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A B S T R A C T

Many problems in engineering involve the simultaneous optimization of
several conflicting objectives. In most cases, multi-objective optimization prob-
lems (MOPs) don’t have a unique optimal solution but a set of solutions rep-
resenting different trade-offs amongst the objectives.

Multi-objective evolutionary algorithms (MOEAs) have been very successful in
solving MOPs due to their simplicity and applicability. Most MOEAs use the
Pareto dominance relation as a selection criterion which is effective for 2 or
3 objectives but scales poorly since the proportion of incomparable solutions
that it generates, quickly increases with the number of objectives.

In this thesis we present a MOEA which uses the ∆p quality indicator
in its selection mechanism instead of the Pareto dominance relation. Our
proposed approach is shown to produce competitive results for bi- and tri-
objective problems and shows promising results for problems with many (4
or more) objectives.

R E S U M E N

Muchos problemas de ingeniería requieren la optimización simultánea de
varios objetivos que se encuentran en conflicto. Generalmente, los pro-
blemas de optimización multi-objetivo (POMs) no tienen una solución única
sino un conjunto de soluciones representando diferentes compromisos entre
los objetivos.

Los algoritmos evolutivos multi-objetivo (AEMOs) han sido exitosos en
la solución de POMs debido a su simplicidad y facilidad de aplicación. La
mayoría de los AEMOs utilizan la dominancia de Pareto como criterio de
selección, la cual es efective en problemas con 2 ó 3 objetivos pero no es
escala-ble ya que la proporción de soluciones incomparables que genera
crece rápidamente con el número de objetivos.

En esta tesis presentamos un AEMO que utiliza el indicador de calidad ∆p
en su mecanismo de selección en lugar de la dominancia de Pareto. Nues-
tra propuesta obtiene resultados competitivos para problemas con 2 y 3

objetivos y presenta resultados prometedores para problemas con muchos
(4 o más) objetivos.
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1

I N T R O D U C T I O N

Many engineering problems require the simultaneous optimization of two
or more conflicting objectives. Such problems are called multi-objective opti-
mization problems (MOPs). In most cases, these problems have several optimal
solutions which, in absence of any further information, are all equally good.

Multi-objective evolutionary algorithms (MOEAs) have often been used to
solve MOPs because of their simplicity and wide applicability. Most of these
MOEAs use the Pareto dominance relation to compare solutions in the popu-
lation: Pareto-based MOEAs work well when the MOP has a small number of
objectives but they struggle to solve MOPs with a large number of objectives.

Since Pareto-based MOEAs scale poorly, alternative approaches using other
relations to identify promising solutions have been proposed. Amongst
them, approaches using quality indicators have shown promising results.
Most indicator-based MOEAs rely on the hypervolume indicator because it is
the only known Pareto-compliant unary quality indicator. These approaches
produce good results but at a very high computational cost.

In this thesis, we propose a MOEA which replaces the Pareto dominance
relation with a quality indicator that has some metric properties. Our pro-
posed approach shows competitive results with respect to those obtained
by state-of-the-art MOEAs when dealing with MOPs with a small number of
objectives and promising results when dealing with a larger number of ob-
jectives, while requiring a very reasonable computational cost.

1



introduction

The organization of this thesis is as follows:

• In Chapter 2 we discuss basic concepts of multi-objective optimization
which are required to understand the remainder of this document. A
short review of the most popular multi-objective optimization algo-
rithms is also provided.

• In Chapter 3 a brief introduction to evolutionary computation is pre-
sented. At the beginning of the chapter, the main biological concepts
which inspire evolutionary computation are discussed. Then, the main
components and the basic structure of evolutionary algorithms are de-
scribed. Finally, the main characteristics of MOEAs are discussed.

• Chapter 4 introduces quality indicators as a means to evaluate the
performance of a MOEA. Some representative unary and binary quality
indicators are then briefly described.

• In Chapter 6 we describe a MOEA whose selection mechanism is based
on the minimization of the ∆p quality indicator.

• In Chapter 7 we compare our approach to other state-of-the-art MOEAs

using the quality indicators described in Chapter 4.

• In Chapter 8 we provide some final remarks and some possible paths
for future research.
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2
M U LT I - O B J E C T I V E O P T I M I Z AT I O N

Contents
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Multi-objective optimization algorithms . . . . . . . . . . . 8

Optimization can be defined as the process which seeks the minimum or
maximum value of one or more functions representing the objectives of the
problem. The optimization problems which involve only one objective are
called single-objective optimization problems (SOPs) while those which involve
two or more objectives are called multi-criteria or multi-objective optimization
problems (MOPs).

In SOPs, determining whether one solution is better than another is always
possible and only one optimal value is possible for the objective function.
Most SOPs have a unique optimal solution.

On the other hand, most MOPs don’t have a unique solution which opti-
mizes all the objectives at the same time since there is normally some degree
of conflict among the objectives. Thus, the solution of a MOP if often a set
of values representing different trade-offs among all the objectives of the
problem.

In this chapter, we present some basic concepts of multi-objective opti-
mization, required to understand the rest of this thesis. Additionally, we
also provide a short review of the most popular multi-objective optimiza-
tion algorithms reported in the mathematical programming literature.

3



multi-objective optimization

2.1 basic concepts

Informally, a MOP consists of searching for some decision variable vectors
which optimize a set of objective functions while satisfying the problem’s
constraints.

Definition 1 (Decision variables). The decision variables xi, i = 1, . . . ,n are
the n parameters which will be chosen during the optimization process.

The decision variable vector is represented as

~x = [x1, x2, . . . , xn]
T (2.1)

The set Rn is known as the decision variable space (see Figure 2.1).

Definition 2 (Objective functions). An optimization problem has k > 1 ob-
jective functions which determine how good a given solution is. They are
expressed in terms of the decision variable vector and are often modeled as
a mathematical expression which is represented as fi(~x), i ∈ {1, . . . ,k}.

The objective function vector ~f(~x) : Rn → Rk is defined as:

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]
T (2.2)

The set Rk is known as objective function space (see Figure 2.1).

x1

x2

x3
(a) Decision variable space

f1

f2

(b) Objective function space

~f : Rn → Rk

Figure 2.1.: Search spaces in a MOP

4



2.1 basic concepts

Definition 3 (Feasible set). The feasible set X is implicitly defined by a vector
~g of q > 0 inequality constraints and a vector ~h of r > 0 equality constraints

~g(~x) = [g1(~x), . . . ,gq(~x)]T 6 0 (2.3)
~h(~x) = [h1(~x), . . . ,hr(~x)]T = 0 (2.4)

Definition 4 (Optimization problems). Formally, every optimization prob-
lem can be expressed as:

min
~x∈X

~f(~x) (2.5)

where ~f : Rn → Rk is the objective function vector, ~x ∈ Rn is the decision
variable vector, and X ⊆ Rn is the feasible set.

To solve an optimization problem, we must establish what minimizing a
function means.

For SOPs (k = 1), the relation “less than or equal” (6) allows the com-
parison between different solutions while inducing a total order in R. A
solution ~x∗ ∈ X is optimal if and only if

∀~y ∈ X f(~x∗) 6 f(~y) (2.6)

Using this relation, there may be several different optimal decision variable
vectors but all of them must have the same objective function value.

For MOPs, the Pareto dominance relation originally proposed by Francis
Ysidro Edgeworth [17] and later generalized by Vilfredo Pareto [42] is nor-
mally used to compare different solutions.

Definition 5 (Pareto dominance). Given a MOP and ~x1, ~x2 ∈ X, ~x1 dominates
~x2 (~x1 ≺ ~x2) if and only if

∀i ∈ {1, . . . ,k} fi(~x1) 6 fi(~x2)

∃j ∈ {1, . . . ,k} fj(~x1) < fj(~x2) (2.7)

Pareto dominance doesn’t induce a total order in Rk since some solutions
may be incomparable. Therefore, most MOPs don’t have a unique solution but
a set of incomparable solutions.

5



multi-objective optimization

f2

f1

A

B

C

D

E

Figure 2.2.: Pareto dominance relation

Figure 2.2 illustrates the Pareto dominance relation for a bi-objective op-
timization problem: A ≺ C since A is better according to both f1 and f2,
A ≺ E since A is equal according to f2 but better according to f1, B ≺ E

since B is equal according to f1 but better according to f2, B ≺ D since B is
better according to both f1 and f2, and A and B are incomparable.

Definition 6 (Pareto optimal set). In a MOP, the Pareto optimal set P is defined
as

P = {~x∗ ∈ X | ∀~y ∈ X ~y � ~x∗} (2.8)

Definition 7 (Pareto front). Given a MOP and its Pareto optimal set P, the
Pareto front is defined as:

PF = {~u = (f1(~x), . . . , fk(~x)) |~x ∈ P} (2.9)

Figure 2.3 shows the objective function space for a bi-objective optimiza-
tion problem. The lighter points are all dominated while the darker points
form the Pareto front.

Definition 8 (Ideal and nadir objective vectors). Given a MOP and its Pareto
optimal set P, the ideal objective vector is defined as:

fideal = (min
x∈P

f1(x), . . . , min
x∈P

fk(x)) (2.10)

If the ideal vector objective represents an existing solution, then the objec-
tives aren’t conflicting and the solution of the MOP is unique. Such problems,
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f2

f1

Pareto
Front

Figure 2.3.: Pareto front

however, are not of interest for the purposes of this thesis, since they can be
solved by optimizing separately each of their objectives.

Similarly, the nadir objective vector is defined as:

fnadir = (max
x∈P

f1(x), . . . , max
x∈P

fk(x)) (2.11)

f2

f1

Pareto
Front

fideal

fnadir

Figure 2.4.: Ideal and nadir objective vectors

The ideal and nadir objective vectors provide bounds (Figure 2.4) for the
Pareto front and are often used to normalize objective functions [40]
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2.2 multi-objective optimization algorithms

In the mathematical programming literature, two types of optimization tech-
niques are considered:

1. Deterministic methods

2. Stochastic methods

Many deterministic optimization methods have been proposed in the spe-
cialized literature such as:

• Enumeration methods
This is the simplest optimization algorithm that one can design: all
possible solutions are generated and evaluated in order to find the
Pareto optimal set. Clearly, this sort of approach is inapplicable in
most problems because of its obviously high computational cost, which
quickly makes it prohibitive. This sort of approach can only be used
when dealing with small (discrete) search spaces.

Land and Doig [38] proposed an improvement to this sort of approach
called branch-and-bound. This sort of technique is aimed for discrete
search spaces and is based on a systematic enumeration procedure in
which subsets of solutions are discarded for not being promising for
the search.

• Hill-climbing methods
These methods take an initial solution and then attempt to improve it
through small and systematic changes in one of the decision variables.
The process is repeated until no further improvement can be achieved.

• Classical optimization algorithms
These methods transform the MOP into a single, parametrized objective
function. Then, several optimization runs with different parameter
settings must be performed in order to obtain an approximation of the
Pareto optimal set. Some examples of these methods are:
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– The weighted sum method:
The general idea of this method is to associate each objective
function with a weighting coefficient wi ∈ [0, 1], i = 1, . . . ,k,∑k
1 wi = 1 and minimizing the weighted sum of all the objectives.

Some properties of this method are [40]:

* If all weighting coefficients are positive, then the solution of
the obtained SOP is a Pareto optimal solution for the MOP.

* If the solution of the obtained SOP is unique, then it is a Pareto
optimal solution for the MOP.

* This method can generate every Pareto optimal solution for
convex MOPs.

* This approach cannot generate non-convex portions of the
Pareto front regardless of the weights used.

– The weighted metrics method:
This method scalarizes the objectives by using weighted Minkowski
distances from every solution to the ideal objective vector fideal.
The resulting SOP is:

min
~x∈X

(
k∑
i=1

wi
∣∣fi(~x) − fideal[i]∣∣p

) 1
p

(2.12)

where fideal[i] represents the i-th element of the ideal vector; wi ∈
[0, 1], i = 1, . . . ,k,

∑k
i=1wi = 1 are the weights assigned to each

function; and the parameter p ∈ [1,∞) defines the metric that is
used:

* p = 1: the problem is equivalent to the weighted sum ap-
proach

* p = 2: minimizes a weighted Euclidean distance

* p = ∞: minimizes the weighted Tchebycheff metric. For this
case, the weighted metrics method can generate every Pareto
optimal solution [40].

9
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– The ε-constraint method:
In this method, one of the objectives fl, l ∈ {1, . . . ,k} is chosen to
be minimized while the others are transformed into constraints
bounded by a εj, j ∈ {1, . . . , l− 1, l+ 1, . . . ,k} . Some properties of
this method are [40]:

* The solution of the obtained SOP is weakly Pareto optimal.

* If the solution of the obtained SOP is unique and fi = εi,
i ∈ {1, . . . , l−1, l+1, . . . ,k} then it is a Pareto optimal solution
for the MOP.

* This method can generate every Pareto optimal solution for
the MOPs, but at a high computational cost because of the
many optimizations involved.

– Lexicographic ordering:
In this method, the objectives are ordered according to their im-
portance by the decision maker. Then, the objectives are opti-
mized sequentially from the best to the worst with the optimal
value of each objective being added as a constraint for the fol-
lowing optimizations. The process stops when the k objective
functions have been optimized or if a unique optimal solution is
found. The solution of this method is Pareto optimal for the orig-
inal MOP [40], but will normally correspond to a strongly biased
solution (i. e. , a solution that lies at one extreme of the Pareto
front).

Summarizing, the application of these techniques can be very expensive
or even infeasible if the MOP is, for example, multi-frontal, if it has a discon-
tinuous decision variable space, if it has a discontinuous objective function
space, if it is non-differentiable, etc. In those cases, stochastic methods such
as evolutionary algorithms provide a viable alternative. Multi-objective evo-
lutionary algorithms (MOEAs) do not guarantee finding optimal solutions but
can often find good approximations at a reasonable computational cost. A
more detailed description of evolutionary algorithms is presented in Chap-
ter 3.
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Evolutionary computation consists of stochastic techniques, inspired by
neo-Darwinism, in which evolution is viewed as an optimization process.
These techniques are generically called evolutionary algorithms (EAs).

EAs have been very successful solving optimization problems due to their
following features:

• They don’t need specific knowledge about the problem which implies
that they can be used for many types of problems with relatively little
problem-specific information.

• They can act as effective global optimizers since they are population-
based and are, therefore, less prone to getting trapped in local optima

• They are easy to understand, implement, and parallelize.

• They can be easily hybridized with other optimization techniques (e. g. ,
with mathematical programming techniques).

In this chapter, we present a brief description of evolutionary algorithms,
and how can they be used to solve MOPs.
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3.1 neo-darwinism

Neo-Darwinism has three core components:

• Darwin’s theory of evolution:
Charles Darwin introduced his theory of evolution by natural selection
as an explanation to biological diversity in his book On the Origin of
Species by Means of Natural Selection, or the Preservation of Favoured Races
in the Struggle for Life [14]. According to this theory:

– Individuals in a population are significantly different from one
another.

– Some characteristics of individuals are inheritable.

– The individuals that are better suited to their environment are
more likely to survive and reproduce than those less suited to
their environment.

– Populations change to adapt to their environments. The varia-
tions can accumulate over time to form new species.

• Weismann’s germ plasm theory:
Friedrich Leopold August Weismann proposed his germ plasm theory
as a mechanism for inheritance in Darwin’s theory of evolution. This
theory states that individuals consist of two kinds of cells:

– Germ cells:
These contain inheritable information that cannot be altered by
the abilities acquired during the individual’s life

– Somatic cells:
These are responsible for bodily functions.

• Mendel’s genetics:
The laws of inheritance were derived by Gregor Johann Mendel from
his hybridization experiments in pea plants. Mendel proposed his
laws in the paper Experiments on Plant Hybridization [39]:

12
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1. The Law of Segregation:
During gamete formation, the two alleles of a gene separate so
that each gamete gets only one of them.

2. The Law of Independent Assortment:
Also known as the Inheritance Law, it states that during gamete
formation, alleles of different genes assort independently from
one another.

3. The Law of Dominance:
When an organism has two different alleles for a trait (one allele
being dominant and the other recessive), the dominant allele will
be expressed while the recessive allele will remain hidden.

According to neo-Darwinism, four stochastic processes act upon all species:

1. Reproduction:
Biological process which allows the creation of new individuals.

2. Mutation:
A modification in the genetic information of an organism which can
be inherited by its descendants.

3. Competition:
Interaction between individuals which belong to a community due to
the availability of certain limited resources.

4. Selection:
Process by which the individuals who adapt to their environment are
more likely to survive and reproduce than those who don’t.

3.2 evolutionary algorithms

EAs attempt to mimic evolution by simulating reproduction, mutation, com-
petition, and selection with the aim of solving search and optimization prob-
lems. The basic structure of an EA is shown in Algorithm 3.1.
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Algorithm 3.1 Basic structure of an EA

Generate initial population randomly
Compute the fitness of each individual
repeat

Select a parent-set P based on their fitness values
Apply variation operators to the elements of P to get the offspring set O
Compute the fitness of each individual in O
Produce the new population using the best individuals from P ∪O

or only the elements in O.
until a stopping criterion is met

The main components of an EA are [18]:

1. Encoding:

There are two levels of encoding in EAs (Figure 3.1):

a) Genotype:

The genotype consists of the encoding used to represent to de-
cision variables in the EA. Each individual is represented by a
chromosome which is a data structure containing a group of genes.
Each gene represents a decision variable of the problem and can
be encoded as a binary string, as an integer, as a real number, etc.

b) Phenotype:

The phenotype is the decoded value of the chromosomes into the
decision variable space of the problem.

Genotype


Chromosome︷ ︸︸ ︷

1 0 1 1 0 1 1 0︸ ︷︷ ︸
Gene 0

15︸︷︷︸
Gene 1

8.5︸︷︷︸
Gene 2

⇓

Phenotype
{
x1 = 182 x2 = 1.5 x3 = 8.5

Figure 3.1.: Encoding in an EA
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2. Population:
A set of individuals representing solutions to a given problem (Fig-
ure 3.2). It is desirable to keep a good diversity of solutions in the
population.

1 0 0 1 1 0 1 0 Individual 1

0 1 0 1 0 1 0 1 Individual 2
...

...

1 1 0 0 0 0 1 1 Individual n− 1

0 0 1 0 1 1 1 1 Individual n

Figure 3.2.: Population in an EA

3. Fitness function:
The fitness function of an EA assigns a quality measure that relates an
individual to the problem’s objective function and allows its compari-
son to the other individuals in the population.

4. Parent selection mechanism:
This mechanism defines which individuals in the population will be
allowed to reproduce according to their fitness.

5. Variation operators:
These operators introduce new individuals into the population. The
main variation operators in EAs are:

a) Crossover operator (Figure 3.3):
It simulates sexual reproduction in EAs by mixing the genes of
two or more selected parents to create the chromosomes of their
offspring. These operators exploit the most promising areas of
the search space.
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1 0 0 1 1 0 1 0 Parent 1

0 1 0 1 0 1 0 1 Parent 2

⇓

1 0 0 1 0 0 0 1 Child

Figure 3.3.: Example of a crossover operator in EA

b) Mutation operator (Figure 3.4):
It is a slight random variation produced to the genes of an indi-
vidual. Such randomness allows for the exploration of unknown
areas of the search space.

1 0 0 1 1 0 1 0 Parent

⇓

1 0 0 1 0 0 1 0 Child

Figure 3.4.: Example of a mutation operator in EA

6. Survivor selection mechanism:
This mechanism defines which individuals will survive in the popula-
tion at a given time. It normally favors individuals with the highest
fitness values.

Due to the stochastic nature of EAs, good solutions found during a certain
generation could get lost in the next, after applying the variation operators.
To avoid this situation, De Jong [33] proposed an additional mechanism
called elitism which ensures that the best individual in the current popula-
tion will be kept for the following generation.
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3.2.1 Paradigms

There are three main evolutionary algorithms’ paradigms:

• Evolution strategies (ESs):
ESs were proposed by Ingo Rechenberg and Hans-Paul Schwefel [44].
The structure of ESs is described in Algorithm 3.2

Algorithm 3.2 Evolution strategy

Generate initial population randomly
Compute the fitness of each individual
repeat

Select a parent-set P
Apply crossover to create offspring set O
Apply mutation to the elements of O
Compute the fitness of each individual in O
Select the best individuals for the following generation using

(µ, λ)-selection or (µ+ λ)-selection
until a stopping criterion is met

In ESs, individuals are represented as real-valued vectors. The crossover
operator creates one child using 2 or more parents that are randomly
selected with a uniform distribution from a population of µ individ-
uals. The crossover operator is applied λ > µ times to obtain the
offspring set.

The mutation operator is applied to all the generated offspring based
on a Gaussian distribution where the mean (ζ) and the standard devia-
tion (σ2) are required as parameters. Generally, σ2 is modified during
the search to allow for a good exploration at the beginning and a better
exploitation of solutions by the end of the process.

Once the λ offspring have been generated and mutated, the best µ
individuals are deterministically chosen for the following generation.
Two selection schemes are possible:

1. (µ, λ)-selection:
The best µ individuals from the children set are deterministically
chosen.
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2. (µ+ λ)-selection:
The best µ individuals from the union of the parent and children
sets are deterministically chosen. This scheme is implicitly elitist.

• Evolutionary programming (EP):
EP was proposed by Lawrence J. Fogel [22], who used finite state
machines as predictors and then evolved them. The basic structure of
EP is described in Algorithm 3.3

Algorithm 3.3 Evolutionary programming

Generate initial population randomly
Compute the fitness of each individual
repeat

Apply mutation to all elements of P to generate the offspring set O
Compute the fitness of each individual in O
Select the best individuals for the following generation using

(µ+ µ)-selection
until a stopping criterion is met

In EP, individuals are represented as real-valued vectors. The parent
selection mechanism allows every individual in the population to gen-
erate one offspring using a mutation operator; no crossover mecha-
nism is used. Finally, a (stochastic) tournament is used for the survival
selection mechanism.

• Genetic algorithms (GAs):
GAs were initially proposed by John Holland [26] for machine learning.
The structure of a basic GA is described in Algorithm 3.4.

Traditionally, GAs use a binary encoding and use a fitness proportional
selection mechanism. The main genetic operator for GAs is crossover
while the mutation operator is considered as a secondary operator
(i. e. , it is applied less often than crossover). It has been proved that
a simple genetic algorithm requires elitism in order to guarantee con-
vergence [45].
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Algorithm 3.4 Genetic algorithm

Generate initial population randomly
Compute the fitness of each individual
repeat

Select a parent-set P
Apply crossover to create offspring set O
Apply mutation to the elements of O
Compute the fitness of each individual in O
Select the best individuals for the following generation

until a stopping criterion is met

3.3 multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) share the basic structure of
EAs. The main differences between them are that the fitness assignment
mechanism of MOEAs must be able to deal with more than one objective
function and that the elitist mechanism of MOEAs should handle sets of non-
dominated solutions instead of only a single solution.

3.3.1 Elitism

Elitism is a mechanism which preserves the best solutions found during
the search. However, in multi-objective optimization, the number of non-
dominated solutions generated during the search tends to increase very
quickly. Therefore, it is normally the case that some filtering mechanism
is adopted in order to keep the size of the external file (in which the elitist
solutions are maintained) bounded.

There are two main approaches to implement elitism in a MOEA:

1. The parent population and the offspring population are combined and
a deterministic survivor selection mechanism is implemented to pre-
serve the best solutions for the next generation.

2. An external population called archive is used to store the non-dominated
solutions found during the search process.

19



evolutionary computation

3.3.2 Fitness assignment

Fitness assignment in MOEAs must deal with k > 1 objective functions while
the selection mechanism expects a single fitness value. There are three main
fitness assignment schemes available for MOEAs [61]:

• Criterion-based:
This approach chooses one of the objective functions during the se-
lection stages of the MOEA. The fitness of an individual, or group of
individuals, depends only on the value of the chosen objective.

For example, the vector evaluated genetic algorithm (VEGA) [46] divides
the population into k equally sized subpopulations and each popula-
tion optimizes one of the k objectives. The individuals are then shuf-
fled after the selection procedure.

• Aggregation-based:
In this scheme, the objective functions are combined into a single
parametrized objective function which will be optimized. The param-
eters of the combined objective function must be varied during the
optimization process to generate a set of non-dominated solutions.

• Pareto-based:
This scheme was proposed by Goldberg [24]. In this approach, indi-
viduals in the population are compared according to the Pareto domi-
nance relation.

Most MOEAs use this scheme for fitness assignment. These approaches
can be categorized into two generations:

– First generation:
In their early days, MOEAs lacked the concept of elitism and nor-
mally used fitness sharing to produce well-distributed solutions
sets. Some representative examples of first generation MOEAs are
the multi-objective genetic algorithm (MOGA) [23], the niched Pareto
genetic algorithm (NPGA) [27], and the non-dominated sorting genetic
algorithm (NSGA) [49].
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– Second generation:
These MOEAs incorporated an elitist mechanism for multi-objective
optimization and adopted more elaborate diversity estimators (e. g. ,
based on clustering). Some representative second generation MOEAs

are the strength Pareto evolutionary algorithm (SPEA) [61], the Pareto
archived evolution strategy (PAES) [36], the strength Pareto evolution-
ary algorithm 2 (SPEA2) [59], and the non-dominated sorting genetic
algorithm II (NSGA-II) [15].

Recently, proposals for fitness assignment schemes based on quality indi-
cators (see Chapter 4) have been made in the specialized literature. For
example, the indicator based evolutionary algorithm (IBEA) [58] and the S metric
selection evolutionary multi-objective algorithm (SMS-EMOA) [19]. Because of the
relevance of this type of approach for this thesis, a full chapter (see Chapter
5) will be devoted to it.
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Many EAs have been proposed for multi-objective optimization. Since EAs

do not guarantee the optimality of their solution sets, it is of interest to
compare their performance including both the quality of the outcome and
the computational resources used by the MOEAs to generate such outcome.

The computational resources used by an EA are often measured either by
counting the number of fitness evaluations performed or by comparing the
CPU time consumed by the algorithm when run in a particular computer.

The quality of the outcome, however, is different for SOPs and MOPs. In
SOPs, the quality of the solution is defined using the objective function: given
a minimization problem, smaller values are better. In MOPs, the Pareto dom-
inance relation can be used to compare solutions even though they can be
incomparable. However, comparing solution sets is more complicated since
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the quality of the solution sets isn’t clearly defined in this context [65]: it can
consider closeness to the Pareto optimal solutions, closeness to the Pareto
front, coverage of the Pareto front, etc.

In this chapter, we will review some quality indicators that have been
proposed for assessing the performance of a MOEA.

4.1 unary quality indicators

Definition 9 (Unary quality indicator). A unary quality indicator is a function
I1 : Ψ → R where Ψ is the set of all Pareto set approximations for a given
problem.

The indicator I1 should induce a total order among the outcome sets.
Then, the outcome of two (or more) multi-objective optimizers can be com-
pared through the indicator values.

4.1.1 Properties of unary quality indicators

According to Definition 9, any function from Ψ to R can be considered an
(unary) indicator. However, some properties are desirable for indicators to
be useful [57]:

• Monotonicity:
An indicator I is strictly monotonic if and only if

∀A,B ∈ Ψ A ≺ B⇒ I(A) > I(B) (4.1)

Strict monotonicity guarantees that an indicator I is compatible with
the Pareto dominance relation.

• Scaling invariance:
An indicator I is scaling invariant if for any strictly monotonic function
s : Rk → Rk

∀A ∈ Ψ I(~f(A)) = I(s(~f(A))) (4.2)
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• Computational effort:
This property considers the computational resources needed to com-
pute an indicator depending on the number of solutions in the Pareto
set approximation and on the number of objectives in the MOP.

• Additional problem knowledge:
Many indicators need information in order to be applied such as: the
Pareto optimal set, reference objective vectors, reference sets, etc.

4.1.2 Discussion of some unary quality indicators

4.1.2.1 The hypervolume indicator

The hypervolume indicator was proposed by Zitzler and Thiele [60]. It was
originally defined as the size of the space covered by the Pareto optimal solu-
tions [60]; equivalent definitions have been proposed based on the Lebesgue
measure [21], on polytopes [5], and on the attainment function [55].

Definition 10 (Hypervolume indicator IH). Let A = (a1, . . . ,al) be a non-
dominated set of decision vectors, |ai| = k. The hypervolume indicator IH
gives the Lebesgue measure of the union of k-hyperrectangles defined by ai
and a fixed reference point r = (r1, . . . , rl).

4.1.2.1.1 properties of IH

• The hypervolume indicator is the only known unary quality indicator
which guarantees strict monotonicity regarding the Pareto dominance
relation [65, 21].

A set A ∈ Rl achieves maximum hypervolume value if and only if all
points a ∈ A are Pareto optimal [21].

• IH can be either maximized (see Figure 4.1b) or minimized (see Figure
4.1a) but the reference point must be chosen accordingly:

– The reference point should be smaller or equal to the ideal vector
for hypervolume maximization
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(a) IH minimization
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(b) IH maximization

Figure 4.1.: IH for a 3-objective MOP

– The reference point should be larger or equal to the nadir vector
for hypervolume maximization

• This indicator is not scaling invariant [63]: it is sensitive to the choice
of the reference point.

• Computation of the hypervolume indicator has been shown to be #P-
hard [12]. The running time for calculating the hypervolume indicator
is exponential in the number of objectives [54].

• The choice of the reference point can impact the outcome of the hyper-
volume indicator [35].

• The slope of the Pareto front determines how the points that maximize
the hypervolume indicator are distributed [1].

• Preference information can be incorporated into the hypervolume in-
dicator to place more emphasis on certain parts of the Pareto front
than on others [55], maintaining the monotonicity property.
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4.1.2.2 The GD, IGD, and ∆p indicators

4.1.2.2.1 generational distance indicator

Definition 11 (Generational distance (GD) indicator). The GD indicator repre-
sents how “far” a set A is from the Pareto front P. It is defined as [51]:

IGD =

(∑ |A |
i=1 d

p
i

) 1
p

|A |
(4.3)

where di is the Euclidean distance (in objective function space) between ai
and the nearest member of P. Lower IGD values represent “better” sets.

However, this indicator gets “better” when an element of the set is dupli-
cated or if the set A contains small perturbations of a given element [48].

Definition 12 (Alternative GD indicator). An alternative version of GD was
proposed by Schütze et al. [48] to avoid the previously described effect. It is
defined as:

IGDp =

 1

|A |

|A |∑
i=1

d
p
i

 1
p

(4.4)

where di is the Euclidean distance (in objective function space) between ai
and the nearest member of P.

4.1.2.2.2 inverted generational distance indicator

Definition 13 (Inverted generational distance (IGD) indicator). The IGD indica-
tor represents how “far” the Pareto front P is from a set A. It is defined as:

IIGD =

(∑ |P |
i=1 d̃

p
i

) 1
p

|P |
(4.5)

where d̃i is the Euclidean distance (in objective function space) between pi
and the nearest member of A. Lower IIGD values represent “better” sets.

However, the indicator gets “better” when using a finer discretization of
the Pareto front [48].
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Definition 14 (Alternative IGD indicator). An alternative version of IGD was
proposed by Schütze et al. [48] to avoid the previously described effect. It is
defined as:

IIGDp =

 1

|P |

|P |∑
i=1

d̃
p
i

 1
p

(4.6)

where d̃i is the Euclidean distance (in objective function space) between pi
and the nearest member of A.

4.1.2.2.3 properties of IGDp and I IGDp

• IGDpand IIGDp have (weak) metric properties [48]:

– IGDp and IIGDp are non-negative. They aren’t positive since IGDp =

0 ⇐⇒ A ⊆ P and IIGDp = 0 ⇐⇒ P ⊆ A

– IGDp and IIGDp are non-symmetric.

– IGDp and IIGDp don’t satisfy the (relaxed) triangle inequality.

• IGDp and IIGDp need knowledge of the true Pareto front of the problem
[34].

4.1.2.2.4 ∆p indicator

Definition 15 (Hausdorff distance (dH). The Hausdorff distance represents
how “far” two sets A , B are from each other. It is defined as:

dist(u , A) = inf
v∈A
‖u − v‖ (4.7)

dist(B , A) = sup
u∈B

dist(u , A) (4.8)

dH = max (dist(A , B) , dist(B , A)) (4.9)

(4.10)

The Hausdorff distance is a metric [48]: It is positive, symmetric, and
satisfies the triangle inequality.

28



4.1 unary quality indicators

Definition 16 (∆p indicator). The ∆p indicator represents the averaged Haus-
dorff distance between a set A and the Pareto front P. It is defined as [48]:

I∆p = max
(
IGDp , IIGDp

)
(4.11)

4.1.2.2.5 properties of I∆p

• I∆p has metric properties [48]:

– It is positive and symmetric: I∆p is a semi-metric

– If the magnitudes of the sets are bounded; the relaxed triangle
inequality is satisfied and I∆p is a pseudo-metric.

• If p = ∞, then I∆p is equal to dH

The proofs for the properties of I∆p can be found in [48].

4.1.2.3 Spacing indicators

Several spacing indicators have been proposed which attempt to measure
how well the solutions in a non-dominated set are distributed in the objec-
tive function space.

Definition 17 (Schott’s spacing indicator (ISS)). Schott’s spacing indicator
measures the range variance of neighboring vectors in a non-dominated set
A. It is defined as [47]:

ISS =

√√√√ 1

|A | − 1

|A |∑
i+1

(d̄ − di)2 (4.12)

where di = minj∈{1 ,... , |A |}

∑k
i=1 |fi( ~ai − fi( ~aj) | and d̄ is the mean of all

di

A similar indicator was proposed by Srinivas and Deb in [49].
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4.1.2.3.1 properties of spacing indicators

• Generally, spacing indicators are not monotonic regarding the Pareto
dominance relation.

• Spacing indicators are not scaling invariant

• In most cases, the runtime complexity of the indicators is quadratic in
the cardinality of the non-dominated set.

4.2 binary quality indicators

Definition 18 (Binary quality indicator). A binary quality indicator is a func-
tion I2 : ΨxΨ → R where Ψ is the set of all Pareto set approximations for a
given problem.

There is a close relationship between unary and binary quality indicators.
On the one hand, every unary indicator I1 can be transformed into a binary
indicator I2 as follows [62]:

I2(A , B) = I1(B) − I1(A) A , B ∈ Ψ (4.13)

On the other hand, every binary indicator I2 can be transformed into an
unary indicator I1 by using a reference set R [62]:

I |(A) = I2(A , R) A ∈ Ψ (4.14)

4.2.1 Discussion of some binary quality indicators

4.2.1.1 The ε-indicators

The ε-indicators were introduced in [65] based on multiplicative ε-dominance
and additive ε-dominance.
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4.2.1.1.1 multiplicative ε-indicator (Iε∗ )

Definition 19 (multiplicative ε-dominance). Let a , b ∈ Rn; a multiplica-
tively ε-dominates b (a �ε∗ B) if and only if

∀i ∈ {1 , . . . , k} fi(a) 6 εfi(b) (4.15)

Definition 20 (binary multiplicative ε-indicator). Let A , B ∈ Rl×k non-
dominated sets of decision vectors. The binary multiplicative ε-indicator
Iε∗ is defined as

Iε∗ (A , B) = max
b∈B

min
a∈A

max
16i6n

fi(a)

fi(b)
(4.16)

4.2.1.1.2 additive ε-indicator (Iε+ )

Definition 21 (multiplicative ε-dominance). Let a , b ∈ Rn; a additively
ε-dominates b (a �ε+ B) if and only if

∀i ∈ {1 , . . . , k} fi(a) 6 ε + fi(b) (4.17)

Definition 22 (binary additive ε-indicator). Let A , B ∈ Rl×k non-dominated
sets of decision vectors. The binary additive ε-indicator Iε+ is defined as

Iε+ (A , B) = max
b∈B

min
a∈A

max
16i6n

fi(a) − fi(b) (4.18)

x1

x2

Iε(A,B) > 0

Iε(A,B) = 0

Iε(A,B) < 0

A

B

(a) Iε(A,B)

x1

x2

Iε(B,A) > 0

Iε(B,A) = 0

Iε(B,A) < 0

A

B

(b) Iε(B,A)

Figure 4.2.: ε-indicators for a bi-objective MOP
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4.2.1.1.3 properties of the ε indicators

• Both Iε∗ and Iε+ are monotonic but not strictly monotonic regarding
the Pareto dominance relation [57].

• The runtime complexity of the indicator is of order O(k · |A | · |B |) [57].

• Iε∗ and Iε+ are minimized: a set A is better than another set B if
Iε(A , B) < Iε(B , A) (see Figure 4.2)

4.2.1.2 The coverage indicator

The coverage indicator was proposed by Zitzler and Thiele [60].

Definition 23 (Coverage indicator (IC)). Let A , B ∈ Rl×k non-dominated
sets of decision vectors. IC maps the ordered pair (A , B) to the interval
[0 , 1] as follows:

IC(A , B) =
|{b ∈ B |∃a ∈ A : a � b}|

|B |
(4.19)

The unary version of this indicator is called proportion of Pareto-optimal
objective vectors found and was introduced by Ulungu et al. [50].

4.2.1.2.1 properties of the coverage indicator

• This indicator is not symmetric: IC(A , B) may be different from 1 −

IC(B , A). Both IC(A , B) and IC(B , A) have to be considered to com-
pare the outcome sets of MOEAs [60].

• IC is strictly monotonic regarding the Pareto dominance relation [57].

• The runtime complexity of the indicator is of order O( |A | · |B |) [57].

• IC is scaling invariant [57]
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Several indicators have been proposed to evaluate the outcome set of dif-
ferent MOEAs. Since the quality of an outcome set can be evaluated by a
unary quality indicator, it seems reasonable to recast a given MOP to the
optimization of the chosen indicator.

There have been three main approaches to integrate an indicator into a
MOEA:

1. The indicator is integrated into the environmental selection process in
an archive (Section 5.1)
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2. The indicator is integrated directly into the selection mechanism of the
MOEA (Section 5.2)

3. The indicator is integrated as a set preference relation for set problems
(Section 5.3)

5.1 indicator-based archiving algorithms

Many MOEAs use an external population, often called archive, to store inter-
esting points found during their search. One possible approach for handling
the archive is to store all non-dominated solutions [20] but this is often un-
desirable since:

• true Pareto fronts can be infinitely large

• there is a large computational overhead for maintaining such archives

An alternative is to store only a subset of the non-dominated points (con-
taining at most N points). However, bounded archiving is non-trivial since
several properties of the archive are desirable such as [37]:

• The archive should be full

• The archive should approximate its input sequence (the optimal points
generated by an EA) completely

One possible solution to this problem is to use an indicator to define
which subset of the (known) non-dominated points to store.

In the following, a brief description of some indicator-based archiving
algorithms is presented:

5.1.1 Lebesgue archiving hill-climber (LAHC)

Knowles and Corne proposed the LAHC [37] (also referred to as S metric
archiving [35]) which was the first indicator-based archiving algorithm. In

34



5.1 indicator-based archiving algorithms

the algorithm, the bounded archive is limited to knowing at most N+1 so-
lutions at any given time: the solutions currently stored in the archive (at
most N) and 1 candidate solution.

The current candidate solution is accepted into the archive if at least one
of the following conditions holds:

• The archive isn’t full

• The new point dominates at least one point in the archive (the domi-
nated points are then removed from the archive)

• The new point is non-dominated with respect to all other points in the
archive and replacing one of the archived points in the archive by the
new point improves the hypervolume indicator

This archive works as a steepest-ascent hill-climber in the space of the
hypervolumes of the dominated regions by the archive.

5.1.2 Evolution strategy with probabilistic mutation (ESP)

ESP was presented by Huband et al. [28]. It is a (µ+ λ) evolution strategy (ES)
with two modifications:

• a genetic algorithm style mutation probability setting:

In ESP, individuals are mutated based on a probability p instead of
always. The authors report “excellent” results with p = 1/m (where
m is the number of variables in the problem)

• a hypervolume-based measure for the truncation of the secondary pop-
ulation:

The ESP uses a modified version of the truncation mechanism in the
SPEA2. The main modification was the replacement of the Euclidean
distance-based nearest neighbor measure by a hypervolume-based intra-
ranking mechanism.

In this intra-ranking mechanism, equally-ranked (according to Pareto
dominance) individuals can be compared using the hypervolume of
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Figure 5.1.: Hypervolume measure used by ESP on a bi-objective MOP

the region dominated with respect to the hypercube formed by the
next worse individuals in each dimension. An example of the hy-
pervolume assignment for a bi-objective optimization problem is pre-
sented in Figure 5.1. The individuals with the lowest hypervolume
values are eliminated in order for the archive bound to be fulfilled.

5.2 indicator-based selection

The goal of a MOEA is to find a “good” approximation of the Pareto op-
timal set. The quality of an approximation set is often evaluated through
indicators in order to compare outcomes of different MOEAs. Assuming the
existence of an indicator that provides a good ordering amongst the sets
of possible Pareto approximations, a MOEA can attempt to maximize the
indicator for a given MOP through appropriate selection mechanisms.

In the following, some MOEAs with indicator-based selection mechanisms
are briefly described.

5.2.1 Indicator based evolutionary algorithm (IBEA)

The first algorithm to use indicators in the selection mechanism was IBEA,
proposed by Zitzler and Künzli [58].
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5.2 indicator-based selection

IBEA replaces the original MOP by

min I(A,S)

where:

I is a dominance preserving binary quality indicator

A is a Pareto set approximation

S is the Pareto optimal set for the original MOP

Since I is assumed to be dominance preserving, I(A,S) should be minimal
if A = S.

The fitness of an individual x1 in the population P is assigned as follows:

F(x1) =
∑

x2∈P\{x1}
−e−I(x2,x1)/κ where κ > 0

This fitness assignment scheme is compliant if I is dominance preserving
with the influence of individuals with small indicator values to the overall
fitness being much larger that the influence of larger values.

The authors presented IBEA (and some variants) with two indicators

• the binary additive ε-indicator (see Section 4.2.1.1)

f2

f1

Iε+(A,B) > 0

Iε+(B,A) > 0

A

B

f2

f1

Iε+(A,B) > 0

Iε+(B,A) < 0

A

B

Figure 5.2.: Binary additive ε-indicator used by IBEA for bi-objective MOP
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• the binary hypervolume indicator
Given two sets A,B, the binary hypervolume indicator IH(A,B) mea-
sures the hypervolume of the space that is dominated by B but not by
A with respect to a given reference point. It is defined using the unary
hypervolume indicator (see Section 4.1.2.1) as:

IH(A,B) = IH(A∪B) − IH(A) (5.1)

f2

f1

a

b

IH(B,A) = ab

c

d

IH(A,B)
= cd

A

B

r
f2

f1

IH(A,B) > 0

A

B

r

Figure 5.3.: Binary hypervolume-indicator used by IBEA for bi-objective MOPs

This algorithm was later extended by Basseur and Burke in [4] to the
indicator-based multi-objective local search (IBMOLS) by replacing the variation
operators of IBEA with a local search operator .

5.2.2 S metric selection evolutionary multi-objective algorithm (SMS-EMOA)

The SMS-EMOA was proposed by Emmerich, Beume, and Naujoks in [19].
This algorithm is a steady state (µ+ 1)-MOEA inspired by the NSGA-II [15]
and the LAHC [35, 37]. The SMS-EMOA generates only one new individual
per iteration which joins the population only if its addition (by replacing
another individual) improves the hypervolume covered by the population.

The basic algorithm is described in Algorithm 5.1.
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5.2 indicator-based selection

Algorithm 5.1 Basic SMS-EMOA

1: Initialize the population P0 randomly
2: i← 0

3: repeat
4: Generate one new individual x
5: Q← Pi ∪ {x}
6: Compute the Pareto front rank through non-dominated sorting of the

individuals in Q
7: W ← individuals in the worst-ranked front
8: r ← individual (in W) which least contributes to the hypervolume

covered by W.
9: Pi+1 ← Q\r

10: i← i+ 1
11: until stopping criteria is met
12: return Pi

The same authors also proposed 3 variants of the SMS-EMOA in [41].

1. Non-dominated sorting (NDS) + number of dominated points (DP) or hyper-
volume indicator (HV)
The basic algorithm attempts to obtain a good distribution of the
points for the point on each of the fronts identified when this is only
important to the first (non-dominated) front. One alternative is to fa-
vor individuals in the dominated fronts that are in sparsely populated
areas by removing the individual that is dominated by the largest num-
ber of points.

This approach improves the computational cost of the average case
since the hypervolume indicator is only computed when all individu-
als in the population are non-dominated.

2. Pareto dominance (PD) or HV

This variant uses a bounded population (instead of it being constant-
sized). In each iteration, all dominated individuals are discarded. If
the maximum size for the population is exceeded, then the individual
which contributes the least to the hypervolume indicator is rejected.

3. 2 phase approach: PD and NDS+HV

This approach combines the approaches from point (2) above and the
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basic SMS-EMOA. It starts with variant (2) until the population is full
and then continues with the basic algorithm until the stopping crite-
rion is reached.

None of the variants significantly improved the quality of the solution ob-
tained, but approach (1) reduces the computational cost of the average case
[6, 8].

In another paper, Beume et al. [7] further analyzed the effects of the
1-greedy S-metric-selection performed by the SMS-EMOA. They presented
some “extreme” cases in which this selection scheme fails (often with very
small population sizes) but also showed that the scheme can detect the opti-
mal distribution for most connected continuous Pareto front types.

Several improvements have been proposed for the SMS-EMOA such as:

• Bradstreet, Barone and While proposed a greedy generalization of the
reduction scheme of the SMS-EMOA to allow the joining of more than 1

individual in the population [9]. They further improved their greedy
approach in [10] by taking advantage of the incremental hypervolume
by slicing objectives (IHSO) algorithm [11] to compute the hypervolume
contributions of the individuals in the population.

• Ishibuchi, Tsukamoto, Sakane and Nojima proposed to replace the hy-
pervolume computation with a hypervolume approximation by achieve-
ment scalarizing functions to decrease (significantly) the computation
time of the SMS-EMOA [32].

5.2.3 Iterative approach to indicator-based multi-objective optimization

The iterative approach to indicator-based multi-objective optimization was
proposed by Ishibuchi, Tsukamoto, and Nojima in [31]. Unlike most MOEAs,
the iterative approach generates only one solution from each run; therefore,
several runs are required to find a solution set.

The iterative approach consists of two phases:

1. During the first k runs, each of the k objectives is optimized indepen-
dently by a standard genetic algorithm (or another optimization strat-
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5.2 indicator-based selection

egy) to obtain k extreme solutions which will initialize the solution
set.

2. Afterwards, the iterative approach searches for the solution x which
most contributes to the hypervolume of the solution set obtained by
previous runs. The initial population of the iterative approach is gen-
erated from the individuals in the solution set instead of randomly.

The iterative approach was proposed to find only a small number of rep-
resentative non-dominated solutions of a MOP as an alternative to most
MOEAs which require large populations and output a large number of non-
dominated solutions.

5.2.4 Multi-objective covariance matrix adaptation evolution strategy (MO-

CMA-ES)

The MO-CMA-ES was proposed by Igel, Hansen, and Roth in [29] as a multi-
objective variant of the covariance matrix adaptation evolution strategy (CMA-ES)
[25]. This approach applies a hypervolume-based selection mechanism to a
population of elitist (1+ λ)-CMA-ES.

The elitist (1 + λ)-CMA-ES used for the MO-CMA-ES samples the λ new
candidate solutions and then updates the parent solution p depending on
whether any of the new solutions is better than p. Afterwards, the step size
is updated according to the success rate (defined as the proportion of the λ
new solutions which were better than p). If p was replaced by any new solu-
tion, then the covariance matrix is updated as in the (1, λ)-CMA-ES proposed
in [25]. The elitist (1+ λ)-CMA-ES is described in Algorithm 5.2

The λMO × (1+ λ)−MO-CMA-ES keeps a population of λMO elitist (1+ λ)-
CMA-ES where an individual x is considered better than another individual
y if:

• x has a lower rank than y (according to Pareto ranking) or

• x and y have the same rank and x contributes the most to the covered
hypervolume
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Algorithm 5.2 (1+ λ)-CMA-ES

1: g← 0

2: Initialize parent p0

3: repeat
4: for k = 1, . . . , λ do
5: x

g+1
k ∼ N(m,C) (xg+1k is a random variable distributed according to

a multi-variate normal distribution with mean vector m and covari-
ance matrix C)

6: end for
7: Update the step size
8: if f(xg+1best) 6 f(p

g) then
9: pg+1 ← x

g+1
best

10: Update the covariance matrix
11: end if
12: g← g+ 1
13: until stopping criteria is met
14: return pg

Algorithm 5.3 λMO × (1+ λ)-MO-CMA-ES

1: g← 0

2: for i = 1, . . . , λMO do
3: Initialize parent p0i
4: end for
5: repeat
6: for j = 1, . . . , λMO do
7: for k = 1, . . . , λ do
8: x

g+1
i,k ∼ N(m,C)

9: end for
10: end for
11: Qg = {p

g
i , xg+1i,k |1 6 i 6 λMO, 1 6 k 6 λ}

12: for j = 1, . . . , λMO do
13: Update the step size for the parent of the j-th CMA-ES
14: Update the step size for the λ offspring of the j-th CMA-ES
15: Update the covariance matrix of the λ offspring of the j-th CMA-ES
16: end for
17: p

1,...,λMO
g+1 ← the best λMO individuals in Qg

18: g← g+ 1
19: until stopping criteria is met
20: return p

1,...,λMO
g
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The λMO × (1+ λ)-MO-CMA-ES is described in Algorithm 5.3.

Igel, Suttorp, and Hansen proposed some improvements to the update
process of the covariance matrices as well as some steady-state selection
schemes for the MO-CMA-ES in [30].

Voss, Beume, Rudolph, and Igel compared the outcomes of scalarization
methods with the MO-CMA-ES and a hybrid MO-CMA-ES (with a scalariza-
tion method) in bi-objective optimization problems [52]. The MO-CMA-ES

outperformed all scalarization and hybrid approaches on most standard
benchmark functions.

5.2.5 Desirability function SMS-EMOA (DF-SMS-EMOA)

Since MOPs have a set of optimal solutions, MOEAs are required to approxi-
mate sets instead of a single optimal solution. This implies a higher compu-
tational cost for MOEAs which can render them inapplicable for expensive
problems.

The DF-SMS-EMOA, proposed by Wagner and Trautmann [53], uses desir-
ability functions (DFs), defined by the decision maker, to restrict its outcome
set to regions that are of practical interest. In DFs, each objective is trans-
formed into a desirability in [0, 1] which are combined in a desirability index
(DI) also in [0, 1].

This approach uses Harrington’s one-sided DF and maximizes the DFs for
the outcome set with the hypervolume-based SMS-EMOA. The DF-SMS-EMOA

is described in Algorithm 5.4

The computational complexity of this approach is rather high because of
the required hypervolume calculations. Trautmann and Wagner propose an
improvement to the approach by replacing the hypervolume indicator with
a DI.
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Algorithm 5.4 DF-SMS-EMOA

Require: DFs for each objective ~d : (Y
(1)
i ,d(1)i ), (Y(2)i ,d(2)i ) , i = 1, . . . ,k

1: Initialize population P randomly and evaluate P
2: repeat
3: Reset DFs according to ~d
4: Selection and crossover of the parents.
5: Mutation and evaluation of the offspring
6: for j = 1, . . . ,k do
7: ymed,j = median(~fj)
8: if dj(ymed,j) < ε then
9: Y

(2)
j ← ymed,j d

(2)
j ← ε

10: end if
11: fj ← −dj(~fj)
12: end for
13: Identify the last front F using non-dominated sorting
14: HVi ← hypervolume of the space covered by {F\~fi}, i = 1, . . . ,m
15: Reject individual with the highest HVi
16: until stopping criteria is met
17: return P

5.3 set-oriented multi-objective evolution-
ary algorithms

A MOP can be viewed as a set problem where the search space consists of all
possible Pareto set approximations. A classical MOEA, from this viewpoint,
would be a (1,1)-ES on the set problem:

• The population p represents the current Pareto set approximation

• A new Pareto set approximation p ′ is generated by applying some ge-
netic operators (such as selection, recombination, and mutation) which,
hopefully, is better than p

5.3.1 Set preference algorithm for multi-objective optimization (SPAM)

Zitzler, Thiele and Bader proposed SPAM [63, 62, 3, 64], a (1+1)-ES on the set
problem which is independent of the indicator used to guide the search.
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SPAM generates two offspring sets from a parent set P:

1. P ′ is generated using a random mutation operator on P. This operator
should be able to generate any Pareto approximation in the search
space.

2. P ′′ is generated using a heuristic mutation on P. This operator at-
tempts to generate a set which is better than P by mimicking genetic
operators in a classical MOEA.

P is replaced only if any of the offspring sets is weakly preferable (�) to P
according to the indicator used. The basic SPAM is described in Algorithm
5.5.

Algorithm 5.5 Basic SPAM

Initialize P randomly
repeat
P ′ ← randomMutation(P)
P ′′ ← heuristicMutation(P)
if P ′′ � P then
P ← P ′′

else if P ′ � P then
P ← P ′

end if
until stopping criteria is met
return P

5.3.2 SPAM+

SPAM+ is a set-oriented MOEA proposed by Bader, Brockhoff, Welten, and
Zitzler [2, 3]. It is a (µ+ λ)-ES on the set problem. A general description of
SPAM+ is presented in Algorithm 5.6

SPAM+ required the definition of the mutation, recombination, and selec-
tion operators:

• Set mutation
This corresponds to a run of a normal indicator-based MOEA
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Algorithm 5.6 SPAM+

Initialize population S as µ sets of N solutions
repeat
M← ∅
for all A ∈ S do
M←M∪ {setMutate(A)}

end for
M ′ ← matingSelection(M, λ)
M ′′ ← ∅
for all (Ap,Aq) ∈M ′ do
M ′′ ←M ′′ ∪ {setRecombine(Ap,Aq)}

end for
S← environmentalSelection(S,M ′′)

until stopping criteria is met
return P

• Set recombination
This operator iteratively replaces the worst solution in the first parent
with the best solution in the second parent until no indicator improve-
ment is posible

• Mating and environmental selection
Four variants of mating and environmental selection were presented
[2]

5.4 closing remarks

To date, most indicator-based MOEAs rely on the hypervolume indicator,
even though it has been shown that its computation is #P-complete [12] and
its approximation is NP-hard [13], because it has been proven to be strictly
monotonic with respect to Pareto dominance [34, 21, 65].

A different approach is to use indicators with metric properties, such as
the ∆p indicator (see Section 4.1.2.2) which, in spite of not being Pareto
compliant, has other properties which can be exploited by a MOEA.

46



6
O U R P R O P O S E D A P P R OA C H

Contents
6.1 Differential evolution . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Fitness assignment . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Individual contribution to the GDp indicator . . . . 49

6.2.2 Individual contribution to the IGDp indicator . . . . 50

6.2.3 Individual contribution to the ∆p indicator . . . . . 51

6.3 Reference set construction . . . . . . . . . . . . . . . . . . . . 51

6.4 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Our aim was to design a MOEA which minimizes the ∆p indicator (see
Section 4.1.2.2). In our proposed approach, the MOP is recast as:

min I∆p(P) (6.1)

where P is the population of used by the differential evolution (DE) algorithm
where:

• individual fitness is determined according to an individual’s contribu-
tion to the indicator

• the survival selection is replaced with a ∆p-based mechanism

• the outcome of the algorithm is a set instead of an individual
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6.1 differential evolution

Differential evolution (DE) was proposed by Rainer Storn and Kenneth Price
[43] to solve continuous SOPs. The algorithm receives the following inputs:
population size (NP), number of variables of the problem (D), differential weight
(F ∈ [0, 2]), and crossover probability (CR ∈ [0, 1]).

Different DE strategies exist which can be described as DE/x/y/z where

• x specifies which individual will be mutated (a). It can be rand (a is
chosen randomly) or best (a is the best individual in the population).

• y defines the number of difference vectors used.

• z defines the crossover scheme. It can be bin (for binomial crossover)
or exp (for exponential crossover).

Our proposed approach uses the DE/rand/1/bin strategy (see Algorithm
6.1); however, any other DE strategy could be used.

Algorithm 6.1 DE/rand/1/bin
Generate initial population of NP individuals randomly
Evaluate the objective function G for each individual
repeat

for each individual ~x in the population do
Pick three individuals ~a,~b,~c distinct from each other.
Pick an index R ∈ {1, . . . ,D}

for i = 1, . . . ,D do
Pick ri ∈ (0, 1) uniformly at random
if i = R or ri <CR then
yi = ai + F(bi − ci)

else
yi = xi

end if
end for
if G(y) < G(x) then

Replace x with y in the population
end if

end for
until a stopping criterion is met
return the “best” individual in the population
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6.2 fitness assignment

As previously stated, our aim is to minimize the ∆p indicator

I∆p = max(IGDp , IIGDp)

which implies the simultaneous minimization of the GDp and the IGDp indi-
cators.

Therefore, the fitness assignment of an individual must consider each
individual’s contribution to IGDp and IIGDp to properly reflect its contribution
to I∆p .

6.2.1 Individual contribution to the GDp indicator

Since the GDp indicator takes the power mean of the Euclidean distances
between the elements of a set A and the Pareto front P, an individual’s
contribution must reflect its distance to P.

Definition 24 (Contribution of an individual to IGD). The contribution of
an individual ai to the indicator (IiGD) can be defined in a straightforward
manner as:

IiGD = dist(ai,P) (6.2)

f2

f1

P

aiIiGD

Figure 6.1.: Individual IGDp contribution
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The elements of A with lower IiGD values are preferable to those with
higher IiGD values (see Figure 6.1).

6.2.2 Individual contribution to the IGDp indicator

The IGDp indicator takes the power mean of the Euclidean distances between
the elements of the Pareto front P and a set A.

Since IIGDp considers only the elements of A which are the closest to at
least one element of P, some elements of A may not contribute to the value
of this indicator (see Figure 6.2a) while other elements may have several
contributions (see Figure 6.2b).

Definition 25 (Contribution of an individual to IIGD). Let ai ∈ A and Q

be the set of all elements of the Pareto front P for which ai is the closest
element in A. The contribution of ai to the indicator (IiIGD) is then defined
as:

IiIGD =


p

√∑q∈Q
i=1 dist(q,ai)p Q 6= ∅

−1 Q = ∅
(6.3)

f2

f1

P

ai

IiIGD < 0

(a) Individual with no contribution

f2

f1

P

d1

ai
d2
d3

d4

IiIGD = p

√∑4
i=1 d

p
i

(b) Individual with several contributions

Figure 6.2.: Individual IIGDp contributions

Clearly, the elements that contribute to IIGDp are preferable to those that
do not (see Figure 6.2). Also, elements with higher IiIGD values are preferable
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to those with lower IiIGD values since they often cover larger sections of the
Pareto front P .

6.2.3 Individual contribution to the ∆p indicator

An individual’s contribution to the ∆p indicator must consider its contribu-
tions to both the GD and the IGD indicators.

Definition 26 (Contribution of an individual to I∆p). Let ai,aj ∈ A and the
Pareto front P. Then, ai contributes less to I∆p than aj if one of the following
conditions holds:

1. ai contributes to IIGD and aj doesn’t

IiIGD > 0 and I
j
IGD < 0 (6.4)

2. ai contributes more to IIGD than aj

IiIGD > I
j
IGD (6.5)

3. ai and aj contribute equally to IIGD but ai is closer to the Pareto front

IiIGD = IjIGD and IiGD < I
j
GD (6.6)

In our proposed approach, an individual’s contribution to the IGD indi-
cator is given more importance than its contribution to the GD indicator
since IIGD reflects an individual’s importance in terms of both convergence
and coverage of the Pareto front (see Figure 6.3a) while IGD only reflects its
contribution to convergence (see Figure 6.3b).

6.3 reference set construction

The ∆p indicator needs two sets:
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f2

f1

P

(a) Elements contributing to IIGDp

f2

f1

P

(b) Reference points contributing to IGDp

Figure 6.3.: GD and IGD contributing elements

• the approximation set A:
given by the population of the MOEA

• the reference set R:
a (discrete) representation of the Pareto front for the MOP

Since the Pareto front is generally unknown, an approximation must be
constructed to be used as the reference set in the MOEA. Some properties are
desirable for the reference set:

1. All the elements in A should be dominated by elements of R.

2. R can be (easily) updated if A is slightly modified.

3. Any element in R cannot (strongly) dominate other elements in the
reference set.

4. The elements of R should be evenly spaced.

Our proposal for building the reference set is described in Algorithm 6.2.
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Algorithm 6.2 Reference set construction

Require: Set of vectors A
Require: Resolution r for the reference Set

Approximate the ideal and nadir objective vectors from A (Figure 6.4a)
if the ideal or nadir objective vector changed then

Build an upper k-dimensional frame (Figure 6.4b)
· bounded by the ideal and nadir objective vectors
· with the given resolution r

end if
Fit frame to the non-dominated points in A (Figure 6.4c)
Remove duplicated points
return the built reference set R (Figure 6.4d)

f2

f1

(a) Ideal and nadir objective vectors

f2

f1

(b) Upper frame

f2

f1

(c) Frame fitting

f2

f1

(d) Reference set

Figure 6.4.: Reference set construction for a bi-objective MOP

6.4 the algorithm

The DE with ∆p-based selection is presented in Algorithm 6.3. Some modi-
fications were done to DE/rand/1/bin to adapt the EA for multi-objective opti-
mization using the proposed ∆p-based selection mechanism:
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• the creation and update of the reference set (lines 3 and 18) was in-
cluded

• ∆p contributions must be computed considering the objective function
values of the population and the reference set (lines 4 and 19)

• The (1+1)-selection was replaced by a (NP+NP)-selection (lines 17-20)

• The outcome of DE is its final population instead of a single individual
(line 22)

Algorithm 6.3 DE/rand/1/bin with ∆p-based selection

1: Generate initial population (P) of NP individuals randomly
2: Evaluate the objective function G for each individual
3: Initialize the reference set S
4: Compute the I∆p contributions of each individual according to S
5: repeat
6: {O}← ∅
7: for each individual ~x ∈ P do
8: Pick three individuals ~a,~b,~c ∈ P

distinct from ~x and from each other.
9: Pick an index R ∈ {1, . . . ,D}

10: for i = 1, . . . ,D do
11: Pick ri ∈ (0, 1) uniformly at random
12: if (i = R or ri <CR) then yi = ai + F(bi − ci)
13: else yi = xi
14: end for
15: {O}← {O}+ ~y
16: end for
17: Evaluate the objective function G for all the generated offspring O
18: Update S
19: Compute the I∆p contributions of P ∪O according to the updated S
20: P ← the NP individuals which the lowest I∆p contributions
21: until a stopping criterion is met
22: return the final population

Our proposed approach assumes the real Pareto front of the problem is
(k − 1)-dimensional and continuous. Therefore, we don’t expect our pro-
posed approach to work well with functions where the Pareto front lost
dimensionality or where it is discontinuous.
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In this chapter, we present the results obtained using the algorithm dis-
cussed in Chapter 6. Our proposed approach (∆p-DE) was validated using
5 bi-objective and 7 tri-objective problems from the Zitzler-Deb-Thiele (ZDT)
[56] and the Deb-Thiele-Laumanns-Zitzler (DTLZ) [16] sets . The definitions of
these test functions are provided in Appendix A.

Our approach is compared to NSGA-II and SMS-EMOA using the following
quality indicators (see Section 4):

• IGDp • IIGDp • I∆p • ISS • Iε+ • IC

30 independent runs of each algorithm were performed with a popula-
tion of 100 individuals running for 200 generations with the parameters
presented in Table 7.1

∆p-DE

F 1.0

NSGA-II

pc 0.9

SMS-EMOA
pm 1/|~x|Cr 0.4 pm 1/|~x|

r
⌈
k−1
√
100
⌉

ηc 15 ηc 15

p 1.0 ηm 20 ηm 20

Table 7.1.: Parameters used for all the test problems
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7.1 zdt test problems

The results obtained for most ZDT problems were very similar amongst the
three algorithms. Therefore, only two special cases (ZDT3 and ZDT4) will be
discussed in this section. The complete results for the ZDT test problems are
provided in Appendix B.1

ZDT3

ZDT3 has a discontinuous Pareto front consisting of five non-contiguous con-
vex parts [56]. Since our approach always generates a continuous reference
set, it is expected that the solutions cluster together nearby the discontinu-
ities in the Pareto front.

The results for this function are, however, only slightly worse than those
obtained by NSGA-II and SMS-EMOA regarding both the ∆p and the hypervol-
ume indicator (see Figure 7.1).

Figure 7.3 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. The expected effect appears in the
results from our approach: the solutions have occupied the areas close to the
discontinuities while leaving larger gaps in the central parts of the sections
of the Pareto front.

ZDT4

ZDT4 is a highly multi-frontal problem: it contains 219 local Pareto-optimal
fronts [56].

Our approach, in general, obtains better results than SMS-EMOA and margi-
nally worse than NSGA-II, but exhibits a more stable behavior (see Figure
7.2).

Figure 7.4 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. All three MOEAs reached the global
Pareto front; however, SMS-EMOA didn’t cover it completely.
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Figure 7.1.: Indicators for ZDT3
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Figure 7.2.: Indicators for ZDT4
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Figure 7.3.: Graphical results for ZDT3
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Figure 7.4.: Graphical results for ZDT4
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7.2 dtlz test problems

The problems for which the three algorithms generated very similar results
won’t be discussed in this section. The complete results for the DTLZ test
problems are provided in Appendix B.2

DTLZ1

DTLZ1 is a multi-frontal problem with (11n − 1) local Pareto optimal fronts.
The global Pareto front is a linear hyperplane:

∑k
m=1 fm = 0.5 [16].

The results obtained for this problem using our approach are considerably
better than those obtained with both SMS-EMOA and NSGA-II (see Figure 7.5).

Figure 7.7 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. The outcome set of NSGA-II doesn’t ap-
pear in the figure since it is too far from the Pareto front while the outcome
set of SMS-EMOA is shown only partially for a similar reason.

DTLZ3

DTLZ3 is also a multi-frontal problem: it has (3n − 1) local Pareto fronts
which are all parallel to the global Pareto front.

The results obtained using our approach are significantly better than those
obtained by SMS-EMOA and NSGA-II (see Figure 7.6).

Figure 7.8 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. The outcome set of NSGA-II doesn’t
appear in the figure since it is too far from the Pareto front; the outcome
set of SMS-EMOA is shown only partially for a similar reason. Our proposed
approach was able to reach the true Pareto front of this problem.
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Figure 7.5.: Indicators for DTLZ1
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Figure 7.6.: Indicators for DTLZ3
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Figure 7.7.: Graphical results for DTLZ1
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Figure 7.8.: Graphical results for DTLZ3
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DTLZ5

The true Pareto front of DTLZ5 is a curve instead of a surface. DTLZ5 is
considered an easy problem since the search spaces contains a bias towards
solutions close to the true Pareto front. However, our approach has difficul-
ties for solving this problem since it uses a surface as a reference set (see
Figure 7.9).

Figure 7.11 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. As expected, the outcome set of our
proposed approach is a surface instead of the line obtained by NSGA-II and
SMS-EMOA.

DTLZ6

DTLZ6 has the same Pareto front as DTLZ5. However, DTLZ6 is considered
a harder problem. We expected our approach to obtain similar results to
those obtained for DTLZ5; however, the results obtained using our approach
were significantly better than those obtained by the other MOEAs (see Figure
7.10).

Figure 7.12 shows an example of the outcome sets generated (in objective
function space) by the three MOEAs. Our algorithm reached the true Pareto
front while both NSGA-II and SMS-EMOA found dominated surfaces “close”
to the true Pareto front.
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Figure 7.9.: Indicators for DTLZ5
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Figure 7.12.: Graphical results for DTLZ6
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DTLZ7

This problem has several discontinuous Pareto optimal regions. The results
obtained using our approach are similar to those obtained by SMS-EMOA and
NSGA-II (see Figure 7.13). As with ZDT3, we expected the solutions to cluster
together close to the discontinuities in the Pareto front.

The results for this function are similar to those obtained by NSGA-II and
SMS-EMOA regarding both the ∆p and the hypervolume indicators (see Fig-
ure 7.13).
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Figure 7.13.: Indicators for DTLZ7

Figure 7.14 shows an example of the outcome sets generated (in objec-
tive function space) by the three MOEAs. The expected effect is clear in the
outcome: solutions are clustered towards the bottom border of the Pareto
optimal sections with few solutions in the middle regions.
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Figure 7.14.: Graphical results for DTLZ7
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7.3 scalability of our approach

To evaluate the scalability of our approach, we scaled the DTLZ2 function
from 2 to 10 objectives. We compared our approach to both NSGA-II and
SMS-EMOA. 10 independent runs of each algorithm were performed with a
population of 200 individuals running for 200 generations using the param-
eters shown in Tables 7.2 and 7.3

∆p-DE

F 0.5

NSGA-II

pc 0.9

SMS-EMOA
pm 1/|~x|Cr 0.3 pm 1/|~x|

p 1.0 ηc 15 ηc 15

ηm 20 ηm 20

Table 7.2.: Parameters used for our scalability testing

The outcome sets of the algorithms were compared using the exact gener-
ational distance indicator (which, due to the geometry of the Pareto front for
DTLZ2, can be computed as

∑k
i=1 f

2
k − 1), the hypervolume indicator (using

−→
1.1 as reference point), and the running time of each MOEA.

Objectives 2 3 4 5 6 7 8 9 10

r 150 15 6 4 3

Table 7.3.: Resolution values for ∆p-DE

In most cases, the outcome produced by the SMS-EMOA was better accord-
ing to the quality indicators used (see Figure 7.15). However, our approach
reached only slightly worse results (obtaining,on average, over 95% of the
best hypervolume value found by SMS-EMOA) while requiring a very reason-
able computational time (under 0.003% of the time used by SMS-EMOA)

67



performance assessment

2 4 6 8 10
10−7

10−5

10−3

10−1

101

# Objectives

G
D

∆p-DE
NSGA-II

SMS-EMOA

2 4 6 8 10

0

20

40

60

80

100

# Objectives

%
hy

pe
rv

ol
um

e

∆p-DE
NSGA-II

SMS-EMOA

Figure 7.15.: Indicator values for the DTLZ2 scaled problem
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Figure 7.16.: Running time for the DTLZ2 scaled problem
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7.4 closing remarks

These results seem to indicate that the ∆p-DE is a suitable MOEA for solv-
ing MOPs. When dealing with MOPs with few (2 or 3) objectives, the results
obtained were competitive with respect to both NSGA-II and SMS-EMOA. For
MOPs with many (4 or more) objectives, NSGA-II showed a deterioration in
the quality of its outcome as the number of objective functions increased
while maintaining a very low computational cost. For such problems, SMS-

EMOA was shown to obtain good results for many-objective problems; how-
ever, its computational cost was prohibitively high. Our proposed approach
was shown to obtain competitive results with respect to SMS-EMOA while
keeping a reasonable computational cost.
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The main goal of this thesis was to design an indicator-based multi-objective
evolutionary algorithm (MOEA) that was competitive with respect to state-of-
the-art MOEAs.

We have proposed an approach based on the minimization of the ∆p qual-
ity indicator. Our proposed approach was shown to obtain competitive re-
sults when compared to state-of-the-art MOEAs in several test problems from
the specialized literature. We also showed that our proposed approach was
able to find promising results for test problems with many (at least 4) objec-
tive functions.

8.1 conclusions

The following conclusions were obtained during the development of the
approach and its experimental validation:

• The use of quality indicators with metric properties (such as I∆p) can
be successfully used by MOEAs to guide the optimization process even
when these indicators are not Pareto-compliant.
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conclusions and future work

• We proposed a new MOEA based on a DE strategy with a ∆p-based se-
lection mechanism (see Chapter 6). The proposed approach provided
competitive results with respect to NSGA-II and SMS-EMOA in several
test problems taken from the specialized literature (see Chapter 7).

Our proposed approach, in most cases, outperformed NSGA-II but was
slightly outperformed by SMS-EMOA. The difference in the quality of
the outcomes of our proposed approach and those produced by SMS-

EMOA is very small. However, the computational cost of SMS-EMOA

is much higher that that of our proposed approach because of the
hypervolume computations involved.

• Our proposed approach seems to be less prone to getting trapped in
local optima than NSGA-II and SMS-EMOA. The results obtained by our
proposed approach in highly multi-frontal problems (such as ZDT4,
DTLZ1, and DTLZ3) are significantly better than those obtained by
the other approaches with respect to which it was compared.

• We used the test problem DTLZ2 to test the scalability of our proposed
approach, as well as that of NSGA-II and SMS-EMOA. NSGA-II showed
as expected a deterioration in the quality of its outcome when dealing
with a high number of objectives while our proposed approach and the
SMS-EMOA produced good results for problems with many objectives.

SMS-EMOA consistently outperformed our approach (by a small amount)
albeit at a very high computational cost (this MOEA could only be
tested up to 5 objectives while both NSGA-II and our approach were
tested up to 10 objectives). In contrast, the computational cost of our
approach is significantly lower than that of SMS-EMOA (see Section 7.3).
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8.2 future work

Currently, our proposed approach assumes that the Pareto front of every
problem is continuous and (k− 1)-dimensional. Then, the results obtained
for problems that do not fulfill these requirements (such as ZDT3, DTLZ5,
DTLZ6,and DTLZ7) are often worse than those obtained by other MOEAs.
Therefore, further research is required to generalize the construction of the
reference sets to problems with different characteristics.

Also, the running time of the construction of the reference sets used by
our proposed approach is currently exponential on the number of objectives.
Therefore, the running time of the approach can be improved by using al-
ternative procedures to build reference sets (such as linear interpolation
techniques for bi-objective MOPs).

Finally, a more detailed analysis on the scalability of the approach is re-
quired since the results obtained in this thesis are promising but involve the
use of only one scalable test problem.
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T E S T P R O B L E M S

a.1 zitzler-deb-thiele test set
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• Objective functions
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Figure A.1.: Pareto front for ZDT1
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test problems

ZDT2

• Objective functions

g = 1+ 1+
9

n− 1

n∑
i=2

xi

f1(~x) = x1
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Figure A.2.: Pareto front for ZDT2
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a.1 zitzler-deb-thiele test set

ZDT3

• Objective functions

g = 1+ 1+
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Figure A.3.: Pareto front for ZDT3
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ZDT4

• Objective functions

g = 1+ 10(n− 1) +
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Figure A.4.: Pareto front for ZDT4
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a.1 zitzler-deb-thiele test set

ZDT6

• Objective functions
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Figure A.5.: Pareto front for ZDT6
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a.2 deb-thiele-laumanns-zitzler test set
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Figure A.6.: Pareto front for DTLZ1
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a.2 deb-thiele-laumanns-zitzler test set

DTLZ2

• Objective functions
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Figure A.7.: Pareto front for DTLZ2
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DTLZ3

• Objective functions
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Figure A.8.: Pareto front for DTLZ3
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a.2 deb-thiele-laumanns-zitzler test set

DTLZ4

• Objective functions
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Figure A.9.: Pareto front for DTLZ4
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test problems

DTLZ5

• Objective functions
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Figure A.10.: Pareto front for DTLZ5
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a.2 deb-thiele-laumanns-zitzler test set

DTLZ6

• Objective functions
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Figure A.11.: Pareto front for DTLZ6
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test problems

DTLZ7

• Objective functions
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Figure A.12.: Pareto front for DTLZ7
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This appendix contains the complete results obtained for Chapter 7 with
our proposed approach, NSGA-II and SMS-EMOA.

Regarding unary quality indicators, the results reported are the mean
values for each indicator (µ), the standard deviation (σ), and the best and
worst values obtained from the runs performed. For binary indicators, only
the mean values for each indicator are reported. The algorithm with the
best mean value for each case is emphasized.

For the IGD and IIGD indicators, a uniformly distributed discretization of
the real Pareto front was used as the reference set.

87



complete results

b.1 zdt test problems

Tables B.3, B.4, and B.5 summarize our results for the ZDT problems (except
ZDT5, which was excluded for being a binary problem) using several quality
indicators (see Chapter 4).

The reference points used for the hypervolume indicator (see Section
4.1.2.1) are provided in Table B.1.

Problem Reference Point
ZDT1 ( 1.1 , 1.1 )
ZDT2

ZDT3 ( 0.9 , 1.1 )
ZDT4 ( 1.1 , 1.1 )
ZDT6

Table B.1.: Reference points used for IH in the ZDT test problems

b.2 dtlz test problems

Tables B.6, B.7, and B.8 summarize our results for the DTLZ test problems
using several quality indicators (see Chapter 4).

The reference points used for the hypervolume indicator (see Section
4.1.2.1) are provided in Table B.2.

Problem Reference Point
DTLZ1 ( 1.1 , 1.1 , 1.1 )
DTLZ2

DTLZ3 ( 5.0 , 5.0 , 5.0 )
DTLZ4

( 1.1 , 1.1 , 1.1 )DTLZ5

DTLZ6

DTLZ7 ( 1.1 , 1.1 , 7.0 )
Table B.2.: Reference points used for IH in the DTLZ test problems
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b.3 scalability results

b.3 scalability results

Tables B.9 and B.10 summarize our results for DTLZ2 problem with up to 10

objectives using the GD and hypervolume indicators (see Chapter 4). The
running time for each algorithm is presented in table B.11

The reference point used for the hypervolume indicator was (
−→
1.1).

# objectives Algorithm GD indicator
µ σ min max

2

∆p-DE 0.0000004 0.0000012 0.000000 0.000004
NSGA-II 0.0005877 0.000130 0.000481 0.000952

SMS-EMOA 0.0000329 0.000049 0.000004 0.000136

3

∆p-DE 0.000045 0.000013 0.000026 0.000069
NSGA-II 0.0146852 0.001583 0.011695 0.016491

SMS-EMOA 0.000102 0.000014 0.000073 0.000132

4

∆p-DE 0.000991 0.001589 0.000053 0.005141

NSGA-II 0.0460704 0.006683 0.038534 0.059021

SMS-EMOA 0.000284 0.000031 0.000233 0.000325

5

∆p-DE 0.018994 0.020466 0.001042 0.067794

NSGA-II 0.1497307 0.021936 0.116644 0.195061

SMS-EMOA 0.000444 0.000061 0.000354 0.000553

6

∆p-DE 0.018027 0.005456 0.011671 0.026870
NSGA-II 1.455277 0.179236 1.072336 1.677652

SMS-EMOA — — — —

7

∆p-DE 0.065257 0.050900 0.008182 0.190008
NSGA-II 3.214524 0.191547 2.885911 3.479824

SMS-EMOA — — — —

8

∆p-DE 0.034512 0.027262 0.001571 0.097806
NSGA-II 3.081084 0.097669 2.885206 3.233306

SMS-EMOA — — — —

9

∆p-DE 0.016333 0.004926 0.010517 0.028624
NSGA-II 2.393702 0.090556 2.260907 2.581568

SMS-EMOA — — — —

10

∆p-DE 0.014894 0.014259 0.010517 0.028624
NSGA-II 1.7166391 0.061353 1.599913 1.786154

SMS-EMOA — — — —
Table B.9.: Results for the DTLZ2 function: IGD
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complete results

# objectives Algorithm Hypervolume indicator
µ σ min max

2

∆p-DE 0.422147 0.000261 0.421522 0.422310

NSGA-II 0.421928 0.000071 0.421792 0.422029

SMS-EMOA 0.422791 0.000007 0.422776 0.422800

3

∆p-DE 0.760359 0.001291 0.757998 0.762954

NSGA-II 0.724661 0.003624 0.718817 0.730217

SMS-EMOA 0.7728841 0.000037 0.772829 0.772935

4

∆p-DE 1.042166 0.003703 1.035251 1.048438

NSGA-II 0.921006 0.008616 0.907570 0.930972

SMS-EMOA 1.071800 0.000034 1.071761 1.071854

5

∆p-DE 1.269987 0.016897 1.240539 1.288388

NSGA-II 1.033873 0.015736 0.999701 1.053882

SMS-EMOA 1.330860 0.000110 1.330661 1.331089

6

∆p-DE 1.452230 0.0110470 1.437443 1.473233
NSGA-II 0.330570 0.101391 0.178405 0.511004

SMS-EMOA — — — —

7

∆p-DE 1.665510 0.058751 1.530023 1.742427
NSGA-II 0.036647 0.031180 0.000302 0.095066

SMS-EMOA — — — —

8

∆p-DE 1.8696093 0.053191 1.768818 1.942596
NSGA-II 0.0170008 0.019864 0.001130 0.070408

SMS-EMOA — — — —

9

∆p-DE 2.034205 0.041145 1.945704 2.086265
NSGA-II 0.0481003 0.021721 0.018862 0.088790

SMS-EMOA — — — —

10

∆p-DE 2.138645 0.014621 2.118968 2.153989
NSGA-II 0.183653 0.036656 0.140166 0.248981

SMS-EMOA — — — —
Table B.10.: Results for the DTLZ2 function: IH
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b.3 scalability results

# obj. Algorithm Running time (seconds)
µ σ min max

2

∆p-DE 2.8348855 0.052186 2.684505 2.866449

NSGA-II 0.4555398 0.002258 0.450883 0.458300

SMS-EMOA 36.2628864 0.108132 36.144054 36.531175

3

∆p-DE 6.716288 0.455965 5.987896 7.243083

NSGA-II 0.703396 0.004185 0.696468 0.710417

SMS-EMOA 1052.4071 17.68631 1036.664953 1091.894354

4

∆p-DE 10.593524 1.032320 8.753984 11.874017

NSGA-II 0.894355 0.0026259 0.891668 0.900697

SMS-EMOA 23338.339 263.5205 23038.191662 23884.258040

5

∆p-DE 16.361607 1.433969 13.765632 18.676352

NSGA-II 1.049597 0.004649 1.039976 1.056847

SMS-EMOA 509808.04 15598.21 480578.229004 541586.485339

6

∆p-DE 120.4086241 16.142403 93.437694 146.156669

NSGA-II 1.3048848 0.008647 1.296380 1.327472

SMS-EMOA — — — —

7

∆p-DE 88.316456 11.686119 72.004666 107.063486

NSGA-II 1.5645563 0.010703 1.541526 1.581247

SMS-EMOA — — — —

8

∆p-DE 427.0854794 69.953813 292.025018 535.883238

NSGA-II 1.8024511 0.0143106 1.776279 1.825986

SMS-EMOA — — — —

9

∆p-DE 2574.167783 677.9899 1462.103560 3430.646654

NSGA-II 2.0293899 0.020010 1.998924 2.066521

SMS-EMOA — — — —

10

∆p-DE 10936.5007 3297.1294 7010.875822 18202.064041

NSGA-II 2.2535963 0.0118404 2.229482 2.269007

SMS-EMOA — — — —

Table B.11.: Results for the DTLZ2 function: running time
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