of the set of objectives is based on the analysis of the conflict
information obtained from the current Pareto front approximation.


6.1 GRADUAL REDUCTION OF THE OBJECTIVES DURING THE SEARCH


By selecting a computationally efficient objective reduction method we can
expect that the resulting Multiobjective Evolutionary Algorithm (MOEA)
improves its efficiency, since a smaller number of objective functions are
evaluated. While this may be true, the omission of some objective implies
some loss of information that could be important to converge to the real
Pareto front. On the other hand, this omission can be useful to cope with the
deterioration of the search ability of Pareto-based MOEAs in many-objective
problems. With this in mind we propose two schemes to integrate an efficient


57







58 online objective reduction


reduction method into a MOEA in such a way that the resulting MOEA can be
useful even in problems with inexpensive objective functions. Additionally,
one of the goals of this chapter is to investigate if an objective reduction
method represents a benefit or a damage to the search ability of a MOEA.


Since López Jaimes et al.’s algorithms have a lower time complexity, they
are suitable to be integrated into a MOEA because of the chances that their
computational time savings overcome their overhead are larger than those
of the other methods described here. However, in this study we have only
chosen the algorithm that finds a subset of objectives of a given size.


When some objectives are discarded from the original problem some
information is being lost. The magnitude of this loss depends on the degree
of redundancy among the objectives.


In any case, we have to balance the benefit of discarding some objectives
along with the computational cost of the reduction algorithm. Two benefits
are clear from removing some objectives, namely: i) the avoidance of the
computation of some (possibly) computational expensive objective func-
tions, and ii) the execution time speedup of the MOEA, specially if its time
complexity largely depends on the number of objectives.


Next, we describe two schemes to incorporate the KOSSA method into a
MOEA. First, we propose a simple scheme where the objective set is succes-
sively reduced during most of the search. Only towards the end of the search
all the objectives are integrated. This scheme is divided in three stages:


1. In the first stage the MOEA is executed for a number of generations
using all the objectives. The MOEA obtains an initial approximation of
the Pareto front which will be the first input of the objective reduction
method, KOSSA.


2. The second stage is the main stage of the scheme where the objective
set is gradually reduced through several generations. In this stage,
every certain number of generations KOSSA is executed to reduce
the objective set and then the execution of the MOEA is resumed. This
process is repeated until the desired objective set size has been reached.


3. In the last stage all the objectives are taken up again to obtain the final
approximation of the Pareto front.


The detailed scheme with successive reductions is described in Algo-
rithm 2, where P denotes the best population obtained so far by the MOEA.


In the current implementation of this scheme we decided to schedule the
reduction phases equally distributed during the reduction stage. However,
other schedules are possible. For instance the number of generations for the
next reduction can be shortened each time, since the population converges
faster after each reduction. A similar decision can be made with regard to
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Algorithm 2 Pseudocode of the successive reduction scheme.


Input:
R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
Gpost: Generations after the reduction stage.


1: G← Gpre; F ′ ← F


2: k ′ ← d(|F| − k)/Re B Number of objectives discarded per reduction.
3: for r← 1 until R+ 2 do
4: for g← 1 until G do
5: MOEA(P, F ′)
6: if r 6= R+ 2 then


B Reduce the current objective set F ′.
7: if r 6 R then
8: F ′ ← KOSSA(P, F ′, |F ′| − k ′)
9: G← (Gmax −Gpre −Gpost)/R


10: else
B Integrate all the objectives at the end of the search.


11: F ′ ← F


12: G← Gpost
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the number of objectives discarded on each reduction. Currently, the same
number of objectives is removed at each reduction as it can be seen in the
third statement of Algorithm 2.


Although this scheme has the advantage of omitting the evaluation of
many objectives during most of the search, it is possible that the loss of
information diminishes the MOEA’s convergence ability. Therefore, we also
proposed a less aggressive scheme which integrates the entire objective set
periodically during the search to counterbalance the loss of information. As
in the scheme previously described, this mixed scheme starts the search
using the whole objective set for some generations. However, it alternates
the reduction process with the integration of the original objectives during
the remainder of the search. Algorithm 3 presents the details of the mixed
scheme.


6.2 ASSESSMENT OF THE OBJECTIVE REDUCTION SCHEMES COUPLED TO A
MOEA


In order to evaluate the performance of the schemes presented in the previ-
ous section we chose the Nondominated Sorting Genetic Algorithm II (NSGA-


II) as a testbed. As we mention in previous sections, the worth of using an
objective reduction method depends on its computational cost, the time
complexity of the MOEA (specially if it depends on the number of objectives),
the computational cost of the objective functions, and on the effect caused
by the removal of objectives.


In order to investigate the effect of these factors, we carried out two types
of experiments. The first group of experiments attempts to provide an overall
assessment of all those factors in order to determine if the reduction method
is advantageous. To do so, instead of using the number of evaluations as
a stopping criterion, we use the real computational time instead. By doing
so, we can decide if the overall benefits of the reduction method are greater
than its possible damages. In the second group of experiments we want
to investigate if a reduction method increases or decreases the number of
generations required to reach a certain quality of the approximation set
produced.


In both types of experiments we compare the NSGA-II equipped with the
reduction method (redga) against the original NSGA-II. The following prob-
lems were adopted in all the experiments: the 0/1 multi-objective knapsack
problem with 200 items, and a variation, proposed in [13], of the well-known
problem dtlz2 (denoted here by dtlz2BZ) with 30 variables. All the runs
were executed in a single-core computer with a 2.13 ghz cpu.
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Algorithm 3 Pseudocode of the mixed reduction scheme.


Input:
R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
pred: Percentage of generations using the reduced objective set.


pint ← 1− pred.
Gred ← pred × (Gmax −Gpre)/R


Gint ← pint × (Gmax −Gpre)/R


G← Gpre
F ′ ← F


k ′ ← d(|F| − k)/Re B Number of objectives discarded per reduction.


for r← 1 until 2R+ 1 do
for g← 1 until G do


MOEA(P, F ′)


if r 6= 2R+ 1 then
B Reduce the current objective set F ′.
if r mod 2 = 1 then
F ′ ← KOSSA(P, F ′, |F ′| − k ′)
G← Gred


else
B Integrate all the objectives for the next generations.
F ′ ← F


G← Gint
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In the first group of experiments the results were evaluated using the
additive ε-Indicator [130], which is defined as


Iε+(A,B) = inf
ε∈R


{∀z2 ∈ B ∃z1 ∈ A : z1 �ε+ z2}


for two nondominated sets A and B, where z1 �ε+ z2 iff ∀i : z1i 6 ε+ z2i ,
for a given ε. In other words, Iε+(A,B) is the minimum value such that
aggregated to any objective vector in B, then A � B. In general, Iε+(A,B) 6=
Iε+(B,A) so we have to compute both values. The smaller Iε+(A,B) and
the larger Iε+(B,A), the better A over B.


6.2.1 Overall Assessment of the Reduction Schemes


In these experiments we used four instances for each of the two test problems
employed with 4, 6, 8 and 10 objectives. For each number of objectives we
fixed the following time windows: 2, 4, 6 and 10 seconds. For all the 30


runs and problems we used a population of 300 individuals. For NSGA-II we
employed a crossover probability of 0.9 and a mutation probability of 1/N
(N is the number of variables). In the knapsack problem we used a binary
representation with a mutation probability of 1/n (n is the length of the
chromosome).


In order to study the successive reduction scheme we reduced in all cases
the objective set until a size of k = 3 and the percentage of generations
before and after the reduction stage was fixed to 20% and 5%, respectively.
Here, we studied two scenarios: one that reduces all the required objectives
in one reduction (redga-s-1), while the other one uses, among all possible
number of reductions, an intermediate number of reductions considering a
final set of size k = 3 (redga-s-m). That is, for 6, 8 and 10 objectives were
used 2, 3, and 4 reductions, respectively. In the mixed reduction scheme
we only used an intermediate number of reductions for every number of
objectives (redga-x-m), and the other parameters were k = 3, pred = 0.85
and 20% of the total generations were accomplished before the reduction
stage. The results of the ε-Indicator for these scenarios on problem dtlz2BZ


are presented in Table 12. Since for four objectives redga-s-m and redga-x-
m are equivalent to the redga-s-1 scheme, we only show the results of this
scheme against NSGA-II.


As we can clearly see in Table 12, all the reduction schemes perform
better than NSGA-II for every number of objectives. Besides, the advantage
of the reduction schemes over the NSGA-II increases with the number of
objectives. On the other hand, except for 8 objectives, the scheme redga-s-m
achieved better results than the redga-x-m which is the second best in this
comparison. This means that the strategy of integrating all the objectives







6.2 assessment of the objective reduction schemes coupled to a moea 63


DTLZ2BZ with 4 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - - - 0.04450 0.04450


REDGA-S-m - - - -


REDGA-X-m - - - -


NSGA-II 0.06469 - - - 0.06469


Average 0.06469 0.04450


DTLZ2BZ with 6 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.05961 0.05723 0.06019 0.05901


REDGA-S-m 0.05259 - 0.05085 0.05849 0.05398


REDGA-X-m 0.05850 0.05614 - 0.05421 0.05628


NSGA-II 0.07447 0.07711 0.07972 - 0.07710


Average 0.06185 0.06429 0.06260 0.05763


DTLZ2BZ with 8 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.08583 0.07711 0.07179 0.07824


REDGA-S-m 0.06905 - 0.08195 0.06341 0.07147


REDGA-X-m 0.07386 0.08171 - 0.06944 0.07500


NSGA-II 0.09882 0.10616 0.11782 - 0.10760


Average 0.08058 0.09123 0.09229 0.06821


DTLZ2BZ with 10 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.09108 0.09182 0.08316 0.08869


REDGA-S-m 0.06916 - 0.07072 0.07926 0.07305


REDGA-X-m 0.07998 0.08554 - 0.06840 0.07797


NSGA-II 0.11608 0.12159 0.11480 - 0.11749


Average 0.08841 0.09940 0.09245 0.07694


Table 12: Results of the reduction schemes with respect to the ε-Indicator in the
dtlz2BZ problem using a fixed-time stopping criterion.
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periodically did not improve the performance of the reduction scheme. As
somewhat expected, the redga-s-1 scheme did not obtain results as good as
the other reduction schemes. A possible explanation is that, in spite of the
fact that redga-s-1 carries out more evaluations than the other schemes in
the given time, this advantage is not enough to counteract the negative effect
caused by the loss of information. In this sense, the redga-s-m scenario
represents a better tradeoff between these factors.


As in the previous problem, NSGA-II was the worst algorithm in the 0/1


knapsack problem regarding the ε-Indicator (see Table 13). Nonetheless,
the redga-s-1 scheme presented a better performance than in dtlz2BZ, i.e.,
with 4 objectives it was the second best and with 10 it was the best scheme.
The reason is that knapsack’s objective functions are more computationally
expensive than those of the problem dtlz2BZ. This allowed that redga-s-1
could perform many more generations than any other scheme. This is a clear
example that the balance between the computational cost of the objective
functions and the overhead of the reduction scheme plays an important role
on the success of the reduction scheme. Furthermore, it acts as a guide to
decide what type of reduction scheme to choose. If the objective functions
are expensive then it may be convenient to use an aggressive scheme such
as redga-s-1; otherwise, the redga-s-m could be more appropriate.


6.2.2 Effect of the Reduction Schemes on a MOEA’s Search Ability


In order to investigate how a reduction scheme affects the MOEA’s con-
vergence ability we compare the reduction schemes using the number of
generations as the stopping criterion. In these experiments we used a popu-
lation of 300 individuals for all the numbers of objectives considered, and
all the algorithms were executed for 200 generations (60 000 evaluations).
In this experiment we adopt only dtlz2BZ since convergence can be easily
measured given that the nondominated vectors of its true Pareto front have
the property: D =


∑s
i=1 f


2
i = 1, where s is the number of objectives. The


distribution of the values of D for each algorithm are shown in Figure 16.
The horizontal axis represents the D values obtained by each algorithm and
the vertical axis denotes the frequency of a given D value. As well as in
other studies [89, 117], Figure 16 shows that the performance of NSGA-II


decays as the number of objectives increases. In addition, all the reduction
schemes perform better than NSGA-II in all cases. This means that the reduc-
tion schemes, besides reducing execution time also help Pareto-based MOEAs
to recover the search ability deteriorated by the inability of Pareto optimality
to discriminate solutions in many-objective problems. In concordance with
the fixed-time experiments, the redga-s-m achieves the best convergence
with respect to the average D value presented in Table 14. Like all the algo-
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Knapsack with 4 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - - - 205 205


REDGA-S-m - - - -


REDGA-X-m - - - -


NSGA-II 241 - - - 241


Average 241 205


Knapsack with 6 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 408 264 318 330.0


REDGA-S-m 371 - 269 352 330.7


REDGA-X-m 372 403 - 306 360.3


NSGA-II 448 414 378 - 413.3


Average 397.0 408.3 303.7 325.3


Knapsack with 8 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 646 478 505 543.0


REDGA-S-m 457 - 323 290 356.7


REDGA-X-m 441 465 - 345 417.0


NSGA-II 564 472 438 - 491.3


Average 487.3 527.7 413.0 380.0


Knapsack with 10 objectives


Iε+(A,B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 455 424 423 434.0


REDGA-S-m 503 - 411 376 430.0


REDGA-X-m 760 667 - 493 640.0


NSGA-II 533 455 522 - 503.3


Average 598.7 525.7 452.3 430.7


Table 13: Results of the reduction schemes with respect to the ε-indicator in the 0/1


Knapsack problem using a fixed-time stopping criterion.
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rithms, its convergence decreases with the number of objectives. However
redga-s-m is the scheme less affected by the number of objectives.
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Figure 16: D distribution on the problem dtlz2BZ for different number of objectives.
D = 1 corresponds to the true Pareto front.


6.2.3 Final Remarks


The first group of experiments based on a fixed-time stopping criterion
showed that the reduction of objectives during the search is beneficial in spite
of the loss of information since it also saves computational time. This means
that the overhead introduced by the objective reduction method was small
enough to speed up the execution of the MOEA even with the inexpensive
objective functions used in the study. Although in all the cases studied
in the first group of experiments the MOEA coupled with the reduction
scheme achieved better results than the MOEA alone, we have to carefully
select the parameters of the reduction scheme. There is an equilibrium point
in the number of objectives that need to be removed in order to achieve
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Obj REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II


4


Average 1.0305 - - 1.0488


Std. Dev. 0.0289 - - 0.0266


6


Average 1.0672 1.0358 1.0649 1.1445


Std. Dev. 0.0609 0.0334 0.0496 0.0799


8


Average 1.1276 1.0607 1.1040 1.2863


Std. Dev. 0.1113 0.0561 0.0805 0.1559


10


Average 1.1402 1.0501 1.0786 1.3787


Std. Dev. 0.1234 0.0487 0.0690 0.2218


Table 14: Results of the reduction schemes with respect to the value D in the
DTLZ2BZ problem using a fixed-generations stopping criterion.


the best tradeoff possible between the benefits and the damages obtained
by the reduction scheme. To illustrate this, it is sufficient to consider that,
although the redga-s scheme with only one reduction is the one that saves
more time per generation, it did not present as good performance as a
less aggressive configuration such as the redga-s-m. On the other hand,
the periodic incorporation of the entire objective set did not improve the
performance of the successive reduction scheme, which is simpler.


One important finding is that a reduction scheme, besides reducing the
execution time of a MOEA, also helps to remedy the limitation of Pareto
optimality for dealing with problems having a large number of objectives.
The results showed that all the reduction schemes studied outperformed
the original MOEA even when a stopping criterion based on a fixed number
of generations was used. This shreds light into the usefulness of objec-
tive reduction schemes since they bring advantages both in efficiency and
effectiveness.


6.3 THE CONFLICT-BASED PARTITIONING FRAMEWORK


A general scheme for partitioning the objective space in several subspaces
in order to deal with many-objective problems was introduced in [2]. In
that approach the solution ranking and parent selection are independently
performed in each subspace to emphasize the search within smaller regions
of objective function space. Here, we propose a new partition strategy that
creates objective subspaces based on the analysis of the conflict information
obtained from the Pareto front approximation found by the underlying
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MOEA. By grouping objectives in terms of the conflict among them, we
aim to separate the Multiobjective Optimization Problem (MOP) into several
subproblems in such a way that each subproblem contains the information
to preserve as much as possible the structure of the original problem. Our
approach is more closely related to the objective reduction approaches,
specially those adopted during the search. However, its main difference
with respect to them is the incorporation of all the objectives in order to
cover the entire Pareto front. Deb and Saxena [31] proposed a method for
reducing the number of objectives based on principal component analysis.
Although some modifications can be made to this method in order to use
it during the search, this method was designed as an a posteriori method.
Brockhoff and Zitzler [14], and López Jaimes et al. [79] used similar objective
reduction algorithms incorporated into a MOEA. However, in both cases, the
non-conflicting objectives were discarded or aggregated to form a single
objective.


6.3.1 General Idea of the Partitioning Framework


The basic idea of the partitioning framework is to divide the objective
space into several subspaces so that a different portion of the population
focuses the search on a different subspace. By partitioning the objective
space into subspaces, we aim to emphasize the search within smaller regions
of objective space. In other words, this framework divides the original
optimization problem into several small subproblems. Instead of dividing
the population into independent subpopulations, a fraction of the pool of
parents for the next generation is selected based on a different subspace.
This way, the pool of parents will be composed with individuals having
a good performance in each subspace. Then, the crossover and mutation
operators are applied as usual.


In the following, we first explain the general flow of the proposed method
using NSGA-II as our framework. Then, we will explain in detail its distinctive
features.


In our approach, we partition theM-dimensional spaceΦ = {f1, f2, . . . , fM}


into NS non-overlapping subspaces Ψ = {ψ1,ψ2, . . . ,ψNS}. Thus, the non-
dominated sorting and truncation procedures of NSGA-II are modified in the
following way. The union of the parent and offspring populations is sorted
NS times using a different subspace each time. Then, from each sorted
population, the best |P|/NS solutions are selected to form a new parent
population of size |P|. After this, the new population is generated by means
of recombination and mutation using binary tournaments. Figure 17 shows
a schematic view of the previously described procedure.
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Figure 17: Non-dominated sorting and trucation based on different subspaces of a
partition Ψ = {ψ1,ψ2, . . . ,ψNS }.


The number of all possible ways to partition Φ into NS subspaces is very
large. Therefore, it is not feasible to search in all possible subspaces. Instead,
a schedule of subspace sampling can be defined by using a partition strategy.
In [2] we investigated three strategies to partition Φ: random, fixed, and
shift partition strategy. The random strategy assigns at random the objectives
to subspaces ψs ∈ Ψ. The fixed strategy deterministically assigns objectives
fi ∈ Φ to subspaces ψs ∈ Ψ and keeps the same assignment throughout the
generations. The shift strategy, at the first generation, assigns objectives in
such a way that objectives assigned to a given ψs are ordered by their index
i. Then, in subsequent generations, the objective with highest index in the
s-th subspace is shifted to the ((s+ 1) mod NS)-th subspace, ∀ψs ∈ Ψ.


6.3.2 A New Partition Strategy


In this chapter, we investigate a new partition strategy using the conflict
information among objectives. Namely, the first partition would contain
the least conflicting objectives, the second one the next least conflicting
objectives, and so forth. In previous studies [78, 79], the conflict information
among objectives has been used to remove objectives after, and during the
search. However, instead of removing the least conflicting objectives, we
propose to integrate those objectives to form subspaces in such a way that
all the objectives are optimized.
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In the current literature it is possible to find several definitions of conflict
among objectives (see e.g., [53, 1, 94, 12]). However, we used the definition
proposed by Carlsson and Fullér [15, 16] since it is intuitive and, as we will
explain later, it can be estimated using a low time complexity algorithm. Let
be SX a subset of X, then, according to Carlsson and Fullér, two objectives
can be related in the following ways (assuming minimization):


1. fi is in conflict with fj on SX if fi(x1) 6 fi(x2) implies fj(x1) > fj(x2)
for all x1, x2 ∈ SX.


2. fi supports fj on SX if fi(x1) > fi(x2) implies fj(x1) > fj(x2) for all
x1, x2 ∈ SX.


3. fi and fj are independent on SX, otherwise.


As stated in [12], the most conflicting objectives contain most of the
information of the dominance structure of the problem. That is, if the non-
conflicting objectives are removed from the problem, the Pareto front does
not change. Therefore, by grouping objectives in terms of the conflict among
them, we are trying to separate the MOP in subproblems in such a way
that each subspace contains information to preserve most of the structure
of the original problem. Nonetheless, there are few MOPs in which some
objectives are totally independent from the others. Therefore, for a general
case, we have to define degrees of conflict among the objectives.


Here, we suggest to use the correlation among the solution in PFapprox


to estimate the conflict among objectives in the sense defined by Carlsson
and Fullér. In this approach, each solution in PFapprox is an observation. A
negative correlation between a pair of objectives means that one objective
increases while the other decreases and vice versa. Thus, a negative cor-
relation estimates the conflict between a pair of objectives. On the other
hand, if the correlation is positive, then both objectives increase or decrease
at the same time. That is, the objectives support each other. Furthermore,
since the correlation coefficient values are in the range [−1, 1], it is possible
to define a measure of the degree of conflict between objectives. Thus, in
our approach we interpret that the more negative the correlation between
two objectives, the more the conflict between them. In [78] it was shown
that using the correlation between objectives to identify the most conflicting
objectives produces similar results than those obtained using a method
described in [12] that explicitly measures the difference between the original
and the reduced problem.


Next, we will introduce a new version of the basic partitioning framework.
In order to implement the new partition strategy we should take into account
that the conflict relation among the objectives changes during the search.
This means that the conflict relation among the solutions in PFopt might
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differ from that observed in the current PFapprox found during the search.
Thus, to deal with this situation we suggest a new partitioning framework
in which the search is divided into several cycles. In turn, each of these
cycles is divided into two phases, namely, an approximation phase followed
by a partitioning phase. In the approximation phase all the objectives are
used as usual to select the new parents population. The goal of this phase
is to find a good approximation of the current PFopt. At the beginning of
the partitioning phase, the current PFopt is used to compute the correlation
matrix and creates a new partition of the objective space. In each cycle, the
approximation phase is carried out during GΦ generations, whereas the
partitioning phase is carried out during GΨ generations using the partition
created at the beginning of the cycle. This idea is graphically explained in
Figure 18.


Figure 18: Alternation between the partition and the entire objective space.


The pseudocode of the entire proposed algorithm is described in Al-
gorithm 4. In the current implementation all subspaces have the same
dimension M/NS in case r = (M mod NS) is zero. Otherwise, r of the NS
subspaces has dimension M/NS + 1 and the rest M/NS.


6.3.3 Partitioning Using Conflict Information


The correlation matrix is computed using the correlation coefficient (eq. 18)
for each pair of objectives on the current parents population.


Definition 18 (Sample Correlation coefficient). The sample correlation coef-
ficient, rXY , is defined by rXY =


∑m
i=1(Xi − X̄)(Yi − Ȳ)/(m − 1)sXsY , where


sX > 0 and sY > 0 denote the sample standard deviations for the data sets X and
Y, respectively, and m is the number of elements of each data set.


Since we are interested in measuring the negative correlation between
objectives, the correlation matrix was modified so that each entry, rfi,fj ,
contains the value 1− rfi,fj . Thus each value of this new “conflict matrix”
is in the range [0, 2]. A result of zero indicates that objectives fi and fj
completely support each other, and a value of 2 indicates that they are
completely in conflict.
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Algorithm 4 Pseudocode of our proposed partitioning MOEA.


Input: Evolutionary operators values, NS (Num. of subspaces)
Output: Pareto front approximation


P1 ← randomPopulation()


evaluate(P1)


crowding(P1)


Ψ← {{f1, . . . , fM}} B All the objectives in a single subspace.
phase← INTEGRATION


Gchange ← GΦ
g← 0


for t← 1 until Gmax do
Qt ← newPop(Pt) B selection, crossover and mutation.
evaluate(Qt)


Rt ← Pt ∪Qt
Pt+1 ← sort&Truncation(Rt, |Pt|,Ψ)


if g = Gchange then
g← 0


if phase = INTEGRATION then
phase← PARTITIONING


Ψ← conflictPartition(Pt+1,Φ,NS)
Gchange ← GΨ


else
phase← INTEGRATION


Ψ← {{f1, . . . , fM}}


Gchange ← GΦ


g← g+ 1


Algorithm 5 Procedure of non-dominated sorting and truncation.


procedure sort&Truncation(R, |P|,Ψ)
P∗ ← ∅
for i← 1 until |Ψ| do


Fψi ← nonDominatedSort(R,ψi)
crowding(Fψi ,ψi)
Pψi ← truncation(Fψi , |P|/|Ψ|) B |Pψi | = |P|/|Ψ|


P∗ ← P∗ ∪Pψi


return P∗ B |P∗| = |P|


Then, the subspaces are created from the least conflicting subspace to the
most conflicting subspace. The procedure to create subspaces of size k is the
following:


1. Create q-sized neighborhoods around each objective fi, where q = k−


1. The conflict between objectives takes the role of the distance. That is,
the more the conflict between two objectives, the more distant they are
in the “conflict” space. Figure 19(a) shows two of these neighborhoods
of a hypothetical situation to form subspaces of size k = 3.
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2. Select the most compact neighborhood, i.e., the neighborhood with the
smallest distance to its q-th neighbor (farthest neighbor). Figure 19(b)
shows the farthest neighbor for each of the two neighborhoods. In the
example, the neighborhood on the left is the most compact one.


3. Finally, the objectives in the most compact neighborhood, including
objective fi, form a new subspace, and these objectives are removed
from the conflict matrix.


This process is repeated until objectives are assigned to one subspace.
Therefore, the first subspace created contains the least conflicting objec-
tives, and the last subspace is formed by the most conflicting objectives.
Algorithm 6 shows the pseudocode of this process.


(a) Divide the objective
set into neighborhoods
around each objective.


(b) Select the most com-
pact neighborhood.


(c) The center and its
neighbors form a new
subspace.


Figure 19: Basic strategy to create subspaces using conflict information.


Algorithm 6 Partitioning Using Conflict Information.
procedure conflictPartition(P,Φ,NS)


cMatrix← computeConflictMatrix(P)


adjustMatrix(cMatrix)
k← (|Φ|/NS) − 1


Φ ′ ← Φ = {f1, . . . , fM} B Remaining objectives.
for s← 1 until NS − 1 do


for each objective fi in Φ ′ do
Vfi
← Ascending ordered list of the k-nearest neighbors


of fi wrt the conflict using cMatrix.


ψs ← Vfi
∪ {fi} : Vfi


[k] 6 Vfj
[k], ∀fj ∈ Φ ′


Ψ← Ψ∪ψs
Φ ′ ← Φ ′ −ψs


Ψ← Ψ∪Φ ′
return Ψ
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Finally, we have to explain some necessary modifications to the correlation
matrix in order to use it to select the most conflicting objectives properly. If
we used the original correlation matrix, it would be possible that some highly
conflicting objectives might be placed in a subspace with a low conflict. For
instance, if objective f2 is in conflict with f3 but not with f1, then f2 would be
very close to f1 and, thus f2 would be placed in a low conflicting subspace
even if it is one of the most conflicting objectives. To overcome this problem
we carried out the following process to the correlation matrix:


• Find the maximum conflict value ci,max of each row i in the matrix
(i.e., the maximum negative correlation value for each objective).


• Add the value ci,max to the column i. This means that we are assuming
that if objective fi is in conflict with some objectives, then it is in conflict
with all the objectives.


6.4 EXPERIMENTAL RESULTS


6.4.1 Algorithms and Parameter Settings Employed


As mentioned before, we used NSGA-II’s framework to study the conflict-
based partitioning strategy. Additionally, we wanted to investigate the ad-
vantages or disadvantages of the conflict-based strategy with respect to the
random strategy. Therefore, we compare the original NSGA-II, and the NSGA-II


using the conflict and random partition strategies.
In all the experiments we used the following parameters: a crossover prob-


ability of 0.9, a mutation probability of 1/n (n is the number of variables),
setting the distribution indices for crossover and mutation to 15 and 20,
respectively, in the case of continuous problems.


In all the algorithms we used a population of 200 individuals, and a total
number of generations of 200. For all the configurations we carried out 30


runs for each MOEA. The results presented were averaged over the total
number of executions. In our experiments we used from 4 to 15 objectives in
each test problem. We used 2 subspaces for 4-9 objectives, and 3 subspaces
for 10-15 objectives. In addition, for one of the test problems we also used
24 objectives to analyze the effect of the size of the subspaces.


6.4.2 Test Problems Employed


In order to show how the conflict-based strategy works, we used test prob-
lems in which the conflicting objectives can be defined a priori by the user.
Namely, the problem DTLZ5(I,M) which is a variant proposed by Saxena and
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Deb [31] based on the original DTLZ5. In this problem, from a total of M ob-
jectives, only I objectives are in conflict, whereas the rest are non-conflicting
objectives that do not provide information to determine the Pareto optimal
front. The conflicting objectives are the last I− 1 objectives and any of the
other objectives.


Additionally, we employed two test problems in which the conflicting
relation among the objectives is not known a priori. One of these problems
is the problem DTLZ2BZ proposed by Brockhoff and Zitzler [14] based on
the original DTLZ2. When any of the objectives is removed from the original
DTLZ2, the resulting Pareto front is reduced to a single non-dominated
solution. The DTLZ2BZ variant avoids this problem, but it preserves the
property that


∑M
i=1(zi)


2 = 1, for all z ∈ PFopt. The second problem is the
0/1 Knapsack with 300 items.


In both problems (DTLZ5(I,M) and DTLZ2BZ) we employed a similar
configuration in order to maintain the test problem’s complexity for every
number of objectives. Specifically, we fixed the number of distance-related
variables1 to 20. The number of position-related variables2 was set to M− 1


in DTLZ5(I,M) and DTLZ2BZ.


6.4.3 Quality Indicators Employed


Since in many-objective problems it is not possible to use plots of the Pareto
front approximations obtained to help in the interpretation of results, we
have to rely on the results obtained by the quality indicators. For this
reason, we used several indicators, and in some cases, we relied on parallel
coordinates plots to interpret the results.


In order to evaluate the convergence achieved by the MOEAs we used
generational distance (GD). In the case of DTLZ2BZ and DTZL5(I,M) we
took advantage of the geometry of their Pareto front to compute the ex-
act generational distance. DTLZ2BZ and DTLZ5(I,M) have the property:∑M
i=1(zi)


2 = 1 for all z ∈ PFopt This way, the generational distance was com-
puted using GD = (


∑M
i=1(zi)


2/|PFapprox|) − 1. In the case of the Knapsack
problem, the usual definition of generational distance was adopted, using
as our reference Pareto front, the resulting non-dominated individuals of
the union of PFapprox obtained by the three algorithms in all the runs for a
given test problem.


1 Distance-related variables are related to the progress towards the Pareto optimal front.
2 Position-related variables generate solutions in the same local Pareto front.
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Additionally, to directly compare the convergence of the MOEAs in all the
test problems, we utilized the additive ε-indicator [130]. This indicator is
defined as


Iε+(A,B) = inf
ε∈R


{∀z2 ∈ B ∃z1 ∈ A : z1 �ε+ z2}


for two nondominated sets A and B, where z1 �ε+ z2 iff ∀i : z1i 6 ε+ z2i ,
for a given ε. In other words, Iε+(A,B) is the minimum value such that
aggregated to any objective vector in B, then A � B. In general, Iε+(A,B) 6=
Iε+(B,A) so we have to compute both values. The smaller Iε+(A,B) and
larger Iε+(B,A), the better A over B.


In order to evaluate diversity, we used the inverted generational distance
(IGD). Similarly to GD, for this indicator we used the non-dominated solu-
tions of all the PFapprox generated for a given test problem as our reference
Pareto front.


Finally, to assess both convergence and diversity, we adopted the hy-
pervolume indicator. For DTLZ2BZ, DTLZ5(I,M) the reference point was
zref = 1.5M. The results presented correspond to the normalized hypervol-
ume using the enclosed hypervolume between the ideal point z∗ = 0M


and the reference point. For the knapsack problem, the reference point was
formed using the worst value in each objective of all the PFapprox generated
for all the algorithms. In this case, the hypervolume was normalized using
the hypervolume yielded by NSGA-II. Due to the high computational com-
plexity of the hypervolume with respect to the number of objectives, we
only computed this indicator for 4-10 objectives.


6.4.4 Problems With Conflict Known A Priori


In this section, we present the experimental results using the problem
DTLZ2(I,M). In these experiments, we used I = 4 conflicting objectives
from a total of M = 4, . . . , 15 objectives. For 4-9 objectives, 2 subspaces were
used, whereas for 10-15 objectives, we employed 3 subspaces.


First, we want to show that the conflict-based strategy was able to correctly
identify the conflicting objectives in most of the partitions generated during
the search process. Figure 20 shows the subspaces generated by the conflict-
based and random partition strategies during the search process. In this
example, there is a total of M = 8 objectives. The conflicting objectives are
objectives 6-8 and any of the other objectives. The objectives in the most
conflicting subspace are denoted by squares, and the other subspace is
denoted by circles.


In Figure 20(a) we can see that in the first partitions generated, some
of the objectives were assigned to the wrong subspace. The reason of this
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(a) Conflict-based partitions. (b) Random partitions.


Figure 20: Subspaces generated using the conflict and random partition strategies
on problem DTLZ5(I = 4,M = 8). Objectives 6-8 and any of the other
objectives are the conflicting objectives.


behavior is that in the first generations the current population does not yet
represent an accurate sample of the real shape of the Pareto front. However,
as the search progresses, the input PFapprox used to estimate the conflict
approaches the true Pareto front. Therefore, in the last stages of the search,
the conflict-based strategy was able to create the correct partition. On the
other hand, by using the random strategy, the chances that the correct
partition is created are very low. In the example shown in Figure 20(b), only
the fourth partition generated contains the correct subspaces. Consequently,
in most of the generations of the search, the selected parents emphasize
objective subspaces that do not maximize the contribution to form the true
Pareto front.


Figure 21 shows the results for the generational distance. The most evident
fact in that plot is that the convergence of NSGA-II degrades dramatically
when the number of objectives is more than 6. In fact, the convergence
in terms of GD tends to diverge. A possible reason of this behavior is
the generation of Dominance Resistant Solutionss (DRSs) in DTLZ5(I,M).
These solutions are far from the true Pareto front, however, since they
are nondominated solutions, they are candidates to form the new parents
population. Since DRSs are boundary solutions, most of them will have the
best crowding value. Therefore, these solutions will always be included in the
new parents population. As mentioned in the introduction, the proportion
of non-dominated solutions in a population increases exponentially with
respect to the number of objectives. As a result, this problem gets worse
when the number of objectives grows. In contrast, it seems that the GD
values using any of the partition strategies, are not affected by the number of
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objectives. In particular, we can see that the convergence obtained by using
the conflict-based partition strategy is better than the one achieved by the
random strategy.
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Figure 21: Generational distance results in problem DTLZ5(I = 4,M). From 4-9
objectives it was generated a partition with 2 subspaces, while for 10-15


objectives it was generated one with 3 subspaces.


Nonetheless, this difference is only marginal. By inspecting the parallel
coordinate plot presented in Figure 22 we realized that NSGA-II with the
random strategy converges to the extremes of the Pareto front. That is, most
of the solutions are close to 0 or 1 in one objective, but very few solutions
are generated in between. In contrast, the conflict-based strategy covers all
the trade-offs between the objectives.
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Figure 22: DTLZ5(I = 4,M = 8): Parallel coordinate plot of the Pareto front approx-
imations obtained with the random and the conflict partition strategies.
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In order to measure this situation, we compute the inverted generational
distance. Figure 23 shows that the conflict-based partition strategy achieves
better values in terms of the inverted generational distance. This indicates a
better distribution using the conflict-based partition strategy.


4 5 6 7 8 9 10 11 12 13 14 15
10


−3


10
−2


10
−1


10
0


Num. of objectives


IG
D


 (
av


er
ag


e)


 


 


DTLZ5(I=4, M)


NSGA−II


NSGA−II−conflict


NSGA−II−random


Figure 23: Inverted Generational distance results in problem DTLZ5(I = 4,M).
From 4-9 objectives a partition with 2 subspaces was generated, while for
10-15 objectives it was generated one with 3 subspaces was generated.


Next, we present the convergence assessment using the ε-indicator. To
some degree, this indicator also takes into account the distribution of
the Pareto front approximations compared. For example, let A be a non-
dominated set which is well-distributed along the entire Pareto front, and B
a subset of A concentrated on a small region of the Pareto front. A already
dominates B, however some positive ε value must be added to A in such a
way that B dominates every solution in A.


The results of the ε-indicator are presented in the matrices of subplots
of Figure 24. We can interpret these results as follows. Iε+(A,B) is the
subplot located in row A, and column B of the matrix. The boxes in each
subplot depict the results for each number of objectives considered. As
we can see, the results of the ε-indicator indicate that NSGA-II is clearly
outperformed by the NSGA-II using any of the partition strategies. With
respect to the comparison of both partition strategies we can observe that
the average ε values using the conflict-based strategy are better than those
achieved by the random strategy, specially for 6 or more objectives. That
is, Iε+(Conflict, Random) < Iε+(Random, Conflict) for any number of ob-
jectives.


Finally, we present the results of the hypervolume indicator. Since the
hypervolume considers both convergence and distribution to assess two
non-dominated sets, as we can see in Figure 25, the conflict-based partition
strategy outperforms the random strategy. Additionally, it can be seen
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Figure 24: DTLZ5(I = 4,M): ε-indicator results. The vertical axis of each subplot
denotes the corresponding ε value, and the horizontal axis the boxplot
for each number of objectives considered.


that the hypervolume obtained by the random strategy tends to decrease
for 10 objectives. This can be explained by the fact that the chances that
the conflicting objectives are assigned to the correct subspaces when they
are randomly selected, decreases when more objectives are added to the
problem.


Like in the previously analyzed indicators, the original NSGA-II achieved
a poor performance in terms of the hypervolume indicator. However, it
is worth noting a recurrent behavior using the hypervolume and other
indicators. That is, for less than 5 or 6 objectives, NSGA-II presents a better
or similar performance than that achieved by using a partition strategy.
There are two facts that explain this behavior. Firstly, that the NSGA-II is
still able to deal with that lower number of objectives. Second, since there
are 4 conflicting objectives for 4-6 objectives, using 2 subspaces it is not
possible that all the conflicting objectives are grouped into one subspace.
Therefore, the trade-offs between objectives in different subspaces are not
well represented. This suggest that it is convenient to assign all the highly
correlated objectives to a single subspace. However, a large subspace might
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Figure 25: Normalized Hypervolume results for DTLZ5(I = 4,M = 8).


surpass the capacities of the underlying MOEA. In the next section we will
analyze the effect of the size of the subspaces in the partition.


6.4.5 Effect of the Size of the Subspaces


In this section we analyze if it is better to have all the conflicting objec-
tives together although in a large subspace, or small subspaces although
the conflicting objectives are in different subspaces. To this end, we used
DTLZ5(I,M) M = 24 objectives and I = 12 objectives in conflict. Then, we
compare two different partitions, namely, one with two subspaces with 12


objectives each, and another one with 6 subspaces with 4 objectives each.
First, we want to show that both types of partitions are able to identify


the conflicting objectives. However, in most cases, the partition with two
subspaces achieved a better identification of the conflicting objectives. Fig-
ure 26(a) and Figure 26(b) show an example of the partitions created using
2 and 6 subspaces, respectively. In order to easily verify if the objectives
in the partition with 6 subspaces were correctly identified, the objectives
in subspaces 1-3 are marked with a square, and those in subspaces 4-6
(conflicting objectives) with circles.


Figure 27 shows the progress of the generational distance indicator during
all the search process. Similarly to previous experiments, due to the dom-
inance resistant solutions, NSGA-II diverges with respect to GD. However,
what we want to emphasize is the fact that each partition strategy achieved
a better convergence using 6 subspaces with 4 objectives. This suggests that
it is preferable to have subspaces of moderate size, even if highly conflicting
objectives have to be assigned to different subspaces. The optimal size of the
subspaces depends on the capacities of the underlying MOEA. For example,
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(a) 2 subspaces. (b) 6 subspaces.


Figure 26: DTLZ5(I = 12,M = 24): Subspaces generated using 2 subspaces with 12


objectives, and 6 subspaces with 4 objectives.


based on the experimental results observed so far, an appropriate size of
the subspaces for NSGA-II would be between 4 and 6 objectives. However,
for other MOEAs, like SPEA2 or PAES, the optimal subspace size might be
different.


0 20 40 60 80 100 120 140 160 180 200
0


0.2


0.4


0.6


0.8


1


1.2


1.4


1.6


1.8


2
x 10


5


Current generation


G
en


er
at


io
na


l D
is


ta
nc


e 
(a


ve
ra


ge
)


 


 


DTLZ5(I=12, M=24)


NSGA−II
Conflict, N


s
 = 2


Conflict, N
s
 = 6


Random, N
s
 = 2


Random, N
s
 = 6


0 20 40 60 80 100 120 140 160 180 200
0


1


2


3


4


5


6


7


8


9


10
x 10


4


Current generation


G
en


er
at


io
na


l D
is


ta
nc


e 
(a


ve
ra


ge
)


 


 


DTLZ5(I=12, M=24)


Conflict, N
s
 = 2


Conflict, N
s
 = 6


Random, N
s
 = 2


Random, N
s
 = 6


Figure 27: DTLZ5(I = 12,M = 24): Online Generational Distance using a partition
with 2 subspaces and another one with 6 subspaces.


Regarding the conflict and random strategies, it can be seen that the
conflict-based strategy also diverges when using 2 subspaces. However,
the random-based strategy with the same number of subspaces obtains
good results. In order to find the reason of this behavior, we will analyze the
performance using other quality indicators and plots. The parallel coordinate
plot shown in Figure 28 indicates that by using a random strategy the
solutions converge to the extremes of only a pair of objectives. In contrast,
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the conflict-based strategy finds solutions that optimize more objectives and
cover the mid trade-off regions of the Pareto front.
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Figure 28: DTLZ5(I = 12,M = 24): Parallel coordinate plot of the Pareto front
approximations obtained by the conflict-based strategy with 6 subspaces,
and the random strategy with 2 subspaces.


In order to quantitatively assess the distribution, we compare the algo-
rithms using the inverted generational distance, whose results are shown
in Table 15. Although the obtained generational distance of the conflict and
random strategies are similar using 6 objectives (see Figure 27), the results of
the inverted generational distance shown in Table 15 suggest that the conflict
strategy with 6 subspaces achieved a better distribution of the solutions than
the random strategy with 6 subspaces. In fact, the random strategy with 2


subspaces achieved a better IGD than the one yield using 6 objectives.


NSGA-II Conflict Random


NS = 2 NS = 6 NS = 2 NS = 6


Average 0.18005 0.00838 0.00570 0.00682 0.00769


Std. Dev. 0.04695 0.00010 0.00047 0.00092 0.00029


Worst 0.26993 0.00849 0.00758 0.00791 0.00819


Best 0.07868 0.00788 0.00454 0.00591 0.00716


Table 15: IGD values for DTLZ5(I = 12,M = 24) using 2 and 6 subspaces in each of
the partitioning strategies, namely, random- and conflict-based partitions.


Based on the ε-indicator results shown in Table 16, we can confirm that
both partition strategies have a better performance using partitions with 6


subspaces. In the same way, the conflict strategy outperformed the other
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algorithms in terms of the ε-indicator. The negative results in the column of
NSGA-II indicate that, on average, the Pareto front approximations yielded
by the conflict strategy with 6 subspaces and by both random strategies,
dominate the Pareto front approximations obtained by NSGA-II.


Iε+(A,B) NSGA-II Cft Cft Rnd Rnd


NS = 2 NS = 6 NS = 2 NS = 6


NSGA-II x 14.4030 14.4030 14.4030 14.4030


Cft, NS = 2 0.1977 x 0.9644 0.9644 0.9623


Cft, NS = 6 -6.73e-6 0.0372 x 0.1974 0.1012


Rnd, NS = 2 -6.73e-6 0.0107 0.4845 x 0.1407


Rnd, NS = 6 -6.73e-6 0.6009 0.6010 0.6011 x


Table 16: Iε+ values for DTLZ5(I = 12,M = 24) using 2 and 6 subspaces in each of
the partitioning strategies, namely, random- and conflict-based partitions.


6.4.6 Problems With Unknown Conflict


In this section, we analyze the performance of the conflict and random par-
tition strategies in problems in which the conflict relation among objectives
is not known a priori. That is, the DTLZ2BZ and Knapsack problems.


Based on the symmetrical geometry of DTLZ2BZ’s Pareto front (which
is a sphere), it seems that the conflict between every pair of objectives
is very similar. Therefore, we would expect that both partition strategies
present a similar performance. Figure 29 shows the results for the genera-
tional distance and the inverted generational distance obtained in problem
DTLZ2BZ. As we expected, the experimental results show that both partition
strategies obtained a similar performance in both indicators. However, the
conflict-based strategy achieved a slightly better performance.


In a similar way, both algorithms achieved similar results with respect to
the hypervolume and the ε-indicator (see Figure 30 and 31).


Although in DTLZ2BZ, the conflict information was not useful to create
the partitions, as we will see, in the Knapsack problem there is an interesting
conflict relation among the objectives that allows the conflict-based strategy
to perform better than the random strategy. Figure 32 shows the subspaces
generated by the conflict strategy on the Knapsack problem with 9 objectives.
As can be seen, as the search progresses, a particular partition is formed
recurrently, namely Ψ3 = {{4, 5, 8}, {1, 3, 9}, {2, 6, 7}}, where {4, 5, 8} is the least
conflicting subspace, and {2, 6, 7} is the most conflicting one. This suggests
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Figure 29: Generational Distance and inverted generation distance in problem
DTLZ2BZ.


that the conflict between certain objectives is considerably larger than the
conflict between other objectives.


In order to measure the contribution of each subspace to the total conflict
in the problem, we compute the following measure. For each subspace we
compute the sum of the conflict between each pair of its objectives. We
consider this sum as the conflict degree of each subspace. The sum of the
conflict degree of each subspace is the total conflict of the problem. The ratio
of the conflict degree of each subspace and the total conflict is called the
conflict contribution. In Figure 33, we can clearly see that subspace 3 has a
larger conflict contribution with respect to the other subspaces.


From the results obtained in the generational distance and in the inverted
generational distance (see Figure 34) we can say that the conflict-based
partition strategy achieved better Pareto front approximations than the
random-based strategy in terms of both, convergence and distribution.


The results obtained with the hypervolume indicator (see Figure 35)
confirm that the conflict-based strategy outperformed the random strategy.
We can conclude that the differences in the degrees of conflict between each
pair objectives was used by the conflict-based strategy to obtain better results
than those obtained using a random partition.


6.4.7 Final Remarks


The experimental results showed that both the conflict-based and random
partition strategies outperformed NSGA-II in all the test problems considered
in this study. While NSGA-II even diverged in some test problems, the NSGA-


II using any of the partition strategies maintained a good convergence
regardless of the number of objectives. Regarding the two partition strategies,
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Figure 30: ε-indicator results on DTLZ2BZ.
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Figure 31: Hypervolume on DTLZ2BZ.
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Figure 32: Generated subspaces by the conflict-based partition strategy on the
Knapsack problem.


Figure 33: Conflict contribution of each of the three subspaces generated using the
conflict partition strategy.


the conflict-based partition strategy achieved a better distribution of the
solutions than that achieved by the random strategy. In some problems, by
using the random strategy, convergence was concentrated on the extremes
of the Pareto front.


In problems in which the degree of conflict between pairs of objectives
was different, the conflict-based strategy presented a better performance. It
is important to note, that in the case of the Knapsack problem, in which the
conflict relation among the objectives is not known a priori, the conflict-based
strategy was able to detect important dependencies among the objectives
in terms of the conflict. The extracted conflict information allowed our
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Figure 34: Generational Distance and inverted generation distance in the Knapsack
problem.
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Figure 35: Normalized Hypervolume on the Knapsack problem. The hypervolumen
values were normalized with respect to the hypervolume achieved by
the NSGA-II.


proposed conflict-based partition strategy to achieve better results than the
other algorithms.


Initially, one may think that grouping all the highly conflicting objectives
in one subspace is the best choice. However, the experimental results showed
that the best size of the subspaces considerably depends on the scalability
of the underlying MOEA. For instance, if the underlying MOEA has good
performance until 5 objectives, the size of each subspace should not exceed
that limit.


From the experimental results we realized that in some problems the
contribution of some subspaces to the overall conflict of the problem was
very small. Therefore, an equal distribution of the resources (e.g., proportion
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of parents, number of generations) to the subspaces might not be a good
idea.











7
ST U DY O F P R E F E R E N C E R E L AT I O N S I N
M A N Y- O B J E C T I V E O P T I M I Z AT I O N


CONTENTS
7.1 Quantitative Analysis of the Preference Relations 92
7.2 Final Remarks 104


Multiobjective Evolutionary Algorithms (MOEAs) rely on preference
relations to identify high-potential regions of the search space in


order to converge to the optimal set. A preference relation is the mechanism
to decide if a solution x is preferable over y in the search space. In single-
objective optimization, the determination of the optimum among a set of
given solutions is clear. However, in the absence of preference information, in
multi-objective optimization there does not exist a unique or straightforward
preference relation to determine if a solution is better than other. As we said
in Chapter 2, the preference relation most commonly adopted is the Pareto
dominance relation [91], which leads to trade-offs among the objectives. This
set of trade-offs is the Pareto optimal set, and its image in objective space, the
Pareto front.


As we learned in Chapter 4, although Pareto-based MOEAs have shown an
acceptable performance in many real-world problems with 2 or 3 objectives,
their performance poorly scale when the number of objectives in the MOP is
increased. We also noted that one of the widely accepted reasons for this
limitation is that the proportion of nondominated solutions in a population
increases rapidly with the number of objectives (see e.g., [42]). As a result,
in many-objective problems, the Pareto dominance relation is incapable
of providing the necessary information to select the correct solutions in
order to steer the search towards the Pareto optimal set. Although this
limitation seems to affect only to Pareto-based Multiobjective Evolutionary
Algorithms (MOEAs), many-objective problems pose some other difficulties
common to any other multi-objective optimizer. For instance, the exponential
growth of the number of points required to represent accurately a Pareto
front with respect to the number of objectives, and the difficulty to visualize
the Pareto front in more than 3 dimensions.


Current works in many-objective optimization have analyzed some pref-
erence relations qualitatively by using distribution of solutions’ ranks (i.e.,


91
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the number of possible ranks and the number of solutions in each rank), or
quantitatively by adopting quality indicators commonly used in the field
of evolutionary multiobjective optimization (i.e., hypervolume, coverage,
or generational distance). However, we believe that using directly standard
quality indicators is not appropriate to compare preference relations since
their optimal sets are, roughly speaking, different subsets of the Pareto
optimal set. In other words, the preference relations prefer different regions
of the Pareto optimal front.


In the absence of particular decision maker’s preferences, the generally
accepted assumption is that the most interesting solution is the “knee” of the
Pareto front, i.e., the region of maximum bulge on the Pareto curve [26]. For
this reason, a PF(1)


approx generated using a particular preference relation should


be preferred over a set PF(2)
approx achieved by another preference relation if it


has more solutions around the knee than PF(2)
approx. Therefore, in this chapter


we present a comparative study which analyzes the performance of some
preference relations based on the distance of their approximation sets to the
knee of the Pareto front. The goal of this study is to reveal the advantages
and disadvantages of the preference relations incorporated into a MOEA.


7.1 QUANTITATIVE ANALYSIS OF THE PREFERENCE RELATIONS


In this section we analyze the preference relations presented in Section 4.3.1,
namely: Average Ranking (AR), Maximum Ranking (MR), Favour relation (FR),
Preference Order Relation (POR), and Expansion preference relation (ER).


7.1.1 Quality Indicators and Methods Employed


As noticed earlier, the optimal solution set of each preference relation is,
roughly speaking, a subset of PFopt. As a consequence, although a preference
relation is only applied on the current PFapprox and the archive is maintained
using Pareto dominance, the preferred solutions by the preference relation
in the primary population belong to a portion of PFopt. Thus, in spite of
the fact that the final PFapprox set may contain solutions over all the Pareto
optimal front, the solutions included in the optimal solution set of the
given preference relation are constantly exploited, and the remainder of the
solutions may be suboptimal. We can see this situation by comparing the
two PFapprox sets presented in Figure 36. These sets were obtained using the
relations ER and AR. Clearly, these preference relations promote solutions in
different regions of the Pareto front.


This poses a challenge to compare Pareto front approximations achieved
using different preference relations. For instance, let’s suppose we want to
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Figure 36: Pareto front approximations obtained by the expansion and the average
ranking relations.


compare two preference relations, one that finds solutions in a small region
in the middle part of the Pareto front, and another that finds solutions in
a larger region, but in extreme regions of the Pareto front. If we use, for
example, the hypervolume indicator, the preference relation with the larger
region will have an inherent advantage over the other relation.


It’s commonly accepted that decision makers often select a solution located
in the middle part of the Pareto front [26], i.e., the knee of the Pareto
front. Therefore, we believe that one natural criterion to evaluate preference
relations is measuring the distance between the knee and the points in the
PFapprox set generated using the preference relation. There exist different
characterizations of the knee in the literature. Nonetheless, in this thesis we
will consider that the knee of the Pareto front is the point with the minimum
Chebyshev distance to the ideal point, z∗, or an approximation of it. The
weighted Chebyshev distance to z∗ is defined in the following way:


d(z, z∗, λ) = max
16j6k


{λj|z
∗
j − zj|},


where k is the number of objectives. Defined this way, the knee of the
Pareto front is the point in the feasible objective space, Z, which corresponds
to minz∈Z d(z, z∗, λ). Here, we assume that λi = 1


Ri
, where Ri is the range of


the i-th objective in PFopt. Figure 36 shows the knee for the problem DTLZ2,
which is located at the point ( 1√


3
, 1√
3


, 1√
3
).


This way, a preference relation is better than other relation if its PFapprox


set contains more solutions around the knee than the PFapprox set achieved
by the other relation. In order to evaluate this situation we will plot the
distribution of the Chebyshev distance from the ideal point to the points in
a given PFapprox. The desired distribution is one with a peak near zero and
that slowly decays towards the right since it will indicate that most of the
solutions are situated close to the knee.
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Similar to the approach followed by Corne and Knowles [23], we employed
a simple MOEA to evaluate the preference relations included in this study.
This way, we try to minimize the effect of some specialized techniques in
such a way that the performance of the MOEA can be mainly attributed to the
preference relation. Accordingly, the MOEA uses binary encoding, two point
crossover, and uniform mutation. To select the parents we used a binary
tournament based on the ranks assigned by the given preference relation.
The MOEA is equipped with an archive which is truncated by removing
a solution selected at random to introduce a new Pareto nondominated
solution when the archive is full.


Additionally, for each preference relation we will plot the online genera-
tional distance achieved by the current nondominated set generated by the
MOEA using the given relation. This way, we can figure out how fast the MOEA


converges towards the Pareto front regardless of the spread of the solutions.
This information can be useful if we want, for instance, to use a relaxed pref-
erence relation to quickly reach the Pareto front and, afterwards, to employ
other preference relation to cover a broader extension of the Pareto front.


The generational distance (GD) [116] is defined by GD =
(√∑n


i=1 d
2
i


)
/n,


where n is the size of PFapprox and di is the Euclidian distance between
each vector in PFapprox and the nearest member of PFopt. Finally, to assess
the distribution of the nondominated set obtained by the MOEA we use the
inverted generational distance (IGD) which is obtained by interchanging the
roles of PFopt and PFapprox in the GD’s definition.


7.1.2 Experimental Settings


We adopt the problems DTLZ2 and DTLZ7 to evaluate the performance of
the preference relation. The problem DTLZ7 was selected to test the ability
of the preference relations to converge towards the knee on problems with
a non-convex and disconnected Pareto front1. We used 3, 5, 8, 10 and 15


objectives in each problem. Regarding the MOEA, in all the simulations we
employed a crossover probability of 0.9 and a mutation probability of 1/`,
where ` is the length of the binary string needed to encode solutions with 5


digits of precision. For each preference relation the MOEA was run 30 times.
In each run we used a population of 200 individuals during 300 generations,
and an archive of size 300. The reported values of GD and IGD correspond
to the average of the 30 runs, whereas the distributions of the Chebyshev
distance were calculated using the union of the PFapprox sets achieved by
each preference relation.


1 Objectives in DTLZ2 have the same range, however for DTLZ7 we needed to normalize its
objectives using the minimum and maximum values of PFopt.
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Since the expansion relation requires a user-defined parameter, S, in the
next section we present a preliminary analysis to investigate the influence of
that parameter on the performance of ER.


7.1.3 Analysis of the Expansion Preference Relation


In order to investigate the influence of the parameter S on the expansion
relation we solve DTLZ2 using three different values of S, namely S = 0.3,
S = 0.35, S = 0.4. Among these values, S = 0.3 is the one that expands
the most the dominance area, and, therefore, it may allow the MOEA to
reach faster the Pareto front. In each run of these experiments we used a
population of 200 individuals during 200 generations, and an archive size of
200.


For the sake of clarity, the online GD values presented in Figure 37 to 39


are plotted on a semi-logarithmic scale. From these plots it is clear that with
S = 0.3 it is obtained the fastest convergence to the Pareto front, while with
S = 0.4 it is obtained the slowest one. Nevertheless, we have to note that
the smaller the S value, the smaller the Pareto region covered by the MOEA


using the expansion relation.
In order to study the distribution of the solutions around the knee region,


we use the distribution of the Chebyshev distances with respect to the origin.
Figure 40 shows that for 5 objectives, the larger peak of the distributions for
S = 0.3 and S = 0.35 is around 1. That is, most of the solutions are clustered
in extreme regions of the Pareto front. However, with S = 0.35 there is a
considerable number of solutions near the knee of the front. In fact, this
is the value that achieves the largest number of solutions around the knee.
With respect to 10 and 15 objectives (see Figure 41), for the three values of S,
the solutions are concentrated at similar distances from the knee. Since from
the three values considered, S = 0.35 represents the best trade-off between
convergence and distribution around the knee, we used this value for the
rest of the experiments.


7.1.4 Analysis of All the Preference Relations


Like in the previous analysis, in the experiments of this section we used the
online generational distance and the distribution of the Chebyshev distances.
However, we also used the inverted generational distance to measure both
the spread and convergence to the Pareto front.


The results of the online generational distance on problem DTLZ2 are
presented in Figure 42 to 45. From these plots we can clearly see that,
on the one hand, the MOEA with the Pareto relation achieves the worst
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Figure 37: Online GD achieved with the expansion relation using different values
for S in DTLZ2 with 5 objectives.
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Figure 38: Online GD achieved with the expansion relation using different values
for S in DTLZ2 with 10 objectives.
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Figure 39: Online GD achieved with the expansion relation using different values
for S in DTLZ2 with 15 objectives.
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Figure 40: Distribution of the Chebyshev distance obtained with the expansion
relation and using different values of S in DTLZ2 with 5 objectives.
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Figure 41: Distribution of the Chebyshev distance obtained with the expansion
relation and using different values of S in DTLZ2 with 15 objectives.
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convergence to the Pareto front during all the search (except for the favour
relation). On the other hand, by employing the expansion relation, the
MOEA converges very fast during the first 50 and 150 generations for 10


and 15, and 5 objectives, respectively. Then, AR, POR, and FR achieve a closer
approximation to the Pareto front.


The second best convergence is obtained using AR, which at the end of
the search achieves a better convergence than the expansion relation. The
convergence obtained by the favour relation presents an interesting behavior.
In the first half of the optimization it achieves a poor convergence. However
in the second half, it improves dramatically the convergence and towards
the end of the search it produces the best convergence. This behavior is
explained by analyzing the IGD results presented in Figure 46 and the
distribution of the Chebyshev distance shown in Figure 47 to 50. That is
to say, Chebyshev distances show that most of the solutions generated by
the MOEA using the favour relation are located far from the knee region
(solutions with a Chebyshev distance of 1). In addition, the IGD value for
every number of objectives is very poor on problem DTLZ2 (see Figure 46).
These two facts suggest that the solutions promoted by the favour relation
are concentrated in a small region of the Pareto front and, consequently,
after a certain number of generations the solutions overexploit that region
achieving very small values on the GD indicator but large values on IGD.
This behavior, which is worsened with the number of objectives, is also
presented using AR and POR.


On the other hand, MR, ER and the Pareto dominance relations present a
wider distribution of the Chebyshev distances for any number of objectives.
It is noticeable, though, that the MOEA with the expansion relation finds the
closest solutions to the front’s knee for any number of objectives. This can
be checked by observing that the left tail of its distribution is closer to zero.


With respect to the problem DTLZ2 we can conclude that the best preference
relation is the expansion relation since it helps the MOEA to converge quickly
to the Pareto front and to maintain more solutions near to the knee of the
Pareto front. Although AR and POR provide good convergence they promote
solutions away from the knee.


In the problem DTLZ7 we only analyzed the distribution of the Cheby-
shev distances and the results of the IGD indicator. With 3 objectives, the
distribution of the Chebyshev distances achieved by the expansion relation
(Figure 51) shows that most of the solutions are located around a distance
of 0.8, which is far from the knee of the front. The other preference relations
present similar distributions where the solutions are concentrated around
0.75.


However, for more than 3 objectives (Figs. 52 to 54), most solutions
achieved by the expansion relation are near the knee of the Pareto front and
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Figure 42: Online GD achieved by the preference relations in DTLZ2 with 3 objectives.
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Figure 43: Online GD achieved by the preference relations in DTLZ2 with 5 objectives.
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Figure 44: Online generational distance achieved by the preference relations in the
problem DTLZ2 with 10 objectives.
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Figure 45: Online generational distance achieved by the preference relations in the
problem DTLZ2 with 15 objectives.
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Figure 46: IGD achieved using the preference relations on DTLZ2.
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Figure 47: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ2 with 3 objectives.
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Figure 48: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ2 with 5 objectives.
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Figure 49: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ2 with 10 objectives.
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Figure 50: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ2 with 15 objectives.
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Figure 51: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ7 with 3 objectives.
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Figure 52: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ7 with 5 objectives.
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they are the closest solutions to the knee. On the other hand, the MOEA using
the Maximum and the Pareto relations generates solutions far away from
the true Pareto front (the extreme solutions remain at a distance of 1 since
the Chebyshev distance is normalized).


As it can be seen, with these two relations the convergence is worsened as
the number of objectives is increased.


The results of the IGD indicator shown in Figure 55 confirm this observa-
tion since the maximum and Pareto relations obtain the worst values in this
indicator. Since most of the solutions obtained by the expansion relation are
clustered around the knee region, it obtained poor values in IGD. In turn,
AR and POR obtained the best values in IGD.


In the distribution of the Chebyshev distance from these two relations we
can see that there are three peaks in their distributions (specially in Figs. 53
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Figure 53: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ7 with 10 objectives.
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Figure 54: Distribution of the Chebyshev distance over the solutions generated
using each preference relation in the problem DTLZ7 with 15 objectives.







104 study of preference relations in many-objective optimization


and 54), one close to the knee, another in the middle of the distribution, and
a third one on the right of the distribution.


This suggests that AR and POR yielded a diverse approximation set concen-
trated in three regions of the Pareto front, and hence their good performance
with respect to IGD.
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Figure 55: IGD achieved using the preference relations on DTLZ7.


7.2 FINAL REMARKS


The experiments revealed that, in spite of the fact that some preference
relations contribute to converge faster to the Pareto front than the Pareto
dominance relation, they also stress the generation of solutions far from
the knee region. This behavior was observed, for example, in the average
ranking and preference order relations in problem DTLZ2. This fact limits
the applicability of these relations since, in the general case, it is commonly
assumed that the decision maker prefers solutions on the knee region. The
expansion relation, on the other hand, presented a remarkable performance.
In both problems this relation produced a fast convergence to the Pareto
front and, in both problems, it achieved solutions very close to the knee
region. The second best preference relation was the average ranking relation
followed by the preference order and the favour relations. In terms of
convergence this result agrees with the conclusions obtained by Corne and
Knowles [23].


Although the expansion relation helped to produce solutions near the
knee of the Pareto front, in problem DTLZ7, the solutions were concentrated
in a small region around the knee. This introduces a trade-off between con-
vergence and the size of the region covered. The parameter of the expansion
preference relation opens interesting applications to the relation in MOEAs.
For instance, it can be incremented gradually during the search in order
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to approach quickly the Pareto front during the first half of the search and
then cover the rest of the Pareto front in the second half of the search.
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As discussed in Chapter 2, solving a Multiobjective Optimization Problem
involves three stages: model building, search, and decision making


(preference articulation). Having a good approximation of the Pareto optimal
set does not completely solve a multiobjective optimization problem. The
decision maker (DM) still has the task of choosing the most preferred solution
out of the approximation set. This task requires preference information from
the DM.


Regardless of the stage at which preferences are incorporated into a
Multiobjective Evolutionary Algorithm (MOEA), the goals are clear: the aim
is to focus on a certain portion of the Pareto front by favoring certain
objectives (or trade-offs) over others.


The incorporation of preferences takes a major role in multiobjective
optimization problems with a high number of objectives (4 or more), i.e.,
many-objective optimization problems (see e.g., [42, 94, 117, 63, 64, 99]).
The importance of preference incorporation stems from the fact that it can
remedy some of the scalability issues observed in Pareto-based MOEAs when
the number of objectives is increased (see Chapter 4). One of the scalability
problems is the dimensionality of the Pareto front of many Multiobjective Op-
timization Problems (MOPs) when the number of objectives is high. Nonethe-
less, we have to point out that there exist some problems in which the
dimensionality of the approximation of the Pareto does not grow with the
number of objectives (see e.g., [34, 59]).


107
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Therefore, one promising approach to deal with many-objective problems
is the use of interactive optimization techniques to avoid the generation and
evaluation of millions or even billions of nondominated points as shown
in Chapter 4. Furthermore, by incorporating preferences we are inducing
a finer ordering over the search space than the one induced by the Pareto
dominance relation. Thus, the incorporation of preferences can also cope
with the large proportion of nondominated solutions generated in the first
generations of the search process.


In this chapter, we present a new preference relation based on an achieve-
ment scalarizing function [121]. The purpose of the new preference relation
is twofold. On the one hand, it offers a simple approach to integrate decision
maker’s preferences into a MOEA without modifying the original structure
of the MOEA. On the other hand, the proposed reference relation is intended
to deal with many-objective problems.


The new preference relation divides the objective function space into two
subspaces. The solutions in one of these subspaces are compared using
the usual Pareto dominance relation, while the others are compared using
the achievement scalarizing function. By means of a reference point, the
proposed preference relation allows the decision maker to guide the search
towards a certain region of the Pareto optimal front. Each component of
the reference point represents the aspiration levels that the decision maker
requires for each objective. Furthermore, by using a scalarizing function
the developed preference relation induces a finer order on vectors of the
objective space than that achieved by the Pareto dominance relation. For
this reason, we propose to use the new preference relation to deal with
many-objective problems.


8.1 THE REFERENCE POINT APPROACH AND THE ACHIEVEMENT SCALARIZING
FUNCTION


The proposed preference relation is based on the achievement scalarizing
function approach proposed by Wierzbicki [121, 122]. An achievement scalar-
izing function uses a reference point to capture the desired values of the
objective functions.


Definition 19 (Achievement scalarizing function). An achievement scalarizing
function (or achievement function for short) is a parameterized function szref(z) :


Rk → R, where zref ∈ Rk is a reference point representing the decision maker’s
aspiration levels. Thus, the multiobjective problem is transformed into the following
scalar problem:


Minimize szref(z)


subject to z ∈ Z.
(8.1)
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A common achievement function, as pointed out in [87, 40], is that based
on the Chebyshev distance (L∞ metric).


Definition 20 (Chebyshev distance). For two vectors z1, z2 ∈ Rk the Cheby-
shev distance is defined by


d∞(z1, z2) = ||z1 − z2||∞ = max
i=1,...,k


|z1i − z2i |. (8.2)


Based on the Chebyshev distance we can define an appropriate achieve-
ment function.


Definition 21 (Weighted achievement function). The weighted achievement
function (or achievement function for short) is defined by


s∞(z, zref) = max
i=1,...,k


{λi(zi − z
ref
i )} + ρ


k∑
i=1


λi(zi − z
ref
i ), (8.3)


where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such that ∀i
λi > 0 and, for at least one i, λi > 0, and ρ > 0 is an augmentation coefficient
sufficiently small. The main role of ρ is to avoid the generation of weakly Pareto
optimal solutions.


We should note that, unlike the Chebyshev distance, the achievement func-
tion does not use the absolute value in the first term. This small difference
allows the achievement function to correctly assess solutions that improve
the reference point.


The achievement function has some convenient properties over other
scalarizing functions. As proved in [108], [87] and [40], the minimum of
Eq. 8.3 is a Pareto optimal solution and we can find any ρ-properly Pareto
optimal solution, i.e., solutions in which a finite improvement in one ob-
jective is possible only at the expense of a reasonable worsening in other
objectives. Formally, ρ-properly Pareto optimal solutions are defined as
follows.


Definition 22 (ρ-properly Pareto optimality). A solution x∗ ∈ X and its
corresponding vector, z∗ ∈ Z, are ρ-properly Pareto optimal (in the sense of
Wierzbicki [121]) if


(z∗ − Rkρ \ {0})∩Z = ∅,


where Rkρ = {z ∈ Rk| maxi=1,...,k zi + ρ
∑k
i=1 zi > 0}, and ρ is some scalar. The


trade-offs among the objectives are bounded by ρ and 1/ρ.


In most of the reference point methods, the exploration of the objective
space is made by moving the reference point at each iteration [83]. In turn,
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the weights are kept unaltered during the interactive optimization process.
That is, weights do not define preferences, but they are mainly used for
normalizing each objective function. Usually, the weights are set for all
i = 1, . . . ,k as


λi =
1


znad
i − z??


i


. (8.4)


It is important to mention that the DM can provide both feasible and
infeasible reference points, or more precisely, zref ∈ Z + Rk+ or zref /∈ Z + Rk+,
where Rk+ is the nonnegative orthant of Rk. On the one hand, if zref ∈
Z + Rk+, then the minimization of Eq. 8.3 subject to z ∈ Z should represent
the maximization of the surplus z − zref ∈ Rk. On the other hand, if zref /∈
Z + Rk+, the minimization of Eq. 8.3 subject to z ∈ Z minimizes the distance
between the reference point and the Pareto optimal set.


8.1.1 MOEAs Based On a Scalarizing Function


This section reviews some MOEAs that employ the Chebyshev distance in
order to rank the individuals of a population. It is important to note that,
unlike our approach, these MOEAs use the Chebyshev distance (Eq. 8.2), and
not the achievement function (Eq. 8.3) presented in Section 8.1. The main
difference with respect to our work is that these methods, instead of defining
a preference relation, use the Chebyshev distance in a more straightforward
and ad hoc manner.


Alves and Almeida [3] proposed a MOEA that carries out multiple single-
objective optimizations using a Chebyshev distance function in each opti-
mization. At the beginning of the search a set of instances of the Chebyshev
distance function is defined by generating a set of well-distributed weight
vectors. This way, the weight vectors define different search directions. There-
after, the MOEA sequentially and independently performs one search for each
weight vector in order to find a small set of solutions around the direction
determined by the corresponding weight vector.


Zhang and Li [126] proposed a similar approach. The important difference
with respect to the previous approach is that in this method, each single
objective optimization uses the information of parallel optimizations in its
“neighborhood”. A neighborhood is composed of single objective optimiza-
tions with nearby weight vectors. Thus, for example, crossover is restricted
to solutions in the same neighborhood.


Similarly to the previous approaches, Soylu and Köksalan [106] proposed
a MOEA in which the fitness of a solution is based on its weighted Chebyshev
distance to the ideal point. The weight vector values used to compute
the distance of a given solution are assigned specifically for that solution.
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The weight vector values adopted are those that minimize the weighted
Chebyshev distance from the given solution to the ideal point. The main
purpose of that selection is to favor Pareto optimal solutions over weakly
Pareto optimal solutions.


8.2 CHEBYSHEV RELATION TO GUIDE THE SEARCH


The preference relation proposed here was designed keeping two goals in
mind. First, we aimed to provide an easy way to integrate preferences into
different types of MOEAs requiring only slight modifications to their structure.
The second goal was to investigate the use of achievement functions when
dealing with many-objective problems.


In the following sections, we introduce the new preference relation and its
use as an interactive technique for multi- and many-objective optimization.
Then, we present a modification that is required in order to use the proposed
preference relation to generate an approximation of the whole Pareto set in
many-objective optimization problems.


8.2.1 User Reference Point Chebyshev Preference Relation


The main idea of the proposed preference relation is to combine the Pareto
dominance relation and the achievement function to compare solutions in ob-
jective function space. The achievement function will allow the incorporation
of DM’s preferences using a feasible or an infeasible reference point.


We can easily define a simple preference relation using the achievement
function. For example, we could say that a vector z1 will be preferred
to z2 if and only if s∞(z1, zref) < s∞(z2, zref). However, by doing so, we
would obtain only one Pareto optimal solution, which we will denote by
z?∞ = arg minz∈Z s∞(z, zref). In order to find a set of solutions around the
point z?∞, we will allow a threshold, δ, in the preference relation. That is,
we want to find the set of points, z, such that s∞(z, zref) 6 smin + δ, where
smin = minz∈Z s∞(z, zref) (or in different terms, s(z?∞, zref)). All these points
would be located in the dark region shown in Figure 56.


Nevertheless, as we can see in the figure, we obtain both Pareto and
dominated solutions. In order to obtain exclusively Pareto solutions we
compare those solutions using the Pareto dominance relation. By doing
so, only the Pareto nondominated solutions in the square region shown in
Figure 57 are considered as the nondominated solutions with respect to the
new preference relation developed. In some sense, we can consider that the
new relation divides the feasible objective space in two parts as can be seen
in Figure 56. The larger part of the feasible objective space is compared with
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Space compared using the


Achievement function


Space compared using 


Pareto dominance


Figure 56: Illustration of how the objective space is divided, and how the vectors in
each subspace are compared.


the achievement function, while the remainder of the space is compared
adopting the usual Pareto dominance relation. For the sake of simplicity, we
will refer to this new relation as the Chebyshev preference relation.


Figure 57: Nondominated solutions with respect to the Chebyshev relation.


Now, we can give a formal definition of the Chebyshev preference relation.


Definition 23 (Chebyshev preference relation). A solution z1 is preferred to
solution z2 with respect to the Chebyshev relation (z1 ≺cheby z2), if and only if:
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1. s∞(z1, zref) < s∞(z2, zref) ∧


{z1 /∈ N(zref, δ) ∨ z2 /∈ N(zref, δ)}, or,


2. z1 �pareto z2 ∧ {z1, z2 ∈ N(zref, δ)},


where N(zref, δ) = {z | s∞(z, zref) 6 smin + δ}. That is, the set of vectors with an
achievement better than smin + δ with respect to the vector of aspiration levels zref.


As an illustration of the preference relation, consider solutions z1 and z2


presented in Figure 57. Since z2 /∈ N(zref, δ) and s∞(z1, zref) < s∞(z2, zref),
then z1 ≺cheby z2.


Figure 58 shows the use of the Chebyshev preference relation in the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [33] and the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [129]. As we can see in Figure 58,
unlike some distance metrics, the achievement function (Eq. 8.3) allows a
MOEA to find points in problems with nonconvex Pareto fronts. Moreover, the
figure shows how the DM can provide both feasible and infeasible reference
points. Also, we have to note the result obtained in problem DTLZ2. If we had
used the Euclidean distance to define the preference relation, with zref = 0


we had obtained nondominated solutions over the entire Pareto front. The
reason for this, is that all the vectors in DTLZ2’s Pareto optimal front are
situated on a sphere of radius 1.


In order to incorporate the Chebyshev relation into the two previously
mentioned MOEAs we only have to change the usual Pareto dominance
checking procedure by the function that implements the new relation. In
order to have an efficient procedure, the evaluation of the achievement
function was computed and stored for each solution before each ranking
process. This way, the comparisons required to rank the current population
use the stored values of the achievement function.


In practice, it might be difficult to set a value for the parameter δ since
it does not have an upper bound that is known a priori. In order to have a
better control of this parameter during the search, we can set it in terms of
the proportion of the current range of the achievement function (namely, the
difference between the minimum and maximum achievement with respect to
a given solution set P). If τ is that proportion, then δ = τ · (smax − smin), where
smax = maxz∈P s∞(z, zref) and smin = minz∈P s∞(z, zref). As a consequence,
for τ = 0 we would only find the minimum of the achievement function,
whereas if τ = 1, then we would get the usual Pareto dominance relation
since for every solution z ∈ P, z ∈ N(zref, δ). Therefore, the DM can use the
value of τ for adjusting the size of the region of interest around solution
z?∞. For example, if τ = 0.1 and P is the current approximation set of the
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(a) ZDT1: feasible reference point and convex


Pareto front.


(b) ZDT2: infeasible reference point and


concave Pareto front.


(c) ZDT3: feasible reference point and


nonconvex Pareto front.


0


0.5


1


0 0.5 1


0


0.5


1


(d) DTLZ2: infeasible reference point and con-


cave Pareto front.


Figure 58: Illustration of the Chebyshev preference relation incorporated into NSGA-


II and SPEA2, using feasible and infeasible reference points. z?∞ is the
optimum of the achievement function with respect to the current popu-
lation of the MOEA. In all the examples, we used a threshold δ = 0.2.
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Pareto front, only solutions with an achievement value 10% greater (with
respect to the range of s∞ in P) than the one of z?∞ will be found. In our
approach, the values of the weight vector, λ, that appears in Eq. 8.1 are set
according to Eq. 8.4. The vectors z?? and znad are approximated using the
current PFapprox achieved by the MOEA.


8.2.2 Central-guided Chebyshev Preference Relation


As previously mentioned, in many-objective problems the number of points
needed to represent a Pareto front accurately grows exponentially with
the number of objectives. Therefore, in many cases trying to approximate
the whole Pareto front is not convenient. Additionally, in a many-objective
context it might be very difficult for the DM to select a final solution.


When the DM does not have any knowledge about the MOP to be solved
(e.g., trade-offs among the objectives, variation range of the objectives), a
good idea might be to aim to converge to the ideal point, in which all the
objectives are minimized simultaneously. In some cases, the solution that
minimizes the distance to the ideal point is located in the central part of the
Pareto front. If the Pareto front is symmetric, the closest solution to the ideal
point is equivalent to the so-called knee of the front [26, 85, 9, 102].


The point of interest to us corresponds to the minimum of the achievement
function using the ideal point, z?, or an approximation of it, as the reference
point.


In order to achieve the desired behavior we need to approximate the ideal
point during the search process of the MOEA. To do so, we will use the lower
bounds of the current approximation of the Pareto front. At each iteration
we will determine one of the vectors that minimizes each objective separately.
That is, we need to find the set of k vectors Φ = {z1, . . . , zk | zii = zmin


i , i =


1, . . . ,k}, where zmin
i = minz∈PFapprox zi.


There are some works, in which an evolutionary algorithm has been used
to approximate the ideal point [102] or the nadir point [35]. Nonetheless,
these approaches require a modification in a particular component of the
MOEA (for instance, in the crowding operator or in the archive). In order to
maintain the preference relation independent of an external module, e.g., an
archive, we propose to modify the Chebyshev relation to implicitly maintain
the extreme or boundary solutions Φ. To this end, besides emphasizing the
points close to the central part of the Pareto front, the relation does not allow
that extreme points are dominated.
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(a) ZDT1.
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(b) DTLZ2.


Figure 59: Illustration of the central-guided Chebyshev preference relation incor-
porated into NSGA-II. In these plots zref is the approximation of the ideal
point, and z?∞ is the the vector that we consider the central point of the
Pareto front.


Definition 24 (Central-guided Chebyshev preference relation). A solution z1


is preferred to solution z2 with respect to the central-guided Chebyshev preference
relation (z1 ≺c-cheby z2) if and only if:


z1 ≺cheby z2, and z2 /∈ Φ.


Figure 59 shows the Pareto front approximation obtained by NSGA-II using
the central-guided Chebyshev preference relation with the approximated
ideal point as a reference point. The figure shows the extreme points of
problems ZDT1 and DTLZ2. It is worth noting that in both problems, the
approximation of the ideal points are very accurate.


In an interactive optimization process, those points are useful to estimate
the range of the Pareto optimal front.


This variant of the proposed preference relation might be very useful in
many-objective problems in which traditional visualization techniques, such
as 2D or 3D plots, are no longer available. In this case, the DM can be assisted
by the preference relation to find a set of solutions around the (usually) most
interesting region of the Pareto front.


One of the advantages of the basic Chebyshev preference relation and
the central-guided variant over other preference relations is their low time
complexity. The evaluation of the achievement function for the entire popu-
lation has complexity O(km), where m is the size of the population and k is
the number of objectives. Regarding the central-guided variant, the process
of finding the extreme points has complexity O(km). Therefore, the total
process of the central-guided variant also has complexity O(km). In order to
illustrate the computational savings using the Chebyshev relation, let us take
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as an example, the ranking procedures of NSGA-II and Multiobjective Ge-
netic Algorithm (MOGA) [50]. Both NSGA-II’s nondominated sorting [107, 33]
and MOGA’s nondominated ranking [49] have complexity O(km2) using the
Pareto dominance relation. Using any of the Chebyshev relations we need to
compare a single real value instead of a k-dimensional vector for each pair of
solutions. Therefore, using the Chebyshev relation, these ranking procedures
have complexity O(km+m2). Figure 60 shows the complexities of the rank-
ing procedures using the Pareto relation, and any of the Chebyshev relations,
respectively. In this discussion we have assumed that the entire population is
exclusively compared using the achievement function. In practice, however,
the actual complexity depends on the proportion of solutions compared
using the achievement function and the usual Pareto dominance relation.
Nonetheless, as the threshold τ decreases, the resulting complexity tends
to the one defined above. For instance, if τ = 0.1, approximately 90% of the
population is compared using the Chebyshev relation.
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Figure 60: Plots of the complexity of NSGA-II and MOGA’s ranking procedures using
the Pareto dominance relation (O(km2)), and the Chebyshev relation
(O(km+m2)).


8.3 AN INTERACTIVE METHOD USING THE CHEBYSHEV RELATION


The two variants of the Chebyshev preference relation can be used in an
interactive way. When the DM does not have enough knowledge about the
problem to provide a reference point, the central-guided Chebyshev relation
can be used to obtain a first set of solutions. However, in real situations
it is common that the DM counts with a previous best known solution
of the given problem. In that case, the previous solution can serve as a
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good reference point. Then, the process can follow the usual steps of the
interactive techniques. That is, at each iteration the DM must provide new
aspiration levels in the form of a reference point. Additionally, the DM can
change the value of the threshold δ (or can change it proportionally using τ)
that controls the size of the set of solutions. For example, the user can set
τ = 0.5 in order to obtain about half of the Pareto front around the reference
point. This helps the DM to know the trade-offs among the objectives. At
subsequent iterations, the value of τ could be reduced to concentrate the
search towards a region of interest chosen by the DM. In order to show the
set of solutions of the region of interest, some visualization tool designed
for problems with more than three objectives could be used, such as parallel
coordinates plots, heatmap graphs, or scatter plots (see e.g., [10]). To ease the
visualization of the solutions, a technique for truncating the approximation
set can be used. For example, a clustering technique can be employed,
such as the one used in SPEA2 [129], or a technique similar to the archiving
methods. Therefore, the interactive process requires an additional parameter
indicating the number of solutions to visualize.


In a next step, the employed MOEA is again executed using the Cheby-
shev relation in order to find a new set of solutions that best satisfies the
aspirations of the DM. This process continues until the DM is satisfied with
a solution of the current set of solutions. Algorithm 7 shows the whole
interactive process.


Algorithm 7 Interactive technique using the Chebyshev preference relation.


Step 1: Ask the DM to specify the threshold τ.
If the DM has some knowledge about the problem, he/she
can provide a reference point. Otherwise, the central-guided
preference relation can be used to converge towards the ideal
point.


Step 2: If a reference point was provided, then


Execute the MOEA using the Chebyshev relation with the
reference point provided by the decision maker.


else
Execute the MOEA using the central-guided Chebyshev rela-
tion.


Step 3: Ask the DM to define how many solutions of the current ap-
proximation should be shown. Additionally, from the use of the
central-guided relation the DM can be informed of the current
ideal point in order to decide the new aspiration levels.


Step 4: If the DM is satisfied with some solution of the current set, then


stop.


else
Go to Step 1.







8.4 evaluation of the interactive method 119


8.4 EVALUATION OF THE INTERACTIVE METHOD


8.4.1 Airfoil Shape Problem with 2 Objectives


In order to illustrate the interactive method presented in the previous section
we will use a multiobjective aerodynamic airfoil shape optimization problem
adapted from [111], and having 2 objectives. The goal is to optimize the
shape of a standard-class glider, aiming at obtaining optimum performance
for a sailplane.


Two conflicting objective functions are defined in terms of a sailplane
average weight and operating conditions [111]: Objective functions


of the airfoil shape
problem.1. Min f1 = CD/CL,


s.t. CL = 0.63,Re = 2.04× 106, M = 0.12.


2. Min f2 = CD/C
3/2
L ,


s.t. CL = 1.05,Re = 1.29× 106,M = 0.08.


Objective f1 represents the inverse of the glider’s gliding ratio, whereas f2
represents the sink rate. Both objectives are important performance measures
for this aerodynamic optimization problem. CD and CL are the drag and
lift coefficients. Each objective is evaluated at different prescribed flight
conditions, given in terms of Mach and Reynolds numbers. The aim of
solving this MOP, is to find a better airfoil shape, which improves a reference
design.


In the present case study, a modified PARSEC airfoil representation [104]
is used. Figure 61 illustrates the 12 basic parameters used for this represen-
tation: rleup / rlelo leading edge radius for upper/lower surfaces, Xup/Xlo Geometry


parameterization of
the problem.


location of maximum thickness for upper/lower surfaces, Zup/Zlo maximum
thickness for upper/lower surfaces, Zxxup/Zxxlo curvature for upper/lower
surfaces, at maximum thickness locations, Zte trailing edge coordinate, ∆Zte


trailing edge thickness, αte trailing edge direction, and βte trailing edge
wedge angle. The PARSEC geometry representation adopted allows us to
define independently the leading edge radius, both for upper and lower
surfaces (the original representation uses the same value both for upper and
lower surfaces). Thus, 12 variables are used in total. Their allowable ranges
are defined in Table 17.


The PARSEC airfoil geometry representation uses a linear combination of
shape functions for defining the upper and lower surfaces. These linear
combinations are given by:


Zupper =


6∑
n=1


anx
(n−1)/2, Zlower =


6∑
n=1


bnx
(n−1)/2 (8.5)
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A720 NLF0416


Variable Lower Upper Lower Upper


rleup 0.0085 0.0126 0.0055 0.0215


rlelo
0.0020 0.0040 0.0055 0.0215


αte 7.0000 10.0000 -2.0000 21.0000


βte 10.0000 14.0000 1.0000 15.0000


Zte -0.0060 -0.0030 -0.0200 0.0200


∆Zte 0.0025 0.0050 0.0000 0.0000


Xup 0.4100 0.4600 0.2875 0.5345


Zup 0.1100 0.1300 0.0880 0.1195


Zxxup -0.9000 -0.7000 -1.0300 -0.4200


Xlo 0.2000 0.2600 0.3060 0.5075


Zlo -0.0230 -0.0150 -0.0650 -0.0500


Zxxlo 0.0500 0.2000 -0.0490 0.8205


Table 17: Parameter ranges for the PARSEC airfoil representation for problems A720


(2 and 3 objs.) and NLF0416 (6 objs.).


Figure 61: PARSEC airfoil parametrization.
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Figure 62: Simulation of the interactive method.


The coefficients an, and bn are determined as function of the 12 geometric
parameters by solving two systems of linear equations, one for each surface.
It is important to note that the geometric parameters rleup/rlelo , Xup/Xlo,
Zup/Zlo, Zxxup/Zxxlo , Zte, ∆Zte, αte, and βte are the actual design variables in
the optimization process. In turn, coefficients an, bn serve as intermediate
variables for interpolating the airfoil’s coordinates, which are used by the
Computational Fluid Dynamics (CFD) solver (we used the Xfoil CFD code
[38]) for its discretization process.


Next, we will show a simulation of the interactive process using NSGA-II


with the Chebyshev relation based on a reference point. We adopted the
following parameters for NSGA-II: a crossover probability of 0.9, a mutation
probability of 1/n (n is the number of decision variables), and the distribu-
tion indices for crossover and mutation were set as 15 and 20, respectively.
A population composed of 60 individuals was employed.


In the first step of the process, we used τ = 0.8 in order to get a global
perspective of the entire Pareto front. As a reference point we employed
the vector zref = [0.007610, 0.005236]. This reference point corresponds to the
evaluation of a reference airfoil shape A720 [111] in both objectives. Then,
NSGA-II was executed for 15 generations. The resulting approximation set
is shown in Figure 62 (denoted by triangles). As can be seen, the reference
point was dominated by almost all solutions in the approximation set. This
illustrates how the relation is able to correctly compare solutions better
than the reference point provided. On the other hand, due the nature of the
objective space of the problem, only 25 solutions, from the total of 60, are
nondominated. Therefore, in this case, the clustering technique to reduce
the size of the approximation set was not needed.


Since the initial reference point was improved, we decided to chose one
solution of the approximation set as the next reference point, namely, the
nearest solution to the ideal point (diamond). For the next execution the
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Figure 63: Airfoil of the most preferred solution from the simulation of the interac-
tive method.


region of interest was reduced to τ = 0.2. Similar to the previous DM


interaction, the next reference point was the nearest solution of PFapprox to
the ideal point. In order to obtain a final approximation to select the most
preferred solution, the region of interest was reduced to a small region using
τ = 0.05. This time NSGA-II was executed for 40 generations. At this stage
only 8 solutions were obtained and the most preferred solution for the DM


was the one with objective values [0.006754, 0.004957]. Figure 63 shows the
airfoils corresponding to the initial reference point and to the most preferred
solution. In this example, an improvement of approximately 11.24% and of
5.32% was attained for the first and second objective, respectively. From a
practical point of view, these improvements are quite significant in increasing
the aerodynamic efficiency of the sailplane.


Figure 62 also shows the PFapprox achieved by NSGA-II with no preferences
during the same number of generations than that used in the interactive
method. As one can expect, the final approximation set obtained articulating
preferences is closer to the ideal point than the one generated with no
preferences. This can be explained by the fact that the incorporation of
preferences concentrate all the function evaluations to improve the region
of interest. On the other hand, when the task is to approximate the entire
Pareto front, some function evaluations are used to approximate regions
outside the region of interest. These are clearly different tasks, and therefore,
a fair performance comparison is not possible. Nonetheless, we want to
emphasize the computational savings of using an interactive approach with
respect to the use of an a posteriori approach, specially when the function
evaluations are expensive in terms of CPU time.


Beside the parameters of the MOEA, the parameters that have to be selected
by the DM are the reference point, τ, and the number of solution to be
visualized. The selection of a new reference point impose a low cognitive
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load since its interpretation is intuitive to the DM. In turn, the parameter τ
can be easily set since it is given in terms of the current range approximation
of the Pareto front.


8.4.2 Airfoil Shape Problem with 3 Objectives


Here, we will evaluate the interactive method using two airfoil shape opti-
mization problems with 3 and 6 objectives, respectively. This time, we will
simulate the DM using the Chebyshev achievement function. Specifically, at
each interaction point, the new reference point will be the solution in the
current PFapprox with the best achievement value (which is to be minimized).
For the simulation of the 3-objective problem we used 4 interaction points
with the DM during the search, and for the 6-objective problem we used 3


interaction points. The parameters at each interaction point are shown in
Table 18. The initial threshold for both problems was set to τ = 0.8.


Problem Int. 1 Int. 2 Int. 3 Int. 4


3-obj
Gen 15 35 55 80


τ 0.5 0.2 0.1 0.025


6-obj
Gen 15 35 55 –


τ 0.43 0.18 0.025 –


Table 18: Parameter values at each interaction point.


In order to evaluate the performance of the interactive method, for each
run, the best achievement value of the final PFapprox was measured. As a
reference, we also computed the best achievement value obtained by NSGA-II


with no preferences. The 3-objective problem is a variant of the problem
A720 in which the first and third objectives are objectives f1 and f2 of the
2-objective problem of the previous section. The second objective is defined
as


• Min f2 = CD/CL,
s.t. CL = 0.86,Re = 1.63× 106, M = 0.1.


The bounds for the variables are the same described in Table 17. For this
problem, we used the vector [0.007610, 0.005895, 0.005236] as our initial ref-
erence point. The results for the 3-objective problem are shown in Table 19.
As can be seen, both approaches yield achievement values results less than
zero, which means that the reference point was improved in all cases. In
addition, as expected, the interactive approach obtained better results than
the approach with no preferences articulated. The solution with the best
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Best Median Worst Std. dev.


Preferences -0.2196 -0.2111 -0.1982 0.0047


No prefs. -0.2183 -0.2020 -0.1816 0.0101


Table 19: Statistics of the achievement function values obtained with preferences
and without them in the 3-objective problem.


Figure 64: Airfoil with the best achievement value and the reference airfoil for the
problem with 3 objectives.


achievement value was [0.006772, 0.005244, 0.004960]. Objectives were im-
proved by 11.01%, 11.04% and 5.27%, respectively. The airfoil of this solution
is presented in Figure 64, along with that of the reference point.


8.4.3 Airfoil Shape Problem with 6 Objectives


The 6-objective problem was taken from [120]. The goal of this problem is to
optimize the airfoil shape of a low-speed unmanned aerial vehicle to cover a
range of different flight condition (e.g., take-off and cruise). The 6 objectives
to be minimized are described in Table 20, and the bounds for the variables
are presented in Table 17.


As a reference point we employed a representative profile of the NLF series,
namely the NLF0416 [105],


zref = [0.00523, 0.00595, 0.01048, 0.33373, 0.90135, 2.93083].


The results presented in Table 21 show that for this problem the ref-
erence point was not improved by any of the two approaches. However,
the interactive approach found better airfoils than those obtained by the
approach without preferences. The solution corresponding with the best
achievement value found by the interactive approach is the following:
[0.004962, 0.007022, 0.007275, 0.346273, 0.920056, 2.929393].
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Objective Comments


f1 = Cd Cl = 0.5, Re = 4× 106, Ma = 0.3


f2 = Cd/C
3/2
l Re = 4× 106, Ma = 0.3


f3 = C2m0
Re = 4× 106, Ma = 0.3


f4 = 1/C2max Re = 4× 106, Ma = 0.3


f5 = 1/C2l α = 5◦, Re = 2× 106, Ma = 0.15


f6 = 1/xtr α = 5◦, Re = 2× 106, Ma = 0.15


Table 20: Objectives of the airfoil design problem with 6 objectives.


Best Median Worst Std. dev.


Preferences 0.0047 0.0473 0.0914 0.0183


No prefs. 0.0157 0.2506 0.4787 0.1480


Table 21: Statistics of the achievement function values obtained with preferences
and without them in the 6-objective problem.


This solution improves objectives f1, f3 and f6 by an amount of 5.12%,
30.58% and 0.04%, respectively. The airfoil of this solution is presented in
Figure 65. Since this problem has local Pareto fronts, we believe that this
feature avoids improving the reference point. For this reason, in the next
section we analyze the relation of the convergence and the size of the Region
of Interest (ROI) in the presence of several local Pareto fronts.


Figure 65: Airfoil with the best achievement value and the reference airfoil for the
problem with 6 objectives.
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Figure 66: Ranks generated using the
central-guided Chebyshev
preference relation on
a population of Pareto-
nondominated solutions.
Best ranked solutions are
located in the central region
of the Pareto front.


8.5 APPROXIMATING THE ENTIRE PARETO FRONT USING THE CHEBYSHEV
RELATION


In contrast to the previous section, here we propose the use of the Chebyshev
relation to approximate the whole range of the Pareto front as it is usual in
the field of evolutionary multiobjective optimization. Although, in general,
the number of points of a discrete approximation of the Pareto front increases
exponentially with the number of objectives, there are some particular
problems in which this is not the case. Those problems are called degenerate
problems [59] since their Pareto front has less than k− 1 dimensions (i.e., the
expected dimensionality of a k-objective MOP), even if the feasible objective
function space is a k-dimensional object. In this case, while the number of
objectives can be large, the number of points to represent the Pareto front
can be affordable. An example of a degenerate problem is the DTLZ5(I,M)


problem [99]. This problem has M objectives, however, its Pareto front is an
(I− 1)-dimensional object (I < M).


As previously mentioned, the Chebyshev relation can help to rank so-
lutions considered as incomparable by the Pareto dominance relation. Fig-
ure 66 shows the distribution of the ranks assigned to a set of Pareto-
nondominated solutions by the nondominated sorting coupled with the
central-guided Chebyshev relation. As can be seen, solutions located in the
central region of the Pareto front obtain the best ranks, while the solutions
at the extreme portions of the Pareto front have the worst ranks. In addition,
since the reference point is automatically set in the central-guided relation,
we believe that this relation is particularly suitable to approximate the entire
Pareto front in many-objective problems.


As we saw in the previous section, the proposed preference relation can
be used to concentrate the search on a small subset of the entire Pareto front.
However, in some situations we want to discover the whole Pareto front in
order to learn about the problem, i.e., to understand the structure of the
possible set of solutions, the degree of conflict and the trade-offs among the
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objectives. In order to approximate the entire Pareto front, we suggest to
use the central-guided Chebyshev relation to find the entire Pareto front.
We could start the search using a small value of τ so that the population
could converge quickly to a reduced region in the central part of the Pareto
front. This way, we would avoid the problem of having a large proportion of
Pareto-nondominated solutions during the first generations of the search.
Once a Pareto optimal solution has been found, we could use a large value
of τ to distribute the solutions along the entire Pareto front since all the
solutions in the Pareto front would be equally ranked. However, in general,
it is difficult to determine if the population has reached the Pareto optimal
front or, at least, if there is no progress towards the Pareto front [84, 118].
Instead of introducing a new mechanism to determine if the MOEA should
be stopped, we adopted an scheduling scheme to define the value of τ. That
is, at the beginning of the search a small value of τ is adopted, and such
value is gradually increased so that, at the end of the search it reaches a
value of τ = 1 (i.e., the usual Pareto dominance relation) in order to find
solutions over the whole Pareto front. A gradual increment of the value of
τ may help to deal with situations in which the MOEA reaches local Pareto
optimal fronts. There are many possibilities to update the value of τ at each
generation t. In this thesis we propose increasing τ according to the function:


τt =


(
t


gmax


)p
, (8.6)


where t is the current generation, gmax is the total number of iterations,
and p > 0 is a constant that determines how fast the value of τ is increased.
Figure 67 shows some possible values for p. In some way, p controls the
proportion of the search using a small τ. For example, if we use a large value
of p, then during most of the search a small value of τ will be adopted. On
the other hand, with a small value of p, a small τ will be used only during
the few initial generations. Additionally, in both of these cases, the value of
τ will change from a small value to 1 in only a few generations.


In order to deal with a wide range of MOPs, we recommend a value of
p = 2.


The Chebyshev preference relation has some advantages over other rela-
tions proposed to deal with many-objective optimization problems. All the
relations presented in Chapter 4 only emphasize a region of the Pareto front.
However, the location and size of that region is fixed by the nature of the
relation. Furthermore, as pointed out in [77], in some cases this region is
far from the central part of the Pareto front. In contrast, the central-guided
Chebyshev relation naturally converges towards the central part of the
Pareto front, and the size of the emphasized region can be easily modified
during the search.
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Figure 67: Growth of the normalized threshold, τ, with respect to the current
generation.


8.6 EVALUATION OF THE CHEBYSHEV RELATION FOR APPROXIMATING THE
ENTIRE PARETO FRONT


In the next results we employed the central-guided Chebyshev relation with
a value p = 2 for updating the value of τ.


Some studies [67, 61, 117, 92] have shown that NSGA-II and SPEA2 present
scalability problems when the number of objectives is increased. For this
reason, we selected these algorithms in order to investigate if the Cheby-
shev relation improves their convergence. Furthermore, we can show that
the Chebyshev preference relation can be implemented in MOEAs with an
archive or without it. Therefore, the comparative study includes four MOEAs,
namely, NSGA-II, SPEA2 and their respective counterparts using the Chebyshev
preference relation.


In the case of NSGA-II we used the following standard parameter values: a
crossover probability of 0.9, a mutation probability of 1/n (n is the number of
decision variables), and the distribution indices for crossover and mutation
were set as 15 and 20, respectively.


For SPEA2, we adopted the following standard parameter values: an indi-
vidual crossover probability of 1, an individual mutation probability of 1, a
variable crossover probability of 0.5, a mutation probability of 1/n, and a
variable swap probability of 0.5.


In both algorithms we used a population of 200 individuals, and a total
number of generations of 200. For all the configurations we carried out 30


runs for each MOEA. The results presented were averaged over the total of
this number of runs.
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8.6.1 Test Problems Employed


First, we used the DTLZ5(I,M) degenerate problem in order to show how, in
spite of having a low dimensional Pareto front, some Pareto-based MOEAs
have difficulties to achieve a good approximation of the Pareto front. Ad-
ditionally, if we use I = {2, 3} for DTLZ5(I,M), it is possible to approximate
the Pareto front with a reasonable number of points. In a similar way, it is
also possible to visualize the approximation set using a 2D or a 3D plot. In
the next set of experiments we used M = {3, 4, 6, 8, 10, 12} objectives and we
adopted a fixed value of I = 3.


We adopted four scalable problems with different characteristics to assess
the Chebyshev relation. These test problems include some having nonconvex
or disconnected Pareto fronts. Three problems are taken from the DTLZ test
suite [34]. Problems DTLZ1 and DTLZ2 were selected for having a nonconvex
Pareto front and an easy way to compute the generational distance without
using a discretization of the Pareto optimal front. DTLZ7 was selected to test
the behavior of the Chebyshev relation when it is not clear how to determine
the central point of the Pareto front. The last problem was selected from
the WFG test suite [59]. We chose problem WFG6 because it has a symmetric
Pareto front which allows us to easily measure some quality indicators
even with a high number of objectives. Like most of the WFG problems,
WFG6 is a nonseparable one, which makes it harder than the DTLZ problems
considered in this work. Additionally, we thought that it would be a good
opportunity to test the WFG test suite in many-objective problems, since
most of the works found in the literature [67, 73, 94, 117, 36, 92] are focused
on the DTLZ problems. The incorporation of new test suites could lead us to
better understand the sources of difficulty of some many-objective problems.


In all MOPs, we employed a similar configuration, namely, k− 1 position-
related variables. In order to maintain the test problem’s complexity for
every number of objectives, we fixed the number of distance-related variables
to 5 for DTLZ1, and for the other test problems to 20. In our experiments we
used 3, 4, 6, 8, 10 and 12 objectives in each test problem.


8.6.2 Quality Indicators Employed


In some many-objective problems it is not possible to generate a discrete
representation of the Pareto optimal front. Therefore, we need to resort to
indicators in which knowing the Pareto optimal front is not necessary.


In order to evaluate the convergence achieved by the MOEAs we used
the generational distance (GD), or a similar indicator. We took advantage
of the geometry of DTLZ1 and DTLZ2 to compute the generational distance.
The nondominated vectors of DTLZ1 and DTLZ2’s Pareto front have the
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property
∑k
i=1 zi = 0.5 and


∑k
i=1 z


2
i = 1, respectively. This way, we can


compute the generational distance using GD = ((
∑k
i=1 zi)/|P|) − 0.5 and


GD = ((
∑k
i=1 z


2
i )/|P|) − 1, respectively. In DTLZ7, we used the value of the


auxiliary function g(x). This function is used to evaluate DTLZ7’s objective
functions. The Pareto optimal front of DTLZ7 is achieved when g(x) = 0. Thus,
we compute the value of this function as a way to measure the convergence
in DTLZ7.


In order to directly compare the performance of the MOEAs in all the test
problems, we used a binary indicator, namely, the additive ε-indicator [130].
This indicator is defined as


Iε+(A,B) = inf
ε∈R


{∀z2 ∈ B ∃z1 ∈ A : z1 �ε+ z2}


for two nondominated sets A and B, where z1 �ε+ z2 iff ∀i : z1i 6 ε+ z2i ,
for a given ε. In other words, Iε+(A,B) is the minimum value such that
aggregated to any objective vector in B, then A � B. In general, Iε+(A,B) 6=
Iε+(B,A), so we have to compute both values. The smaller Iε+(A,B) and
larger Iε+(B,A), the better A over B.


Finally, to assess both convergence and diversity, we adopt the hypervol-
ume indicator. As recommended in [117], for DTLZ5(I,M), DTLZ2 and WFG6,
the reference point to compute the hypervolume was zhyp = 1.1k, whereas
for DTLZ1, zhyp = 0.7k. The results presented are normalized with respect to
the hypervolume achieved by the Pareto optimal set.


8.6.3 Assessing Convergence


The plot shown in Figure 69 presents the results of the generational distance
(GD) when varying the number of objectives. Judging by the values, it is
evident that, on the one hand, the convergence of the original MOEAs is
considerably degraded when the number of objectives is high. On the other
hand, the MOEAs using the central-guided Chebyshev relation yield a good
convergence in terms of GD even when the number of objectives is increased.


From the hypervolume results presented in Figure 68 one can confirm that
Pareto-based MOEAs fail to converge, whereas their Chebyshev counterparts
are less affected by the number of objectives. Although the hypervolume
values obtained by the Chebyshev-based MOEAs slowly decreases with the
number of objectives, we can still say that the resulting PFapprox is well-
distributed along the Pareto front.


The results of the ε-indicator are presented in the matrices of the subplots
of Figs. 70, 81 and 82. We can interpret these results as follows. Iε+(A,B) is
the subplot located in row A, and column B of the matrix. The boxes in each
subplot depict the results for each number of objectives. As we can see, the
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Figure 68: Hypervolume results for
problem DTLZ5(I,M) with
different numbers of objec-
tives. The results are aver-
aged over 30 runs.
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Figure 69: Generational distance for
problem DTLZ5(I,M) with
different numbers of objec-
tives. The results are aver-
aged over 30 runs.


results of the ε-indicator confirm that the original MOEAs are outperformed
by their counterparts using the Chebyshev preference relation. In particular,
the PFapprox sets obtained by NSGA-II and SPEA2 are practically dominated by
the Chebyshev-based MOEAs since the values Iε+(Ch-MOEA, MOEA) are
almost zero. Contrarily, a large ε value needs to be added to the PFapprox sets
of the Chebyshev-based MOEAs in such a way that they can be dominated
by the PFapprox sets of the Pareto-based MOEAs.


Figs. 71 and 72 present the results of the online GD (i.e., the GD values
obtained at each generation) in problem DTLZ1 with 3 and 6 objectives. As
we can see, even with 3 objectives, each MOEA using the Chebyshev relation
achieves a better GD with respect to its original counterpart. This difference
in GD is remarkably stressed for 6 objectives (compare Figs. 71 and 72). It is
worth noting that the convergence of the MOEAs with the Chebyshev relation
is maintained almost unaltered when the number of objectives is increased
from 3 to 6. The progress of the generational distance when the number of
objectives is increased can be better appreciated in Figure 73. From this plot
it is clear to see that the convergence ability of the original MOEAs decreases
quickly. One important fact to note in Figure 72 is that, starting from a
certain generation number, SPEA2’s GD value diverges when the number
of generations increases. This behavior was also observed for 8, 10 and
12 objectives. For those numbers of objectives, NSGA-II presented the same
behavior. In the next section we will explain a possible reason for this fact. In
problem DTLZ2 we can appreciate a similar situation, although with a high
number of objectives it is possible to note a degradation in the convergence
ability of the Chebyshev-based MOEAs (see Figs. 75 and 76). In terms of the
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Figure 70: Results of the ε-indicator for problem DTLZ5(I,M). Each subplot presents
the values for 3,4,6,8,10 and 12 objectives, respectively.
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Figure 71: Online generational dis-
tance for problem DTLZ1 us-
ing 3 objectives. The results
are averaged over 30 runs.
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Figure 72: Online generational dis-
tance for problem DTLZ1 us-
ing 6 objectives. The results
are averaged over 30 runs.


hypervolume obtained, we can also conclude that the performance observed
by the Chebyshev-based MOEAs is not as good as the one noted in DTLZ1.


Regarding DTLZ7, Chebyshev-based MOEAs also achieve an important
convergence scalability in terms of the generational distance. However, in
this problem the Chebyshev-based SPEA2 achieved a better convergence than
the Chebyshev-based NSGA-II since, as can be seen in Figure 79, the value of
g(x) achieved by SPEA2 is very close to zero, the optimal value.


The results of the ε-indicator are presented in the matrices of the sub-
plots of Figs. 80, 81 and 82. As we can see, the results of the ε-indicator
agree with those of the generational distance. That is, each MOEA is out-
performed by the version that uses the Chebyshev preference relation. In
addition, we can see that the performance of the Pareto-based MOEAs de-
creases with the number of objectives. That is, the values for each subplot
Iε+(MOEA,Ch-MOEA) tend to increase from 3 to 12 objectives. In DTLZ1,
DTLZ2 and DTLZ7, the difference in favor of the Chebyshev MOEAs is large. For
instance, in DTLZ7, the values Iε+(Ch-MOEA, MOEA) (see Figure 82) are, for
any number of objectives, close to zero. In contrast, many of the worst values
Iε+(MOEA, Tch-MOEA) are above 10. Like with GD, with respect to the ε-
indicator the Chebyshev-based NSGA-II outperformed the Chebyshev-based
SPEA2 in DTLZ2, but in DTLZ7 the opposite result is obtained.


8.6.4 Dominance Resistant Solutions in DTLZ Problems


By analyzing some plots and performance indicator results we hinted that
the divergence problems of the Pareto-based MOEAs when the number
of generations increases was due to the so-called Dominance Resistant
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Figure 73: Generational distance for
problem DTLZ1 with differ-
ent numbers of objectives.
The results are averaged
over 30 runs.
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Figure 74: Generational distance for
problem DTLZ2 with differ-
ent numbers of objectives.
The results are averaged
over 30 runs.
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Figure 75: Online generational dis-
tance for problem DTLZ2 us-
ing 3 objectives. The results
are averaged over 30 runs.
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Figure 76: Online generational dis-
tance for problem DTLZ2 us-
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Figure 77: Hypervolume results for
problem DTLZ1 with differ-
ent numbers of objectives.
The results are averaged
over 30 runs.
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Figure 78: Hypervolume results for
problem DTLZ2 with differ-
ent numbers of objectives.
The results are averaged
over 30 runs.
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Figure 79: g(x) values for problem DTLZ7 with different numbers of objectives. The
results are averaged over 30 runs.
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Figure 80: Results of the ε-indicator for problem DTLZ1. Each subplot presents the
values for 3,4,6,8,10 and 12 objectives, respectively.
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Figure 81: Results of the ε-indicator for problem DTLZ2. Each subplot presents the
values for 3,4,6,8,10 and 12 objectives, respectively.
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Figure 82: Results of the ε-indicator for problem DTLZ7. Each subplot presents the
values for 3,4,6,8,10 and 12 objectives, respectively.
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Figure 83: Results of the ε-indicator for problem WFG6. Each subplot presents the
values for 3,4,6,8,10 and 12 objectives, respectively.
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Figure 84: Illustration of some dominance resistant solutions (DRSs) in problem
DTLZ2.


Solutionss (DRSs). Dominance resistant solutions are those with a poor
value in at least one of the objectives, but with near optimal values in the
others. Figure 84 shows an example of DRSs solutions in DTLZ2. Although
the pointed group of solutions in the figure have poor values in objective
f3, they are nondominated solutions because they have values close to zero
in the objectives f1 and f2. Dominance resistant solutions were first noted
by Ikeda et al. [71], and Hanne [57]. These authors suggested that DRSs may
easily appear in problems with many objectives. Deb et al. [34] and Huband
et al. [59] also provided a similar assumption.


Next, we present experimental evidence that shows that DRSs are the
culprit of the scalability problems in the DTLZ test problems considered in
this chapter. In the DTLZ test problems, DRSs are located nearby each of the
axes of the objective space (as shown in Figure 84). The reason for this is the
shape of the feasible space in the DTLZ problems. The left plot in Figure 85


shows the feasible space of DTLZ2 with two objectives.
In order to avoid DRSs we suggest to introduce a slight slope in the edges


of the feasible space. That is, we want a feasible space like the one presented
in the plot on the right-hand side of Figure 85. To do so, we only have to
add a second term to each objective of DTLZ1, DTLZ2 and DTLZ7. In the case
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Figure 85: Feasible objective function space of DTLZ2 (left) and the extended DTLZ2


(right) and 20 000 solutions generated at random. Both problems have
the same Pareto optimal front. However, the extended version avoids
dominance resistant solutions.


of DTLZ2 we obtain the extended DTLZ2ext problem defined in Eq. 8.7. It is
possible to introduce a similar extension to DTLZ1 and DTLZ7.


Min f = [f1, . . . , fk], where


f1(x) = ρ · g(xM) + [1+ g(xM)] cos(θ1) . . .


cos(θM−2) cos(θM−1),


f2(x) = ρ · g(xM) + [1+ g(xM] cos(θ1) . . .


cos(θM−2) sin(θM−1),
...


...


fk−1(x) = ρ · g(xM) + [1+ g(xM)] cos(θ1) sin(θ2),


fk(x) = ρ · g(xM) + [1+ g(xM)] sin(θ1)


where g(xM) =
∑
xi∈xM(xi − 0.5)2,


θi = xiπ/2,


ρ is a small real number, and


0 6 xi 6 1, for i = 1, 2, . . . ,n.


(8.7)


Figs. 86 and 87 show the online GD values for NSGA-II and SPEA2 using dif-
ferent numbers of objectives in problems DTLZ1ext and DTLZ2ext, respectively.


As those figures clearly show, after a few generations, for every number
of objectives both MOEAs were able to approximate very accurately the true
Pareto front. We can only note a slight deterioration in convergence when
the number of objectives is increased. We believe that this deterioration
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Figure 86: Online generational distance for NSGA-II and SPEA2 using the extended
version of DTLZ1. The extended version removes dominance resistant
solutions.
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Figure 87: Online generational distance for NSGA-II and SPEA2 using the extended
version of DTLZ2. The extended version removes dominance resistant
solutions.
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is caused by the large proportion of nondominated solutions in the first
population. Since the extended DTLZ problems do not promote DRSs, we
can conclude that the main source of difficulty when scaling the number of
objectives of the DTLZ test problems is the presence of dominance resistant
solutions. Other DTLZ test problems not included in this chapter have a
similar feasible search space to that of DTLZ1 or DTLZ2. Therefore, we can
expect that other DTLZ test problems will also have DRSs.


NSGA-II and SPEA2 are more sensitive to DRSs because of their internal
mechanism to preserve extreme solutions in the populations. That is, the
crowding operator of NSGA-II always keeps the best solutions in each of
the objectives. In turn, SPEA2’s archive truncation method guarantees the
preservation of boundary solutions. Although in most of the MOPs these
mechanisms represent a benefit, in some other problems, like those of the
DTLZ test suite, this mechanism may promote DRSs and hinder converge
towards the Pareto optimal front. In fact, these solutions are copied as many
times that at the end of the search, they have replaced other nondominated
solutions closer to the Pareto front. This explains why the GD values of
NSGA-II and SPEA2 get worse as the number of generations increases.


On the other hand, the Chebyshev relation compares most of the solutions
using the achievement function. Thus, although DRSs are equally ranked
by the Pareto relation, the Chebyshev relation ranks DRSs worse than other
nondominated solutions located nearby the Pareto front. As a result, as it
was shown in the experiments using the original DTLZ test problems, the
Chebyshev relation can effectively discard dominance resistant solutions.


We have to note however, that, in general, DRSs might not be the main
source of difficulty when the number of objective is increased.


8.6.5 Evaluation using WFG6


With respect to the problem WFG6, the Chebyshev-based MOEAs outper-
formed their Pareto-based counterparts only marginally for some numbers of
objectives. For instance, the ε-indicator values (see Figure 83)
Iε+(SPEA2,Ch-SPEA2) for 6,8,10 and 12 objectives are slightly greater than
those of
Iε+(Ch-SPEA2, SPEA2). In contrast, in terms of the hypervolume indicator,
the results shown in Figure 88, indicate that the Chebyshev-based MOEAs
clearly outperformed the original MOEAs. In addition, we can see that the
performance with respect to the hypervolume does not degrade with an
increasing number of objectives.


The problem WFG6 has a feasible objective space very similar to that of
the extended DTLZ2 (see plot on the right-hand side of Figure 85). Therefore,
it does not present DRSs like those observed in the DTLZ problems. Thus, it
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Figure 88: Hypervolume results for problem WFG6 with different numbers of objec-
tives. The results are averaged over 30 runs.


seems that the difficulty of WFG6 is not related to the number of objectives.
We believe that the main difficulty of some WFG problems is their nonsepa-
rability, which is the main difference that they have with respect to the DTLZ


problems.1 Additionally, although we used 20 distance-related variables in
all the problems studied, to approach the Pareto optimal front in the WFG


problems is harder than in the DTLZ problems, even with 2 or 3 objectives. In
the following, we will show an experiment using only 2 objectives. Figure 89


shows the solutions found by the Pareto-based NSGA-II and the Chebyshev-
based NSGA-II using a threshold of zero (i.e., we only look for the solution in
the central part of the Pareto front). On the one hand, one might expect that
generating only one solution would be much faster than generating a set
of them. However, as the figure shows, the single solution generated using
the Chebyshev relation is barely ahead of the solutions generated by the
Pareto relation. This implies that WFG6 is difficult even with 2 objectives. For
this reason we believe that the growth of the proportion of nondominated
solutions when the number of objectives increases is not the main difficulty
in problem WFG6, but its nonseparability. Therefore, we expect that MOEAs
that carry out many single objective searches (e.g., [61]) will have problems
with WFG6 when adopting many objectives.


In addition, we can also see in Figure 89, that even if the number of
evaluations is considerably increased, the performance using both preference
relations does not drastically improve the results obtained. This might help
to explain why the improvement achieved by the Chebyshev-based MOEAs
with respect to their Pareto-based counterparts is only marginal.


1 It is worth remembering that, as pointed out in [59], all the DTLZ problems are separable.







8.7 final remarks 145


0 0.2 0.4 0.6 0.8 1
0


0.2


0.4


0.6


0.8


1


f
1


f 2


 


 


Pareto, 40 000 evals


Pareto, 400 000 evals.


Tchebycheff, 40 000 evals.


Tchebycheff, 400 000 evals.


Optimal Pareto front


Figure 89: Approximation set obtained using the Pareto dominance and Chebyshev
dominance relation (threshold of zero) with both 40 000 and 400 000


evaluations.


8.7 FINAL REMARKS


In this chapter, we have proposed a new preference relation based on an
achievement scalarizing function. The purpose of the new preference relation
is twofold. On the one hand, it offers an easy approach to integrate decision
maker’s preferences into a MOEA without modifying the original structure
of the MOEA. On the other hand, the proposed reference relation is intended
to deal with many-objective problems.


The interactive optimization process proposed was evaluated using an
airfoil shape design problem. From solving that problem we can see that
setting the parameters of the method represents a low cognitive load.


The results regarding the use of the central-guided relation to approximate
the entire Pareto front showed that the MOEAs used in this study considerably
improved their convergence ability by using the proposed preference relation
in most of the test problems considered. Besides outperforming their Pareto-
based counterpart, the experiments revealed that the Chebyshev relation
is less affected by the increment in the number of objectives. In a detailed
analysis of these results we concluded that the main source of difficulty
when increasing the number of objectives in the DTLZ problems considered
in this chapter is the presence of dominance resistant solutions. We also
showed that the Chebyshev relation was successful in discarding this type of
solutions. However, in the test problem WFG6, the Chebyshev-based MOEAs
marginally outperformed the Pareto-based versions with respect to the







146 a new preference relation to deal with many-objective problems


ε-indicator. The experimental results suggest that the main difficulty of
the WFG6 problem is not the increase of the number of objectives, but its
nonseparability, which is present even in problems with 2 or 3 objectives.
In this sense, we recommend using the DTLZ test suite to test the ability of
a MOEA to deal with dominance resistant solutions (specially with a high
number of objectives).
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9.1 CONCLUSIONS


In this thesis we have proposed several techniques to deal with problems
with a large number of objectives (many-objective problems). Those


techniques can be classified in two main classes: 1) reduction of the number
of objectives of the problem during the search process or, a posteriori, and 2)
use of new preference relation to generate a finer solution ordering. In the
next two sections we will give a brief summary of the techniques that have
been proposed in this thesis followed by the conclusions obtained by their
experimental evaluation.


9.1.1 Objective Reduction During the Search or After It


1. Regarding this kind of approach we proposed two algorithms to
reduce the number of objectives given a Pareto front approximation
of a MOP. The underlying idea of these objective reduction algorithms
is to identify the nonconflicting objectives (or nonconflicting to some
degree) in order to discard them. Those algorithms can be directly
used in the decision making process, i.e., once an approximation of
the Pareto front has been found.


From the experimental study of these two algorithms we conclude that,
although some conflict may exists among all the objectives of a prob-
lem, there are some objectives with a small contribution to the structure
of the optimal Pareto front. In other words, the removal of those ob-
jectives represents small changes in the final Pareto front in terms of
some quality indicator. The experimental assessment of the objective
reduction algorithms revealed that they successfully identified the
nonredundant objectives. In addition, they have some advantages over
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similar algorithms. First, our approaches have a lower time complexity.
This characteristic is important if we want to integrate an objective
reduction algorithm during the search since the efficiency of such inte-
gration depends on the complexity of the reduction technique. Second,
the proposed reduction techniques showed a competitive performance
with respect to two other similar proposals.


From a general point of view, the removal of those objectives can help
to the problem designer or the decision maker to gain knowledge
about the relation and importance of the objectives according to the
conflict. With regard to the decision making process, the removal of the
nonconflicting objectives eases the visualization of the approximation
of the Pareto front. In cases with a moderate number of objectives (i.e.,
4 to 7), the reduced objective set might be visualized using traditional
3D plots.


2. Later on, we incorporated one of those algorithms into a MOEA in order
to improve its search ability to approximate the entire Pareto front.
We designed two schemes in which the objective reduction algorithms
are used following different approaches. In one of the schemes the
objectives are gradually reduced, and at the end of the search all the
objectives are used again in order to cover the entire Pareto front.


From this proposal we can conclude that i) the overhead of the objective
reduction algorithms is less than the computational savings by omitting
some objectives, and ii) that the online objective reduction helps to
remedy the limitation of Pareto optimality for dealing with many-
objective problems. The computational savings represent an important
advantage for solving real-world problems with expensive objective
functions. Additionally, the use of a small set of objectives during the
search makes possible the adoption of expensive ranking schemes (e.g.,
those based on the hypervolume indicator) in problems with a high
number of objectives.


In an effort to minimize the loss of information by removing some
objectives, we proposed a second scheme in which the objectives are
not removed, but the set of objectives is partitioned to form subspaces
according to their degree of conflict. Thus, this scheme allows that all
the objectives are used during the search, decreasing this way, the loss
of information. We experimented with different partition strategies,
and we conclude that the partitions based on conflict information
achieve better results than those by using other partition strategies.
Another important finding is that is more important to keep small
subspaces although objectives in highly conflict are placed in different
subspaces.
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9.1.2 New preference relations


In this approach we first carried out a comparative study of different prefer-
ence relations that have been used to cope with many-objective problems.
The main goal of that study was to serve as a starting point to propose a
new preference relation.


The comparative study of the preference relations revealed that, in spite
of the fact that some preference relations contribute to converge faster to
the Pareto front than the Pareto dominance relation, they also stress the
generation of solutions far from the knee region (i.e., the middle region of
the Pareto front). This fact limits the applicability of these relations since, in
the general case, it is commonly assumed that the decision maker prefers
solutions on the knee region.


According to our experience, a good preference relation to deal with many
objective problems should have the following properties:


1. It should be compatible with the Pareto dominance relation. That is, if
a given solution is better than other in terms of the Pareto dominance
relation, it must also be better using the alternative preference relation.


2. Its complexity should not be exponential with respect to the number
of objectives.


3. It should allow the user to determine the size and location of the
region of interest.


4. The number of levels in which a set of solutions is ranked should
remains constant as much as possible when the number of objectives
is increased.


Based on the discoveries of that study we designed a new preference rela-
tion to compare solutions in objective space. Besides the ability of comparing
nondominated solutions, the proposed preference relation was designed to
incorporate preferences.


The new preference relation divides the objective function space into two
subspaces. The solutions of one of these subspaces are compared adopting
the usual Pareto dominance relation, while the other is compared using the
achievement function. Besides finding the optimal solution of the achieve-
ment function, the new preference relation allows us to find a set of solutions
around such an optimal solution. Additionally, the size and range of that
set can be regulated by the DM. In order to incorporate preferences into a
MOEA, we only need to change the Pareto dominance checking functions by
the new preference relation.
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The preference relation was first incorporated into an interactive process,
in which DM’s preferences are incorporated iteratively during the search
process. Then, the preference relation was integrated into a MOEA but in an
a priori fashion.


The proposed interactive optimization process was evaluated using an
airfoil shape design problem. From solving that problem we can see that
setting the parameters of the method represents a low cognitive load for the
DM.


The results regarding the use of the a priori approach to approximate the
entire Pareto front showed that the MOEAs used in this study considerably
improved their convergence ability by using the proposed preference relation
in most of the test problems considered. Besides outperforming their Pareto-
based counterpart, the experiments revealed that the Chebyshev relation
is less affected by the increment in the number of objectives. In a detailed
analysis of these results we concluded that the main source of difficulty
when increasing the number of objectives in the DTLZ problems considered
in this thesis is the presence of dominance resistant solutions. We also
showed that the Chebyshev relation was successful in discarding this type
of solutions.


9.2 FUTURE WORK


Currently, both objective reduction algorithms use a linear similarity mea-
sure (i.e., correlation coefficient) to estimate the conflict among objectives.
However it would be interesting to try a non-linear similarity measure (e.g.,
kernel methods or correntropy [75]) to investigate if the effectiveness of the
techniques is improved in a significant way.


In all the proposed schemes that use conflict information during the search
there is an important element that could improve the performance of a MOEA.
That element is the mechanism to populate the Pareto front when only some
portion of the Pareto has been discovered. In the current implementation
of our proposed schemes we only use all the objectives in order to fill the
gaps of the Pareto front. However, it would be interesting to experiment
with specialized methods to reconstruct the Pareto front from some locally
nondominated points. For instance, the method could be hybridized with a
local search method.


Regarding the Chebyshev preference relation, one possible path of future
research is to add to it the ability to guide the search towards several
reference points given by the decision maker. That way, the decision maker
could simultaneously explore several regions of interest.
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