

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACIÓN

“Development of Artificial Intelligence Techniques for Playing
Chess Computer”

A dissertation submitted by
Eduardo Vázquez Fernández

For the degree of
Doctor in Computer Science

Advisors
Dr. Carlos Artemio Coello Coello
Dr. Feliú Davino Sagols Troncoso

Mexico City, Mexico December, 2012

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACIÓN

“Desarrollo de Técnicas de Inteligencia Artificial para Jugar
Ajedrez por Computadora”

Tesis que presenta
Eduardo Vázquez Fernández

Para obtener el grado de
Doctor en Ciencias en Computación

Directores de tesis
Dr. Carlos Artemio Coello Coello
Dr. Feliú Davino Sagols Troncoso

México, Distrito Federal Diciembre, 2012

Eduardo Vázquez Fernández: “Development of Artificial Intelligence Techniques
for Playing Chess Computer”, December, 2012.

A mi núcleo familiar más importante Grisel, Gaby y Dany

A G R A D E C I M I E N T O S

Deseo expresar mi agradecimiento a diferentes instituciones y personas que
hicieron posible la realización del presente trabajo.

Deseo agradecer a mis asesores, el Dr. Carlos A. Coello Coello y el Dr. Feliú
D. Sagols Trocoso, su confianza, orientación, conocimientos, y sobre todo, su
dirección del presente trabajo doctoral.

Deseo agradecer al Dr. Gerardo De la Fraga, a la Dra. Nareli Cruz , al Dr.
Andrés Gómez y al Dr. Ricardo Landa por leer esta tesis y por sus valiosos
comentarios al respecto.

Deseo agradecer a mi núcleo familiar más importante: mi esposa Grisel y
mis hijos Gaby y Dany por ser el motor que impulsó la realización del presente
trabajo.

Quiero agradecer a mis padres sus enseñanzas y cuidados durante diversas
etapas de mi vida.

A mis seres queridos, de manera muy especial a la memoria de mi hermano
Fidel. A tia Loren y mis hermanos Lissette, Alejandra, Isaac y Miguel.

Quiero agradecer a mis compañeros de doctorado las vivencias amenas y
los conocimientos académicos compartidos. Muy especialmente a: Alfredo
Arias, Cuauhtémoc Mancillas, Arturo Yee, Lil Mariaf Rodríguez, Sandra Díaz,
Adriana Lara, Adriana Menchaca, Antonio López, Saúl Zapotecas, Julio Ba-
rrera, Lourdes López, por citar sólo algunos.

Agradezco al personal secretarial del departamento de Computación, Sofía
Reza, Felipa Rosas y Erika Ríos por su valioso e incondicional apoyo en diver-
sos trámites administrativos.

vii

Deseo agradecer al Instituto Politécnico Nacional y a la Escuela Superior de
Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, por brindarme las facili-
dades y apoyos necesarios para el desarrollo del presente trabajo.

Agradezco al CONACyT la beca otorgada durante la realización de estos
estudios de doctorado, y muy especialmente al CINVESTAV por ofrecerme
un ambiénte académico de calidad y excelencia.

Este trabajo de tesis se derivó del proyecto CONACyT titulado "Escalabili-
dad y Nuevos Esquemas Híbridos en Optimización Evolutiva Multiobjetivo"
(Ref. 103570), cuyo responsable es el Dr. Carlos A. Coello Coello.

Agradezco sinceramente a todas aquellas personas que de alguna manera
contribuyeron y apoyaron el desarrollo del presente trabajo, pero que por mo-
tivo de espacio sus nombres han sido omitidos.

viii

A B S T R A C T

Basically, a chess engine is composed of a move generator, a search algorithm
of the principal variation and an evaluation function. In this work, we de-
signed and implemented a chess engine by adding knowledge to the evalua-
tion function through artificial intelligence techniques.

The research had three main contributions. In the first, we proposed a neu-
ral network architecture to obtain the positional values of chess pieces in a
way analogous to human chess players. With this proposal, our chess engine
reached a rating of 2178 points. In the second contribution, we report an evolu-
tionary algorithm which has a selection mechanism that favors virtual players
that are able to “visualize” (or match) more moves from those registered in a
database of chess grandmaster games. This information is used to adjust the
basic weights set of the evaluation function of the chess engine. This proposal
does not attempt to increase level of play in our chess engine, but instead aims
to deduce the known values from chess theory for this basic weights set.

Finally, in the third contribution of this work, we used two steps to carry out
the weights adjustment of our chess engine. In the first step, we performed an
exploration search through the previous evolutionary algorithm, but now we
adjust a larger number of weights (from five to twenty eight). With this change,
we obtained an increase in the rating of the chess engine from 1463 to 2205
points. In the second step, we used the Hooke-Jeeves algorithm to continue
the weights adjustment for the best virtual player obtained in the previous
step. Using this algorithm as a local search engine, we increased the rating of
our chess engine from 2205 to 2425 points.

ix

R E S U M E N

Básicamente, un motor de ajedrez está compuesto de tres partes: un generador
de movimientos, un algoritmo de búsqueda de la variante principal y una
función de evaluación. En este trabajo diseñamos e implementamos un motor
de ajedrez agregando conocimiento a la función de evaluación a través de
técnicas de inteligencia artificial como lo son los algoritmos evolutivos y/o las
redes neuronales.

La investigación versa sobre tres contribuciones principales. En la primera,
proponemos una arquitectura de redes neuronales para obtener los valores
posicionales de las piezas de ajedrez. Con esta propuesta, nuestro motor de
ajedrez alcanzó una calificación de 2178 puntos en el sistema de medida em-
pleado por la Federación Internacional de Ajedrez. En la segunda contribución,
proponemos un algoritmo evolutivo con un mecanismo de selección basado
en juegos de grandes maestros para ajustar el conjunto básico de pesos del
motor de ajedrez.

Finalmente, en la tercera contribución, usamos dos pasos para llevar a cabo
el ajuste de pesos. En el primero, realizamos la búsqueda de exploración
a través del algoritmo evolutivo previo, pero tomando en cuenta un mayor
número de pesos (de cinco a veintiocho). Con este cambio obtuvimos un in-
cremento en la calificación de nuestro motor de ajedrez de 1463 a 2205 puntos.
En el segundo paso, usamos el método de Hooke-Jeeves para continuar ajus-
tando los pesos del mejor jugador virtual obtenido en el paso anterior. Usando
este algoritmo como un buscador local, logramos incrementar la calificación
de 2205 a 2425 puntos.

xi

C O N T E N T S

1 introduction 1

1.1 Statement of the problem 1

1.2 Hypothesis 1

1.3 Objectives 1

1.4 Contents of the document 2

2 computer chess 5

2.1 Computer chess history 5

2.2 Notions and concepts 14

2.2.1 Game tree 15

2.2.2 Search tree 16

2.3 Fundamental components 16

2.4 Board representation and move generation 17

2.5 Search algorithms 18

2.5.1 Minimax 18

2.5.2 Negamax 19

2.5.3 Branch-and-bound algorithm 20

2.5.4 Alpha-beta pruning 22

2.5.5 Quiescence search 22

2.5.6 Iterative deepening 23

2.6 Evaluation function 24

2.7 Our chess engine 26

2.8 Final remarks of this chapter 27

3 soft computing in chess 29

3.1 Artificial neural networks 29

xiii

xiv contents

3.1.1 A short history of neural networks 29

3.1.2 Basic concepts of artificial neural networks 31

3.1.3 Activation function types 33

3.1.4 Advantages and disadvantages of neural networks 34

3.1.5 Neural networks architecture 35

3.1.6 Learning process 36

3.2 Evolutionary algorithms 38

3.2.1 A short review of evolutionary algorithms 38

3.2.2 Components of an evolutionary algorithm 39

3.2.3 Evolutionary algorithms versus mathematical programming
techniques 42

3.2.4 Evolutionary computation paradigms 43

3.3 Differential Evolution 47

3.3.1 Initialization of vectors 47

3.3.2 Mutation 48

3.3.3 Crossover 49

3.3.4 Selection 49

3.3.5 DE Family of Storn and Price 49

3.4 Previous Related Work 50

3.4.1 Works related to unsupervised adjustment 51

3.4.2 Works related to supervised adjustment 56

3.4.3 Works related to hybrid adjustment 57

3.5 Final Remarks of this chapter 58

4 tuning weights through a neural network architecture 63

4.1 Introduction 63

4.2 Evaluation function 63

4.2.1 Material values of the chess pieces 64

4.2.2 Positional values of the chess pieces 64

4.3 Methodology 65

4.3.1 Neural network architecture 65

4.3.2 Components of our evolutionary algorithm 74

4.3.3 Our evolutionary algorithm 76

4.4 Experimental design 77

4.5 Experimental results 77

4.5.1 Experiment A 77

4.5.2 Experiment B 78

4.5.3 Discussion of the results 81

4.6 Final remarks of this chapter 82

contents xv

5 tuning weights with a database of chess grandmaster

games 85

5.1 Introduction 85

5.2 Chess engine 86

5.3 Methodology 86

5.3.1 Components of our evolutionary algorithm 87

5.3.2 Evolutionary algorithm 88

5.3.3 Database of games 89

5.4 Experimental results 90

5.4.1 Tuning weights 90

5.4.2 Additional Games 93

5.5 Final remarks of this chapter 96

6 tuning weights with the hooke-jeeves method 97

6.1 Evaluation function 97

6.1.1 King’s positional value 98

6.1.2 Queen’s positional value 99

6.1.3 Rook’s positional value 99

6.1.4 Bishop’s positional value 100

6.1.5 Knight’s positional value 101

6.1.6 Pawn’s positional value 102

6.2 Methodology 102

6.2.1 Components of our evolutionary algorithm 102

6.2.2 Phases of our method 103

6.2.3 Initialization 106

6.2.4 Database of games 106

6.3 Experimental results 106

6.3.1 First experiment 106

6.3.2 Second experiment 109

6.3.3 Third experiment 111

6.4 Final remarks of this chapter 112

7 conclusions and future work 115

a elo rating system 117

a.1 Elo formula 117

a.2 World chess federation 120

b uci protocol 123

b.1 From GUI to chess engine 124

b.2 From chess engine to GUI 125

L I S T O F F I G U R E S

Figure 1 Alan Turing 6

Figure 2 Claude Shannon 7

Figure 3 The Univac Computer Maniac I. 8

Figure 4 The chess computer Belle. 11

Figure 5 Deep Thought’s team. 12

Figure 6 Kasparov vs Deep Blue. 13

Figure 7 Hydra super-computer. 14

Figure 8 Nodes description in the game tree. 15

Figure 9 Board representation with the 0× 88 method. 17

Figure 10 Example of operation of the minimax algorithm. 19

Figure 11 Example of operation of the negamax algorithm. 19

Figure 12 If F(P1) = −1, then F(P) > 1 and we do not have to
know the exact value of F(P2) if we can deduce that
F(P2) > −1. This happens if F(P21) 6 1. 21

Figure 13 Example of pruning with the branch-and-bound algo-
rithm. 21

Figure 14 Example of pruning with the alpha-beta algorithm. 24

Figure 15 Example diagram. 25

Figure 16 Architecture of our chess engine. 28

Figure 17 Model of a neuron. 32

Figure 18 Feedforward network with a single layer of neurons. 59

Figure 19 Network with one hidden layer and one output layer.
This network is fully connected. 60

xvi

List of Figures xvii

Figure 20 Recurrent network. 61

Figure 21 Charles Darwin. 61

Figure 22 Main stages of the differential evolution algorithm. 62

Figure 23 Position to illustrate feature extraction. 65

Figure 24 Neural networks architecture used in the evaluation of
the pieces’ positional values. 67

Figure 25 Position to illustrate feature extraction. 68

Figure 26 The white queen prevents checkmate on f1 square. 69

Figure 27 The value of the queen of g3 is greater than the value of
the queen on a8. 70

Figure 28 The white rook on the seventh row permits to the white
side win the black queen. 70

Figure 29 The black king receives checkmate by the white rooks
on b7 and c7. 71

Figure 30 The value of the bishop on e5 is greater than the value
of the bishop on c8. 71

Figure 31 The value of the knight on d6 is greater than the value
of the knight on g6, and this is greater than the value of
the knight on b8. 75

Figure 32 Position to illustrate feature extraction. 76

Figure 33 Flowchart of the evolutionary algorithm adopted in this
work. 78

Figure 34 Histogram of wins, draws and losses for the best virtual
player at generation 0 (player0) against Rybka 2.3.2a. 81

Figure 35 Histogram of wins, draws and losses for the best vir-
tual player at generation 50 (player50) against Rybka
2.3.2a. 82

Figure 36 Chromosome adopted in our evolutionary algorithm. 87

Figure 37 Flowchart of our proposed evolutionary algorithm. 90

Figure 38 Average weight values of the population during 50 ge-
nerations. 92

Figure 39 Standard deviation of the weights in the population du-
ring 50 generations. 93

Figure 40 Final position for the game between the human player
ranked at 1600 points (with white pieces) versus “ave-
rage weights in generation 50” (with black pieces). 96

Figure 41 Evolutionary process for the exploration search. The plot
shows the number of positions solved (a total of 1000)
for the best virtual player and the average weight values
of the 20 virtual players during 200 generations. 109

Figure 42 Histogram of wins, draws and losses for Chessmaster2500
against VPexploitation (H1), VP200exploration (H2), VP0exploration
(H3). 112

Figure 43 Rating difference versus percentage score. This figure
was taken from http://www.chessbase.com/newsdetail.

asp?newsid=7114. 120

Figure 44 Comparison of the Elo’s prediction and better predic-
tion. This figure was taken from http://www.chessbase.

com/newsdetail.asp?newsid=562. 121

L I S T O F TA B L E S

Table 1 History of the ACM North American Computer Chess
Championship. 9

Table 2 History of the World Computer Chess Championship. 10

Table 3 Results of the match Kasparov vs Deep Blue (1996). 12

Table 4 Results of the match Kasparov vs Deep Blue (1997). 12

Table 5 Main features of the three main evolutionary computa-
tion paradigms. 48

Table 6 Symbols for chess position assessment. 56

xviii

http://www.chessbase.com/newsdetail.asp?newsid=7114

http://www.chessbase.com/newsdetail.asp?newsid=7114

http://www.chessbase.com/newsdetail.asp?newsid=562

http://www.chessbase.com/newsdetail.asp?newsid=562

List of Tables xix

Table 7 Initial weight values of black pawns than obstruct the
black bishop’s movement. 73

Table 8 Initial weight values of the white pawns than obstruct
the black bishop’s movement. 74

Table 9 Number of games won, drawn and lost for the best
virtual player at generation 50 against the best virtual
player at generation 0. 79

Table 10 Ratings on the third run against Rybka2.3.2a. 80

Table 11 Final weight values of black pawns than obstruct the
black bishop’s movement. 83

Table 12 Average weight values and their standard deviations for
run number 31 (generation 0) 91

Table 13 Average weight values and their standard deviations for
run number 31 (generation 50) 94

Table 14 Ratings for the human player and our chess engine in
a ten-game match. The final result was 9 to 1 for the
human player. 95

Table 15 Ranges of the weights for each virual player. 107

Table 16 Values of the weights after the exploration search (shown
in the second column) and after the exploitation search
(shown in the third column). 110

Table 17 Ratings of the second experiment. 111

Table 18 Ratings of the third experiment. 112

Table 19 Elo rating system 118

Table 20 Some values for the relationship between rating diffe-
rence and expected score. 119

Table 21 Top ten chess players until October 2012. 122

Table 22 Grandmasters per country until July 2012. 122

“Though I would have liked my chances
in a rematch in 1998 if I were better
prepared, it was clear then that
computer superiority over humans in
chess had always been just a matter of
time.”
Garry Kasparov

1
I N T R O D U C T I O N

This chapter describes the problem solved in this doctoral work, the hypothe-
ses and both general and specific objectives to carry it out. It also gives a brief
description of the contents of the chapters in this document.

1.1 statement of the problem

Build a chess engine with a rating of around 2600 points in the ELO system
(see Appendix A), by applying artificial intelligence techniques.

1.2 hypothesis

• The use of artificial intelligence techniques will improve the rating of a
chess engine; in particular, the use of evolutionary computation and/or
neural networks.

• Evolutionary computation techniques and/or neural networks can ad-
just the weights of a chess engine; in particular, the material values and
positional values of the pieces.

1.3 objectives

The general objectives of the doctoral work were:

1

2 introduction

• Design and implement a chess engine with a rating of around 2600

points.

• Add knowledge to the evaluation function of a chess engine through arti-
ficial intelligence techniques using principally evolutionary computation
and/or neural networks.

The specific objectives of the doctoral work contemplate to carry out the im-
plementation of the fundamental components of a chess engine. Such compo-
nents are:

• Board representation

• Move generator

• Search algorithm

• Universal Chess Interface communication protocol

• Techniques for transposition tables

• Use of existing databases in the opening phase of the game

1.4 contents of the document

In Chapter 2, we will give a brief description of the computer chess history.
Also in that chapter, we will illustrate basic concepts such as game tree, search
tree, 0× 88 method, evaluation function and search algorithms such as mini-
max, negamax, branch-and-bound and alpha-beta. In Chapter 3, we will give a
short history of neural networks, as well as a description of their basic model,
their different types of activation functions, their advantages and disadvan-
tages and their architecture. Also in that chapter, we will talk about different
paradigms of evolutionary computation, with emphasis on evolutionary pro-
gramming. At the end of that chapter, we will refer to related work for ad-
justing weights of the evaluation function of a chess engine through artificial
intelligence techniques, especially neural networks and/or evolutionary algo-
rithms.

Since manual weights adjustment of the chess engine evaluation function
requires a significant amount of time (usually years [21], [6] and [5]) in Chap-
ters 4, 5, and 6, we propose different methods to carry it out automatically. In
Chapter 4, we propose an original neural network architecture to obtain the

1.4 contents of the document 3

positional values of chess pieces. Weights adjustment of such neural networks
was done through the use of an evolutionary algorithm producing an increase
of 433 rating points in our chess engine (from 1745 to 2178 points). In Chap-
ter 5, we present our approach for adjusting weights of the evaluation function.
We propose an evolutionary algorithm which has a selection mechanism based
on supervised learning through a database of chess grandmaster games. With
this approach, we obtained the “theoretical” values of chess pieces. In Chap-
ter 6, we used the Hooke-Jeeves algorithm to continue the weights adjustment
of the best virtual player obtained with the evolutionary algorithm in Chap-
ter 5. Using this algorithm as a local search engine, we increased our chess
engine rating from 2205 to 2425 points. The use of the Hooke-Jeeves method
is an original contribution for adjusting the weights of a chess engine.

In Chapter 7, we will give the general conclusions and some possible paths
for future work. In Appendix A, we will show the system employed to rank
the players strength in two-player games such as chess. Finally, in Appendix B,
is described the UCI communication protocol which is the standard used to
establish the communication between the engine and user applications.

“Chess is far too complex to be
definitively solved with any technology
we can conceive of today. However, our
looked-down-upon cousin, checkers, or
draughts, suffered this fate quite
recently thanks to the work of Jonathan
Schaeffer at the University of Alberta
and his unbeatable program Chinook.”

Garry Kasparov 2
C O M P U T E R C H E S S

This chapter gives a brief summary of computer chess history from its ori-
gins to current chess programs. It also provides the basic notions and con-
cepts which we will use throughout the thesis. Concepts such as game tree
and search tree are illustrated in Section 2.2. The fundamental components
of a chess engine are presented in Section 2.3. The 0× 88 board representa-
tion method is presented in Section 2.4. The fundamental search algorithms
adopted in our search engine (i.e. minimax, negamax, branch-and-bound and
alpha-beta) are presented in Section 2.5. Section 2.6 illustrates the concept of
evaluation function. Finally, Section 2.7 gives the description of our chess en-
gine architecture.

2.1 computer chess history

The origins of computer chess date back to the pioneering efforts of Alan Tur-
ing and Claude Shannon in the mid and late 1940s. In 1947, Alan Turing [79]
designed a program to play chess and, in 1949, Claude Shannon [73], a scien-
tist at Bell Telephone Laboratories, proposed two strategies to implement a
chess engine. The first of them, called “Type A”, considered all possible moves
to a fixed depth of the search tree, and the second, called “Type B”, used chess
knowledge to explore the main lines to a greater depth. Shannon was the first
to estimate that the total number of possible chess games is 10120. Shannon
was one of the most distinguished computer scientists in North America and

5

6 computer chess

became to have remarkable contributions in the fields of information theory
and computer circuit design. Shannon was also an avid chess player.

Figure 1: Alan Turing

Dates mentioned in the rest of this section were taken from the following
references: [69], [74] and the web page http://www.computerhistory.org/

chess/index.php from Computer History Museum.
Because of its complexity, and the human interest that chess has attracted

during many years, this game has been used, since the 1950s, as a benchmark
to test a variety of artificial intelligence techniques. In fact, both Turing and
Shannon thought that chess was an alternative to achieve the dream that a
computer could think.

During the 1950s, chess programs played at a very basic level, but by the
1960s, chess programs could defeat amateur chess players.

In 1952, Alick Glennie, who wrote the first computer compiler, defeated
Alan Turing’s chess program. He was the first person to beat a computer pro-
gram at chess.

In 1956, one of the first experiments carried out on the Univac Computer
Maniac I was to develop a program to play chess. The program used a 6× 6
chessboard without bishops and took 12minutes to search a four moves depth
(adding the two bishops would take three hours to search at the same depth).
Maniac I had a memory of 600 words, it performed 11, 000 operations per
second, and had 2, 400 vacuum tubes.

In 1958, Alex Bernstein, an experienced chess player and a programmer at
IBM, built the first complete chess program for an IBM 704. This computer

http://www.computerhistory.org/chess/index.php

http://www.computerhistory.org/chess/index.php

2.1 computer chess history 7

Figure 2: Claude Shannon

could perform 42, 000 instructions per second and had a memory of 70 K. The
program took eight minutes to search a four moves depth and could play a
full chess game, although it could be defeated by novice players.

In 1958, the alpha-beta pruning algorithm [57, 63] for chess was proposed by
Allen Newell, Cliff Shaw, and Herbert Simon at Carnegie Mellon University.
They developed the NSS (Newell, Shaw, and Simon) chess program, which
was different than its predecessors in two aspects: It was the first program
written in a high-level language and it used the alpha-beta algorithm for the
first time. This program used heuristics that reduced the number of possible
moves to explore.

In 1962, the Massachusetts Institute of Technology (MIT) developed its first
chess program. It was written by Alan Kotok as part of his B.S. thesis project,
assisted by John McCarthy from Stanford University. The program ran on an
IBM 7090, looking at 1, 100 positions per second. The program could defeat
amateur chess players.

In 1965, researches from the Institute for Theoretical and Experimental Phy-
sics developed a chess program in Moscow. In 1966, this program began a cor-
respondence match with the Kotok-McCarthy MIT chess program. The match
lasted nine months and was won by the soviets, with three wins and one loss.

8 computer chess

Figure 3: The Univac Computer Maniac I.

In 1967, Richard Greenblatt, a student at MIT, presented a chess program
called Mac Hack Six, which was the first to compete respectably against
humans in tournament play. It played in several tournaments in Boston and
earned a rating of about 1400 points. Greenblatt wrote his program in the as-
sembly language MIDAS for the PDP-6. The program required 16K words and
used hash tables [87, 3]. The first tournament victory for Mac Hack Six was
against a human having 1510 rating points. Mac Hack Six was also the first
to have an opening chess book programmed with it.

In the 1970s, the main chess programs used hash tables which allowed the
storage of information about positions that had already been searched. This
way, if the same position was reached again, no search was conducted, since
the previously generated information would be used in that case. Additionally,
other search refinements were also introduced. The most remarkable were:
iterative deepening (which searches down to a certain level of the game tree),
opening books (which include rules or move sequences that are known to be
good to start a game), and endgame databases (which contain move sequences
that are known to be good for ending a game, or even solutions to positions
with a certain (small) number of pieces). Also, chess programs began to use
heuristics and specialized hardware to improve their rating.

In 1970, the Association for Computing Machinery (ACM) organized the
first North American Computer Chess Championship, which was held in
New York. The chess program Chess 3.0 written by Slate, Atkin and Gorlen at
Northwestern University won the tournament. Six chess programs took part

2.1 computer chess history 9

in this event. Table 1 shows the history of the ACM North American Com-
puter Chess Championship from 1970 to 1994. The ACM chess events were
cancelled in 1995 because Deep Blue was preparing for the first match against
world chess champion Garry Kasparov.

Event City Participants Champion

ACM 1970 New York, USA 6 Chess 3.0

ACM 1971 Chicago, USA 8 Chess 3.5

ACM 1972 Boston, USA 8 Chess 3.6

ACM 1973 Atlanta, USA 12 Chess 4.0

ACM 1974 San Diego, USA 12 Ribbit

ACM 1975 Minneapolis, USA 12 Chess 4.4

ACM 1976 Houston, USA 11 Chess 4.5

ACM 1977 Seattle, USA 12 Chess 4.6

ACM 1978 Washington, D.C., USA 12 Belle

ACM 1979 Detroit,USA 12 Chess 4.9

ACM 1980 Nashville, USA 10 Belle

ACM 1981 Los Angeles, USA 16 Belle

ACM 1982 Dallas, USA 14 Belle

ACM 1983 and New York, USA 22 Cray Blitz

4th WCCC

ACM 1984 San Francisco, USA 14 Cray Blitz

ACM 1985 Denver, USA 10 HiTech

ACM 1986 Dallas, USA 16 Belle

ACM 1987 Dallas, USA 13 ChipTest

ACM 1988 Orlando, USA 12 Deep Thought

ACM 1989 Reno, USA 10 Deep Thought,

HiTech

ACM 1990 New York, USA 9 Deep Thought

ACM 1991 Albuquerque, USA 12 Deep Thought II

ACM 1993 Indianapolis, USA 12 Socrates II

ACM 1994 Cape May, USA 10 Deep Thought II

Table 1: History of the ACM North American Computer Chess Championship.

In 1974, the World Computer Chess Championships (WCCC) began. Among 13
chess programs that participated in the first tournament, held in Stockolm,
Sweden, Kaissa was the winner. Table 2 shows the history of the World Com-
puter Chess Championship from 1974 to 2011.

In 1975, Knuth [57] analyzed in detail the alpha-beta pruning algorithm and
proposed an improved version that uses a pruning technique which has the
advantage of refraining from evaluating some nodes when unnecessary.

10 computer chess

Event City Participants Champion

WCCC 1974 Stockholm, Sweden 13 Kaissa

WCCC 1977 Toronto, Canada 16 Chess 4.6

WCCC 1980 Linz, Austria 18 Belle

WCCC 1983 New York, USA 22 Cray Blitz

WCCC 1986 Cologne, West Germany 22 Cray Blitz

WCCC 1989 Edmonton, Canada 24 Deep Thought

WCCC 1992 Madrid, Spain 22 ChessMachine

WCCC 1995 Shatin, Hong Kong, China 24 Fritz

WCCC 1999 Paderborn, Germany 30 Shredder

WCCC 2002 Maastricht, The Netherlands 18 Junior

WCCC 2003 Graz, Austria 16 Shredder

WCCC 2004 Ramat-Gan, Israel 14 Junior

WCCC 2005 Reykjavik, Iceland 12 Zappa

WCCC 2006 Turing, Italy 18 Junior

WCCC 2007 Amsterdam, The Netherlands 11 Zappa

WCCC 2008 Beijing, China 9 Hiarcs

WCCC 2009 Pamplona, Spain 9 Junior, Shredder

WCCC 2010 Kanazawa, Japan 9 Rondo, Thinker

WCCC 2011 Tilburg, The Netherlands 9 Junior

Table 2: History of the World Computer Chess Championship.

In 1977, the International Computer Chess Association (ICCA) was founded
by computer chess programmers. In this year, Michael Stean became the first
grandmaster to lose with a chess program in a blitz game (chess games with
five minutes for each player).

Also, in this year, at Bell Laboratories, Ken Thompson and Joe Condon took
the brute force approach by developing Belle, which was the first computer
system to use custom design chips to increase its playing strength. It increased
its search speed from 200 positions per second to 160, 000 positions per second
(eight ply). Belle won the North American Computer Chess Championships in
1978, 1980, 1981, and 1982.

During the early 1980s, chess programs based on microprocessors became
reachable to a larger audience. However, this technology also made such pro-

2.1 computer chess history 11

Figure 4: The chess computer Belle.

grams very limited due to the small memory capabilities and the slow pro-
cessors available at that time. During the 1980s, tournaments between chess
programs and humans started.

In 1989, two chess computers developed at Carnegie-Mellon University (Hi-
tech and Deep Thought) were able to defeat a human chessmaster each. In
this year, IBM hired Deep Thought team members Feng-Hsiung Hsu, Murray
Campbell and Thomas Anantharaman to develop a computer that would beat
reigning World Chess Champion Garry Kasparov. Kasparov easily defeated
the chess computer Deep Thought in both games of a two-game match in 1989.

In 1990, the former chess World Champion Anatoly Karpov lost with the
chess program Mephisto in a simultaneous exhibition in Munich. Mephisto
also beat grandmasters David Bronstein and Robert Huebner.

In 1992, Kasparov played against the chess program Fritz 2 in an eleven blitz
games in Cologne, Germany. Kasparov won the match with six wins, one draw,
and four losses. This was the first time a program defeated a world champion
at a blitz game.

In March, 1993, the grandmaster Judit Polgar lost to Deep Thought in a 30
minute game.

In 1994, Kasparov lost to Fritz 3 in Munich in a blitz tournament. The pro-
gram also defeated the grandmasters Anand, Short, Gelfand, and Kramnik.
Kasparov played a second match with Fritz 3, and won with four wins, two
draws, and no losses. Also, in 1994, at the Intel Speed Chess Grand Priz in

12 computer chess

London, Kasparov lost to Chess Genius 2.95 in a 25 minute game. This defeat
eliminated Kasparov from the tournament.

Round 1 2 3 4 5 6 Total

Garry Kasparov 0 1 0.5 0.5 1 1 4

Deep Blue 1 0 0.5 0.5 0 0 2

Tabla 3: Results of the match Kasparov vs Deep Blue (1996).

Figure 5: Deep Thought’s team.

Round 1 2 3 4 5 6 Total

Garry Kasparov 1 0 0.5 0.5 0.5 0 2.5

Deep Blue 0 1 0.5 0.5 0.5 1 3.5

Tabla 4: Results of the match Kasparov vs Deep Blue (1997).

By 1996, a new improved version of the computer Deep Thought was named
Deep Blue. Deep Blue was able to examine 100 million chess positions per se-
cond, and played a six-game match versus world chess champion Garry Kas-
parov. The match was organized by the Association for Computing Machin-
ery to mark the 50th birthday of the first computer. The chief organizer was
Monty Newborn, professor of computer science at McGill University. In the

2.1 computer chess history 13

Figure 6: Kasparov vs Deep Blue.

first game, Deep Blue made history by defeating Kasparov. This was the first
time a current world chess champion had ever lost a game using normal time
controls. The final result of the match was 4 to 2 in favor of Kasparov (see
Table 3). Kasparov won $400, 000 US and Deep Blue’s team won $100, 000 US.

In 1997, Deep Blue was used again to play a six-game match against Garry
Kasparov. This time, however, Kasparov lost the match (he obtained 2.5 points
and Deep Blue obtained 3.5 points). This was the first time a computer defeated
a reigning world champion in a classical chess match. After almost 50 years of
research, the goal of having a computer that was able to defeat the chess world
champion had finally been fulfilled. Table 4 shows the match’s result. Deep
Blue’s team won $700, 000 US and Kasparov won $400, 000 US. IBM estimated
that the corporation received $50, 000, 000 US worth of publicity during the
match.

In August 2000, the chess program Deep Junior took part in a super grand-
master tournament in Dortmund, Germany. It obtained 50% of the possible
points and a performance rating of 2703.

In 2002 a match between the grandmaster Mikhail Gurevich and the chess
program Junior 7 was held in Greece. Junior won with three wins and one
draw. In the same year the grandmaster Kramnik drew a match with the chess
program Deep Fritz with a 4-4 score. Also, a match between Kasparov and the
chess engine Deep Junior was carried out. The final result was 3 to 3.

In 2003, a match between Kasparov and the chess program Deep Junior 7
was held in New York, USA. The match ended in a draw. Deep Junior took ten
years in being programmed by Amir Ban and Shay Bushinksy. It can evaluate
three million moves per second and it has a search depth of 15 moves.

14 computer chess

The Hydra super-computer was developed by Ali Nasir Mohammed as a
project manager. Hydra has 16 Xeons running at 3.06 GHz each, with about
16 GBytes of RAM in the whole system. Hydra explores 200 million positions
per second, has a search depth of 18 ply (9 moves by each player) and uses
the alpha-beta pruning algorithm. It has about 3000 rating points. In 2004, Hy-
dra defeated grandmaster Evgeny Vladimirov with three wins and one draw.
It then defeated former world champion Ruslan Ponomariov (rated at 2710
points) in a two-game match, winning both games. In June, 2005, Hydra beat
Michael Adams, who was ranked as the 7th best chess player in the world. Hy-
dra won five games and drew one. Figure 7 shows the Hydra super-computer.

Figure 7: Hydra super-computer.

2.2 notions and concepts

Chess is a two-player zero sum game (where the gain of one player is offset by
the loss of another player) of perfect information (i.e., all the available informa-
tion is known by all the players at all times, because each player has access to
information on the position of his opponent and his possible moves). In chess,
there are two opponents playing and performing moves alternately. On each

2.2 notions and concepts 15

turn, the rules define the legal moves. These games start in a specific initial
state and end in a position that may be declared as draw, victory or defeat to
one side in particular.

2.2.1 Game tree

The state-space of a game is the number of legal game positions reachable from
the initial position of the game. A game tree is a representation of the state-
space of a game. A node in the tree represents a position in the game, an edge
in the tree represents a move. A path is a sequence of edges where each edge
shares one node in common with the preceding edge, and the other node in
common with the succeeding edge. The root of the tree is a representation of
the initial position. A terminal position is a position where the rules of the game
determine if the result is a win, a draw, or a loss. A terminal node represents
a terminal position. A child of a node is a direct successor of this node. Anal-
ogously, the direct predecessor of a node is called the parent of the node. A
node with at least one successor is called an interior node. The root is the only
node without a parent. Terminal nodes have no successors. The game stops
when a terminal node is reached. Figure 8 shows graphically the description
for the root node (node number 1), the interior nodes (nodes number 1, 2, 3, 4)
and the terminal nodes (nodes number 5, 6, . . . , 13).

432

5 6 7 8 9 10 4 12 13

1Terminal nodes:

Interior nodes: 1,2,3,4.

5,6,...,13.

1.Root node:

Figure 8: Nodes description in the game tree.

We call the first player MAX and his opponent MIN. Also, we will refer to
the positions of the game where MAX moves as MAX positions, and where
MIN moves as MIN positions. The trees that represent the game have two
types of nodes: nodes MAX (even levels from the root) and nodes MIN (odd
levels from the root). We will distinguish the positions where MAX moves
with squares, and where MIN moves with circles (see Figure 10).

16 computer chess

2.2.2 Search tree

Much of the work on search in artificial intelligence deals with trees. The
process of searching for a solution of the given problem can be represented
by a search tree. While the chess game could be solved in principle, this is
not possible within any practical time. Hence, we have to make decisions for a
good next move without knowing the game theoretical values of the positions.
These decisions usually have to be based on heuristic estimates.

Because in chess, the game tree is too large to be generated completely, this
is not feasible in practice. In chess, the game tree consists of roughly 1043

nodes [73]. Thus, a search tree is generated instead. This search tree is only
a part of the game tree. The root represents the position under investigation
(normally the initial position), and the remaining nodes in the search tree are
generated during the search process. The nodes without children are called
leaves. Leaves include terminal nodes and nodes which are not yet expanded.
A ply is a half move (a move by one of the two players). A path from the root
to a leaf is called variation. Leaves are evaluated with the evaluation function. A
principal variation is a sequence of moves where both players play optimally.

2.3 fundamental components

A chess engine is a computer program that plays chess. A chess engine receives
a chess position as input and calculates the best move depending on the time
available. Its main components are:

• Board representation

• Move generation

• Search algorithms

• Evaluation function

It is worth noticing that the graphical user interface (GUI) is not part of a
chess engine. The communication between the chess engine and the graphical
user interface is through the Universal Chess Interface (UCI) protocol, which
will be explained in Appendix B. Next, we will describe these components.

2.4 board representation and move generation 17

2.4 board representation and move generation

The 0× 88 method is composed by an array of integers as shown in Figure 9.
The size of this array is 16× 8 = 128, numbered from 0 to 127. It is basically
two boards next to each other. The real board is on the left (shown with a
thicker line), and the board on the right is an imaginary board that represents
illegal moves. The numbers c inside the real board have the characteristic that
the fourth and eighth bits are zero and the number 0× 88 = 100010002 has
the characteristic that the fourth and eighth bits are one. Thus, the operation
c AND 0× 88 is equal to zero for all squares inside the real board.

The move generation of a chess engine is a procedure which generates the
possible moves from a given position on the board. This procedure must be
an efficient operation because each time the search algorithm visits an internal
node in the search tree, it must generate all possible moves. This is achieved
through the 0× 88 method because with a bitwise operation AND we know if
a particular move is valid. If the move generation did not use this method, we
would need to perform four arithmetic operations to determine whether the
move of a piece had exceeded the end’s bottom, top, left or right of the board.

114

 98

 82

 66

 50

 34

 18

 2

113

 97

 81

65

49

33

17

 1

112

 96

 80

64

48

32

16

 0

115

 99

 83

 67

 51

 35

 19

 3

116

100

 84

 68

 52

 36

 20

 4

117

101

 85

 53

 37

 21

 5

69

118

102

 86

 70

 54

 38

 22

 6

119

103

 87

 71

 55

 39

 23

 7

120

104

 88

 72

 56

 40

 24

 8

121

105

 89

 73

 57

 41

 25

 9

122

106

 90

 74

 58

 42

 26

 10

123

107

 91

 75

 59

 43

 27

 11

127

111

 95

 79

 63

 47

 31

 15

126

110

 94

 78

 62

 46

 30

 14

125

109

 93

 77

 61

 45

 29

 13

124

108

 92

 76

 60

 44

 28

 12

Figure 9: Board representation with the 0× 88 method.

Algorithm 1 shows the procedure generateMoves(int s, int ∗a) which ge-
nerates the moves of the chess piece defined in the array a from the square
s. The second argument of this function must be a pointer to a constant array
of integers and must define the immediate moves for each type of chess piece.
For example, for the rook, this array is defined by:
arrayRook = {−1, 16, 1,−16, 0},

18 computer chess

where the values −1, 16, 1, −16 define the immediate moves of the rook to the
left, up, right and down, respectively. The value 0 at the end of this array is
used to finish the move generation of this piece.

So, if we want to carry out the move generation for a rook on square 20, we
will have to invoke this procedure as follows:
generateMoves(20, arrayRook)
The procedure saveMove(s, i) in Algorithm 1 saves in the array of moves,

the move from the square s to square i.

Algorithm 1 generateMoves(int s, int ∗a)
1: for (; ∗a;a++) do
2: int i;
3: for (i = s+ (∗a); !(i & 0x88); i+ = ∗a) do
4: saveMove(s, i);
5: end for
6: end for

2.5 search algorithms

2.5.1 Minimax

The minimax algorithm is the fundamental algorithm for games between two ad-
versaries. Basically, this algorithm assumes there are two players called MAX
and MIN, and assigns a value to every node in a search tree that represents
the possible moves of the two players. Terminal nodes are assigned static va-
lues that represent the value of the position from MAX’s point of view. Non-
terminal nodes receive their values recursively using a depth first search al-
gorithm [15]. If a non-terminal node p has MAX to move, then the value of
p is the maximum of the values of its successor nodes. Correspondingly, if a
non-terminal node p has MIN to move, then the value of p is the minimum
of the values of its successor nodes. The objective of the algorithm is to find
the principal variation from the root node (initial position), which is given by
the sequence of moves where two players play optimally. Figure 10 shows an
example of the operation of the minimax algorithm. In this figure, the squares
represent the player MAX, the circles represent the player MIN and the thick
line shows the principal variation.

2.5 search algorithms 19

314 159 265 358 979 323 846 264 338 327 950 288 419 939 937 510 582 097 494 459 230 781 640 628716 620

0 0 0 0

MIN moves

MAX moves

Principal variation

211 273 24 3 22 311 203 440 2 81

899

122

2 7 4 2 3 3 4 1 8

2

Figure 10: Example of operation of the minimax algorithm.

2.5.2 Negamax

The negamax algorithm [11] is a more elegant implementation of the minimax
algorithm. The problem with the minimax algorithm is that we have two di-
fferent functions that are essentially doing the exact same thing. Thus, the
negamax approach applies the same operator at all levels in the tree. In the
negamax procedure, the terminal nodes are assigned static values from the
point of view of the side to move. This allows the value of non-terminal posi-
tions to be calculated as the maximum of the negatives of the values of the suc-
cessors. Figure 11 shows an example of operation of the negamax algorithm.
Again, the thick line shows the principal variant for the initial position (note
that this variant is the same as that obtained with the minimax algorithm).

314 159 265 358 979 323 846 264 338 327 950 288 419 939 937 510 582 097 494 459 230 781 640 628716 620

0 0 0 0

MIN moves

MAX moves

Principal variation

0 0 −1

899

2 7 4 2 3 3 4 1 8

2

−2 −2 −1

−1 −1 −2 −3 −7 −2 −4 −2 −3 −2−2 −1 −3−1 −3 −2 −4 −4 −8−2

Figure 11: Example of operation of the negamax algorithm.

Algorithm 2 shows the negamax algorithm. This algorithm receives as its
input the node p and returns the value assigned to the root node. Line 1

20 computer chess

declares the integer variables used in the program. Line 2 determines if the
node p is a terminal node, and if so, it determines the value of the position
in node p with the evaluation function f(p) (these functions will be discussed
in Section 2.6). Line 5 generates all possible moves from node p and line 6
assigns to variable m the value −∞ (∞ denotes a value that is greater than
or equal to f(p) for all terminal nodes of the game). Lines 7 to 12 contain the
fundamental part of the negamax algorithm. These lines assign to the variable
m the maximum of the negatives of the values of the successors of the node p.

Algorithm 2 negamax(p:node)

1: integer m, i, t, w;
2: if terminal(p) then
3: return f(p);
4: end if
5: w← moveGeneration(p); {Determine the successors p1 . . . pw};
6: m← −∞;
7: for i = 1 a w do
8: t = -negamax(pi);
9: if t > m then

10: m← t;
11: end if
12: end for
13: return m;

2.5.3 Branch-and-bound algorithm

Both the minimax and the negamax algorithms are characterized for visiting
all the nodes in the search tree. It is possible to improve these brute-force al-
gorithms by using the branch-and-bound algorithm. This procedure ignores
moves which are incapable of being better than moves that are already known.
Figure 12 shows an example of pruning through the branch-and-bound tech-
nique. For example, if F(P1) = −1, then F(P) >= 1, and we do not have to
know the exact value of F(P2) if we can deduce that F(P2) >= −1. Thus, if
F(P21) <= 1, we do not need to bother about exploring any other moves from
P2. Thus, the search for the principal variation in Figure 12 can ignore edges
with dotted lines and all successors of node P2.

The branch-and-bound algorithm is shown in Algorithm 3. Its fundamental
difference with respect to the negamax algorithm are lines 12 to 14. These

2.5 search algorithms 21

0−1

10

P

P2

F(P1) = −1

F(P21) <= 1

P1

P21

Figure 12: If F(P1) = −1, then F(P) > 1 and we do not have to know the exact value
of F(P2) if we can deduce that F(P2) > −1. This happens if F(P21) 6 1.

lines verify if the right end of the range has been exceeded. If that is the case,
a pruning of the tree takes place to avoid visiting the subtree that starts in
node p.

In Figure 13, it can be seen how the branch-and-bound algorithm works
with the example that we have considered for the minimax and negamax algo-
rithms. This algorithm is called for the first time with the procedure branch-
and-bound(p, −∞), where p is the root node. The dotted line shows the edges
of the tree that have been pruned and do not need to be visited, and the thick
line shows the principal variation of the search tree (note that this variant is
the same when using either the minimax or negamax algorithm).

314 159 265 358 979 323 846 264 338 327 950 288 419 939 937 510 582 097 494 459 230 781 640 628716 620

0 0 0

MIN moves

MAX moves

Principal variation

0 −1

899

2 3 4 2 4 1

2

−2 −2 −1

−1 −1 −2 −4 −2−2 −4 −4−3

Figure 13: Example of pruning with the branch-and-bound algorithm.

22 computer chess

Algorithm 3 branch-and-bound(p:node, bound:integer)

1: integer m, i, t, d;
2: Determine the successors of the node p : p1, . . . ,pd;
3: if terminal(p) then
4: return f(p);
5: end if
6: m = −∞;
7: for i = 1 a d do
8: t = -branch-and-bound(pi, −m);
9: if t > m then

10: m = t;
11: end if
12: if m > bound then
13: return m;
14: end if
15: end for
16: return m;

2.5.4 Alpha-beta pruning

The branch-and-bound approach can be improved if a lower limit is added to
the use of an upper limit. This idea is known as alpha-beta pruning [57]. This
approach is able to evaluate a game tree at a low cost by ignoring subtrees
that can not affect the final value of the root node. This procedure is shown
in Algorithm 4. The fundamental difference with respect to the branch-and-
bound approach is in line 8, in which the algorithm recursively invokes the
alpha-beta pruning scheme, whose input parameters include the current node
p, the lower limit alpha and the upper limit beta. The inclusion of both limits
allows the search window to be reduced, and in this way is possible to prune
further the game tree. Figure 14 shows a search tree pruned with the alpha-
beta algorithm which is called for the first time with the procedure alpha-
beta(p, −∞,∞), where p is the root node.

2.5.5 Quiescence search

The quiescence search is essentially a variation of the alpha-beta algorithm
and is used to extend the search tree to steady positions in which material

2.5 search algorithms 23

Algorithm 4 alpha-beta(p:node, alpha:integer, beta:integer)

1: integer m, i, t, d;
2: Determine the successors of the node p: p1, . . . ,pd;
3: if d = 0 then
4: return f(p);
5: end if
6: m = −∞;
7: for i = 1 a d do
8: t = -alpha-beta(pi, −beta, −m);
9: if t > m then

10: m← t;
11: end if
12: if m > beta then
13: return m;
14: end if
15: end for
16: return alpha;

exchanges, king’s checks, and pawns promotion cannot influence the evalua-
tion of a given position. The purpose of this algorithm is to avoid stopping
the search for the principal variation in a critical situation. For example, let’s
consider the chessboard position in Figure 15 and let’s assume that the black
queen on f6 takes in the next move the white bishop on f4. If at this moment,
the search is stopped and the position is evaluated, we might think that the
black side has won a bishop. However, considering one more move, it can be
seen that the black queen is also lost because it would be captured by the white
rook on f1 or by the white queen on g3. Therefore, we need to evaluate the
positions until there is no more material exchange, i.e., when we have reached
steady positions.

2.5.6 Iterative deepening

In chess it is very important to be able to generate a reasonable decision at
any time. If the algorithm used has not completed the search when the time
limit has been reached, then a catastrophic move may be produced. The idea
of iterative deepening is to run the alpha-beta algorithm down to depth 1, 2,
. . . . In this way, it will always be available to obtain a correct answer of the

24 computer chess

314 159 265 358 979 323 846 264 338 327 950 288 419 939 937 510 582 097 494 459 230 781 640 628716 620

0 0

MIN moves

MAX moves

Principal variation

0 −1

899

2 2 2 2 4 2

2

−2 −2 −2

−1 −1 −2 −2 −2−2 −4 −4−2 −2

Figure 14: Example of pruning with the alpha-beta algorithm.

search algorithm at any time. At a first glance this technique slows down the
search. However, it presents more cuts in the search tree because the moves of
the previous search can be sorted. Instead, the chess position values obtained
with the evaluation function to depth d− 1 can be stored in a table so that it is
not necessary to calculate them again to depth d (see hash table in Section 2.7,
in page 26).

2.6 evaluation function

As we saw in Section 2.2, it is impossible to build the full search tree due to
the complexity of chess games; instead, we decided to construct a game tree
which is a representation of the legal game positions reachable from the initial
position of the game. Possibly, the leaf nodes of the game tree are non-terminal
nodes, so they must be assigned a numeric value through the evaluation func-
tion. This function is used to determine (in a heuristic way) the relative value
of a position with respect to a particular side. The aim is that the evaluation
function reflects the knowledge of the game and it must be efficient to achieve
a greater depth in the search tree. In [62], it is considered that for each addi-
tional layer of search, a chess engine should increase its strength between 200
and 250 Elo points.

The evaluation function is dependent on the phase of the chess game (open-
ing, middle game or final). Thus, the opening phase could be evaluated through
an evaluation function; however it is preferred to replace this phase by opening
databases that have been the result of the knowledge generated over centuries
on chess games. Also, the final phase of the game with five or less chess pieces
is usually based on databases because there are algorithms that can solve all

2.6 evaluation function 25

8rZ0Z0j0s
7opZ0Zpop
60apobl0Z
5Z0Z0Z0Z0
40Z0oPA0Z
3Z0ZPZ0L0
2POPM0ZPO
1S0Z0ZRJ0

a b c d e f g h

Figure 15: Example diagram.

the finals for these numbers of pieces. However, given the size of the search
space of the chess game (1043 different chess positions), in the middle phase
there are no databases that can define the best move for a particular position,
and, therefore, in such cases, an evaluation function is required. In this phase
of the game, the main aspects to be considered are:

• Material balance. The material values of the chess pieces should be taken
into account.

• Mobility of the pieces. The number of available moves of the chess
pieces should be considered.

• King safety. The number of pieces that are defending its king, that are
attacking its king, the pawns structure that is defending its king, the
castle, etc., should all be considered.

• Pawn structure. Doubled pawns, isolated pawns, passed pawns and
backward pawns, among others, should be considered.

• Location of pieces. For example: rooks on open or semi-open columns,
rooks on seventh row, knights on the fifth or sixth row cannot be evicted
from their position by an opponent pawn, bishops on open diagonals,
trapped pieces, etc.

26 computer chess

• Control board. The control of the board center, the critical squares in a
certain position, the opponent’s space, etc. should all be considered.

If the value returned by the evaluation function is in the interval (−1, 1),
then the position is of balance and both sides are on equal conditions. If the
value returned by the evaluation function is less than or equal to −1, then
the black side has a significant advantage as to win the game. Similarly, if the
value returned by the evaluation function is greater than or equal to 1, then
the white side has a significant advantage as to win the game.

The evaluation function is the most important component of a chess engine.
The evaluation function contains weights in arithmetic expressions which en-
code specific knowledge that constitutes a very valuable source of informa-
tion for the search engine. If the weights used in the evaluation function are
improved, then the chess engine will be better (i.e., it will play better). De-
velopers of commercial chess programs must fine-tune the weights of their
evaluation functions using exhaustive test procedures (which may take years),
so that they can be improved as much as possible. However, a manual fine-
tuning of weights is a difficult and time consuming process, and therefore
the need to automate this task. In this work, we propose two methods for ad-
justing the weights of the evaluation function based on artificial intelligence
techniques. The first method is illustrated in Chapter 4, and the second is
shown in Chapters 5 and 6.

2.7 our chess engine

In Figure 16, our chess engine architecture is shown. The procedure Search
contains the implementation of the alpha-beta algorithm (Section 2.5.4) or qui-
escence search (Section 2.5.5). This procedure returns the value val of the
current position to the procedure Iterative deepening (if this procedure contains
the alpha-beta algorithm, then it also returns the principal variation of the
game tree). This procedure is invoked with parameters alpha (lower limit),
beta (upper limit) and (depth) (Section 2.5.4).

The procedure Search also invokes the procedure Evaluation function which
returns the numeric value val of the current position pos (Section 2.6).

The procedure Move Generation is invoked by the procedure Search and it
generates the moves of the chess pieces (Section 2.4) from the current position
pos. This procedure receives the parameters pos and type, where the last
parameter defines the type of moves to generate. If this procedure is called by
the alpha-beta algorithm, then it generates all possible moves, but if it is called

2.8 final remarks of this chapter 27

by the quiescence search, then it generates only the special moves (exchange
of material, checks to the king, etc.).

The procedure Hash table is used to store positions that have been evalu-
ated before, so that they do not have to be calculated again. Each position
is identified by a key, which serves as an index in the array of the hash ta-
ble. Each position in this table contains the value of the respective position
obtained with the evaluation function. In chess, there are two different rea-
sons for which the same chess position may occur several times. The first is
transposition, in which the same chess position can be reached by different
sequences of moves. The second is due to the iterative deepening algorithm,
in which the same chess position is repeated at different depths of search (Sec-
tion 2.5.6). This procedure receives the current position pos as a parameter
and returns the array index in the hash table or −1 if the position pos was not
found.

Finally, the procedure Iterative deepening communicates with the Arena gra-
phical user interface1 through the UCI communication protocol (see Appen-
dix B).

2.8 final remarks of this chapter

The principal goal of this work is to develop a chess engine with automatic
tuning of weights based on artificial intelligence techniques. In this chapter
we presented the basic notions and components of a chess engine. Also, we
showed the architecture of our chess engine. These concepts are necessary to
describe our contributions in Chapters 4, 5 and 6.

1 Arena is available at http://www.playwitharena.com/

http://www.playwitharena.com/

28 computer chess

Move
generation

Hash
table

Search

Iterative
Deepening

Evaluation
function

GUI

val, pvalpha, beta, depth

val

posmoves

pos, type

pos index

UCI commandUCI command

Figure 16: Architecture of our chess engine.

“It is not the strongest of the species that
survives, nor the most intelligent that
survives. It is the one that is the most
adaptable to change.”

Charles Darwin

3
S O F T C O M P U T I N G I N C H E S S

In this chapter, we will provide a short history of neural networks (Section 3.1.1),
as well as a description of the basic model of an artificial neural network
(Section 3.1.2), the different types of activation functions for the output of a
neuron (Section 3.1.3), the advantages and disadvantages of a neural network
(Section 3.1.4), the architecture of a neural network (Section 3.1.5), and the
different types of neural networks available based on their learning process
(Section 3.1.6).

Also, this chapter provides a basic description of an evolutionary algorithm
(Section 3.2.1) and its components (Section 3.2.2). It also provides a comparison
between evolutionary algorithms and traditional search techniques (Section
3.2.3). Finally, it presents the three main evolutionary computation paradigms
(Section 3.2.4), as well as some final remarks.

3.1 artificial neural networks

3.1.1 A short history of neural networks

In 1943, Warren McCulloch, a psychiatrist and neuroanatomist, and Walter
Pitts, a logician, presented the first model of an artificial neuron [64]. They
formally defined the neuron as a binary machine with multiple inputs and
outputs, and they used the neural networks to model logical operators. Their
work is still a cornerstone in the theory of neural networks.

29

30 soft computing in chess

In 1949, the physiologist Donald Hebb outlined in his book The Organization
of Behavior [47] the first rule for self-organized learning. He assumed that lear-
ning is located in the synapses or connections among neurons. Donald Hebb’s
book was immensely influential among psychologists, but, unfortunately, it
had little impact in the engineering community.
In 1951, Marvin Minsky and Dean Edmonds built the first neural network
machine, called “Sharc”. It was composed of a network of 40 artificial neurons
that imitated the brain of a rat.
In 1954, Marvin Minsky wrote his Ph.D. thesis which was entitled “Theory of
Neural-Analog Reinforcement Systems and its Application to the Brain-Model
Problem”.
In 1958, Frank Rosenblatt introduced the concept of Perceptron which is a
more sophisticated model of the neuron [27]. This is the first model for lear-
ning with a teacher (supervised learning). The Perceptron was used for pat-
tern classification, which must be linearly separable (i.e., patterns that lie on
opposite sides of a hyperplane). Basically, it consists of a single neuron with
adjustable synaptic weights and bias (see Section 3.1.2).
In 1959, Bernard Widrow and Marcian Hoff developed the models Adaline
(ADAptive LINear Element) and Madaline (Multiple Adaline), which consti-
tute the first applications of real networks to real world problems. Their basic
difference is that the Adaline net is limited to only one output neuron, while
Madaline can have many.
In 1960, Bernard Widrow and Marcian Hoff introduced the delta rule (also
known as Widrow-Hoof rule or least mean square) which was used to train
Adaline [27].
In 1967, Marvin Minsky published the book Computation: Finite and Infinite
Machines [67]. This book extends the results of Warren McCulloch and Walter
Pitts and put them in the context of automata theory and the theory of compu-
tation. Also in this year, Shun-ichi Amari used the stochastic gradient method
for adaptive pattern classification [52].
In 1969, the Perceptron was strongly criticized by Marvin Minsky and Sey-
mour Papert because it was only capable of solving linear problems. They
provided a mathematical proof of the fundamental limits on which a single-
layer Perceptron can compute. They stated that there was no reason to assume
that any of the limitations of the single-layer Perceptrons could be overcome
in the multilayer version.

3.1 artificial neural networks 31

From the viewpoint of engineering, the decade of 1970s was an inactive
period for the development of neural networks. However, in 1973 the self-
organizing maps were introduced by Christoph von der Malsburg [58].
In 1975, the first multilayer neural network was developed [27].
In 1977, the emerging models of associative memories were introduced by
James A. Anderson.
In 1982, Teuvo Kohonen published his self-organizing maps [58] which were
different in some aspects from the earlier work done by Willshaw and Christoph
von der Malsburg [59]. Also, in this same year, Hopfield built a network with
symmetric synaptic connections and multiple feedback loops which was ini-
tialized with random weight values which eventually reached a final state of
stability.
In 1983, Andrew G. Barto, Richard S. Sutton, and James A. Anderson pub-
lished their seminal paper on reinforcement learning [76] (although Marvin Min-
sky used this concept for the first time in his Ph.D. thesis from 1954).
In 1986, David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams pro-
posed the backpropagation algorithm [46].

3.1.2 Basic concepts of artificial neural networks

An artificial neural network is a mathematical model that aims to simulate
the behavior of the brain. This model is based on studies on the essential
characteristics of neurons and their connections. However, although the model
turns out to be a very distant approach to biological neurons, it has proved to
be very interesting because of its ability to learn and associate patterns which
are difficult to solve through traditional programming. Over the years, this
model of the neurons has become more complicated in their structure and
more flexible in their use.

Artificial neural networks (ANNs) are used in many cases as black boxes
where a certain input should produce the desired output but we are unaware
of the way in which such an output is generated. In general, we are interes-
ted in mapping and n-dimensional real-numbers input (x1, x2, . . . , xn) to an
m-dimensional real-numbers output (y1,y2, . . . ,ym). Thus, a neural network
works as a machine capable of mapping a function F : <n → <m.

A neuron is a processing unit that is fundamental to the operation of a neu-
ral network. Figure 17 shows the model of a neuron. Its three basic elements
are:

32 soft computing in chess

1. A set of synapses wkj (synaptic weights). Specifically, a signal xj at the
input of synapse j connected to neuron k is multiplied by the synaptic
weight wkj.

2. An adder. It is responsible for adding the input signals multiplied by its
respective synaptic weight.

3. An activation function. The role of the activation function is to limit the
amplitude of the output of a neuron, and it regularly ranges from 0 to
+1 (see Section 3.1.3).

w k1

w k2

w km

Bias

bk

Synaptic
weights

∑
v k yk

Activation
function

φ()

x1

x2

xm

Figure 17: Model of a neuron.

3.1 artificial neural networks 33

The neural model of Figure 17 also includes an externally applied bias bk. This
term is necessary to set an activation threshold of the neuron. We can describe
the neuron k in Figure 17 by the following equations:

uk =

m∑
j=1

wkjxj (1)

and

yk = ϕ(uk + bk) (2)

Where x1, x2, . . . xm are the input signals; wk1,wk2, . . . ,wkm are the respective
synaptic weights; uk is the linear combined output due to the input signals;
bk is the bias; ϕ(·) is the activation function; and yk is the output signal of the
neuron. The term bk has the effect of displacing the line given by equation (1)
because the value to the output of the neuron k is given by:

vk = uk + bk (3)

3.1.3 Activation function types

The activation function, denoted by ϕ(v), defines the output of a neuron in
terms of v. The three different types of activation functions mainly used in
neural networks are:

1. Threshold function. This type of activation function is defined by the
equation:

ϕ(v) =

1 if v > 0

0 if v < 0
(4)

2. Piecewise linear function. This type of activation function is defined by
the equation:

ϕ(v) =

1 if v > +1

2

v if − 1
2 < v < +1

2

0 if v 6 −1
2

(5)

34 soft computing in chess

3. Sigmoid function. This is the activation function most commonly used
in neural networks. An example of sigmoid function is the logistic func-
tion, defined as follows:

ϕ(v) =
1

1+ exp(−av)
(6)

where the constant a is a user-defined parameter.

3.1.4 Advantages and disadvantages of neural networks

The main advantages of neural networks are the following [61], [84]:

• Neural networks have demonstrated capability to map and/or approxi-
mate any real non-linear continuous function. In fact, the proof of Hecht-
Nielsen [48] establishes that any function can be approximated by a three-
layer neural network.

• Neural networks can handle incomplete, missing or noisy data.

• Neural networks do not require prior knowledge about the distribution
and/or mapping of the data.

• Neural networks can automatically adjust their structure (number of neu-
rons or connections).

• Neural networks are fault tolerant, because the number of connections
provides much redundancy, since each neuron acts independently of all
others and each neuron relies only on local information.

• Neural networks can be implemented in parallel hardware, increasing
the speed of the learning process.

• Neural networks can be highly automated, minimizing human involve-
ment.

Among the different disadvantages of neural networks we have the follo-
wing [61], [84]:

3.1 artificial neural networks 35

• The selection of the neural network topology and its parameters lacks
theoretical background. An alternative to adjust the structure of the neu-
ral network is through intuition or a “trial and error” process [8]. There
is still much work to do, but evolutionary algorithms are a promising
area for developing automated methods to find optimal topologies. For
some work in this area we can see [23], [18] and [55].

• There is no explicit set of rules to select a learning algorithm in neural
networks [8].

• Neural networks are too dependent on the quality and the number of
available data. In [56] is investigated the effect of data quality on neural
network models.

• Neural networks can get stuck in local minima. In [41], are given ex-
amples of stagnation of neural networks that use the backpropagation
algorithm.

3.1.5 Neural networks architecture

The structure of the artificial neural networks is closely related to their lear-
ning capabilities. In general, we may identify three main different classes of
network architectures:

1. Feedforward networks with a single layer of neurons.
In this type of networks, the neurons are organized in layers. In the sim-
plest form, the network has an input layer of source nodes and an output
layer of neurons which carry out the arithmetic computation. Figure 18

shows a neural network with four nodes in both the input and output
layers. This is a network of a single-layer referring to the output layer be-
cause no computation is performed in the input layer. In this figure the
neurons are denoted with circles and the input nodes with squares. The
arrows in the figure show the flow of information which is carried out
in one direction (left to right). The difference between node and neuron
lies in the fact that the first does not carry out arithmetic computation
and the second does.

2. Multilayer feedforward networks.
This type of neural network is identified by the presence of several hi-
dden layers in the neural network whose purpose is to carry out a more

36 soft computing in chess

robust learning of the input patterns. Figure 19 shows the architecture
of a neural network with four nodes in the input layer, four nodes in
the hidden layer and two nodes in the output layer. This neural network
is fully connected because every node in each layer is connected to every
other node in the adjacent forward layer. Also, in this figure, the neurons
are denoted with circles and the input nodes with squares, and the flow
of information is carried out in one direction (left to right).

3. Recurrent networks.
A recurrent network is a neural network with feedback (closed loop) con-
nections [27]. Figure 20 shows a recurrent network with a single layer of
neurons with each neuron feeding its output signal back to the inputs
of all the others neurons. In this type of networks is important to incor-
porate time-delay elements to decide the time at which the information
will be fed back.

3.1.6 Learning process

Basically, there are two categories of learning within a neural network: lear-
ning with a teacher and learning without a teacher. Also, the last type of
learning may be sub-categorized in reinforcement learning and unsupervised
learning [46]. Each of these types of learning are described below.

1. Learning with a teacher.
This type of learning is also referred to as supervised learning.

In this case, the learning process takes place under the tutelage of a
teacher. The network is trained with examples of input vectors and de-
sired target vectors (output patterns), and the objective is to adjust the
synaptic weights according to a learning algorithm.

The most successful and widely used supervised learning procedure for
multilayer feedforward networks is called backpropagation algorithm [46].
Girosi and Poggio [35] showed that neural networks with at least one hi-
dden layer are capable of approximating any continuous function. But,
Judd [53] showed that the learning problem in neural networks is NP-
complete. And although the training time can be very large, any learning
procedure which is based on a descent method has no guarantee of con-
verging to the optimal solution (it could converge to a local minimum).

3.1 artificial neural networks 37

Unfortunately, supervised learning algorithms become unacceptably slow
as the size of the network increases when having many hidden layers.
However, in practice, backpropagation learning has been successfully ap-
plied to several difficult problems [12].

2. Learning without a teacher.
In this case, there is no teacher to supervise the learning process. In this
type of learning, two subcategories are identified:

a) Reinforcement learning. This is a form of semi-supervised learning
in which the learning of an input-output mapping is performed
through continued interaction with the environment. Reinforcement
learning is different from supervised learning. In this case, the su-
pervisor only tells the neural network if it succeeds or fails in its
response to a given input pattern. In this method, each input pro-
duces a reinforcement in the weights of the neural network in such
a way that improves the production of the desired output. In inter-
active problems it is often impractical to obtain examples of desired
behavior that are both correct and representative of all the situa-
tions in which the agent has to act. In this case, a supervisory re-
ward signal is provided which tells the network when it is doing
the right thing. Hebbian learning is an example of reinforcement
learning [46].

b) Unsupervised learning (self-organized learning). In this type of
learning there is no external teacher or critic to oversee the learning
process. In this case, a sequence of input vectors is provided, but no
target vectors are specified. The neural network adjusts the weights
so that the most similar input vectors are assigned to the same out-
put.

Finally, it should be noted that while the neural networks were initially
designed to act as classifiers, they have subsequently been used as optimizers
as well. In the latter form, given a fixed topology, specifying the weights of a
neural network can be seen as an optimization process with the goal of finding
a set of weights that minimizes the network’s error on the training set. In fact,
in Chapter 4 we use a neural network architecture as an optimizer.

38 soft computing in chess

3.2 evolutionary algorithms

3.2.1 A short review of evolutionary algorithms

Evolutionary Computation (EC) encompasses a set of bio-inspired techniques
based on “the survival of the fittest” which constitutes the basic principle of
Neo-Darwinian’s theory of natural evolution in which natural selection plays
the main role (those individuals that are best adapted to their environment
have more opportunities to compete for resources and reproduce [16]).Evolutionary

computation
is based on the

Neo-
Darwinian

theory of
evolution

The Neo-Darwinian paradigm is a combination of the evolutionary theory
of Charles Darwin, the selectionism of Weismann and the inheritance laws of
Mendel [29]. Based on this idea, the history of all life in our planet can be
explained by the following processes [28]:

Reproduction,
mutation,

competition
and selection

are the
fundamental
processes of

the Neo-
Darwinian

paradigm

1. Reproduction. A way to create new individuals from their ancestors. It is
an obvious feature of all forms of life in our planet, because without such
a mechanism, life itself would have no way of occurring. Reproduction
is accomplished through the transfer of an individual’s genetic program
to its progeny.

2. Mutation. It refers to small changes in the genetic material of individu-
als due to replication errors during the transfer of information of indi-
viduals. A mutation is beneficial to an organism if it produces a fitness
increase in its adaptation to the environment.

3. Competition. This mechanism is a consequence of expanding popula-
tions in a finite resource space.

4. Selection. In an environment that can only host a limited number of indi-
viduals, only the organisms that compete most effectively for resources
can survive and reproduce.

In general, to simulate the evolutionary process in a computer we require [66]:

• To encode the structures that will be replicated. Each solution is known
as an “individual” and a set of individuals is called a “population”.

• Operations to affect the individual’s traits.

• A fitness or evaluation function.

• A selection mechanism.

3.2 evolutionary algorithms 39

3.2.2 Components of an evolutionary algorithm

The most important components of an evolutionary algorithm are [24]:

• Representation.

• Fitness or evaluation function.

• Population.

• Parents selection mechanism.

• Variation operators (recombination and mutation).

• Survivor selection mechanism.

Representation

The evolutionary algorithm works on individuals that represent potential so-
lutions of the problem to be solved. Each individual is represented in a data
structure known as chromosome. There are two levels of representation used in
evolutionary computation:

1. Phenotype. It is a possible solution within the original problem context. It
is the result of decoding the values of the chromosome into the values of
the variables of the problem to be solved. A phenotype is also known as
a candidate solution.

2. Genotype. It is the encoding represented by the chromosome.

The representation includes the mapping from phenotypes to their corre-
sponding genotypes and vice-versa. The most used representations in evo-
lutionary algorithms are:

• Integer [14].

• Real [28].

• Binary [49].

• Binary with gray codes [86].

• Trees [60].

40 soft computing in chess

Fitness or evaluation function

Evolutionary algorithms are search algorithms that have been widely used
to solve optimization problems, and their good performance relies both on
their stochastic nature and on an appropriate transformation of the objective
function of the problem into a fitness function. The objective function is defined
in the original context of the problem and the fitness or evaluation function is a
transformation of the given objective function. The evaluation function assigns
a fitness value to each individual in the population. This value measures how
well each individual resolves the problem in question with respect to other
individuals in the population.

Population

Evolutionary computation techniques work on a population composed of a
set of candidate solutions to the problem that we are solving. A population
is a multiset of genotypes [24] (multiset is a set where multiple copies of an
element are possible). In an evolutionary process, individuals are static objects
that do not adapt; it is the population itself the one that changes.

Parent selection

A fundamental part in the operation of an evolutionary algorithm is the pro-
cess of selecting candidates (parents) to be reproduced. This is typically a
stochastic process. Thus, individuals with a higher fitness have a greater op-
portunity of becoming parents than those with low fitness. Nevertheless, in-
dividuals with low fitness are often given a small but non-zero probability
of being selected as parents (otherwise, the algorithm could get trapped in a
local optimum).

A taxonomy of selection techniques, used with evolutionary algorithms is
the following:

1. Proportional selection. Originally proposed by Holland [49]. In this tech-
nique individuals are chosen according to their fitness contribution. Four
main types of approaches are normally considered in this case [39]:

• Roulette wheel [2].

• Stochastic remainder. There are two variants with replacement [4]
and without replacement [9].

• Stochastic universal sampling [2].

3.2 evolutionary algorithms 41

• Deterministic sampling [22].

2. Tournament selection. It is based on direct comparisons of individuals fit-
ness values. There are two versions: deterministic and probabilistic. In
the deterministic version, the fittest individual always wins. In the prob-
abilistic version, the fittest individual wins with a certain probability (in
some cases the fittest solution will not be selected) [38].

3. Steady state selection. Proposed by Whitley [85]. This technique is used in
non generational genetic algorithms in which only a few individuals are
replaced at each generation. It is particularly suitable when individuals
solve the problem in a collective way.

Variation operators (recombination and mutation)

The most widely used evolutionary operators are: mutation and recombina-
tion.

Mutation is an stochastic unary operator (operates only on an individual). A
mutation operator makes a small change on a single element of a genotype and
delivers a modified solution. The mutation operator prevents the stagnation
of the search process in a local minima due to the fact that introduces random
diversity that normally exceeds the capabilities of the recombination operator.

Recombination or crossover is an operator that combines characteristics of
two or more individuals with the idea of getting descendants that are bet-
ter adapted to survive. Recombination and mutation are used to generate new
solutions (called offspring) which lead the search to the desired regions of the
search space.

Survivor selection

It is similar to parent selection, but it is applied in a different phase of the
evolutionary process. This mechanism is invoked after creating the offspring,
and its purpose is to decide which individuals will pass to the next genera-
tion. In survivor selection, for example, when ranking the unified multi-set of
parents and offspring and selecting the top segment can be selected (as in our
proposed works of Chapters 4, 5, and 6).

The main components of an evolutionary algorithm are shown in Algo-
rithm 5.

42 soft computing in chess

Algorithm 5 The general scheme of an evolutionary algorithm

1: INITIALIZE population with randomly generated solutions;
2: EVALUATE each individual;
3: while stop condition is not reached do
4: SELECT parents for reproduction;
5: RECOMBINE parents that have been selected;
6: MUTATE the resulting offspring;
7: EVALUATE new candidates;
8: COPY the best individual to the next generation (elitism);
9: end while

3.2.3 Evolutionary algorithms versus mathematical programming techniques

Among the main differences between evolutionary techniques and mathema-
tical programming techniques we have the following:

• Evolutionary techniques using a population of potential solutions in-
stead of a single individual, making them less susceptible to being tra-
pped in local minima/maxima.

• Evolutionary techniques do not require specific knowledge (e.g., gradi-
ent information) about the problem they are trying to solve. However, if
such knowledge is available, it can be easily incorporated.

• Evolutionary techniques use probabilistic operators while mathematical
programming techniques use deterministic operators.

Among the different advantages of the EAs with respect to mathematical
programming techniques, we have the following:

• EAs are conceptually very simple.

• EAs have a wide applicability.

• EAs can easily exploit parallel architectures.

• EAs can usually adapt their own parameters.

• EAs have the potential to incorporate domain knowledge and can coop-
erate with other search/optimization techniques.

3.2 evolutionary algorithms 43

• EAs are robust to dynamic changes.

• EAs have been found to have a better performance than mathematical
programming techniques in many real-world problems.

3.2.4 Evolutionary computation paradigms

Traditionally, evolutionary algorithms have been grouped into three main pa-
radigms:

• Evolutionary programming.

• Evolution strategies.

• Genetic algorithms.

It is worth mentioning that genetic programming [60] is not considered a
paradigm of evolutionary computation because it is a specialization of genetic
algorithms with representation based on trees. Next, we will briefly explain
these three paradigms.

3.2.4.1 Evolutionary programming

Evolutionary programming (EP) was proposed by Lawrence J. Fogel [34] in
1960 emphasizing the behavioral links between parents and offspring. Intelli-
gence in this technique can be seen as an adaptive behavior. This approach
emphasizes the interactions between parents and offspring.

In evolutionary programming, there is no crossover operator because this
technique simulates the evolution at the species level (two different species
can not be recombined, e.g. it is not possible to recombine a dog with a cat).
EP uses probabilistic selection (usually stochastic tournaments). The only evo-
lutionary operator in this case is mutation, and it operates at a phenotype
level, so it requires no encoding of solutions. In the original proposal of EP,
self-adaptation of the mutation parameters was not considered, but such a
mechanism was incorporated later on.

The basic evolutionary programming algorithm is shown in Algorithm 6.

44 soft computing in chess

Algorithm 6 Pseudo-code of evolutionary programming

1: Generate randomly an initial population of solutions;
2: Calculate the fitness of the initial population;
3: repeat
4: Apply mutation to the entire population;
5: Evaluate each offspring;
6: Select (using a stochastic tournament) the individuals of the next gene-

ration;
7: until stop condition is reached

In this technique, each individual participates in a predefined number of
tournaments and the individuals with more wins will have a higher probabil-
ity of being part of the population in the next generation.

Some applications of evolutionary programming are:

• Games.

• Forecasting.

• Automatic control.

• Traveling salesperson problem.

• Design and training of neural networks.

• Pattern recognition.

• Routing.

3.2.4.2 Evolution strategies

Evolution strategies (ES) were developed in Germany in the mid-1960s by Ingo
Rechenberg, Hans-Paul Schwefel and Paul Bienert [72]. Their motivation was
to solve complex hydrodynamical problems.

In evolution strategies, mutation is the main operator and recombination
(which was not used in its original version) is a secondary operator. In this
case, evolution is simulated at an individual level. Recombination can be ei-
ther sexual (acts on two individuals randomly chosen from the population of
parents) or panmictic (more than two parents participate in the offspring gene-
ration process). In ES, mutation is used with random numbers generated from
a Gaussian distribution. In this paradigm, evolution takes place at a phenotype

3.2 evolutionary algorithms 45

level (i.e., no encoding is required) and the selection process is deterministic
and extinctive (the worst individuals have zero probability of survival).

The original version (1+ 1) − EE used a single parent, which generated a
single offspring. If this offspring was better than its parent, it would replace it;
otherwise, the offspring would be eliminated. In this version, a new individual
is generated using the following equation:

xt+1 = xt +N(0,σ) (7)

where t denotes the current iteration, and N(0,σ) is a vector of Gaussian
numbers with a mean of zero and a standard deviation of σ.

Rechenberg introduced the concept of population, and proposed an evolu-
tion strategy called (µ+ 1) − EE, in which there are µ parents which generate
a single offspring. Such an offspring is meant to replace the worst parent in
the population.

Other models of evolution strategies that have been proposed include (µ+

λ) − EEs and (µ, λ) − EEs. In both models, µ parents generate λ offspring. In
(µ, λ) − EEs, the µ best individuals are selected from the offspring, whereas in
the (µ+ λ)−EEs, the µ best individuals are selected from the union of parents
and offspring.

It is worth mentioning that ES evolve not only the variables of the prob-
lem, but also the standard deviation which is one of the parameters of the
technique. This mechanism is known as “self-adaptation”.

The basic algorithm of an evolution strategy is shown in Algorithm 7.

Algorithm 7 Pseudocode of an evolution strategy

1: Generate randomly an initial population of solutions;
2: Calculate the fitness of the initial population;
3: repeat
4: Apply mutation to each offspring based on the success of the previous

mutations.
5: Evaluate each offspring;
6: Select the best individuals for the next generation;
7: until stop condition is reached

ES have been applied to solve problems like:

• Network routing.

46 soft computing in chess

Algorithm 8 Pseudocode of a genetic algorithm

1: Generate randomly an initial population of solutions;
2: Calculate the fitness of the initial population;
3: repeat
4: Select two parents to create two offspring using crossover;
5: Apply mutation to each offspring;
6: Evaluate the mutated offspring;
7: Select survivors;
8: until stop condition is reached

• Applications in Biochemistry.

• Engineering design.

• Optics

• Magnetism.

3.2.4.3 Genetic algorithms

Genetic algorithms (GAs) originally called “reproductive plans”, were intro-
duced by John H. Holland [49] in the early 1960s. The main interest of Holland
was to study natural adaptation in order to apply it to the machine learning.
Nowadays, genetic algorithms are the most popular type of evolutionary algo-
rithm.

Goldberg [37] gives a definition of a genetic algorithm:

Genetic Algorithms are search algorithms based on the mechanisms
of natural selection and natural genetics. They combine survival of
the fittest among string structures with a structured yet random-
ized information exchange to form a search algorithm with some
of the innovative flair of human search.

The basic genetic algorithm is presented in Algorithm 8 [10].
A genetic algorithm works at a genotype level (because the decision varia-

bles have to be encoded) where crossover is its principal operator because a
GA simulates evolution at an individual level. Mutation is a secondary oper-
ator, and is used to add a new source of diversity to the search process, in
order to avoid stagnation. Genetic algorithms use probabilistic selection and
they typically adopt binary encoding. It is important to mention that genetic

3.3 differential evolution 47

algorithms require elitism (i.e., the best individual at each generation must
be copied to the next population without any changes) in order to guaran-
tee convergence (theoretically) to the global optimum. Although some impor-
tant theoretical work has been developed around genetic algorithms in recent
years [1], its main theoretical foundation lied, for many years, on Holland’s
schema theorem [49].

Some possible applications of genetic algorithms are [10]:

• Machine learning.

• Optimization (numerical and combinatorial).

• Pattern recognition.

• Query optimization in databases.

• Grammar generation.

• Robot motion planning.

• Prediction.

The main characteristics of the three paradigms that conform evolutionary
computation are shown in Table 5.

3.3 differential evolution

Differential Evolution (DE) [17], [70] is a real parameter optimization algo-
rithm. DE searches for a global optimum point in a D-dimensional real para-
meter space <D. The stages of the differential evolution algorithm are shown
in Figure 22.

3.3.1 Initialization of vectors

DE initializes NP D-dimensional vectors of real-valued parameters. Each vec-
tor forms a candidate solution to the optimization problem. We denote the ith

vector of the population at the current generation G:

~Xi,G = [x1,i,G, x2,i,G, . . . , xD,i,G] (8)

48 soft computing in chess

FEATURE GA ES EP

Representation Binary Real Real

Fitness function Normalized value of the Value of the objective Normalized value of the

objective function function objective function

Self-adaptation None Standard deviation and None

rotation angles

Recombination One-point crossover, Discrete and intermediate None

two-point crossover

and uniform crossover

Mutation Secondary Main Only

operator operator operator

Selection Probabilistic and based Deterministic extinctive Probabilistic

on preservation or based on preservation extinctive

Typical Problems Mixed or continuous Continuous Continuous

optimization optimization optimization

Tabla 5: Main features of the three main evolutionary computation paradigms.

For each parameter the upper and lower bounds must be specified. The
lower and upper bounds are given for ~Xmin = x1,min, x2,min, . . . , xD,min and
~Xmax = x1,max, x2,max, . . . , xD,max, respectively. At generation G = 0 we may
initialize the jth component of the ith vector as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max − xj,min) (9)

where randi,j[0, 1] is a random value generated with an uniform distribution
between 0 and 1. xj,i,0 is instantiated independently for each component of the
ith vector.

3.3.2 Mutation

The mutant vector, ~Vi,G, is obtained with the following expression:

~Vi,G = ~Xri1,G + F · (~Xri2,G − ~Xri3,G) (10)

3.3 differential evolution 49

where ~Xri1,G, ~Xri2,G and ~Xri3,G are vectors chosen randomly from the current

population. The indices ri1, r
i
2 and ri3 are integers (mutually exclusive) ran-

domly chosen from the range [1,NP]. These values must be different from the
base vector index i. These index are randomly generated once for each mutant
vector. The scaled factor, F, is a positive real number that controls the rate at
which the population evolves. F typically lies in the interval [0.4, 1] [17].

3.3.3 Crossover

With the crossover operator, the donor vector ~Vi,G exchanges its components
with the target vector ~Xi,G to form the trial vector ~Ui,G = [u1,i,G,u2,i,G, . . . ,uD,i,G].
DE normally adopts binomial crossover in which the number of parameters
inherited from the donor has a (nearly) binomial distribution. Its description
is as follows:

uj,i,g =

 vj,i,g if(randi,j[0, 1] 6 Cr or j = jrand)

xj,i,g otherwise.
(11)

The crossover probability, Crε[0, 1], is a user defined value that controls the
number of parameters inherited from the donor vector.

3.3.4 Selection

The next step is to determine whether the target or the trial vector survives to
the next generation (at G = G + 1). The selection operation is described as

~Xi,G+1 =

~Ui,G, if f(~Ui,G) 6 f(~Xi,G)

~Xi,G, otherwise
(12)

where f(~X) is the objective function to be minimized.

3.3.5 DE Family of Storn and Price

Actually, the mutation process defines the DE scheme. Let’s see how the di-
fferent DE schemes are named. The general convention used is DE/x/y/z,

50 soft computing in chess

where DE means “differential evolution”, x represents a string denoting the
base vector to be perturbed, y is the number of difference vectors considered
for perturbation of x, and z denotes the type of crossover (for example, exp:
exponential and bin:binomial).

The main mutation schemes are the following (see [17]):

1. “DE/best/1:”

~Vi,G = ~Xbest,G + F · (~Xri1,G − ~Xri2,G) (13)

2. “DE/target-to-best/1:”

~Vi,G = ~Xi,G + F · (~Xbest,G − ~Xi,G) + F · (~Xri1,G − ~Xri2,G) (14)

3. “DE/best/2:”

~Vi,G = ~Xbest,G + F · (~Xri1,G − ~Xri2,G) + F · (~Xri3,G − ~Xri4,G) (15)

4. “DE/rand/2:”

~Vi,G = ~Xri1,G + F · (~Xri2,G − ~Xri3,G) + F · (~Xri4,G − ~Xri5,G) (16)

Here ri1, r
i
2, r

i
3, r

i
4, and ri5 are mutually exclusive randomly chosen integers

in the range [1, NP], and all are different from the base index i. These indices
are randomly generated once for each donor vector. The scaling factor F is a
positive control parameter for scaling the difference vectors. ~Xbest,G is the best
individual vector with the best fitness in the population at generation G.

3.4 previous related work

In general, the previous related work that we reviewed and the proposals of
this thesis, use the procedure described next to carry out the fine tuning of
weights of the evaluation function. The procedure must create a number of
virtual players (usually between 10 and 20), where each virtual player repre-
sents a chess program and contains specific (different) weights of its evaluation
function. The main objective is to ascertain fitness values of virtual players in
order to promote them into successive generations.

The competitive process can be based on one of the following approaches:
supervised adjustment, unsupervised adjustment or hybrid adjustment. The

3.4 previous related work 51

first case, can use games from chess grandmasters, typical chess problems
or another chess engine, in order to decide the fitness of the virtual players
(for example, fitness can be associated to chess problems that are successfully
solved). The second case, uses tournaments among virtual players and those
with most wins will be the fittest (this approach is also known as co-evolution).
Finally, the third approach is a combination of the first two. Based on this
classification, we will describe next the previous work related to the contents
of this thesis. Sections 3.4.1 and 3.4.2 illustrate the main work related to un-
supervised adjustment and supervised adjustment, respectively. Finally, Sec-
tion 3.4.3 reviews works based on the hybrid approach.

3.4.1 Works related to unsupervised adjustment

The works that are most closely related to our own which have been developed
using a scheme of unsupervised adjustment, are the following.

Learning To Play the Game of Chess

Thrun [78] developed the program NeuroChess which learned to play chess
from final outcomes of games with evaluation functions represented by neural
networks. This work also included both temporal difference learning [75] and
explanation-based learning [25]. NeuroChess successfully defeated the GNU-
Chess program in several hundreds of games. However, the level of play was
still poor compared with GNU-Chess and human chess players.

A self-learning evolutionary chess program

Fogel et al. [30] used unsupervised adjustment to improve the rating of their
baseline chess program in 400 points. This approach used an evolutionary
algorithm (evolutionary programing, see Section 3.2.4) within a computer pro-
gram that learned to play chess by playing games against itself. The authors
adjusted the following weights: the material values of the pieces, the piece-
square values, and the weights of three neural networks. The method worked
as follows.

The procedure started with a population of 20 virtual players (ten parents
and ten offspring in subsequent generations). The competitive process was
carried out by making each player to play ten games (five as white and five as
black) against randomly selected opponents from the population (excluding
itself).

52 soft computing in chess

The selection mechanism of the evolutionary algorithm used the outcome
of the games to decide which virtual players would pass to the following
generation. After all 20 players completed their games, the ten best virtual
players were retained to become parents of the next generation.

One offspring was created from each surviving parent by mutating all the
parental material, the piece-square values, as well as the weights and biases of
the three neural networks. They used a Gaussian random variable to mutate
the weights of the evaluation function of their chess engine.

The authors used three neural networks focused on the first two rows, the
back two rows, and the center of the chessboard (squares c3, d3, e3, f3, c4, d4,
e4, f4, c5, d5, e5, f5, c6, d6, e6, and f6), respectively. The idea of these neural
networks was to control the player’s own territory, the opponent’s territory,
and the center of the chess board. These neural networks were fully connected
feedforward networks with 16 inputs, ten hidden nodes, and a single output
node. Both the hidden nodes and the output nodes used the standard sigmoid
function (see Section 3.1.3).

They carried out ten independent trials among the best-evolved and the
non-evolved players. Fifty generations were executed in each of the ten trials,
whereupon the best-evolved player was tested as black against the initial non-
evolved chess engine in 200 games.

They found that all trials favored the evolved player over the non-evolved
player. For example, in the best trial, the evolved player won 73.7% of the
games). This evolved player was named Blondie25. Blondie25 was assessed at
six-ply by playing 120 games (60 as black and 60 as white) against the com-
mercial chess program Chessmaster 8000. In this case, their program yielded
2437 rating points. Similarly, a series of 12 games (six with white and six with
black pieces) was played between the best virtual player and the chess pro-
gram Pocket Fritz 2.0 (which plays with the rating of a high-level master). In
this case the best evolved player obtained 2550 rating points with nine wins,
two losses, and one draw.

Further evolution of a self-learning chess program

Fogel et al. [31] carried out a further evolution of the best-evolved player ob-
tained in their previous work. In this case, they evolved their program during
7462 generations instead of 50. In this case, a 16-game series between this
virtual player and Pocket Fritz 2.0 resulted in 13 wins, 0 losses, and 3 draws,
yielding a performance rating of approximately 2650 points.

3.4 previous related work 53

The definition of the selection mechanism, the competitive process, and the
three neural networks are the same as defined in their first work.

Both in the first and in the second experiment, games were played using the
alpha-beta algorithm.

They employed the quiescence algorithm to extend the search depth in par-
ticular situations. For example, exchange of material, checks to the king, and
passed pawns that had reached at least the sixth rank on the board (anticipat-
ing pawn promotion). Games were executed until one of the virtual players
received checkmate or a draw condition arose. Depending on the outcome
of the game, a virtual player obtained one point, half a point or zero points
for a win, tie or loss, respectively. Draw conditions were given by the rule of
50 moves (after a pawn’s move there are 50 moves to pose a checkmate to
the opponent), by the third repetition of the same position and by the lack of
victory conditions (e.g., in the fight of a king and a bishop against a king).

Blondie25 competes against Fritz 8.0 and a human chess master

In the two previous papers, the authors used only three minutes on each move
for their baseline chess program. However, in a third work [32] they developed
a heuristic to manage time by trial and error. With this heuristic, they carried
out 24 games between Blondie25 and Fritz 8.0, and their program obtained
2635.33 rating points. Remarkably, their best heuristic developed was different
for the black side than for the white one. It is noteworthy that Fritz 8.0 was
ranked at 2752 rating points and was rated number five in the world. Also,
they tested Blondie25 against a human chess master, rated at 2301. In four
games, Blondie25 won three and lost one.

The remainder features of Blondie25 such as its selection mechanism, evalua-
tion function, and neural networks were equal as in the two other papers.

Differential evolution for tuning a chess evaluation function

Bošković et al. [6] used unsupervised adjustment with co-evolution based on
the final outcomes of games to adjust the weights of the evaluation function of
their chess program. They used a differential evolution algorithm [70] based
on the strategy “DE/rand/2/bin”.

They tuned the chess material values and the mobility factor of their eva-
luation function. The “theoretical” value of the mobility factor is 10 and the
“theoretical” values of the pieces are: 300, 330, 500 and 900 for the knight,

54 soft computing in chess

bishop, rook and queen, respectively [73]. After 50 generations, the weights
matched the values known from chess theory.

An Adaptive Differential Evolution Algorithm with Opposition-Based Mechanisms,
Applied to the Tuning of a Chess Program

In their second related work, Bošković et al. [7] used a differential evolution
algorithm with unsupervised adjustment to improve the rating of their chess
program BBChess. Again, they used co-evolution based on the final outcomes
of games with adaptation and opposition-based optimization mechanisms.

They adapted the control parameter F present in the mutation process of the
differential evolution strategy rand/2. This factor is responsible for the explo-
ration and exploitation balance in the evolutionary process. They considered
that the efficiency of the tuning process depends on the distance between the
solution and the individuals in the first population. Thus, they generated an
opposite population ~U0,i defined by the following equations:

~U0,1 = {U0,i,1,U0,i,1, . . . ,U0,i,D}
U0,i,j = Xj,low +Xj,high −X0,ij
where:
i = 1, 2, . . . ,NP
j = 1, 2, . . . ,D
~U0,i represent the opposition individuals of the corresponding initial indi-

viduals ~X0,i.
Thus, they accelerated the convergence process by increasing the probability

of the first generation containing individuals closer to the optimal solution.

History Mechanism Supported Differential Evolution for Chess Evaluation Function
Tuning

Bošković et al. [5] used again a differential evolution algorithm with unsu-
pervised adjustment to improve the rating of BBChess. They improved their
opposition-based optimization mechanisms with a new history mechanism
which uses an auxiliary population containing competent individuals. This
mechanism ensures that skilled individuals are retained during the evolutio-
nary process. They found that the history mechanism improved the tuning
process by 155.2 rating points, on average. They concluded that playing more
games enables better comparison among virtual players, decreases noise, and
improves the tuning process.

3.4 previous related work 55

An Evolutionary Approach for the Tuning of a Chess Evaluation Function using
Population Dynamics

Kendall and Whitwell [54] used unsupervised adjustment to adjust the weights
of the evaluation function of their program. They used an evolutionary algo-
rithm and showed how the outcome of the game (win, loss or draw) could be
used to adjust the weights of their chess engine. In their work they derived
the theoretical values of the knight, bishop, rook and queen.

Using an Evolutionary Algorithm for the Tuning of a Chess Evaluation Function
Based on a Dynamic Boundary Strategy

Nasreddine and Kendall [68] proposed an evolutionary algorithm with an
approach called “dynamic boundary strategy” in which the boundaries of the
interval of each weight are dynamic (in all previous related works the values
of the weights were within a fixed boundary, regardless of how the crossover
and mutation operators were applied).

The main idea of maintaining dynamic limits of each weight is to improve
the exploration search of the algorithm, and with this, to avoid that the al-
gorithm gets trapped in a local optimum. After 520 generations, the weights
obtained with the fittest virtual player were very close to those known in chess
theory.

Using genetic programming to evolve chess endgame players

Genetic programming (see Section 3.2.4) has also been used for tuning the
weights of a chess evaluation function. Hauptman and Sipper [44] evolved
strategies for playing chess end-games. They used unsupervised adjustment
with co-evolution based on the outcomes of the games. In their method each
individual plays against a fixed number of randomly selected opponents (typ-
ically five). The final fitness for each virtual player is the sum of all points
earned in the entire tournament for a given generation. Their evolved program
could draw against CRAFTY which is a state-of-the-art chess engine having a
rating of 2614 points.

Evolution of an efficient search algorithm for the mate-in-n problem in chess

In a second work, Hauptman and Sipper [45] evolved entire game-tree search
algorithms to solve mate-in-N problems in which the opponent cannot avoid
being mated in at most N moves. It is worth noticing that this work does not

56 soft computing in chess

adopt the alpha-beta pruning algorithm. Also, they were able to reduce the
number of search-tree nodes required to find mates in N moves.

3.4.2 Works related to supervised adjustment

Next, we provide a short description of the main works related to supervised
adjustment.

Evaluation function tuning via ordinal correlation

Chess Informant1 publishes the best chess games since 1966 with the advantage
that these games are analyzed and commented by their own authors or by
chess grandmaster players. Another advantage of this publication is that the
comments are given in the standard symbols system shown in Table 6.

Symbol Meaning

+− White is winning

± White has a clear advantage
+
= White has a slight advantage

= The position is equal

± Black has a slight advantage
=
+ Black has a clear advantage

−+ Black is winning

Table 6: Symbols for chess position assessment.

Gomboc and Buro [40] proposed a method for optimizing evaluation func-
tions. Basically, they established a correlation between the human assessment
symbols shown in Table 6 and the assessment of the evaluation function.
They used 649, 698 positions from a Chess Informant to successfully adjust
11 weights of the chess engine Crafty.

Genetic Algorithms for Mentor-Assisted Evaluation Function Optimization

David-Tabibi et al. [19] used a genetic algorithm for automatically tuning the
weights of the evaluation function of their chess program. They evolved the

1 http://www.informant1966.com/

3.4 previous related work 57

organisms of the genetic algorithm to mimic the behavior of another chess
program that served as a mentor. With their approach they yield similar per-
formance to that of the expert, with respect to the same set of positions. It is
worth mentioning that the rating of the chess mentor was 2700 rating points.

They found that the best organism obtained with this method clearly out-
performed its original version by a wide margin. Another important aspect is
that they reduced the number of weights in the mentor’s evaluation function
(while the best organism used over 40, the mentor used over 100).

They used a standard implementation of a genetic algorithm with propor-
tional selection and single point crossover. They handled the following param-
eters:
Number of generations: 300
Population size: 1000
Crossover rate: 0.75
Mutation rate: 0.002

Expert-Driven Genetic Algorithms for Simulating Evaluation Functions

In [20], David-Tabibi et al. extended their previous approach [19]. In this case,
they included an extended set of experiments to assess more accurately the
performance of the evolved program. Specifically, they carried out a series of
matches between the mentor and the evolved organism. Also, they compared
the evolved program against three top commercial chess programs. Also, they
talk about their participation in the 2008 World Computer Chess Champion-
ship in which they obtained the sixth place.

3.4.3 Works related to hybrid adjustment

Only one work has been published using a hybrid adjustment scheme. Its
description is the following.

Simulating Human Grandmasters: Evolution and Co-evolution of Evaluation Func-
tions

In this work, David-Tabibi et al. [21] used a genetic algorithm with super-
vised and unsupervised adjustment to fine-tune the weights of the evaluation
function of the chess engine Crafty which is a state-of-the-art chess program.
In the supervised adjustment phase the organisms are evolved to mimic the

58 soft computing in chess

moves made in a database of chess grandmasters games. In the unsupervised
adjustment phase, these evolved organisms are further improved by means of
co-evolution.

Basically, they executed the supervised adjustment phase ten times to get
the top ten organisms. In this phase they calculated the fitness function for
each organism with the following steps:

1. Select a set of positions from chess grandmasters games.

2. For each position each organism calculates its next move. The search is
performed at a depth of 1− ply.

3. Compare the move suggested by the organism with the actual move
played by the chess grandmaster. The fitness of the organism will be the
total number of moves matches between the organism and the human
grandmaster.

The best organisms serve as the initial population in the unsupervised phase.
In the co-evolution step each organism plays four games against each other
organism. Their genetic algorithm is run for 50 generations. They used elitism,
uniform crossover with a rate of 0.75 and a mutation rate of 0.005.

With this approach, the best organism (after the supervised and unsuper-
vised process) won 60% of the games against the chess program Crafty. It is
worth mentioning that the evolved organism consisted of 38 weights, while
the chess program Crafty, consisted of over 100 weights.

3.5 final remarks of this chapter

In this chapter, we presented a short review of artificial neural networks and
evolutionary algorithms. We have also outlined the main works that make
use of supervised adjustment, unsupervised adjustment or a combination of
both (hybrid approaches), in order to perform the weights adjustment of the
evaluation function of a chess engine. These concepts are necessary to present
our proposals in Chapters 4, 5 and 6. In Chapter 4, we show an original neural
network architecture to obtain the chess positional values. In Chapter 5, we
propose an evolutionary algorithm to adjust a small number of weights in our
chess engine. Finally, in Chapter 6, we extend the work of Chapter 5 to a larger
number of weights and we add a local search engine through the Hooke-Jeeves
method to achieve a fine adjustment on the chess pieces values.

3.5 final remarks of this chapter 59

Output layer of neurons

In
pu

t l
a y

er
s

of
 s

ou
rc

e
no

de
s

Figure 18: Feedforward network with a single layer of neurons.

60 soft computing in chess

In
p

u
t

la
y

er
 o

f
so

u
rc

e
n

o
d

es

hidden

neurons

Layer of Layer of

output

neurons

Figure 19: Network with one hidden layer and one output layer. This network is fully
connected.

3.5 final remarks of this chapter 61

z−1 z−1 z−1

z−1 Denotes a unit-time delay operator

Figure 20: Recurrent network.

Figure 21: Charles Darwin.

62 soft computing in chess

Initialization
of vectors

Difference-vector
Based mutation

Crossover Selection

Figure 22: Main stages of the differential evolution algorithm.

“Tactics flow from a superior position.”

Bobby Fischer

4
T U N I N G W E I G H T S T H R O U G H A N E U R A L N E T W O R K
A R C H I T E C T U R E

4.1 introduction

This thesis deals with the use of artificial intelligence techniques to carry out
the development of a chess engine. In particular, we were interested in the use
of neural networks and/or evolutionary algorithms to adjust the weights of
the evaluation function of a chess engine.

The mathematical expression of the evaluation function of our chess engine
is composed of the sum of material and positional values of the chess pieces.
In this work, we proposed an original neural networks architecture, which was
used to obtain the positional values of the chess pieces.

In Section 4.2 we will describe the evaluation function that we adopted as
well as the concepts of material and positional value of a chess piece. In Sec-
tion 4.3 we will show our methodology; in particular: our neural network ar-
chitecture, the components of our evolutionary algorithm and its description.
In Section 4.4, we will describe the experiments that we conducted. Finally, in
Section 4.5 we will show our final results.

4.2 evaluation function

As we mentioned in Chapter 2, the evaluation function is one of the most
important components of a chess engine. The evaluation function that we

63

64 tuning weights through a neural network architecture

used to determine (in a heuristic way) the relative value of a position with
respect to one side (white or black pieces) is given by the following expression:

f =

r∑
i=1

mi +

q∑
i=1

ci × pi (17)

where:
r is the number of pieces in the side under evaluation without considering the
king.
q is the number of pieces in the side under evaluation.
mi is the material value of the piece i.
ci is the adjustment of the positional value pi (ci = 0.5×mi).
pi is the positional value of the piece i. pi ∈ [0, 1] (0 represents the worst
weights adjustment and 1 represents the best weights adjustment).

4.2.1 Material values of the chess pieces

The material value of a piece is static and has the values 1, 3, 3, 5 and 9

for the pawn, knight, bishop, rook and queen, respectively [73]. These values
have been deduced by chess masters in hundreds of years of practice of this
game. They assigned to the pawn the unit value and their experience indicated
that the value of the knight, bishop, rook and queen is equivalent to three,
three, five and nine pawns, respectively. In our case, we used these values
scaled by 100, i.e. 100, 300, 300, 500 and 900 for the pawn, knight, bishop, rook
and queen, respectively. It is noteworthy that these values are known as the
“theoretical” values of the chess pieces.

4.2.2 Positional values of the chess pieces

The positional value of a piece is a dynamic value and depends on the char-
acteristics of the position such as mobility, board location, strength, etc. In
other works (for example, Fogel et al. [30]) the pieces’ positional values are
represented by positional value tables. The disadvantage of this method is that
the positional value of a piece is a static value. For example, in Figure 23 the
knight on d2 always has the same value regardless of its location and relation-
ship with the other pieces. In this sense, one of the main ideas of this proposal
is that the chess positional values depend directly on the characteristics of the

4.3 methodology 65

8rZ0Z0j0s
7opZ0Zpop
60apobl0Z
5Z0Z0Z0Z0
40Z0oPA0Z
3Z0ZPZ0L0
2POPM0ZPO
1S0Z0ZRJ0

a b c d e f g h

Figure 23: Position to illustrate feature extraction.

position. Of course, as more features are taken into account in calculating the
positional value of a piece, the positional value will be more accurate, and
therefore, the position will be better evaluated.

4.3 methodology

The neural network architecture proposed in this chapter is shown in Figure 24.
Next, we will provide its description.

4.3.1 Neural network architecture

Our architecture is composed of six neural networks that we use to calcu-
late the positional values of the chess pieces of our chess engine, as defined
in equation (17). Each neural network was fully connected and consisted of
four nodes in the input layer, nine nodes in the hidden layer and one node
in the output layer. The fact that all neural networks have four nodes in the
input layer is a mere coincidence, and this number can vary depending on the
characteristics chosen to obtain the positional value of a chess piece. The deci-
sion to use three layers was based on the demonstration of Hecht-Nielsen [48],
which established that any function can be approximated by a three-layer neu-
ral network. The decision to use nine nodes in the hidden layer was based on

66 tuning weights through a neural network architecture

Kolgomorov’s theorem [43], [77] which established that the number of nodes
in the hidden layer should be at least (2i+ 1), where i denotes the number
of nodes in the input layer. As part of our future work, we intend to used an
evolutionary algorithm to find the optimal number of hidden units (see [55]
and [23]). The hidden nodes used a sigmoid defined by the logistic function
f(yj) = 1/(1+ exp(−yj)), where yj was the product of the incoming features
from the chessboard and the associated weights between the input and hidden
nodes, offset by each hidden node’s bias term, i.e. yj =

∑4
i=1 fi ×Wij + θj,

where fi is the incoming feature i, Wij is the weight between the node i and
node j, and θj is the bias term of the node j. The value of the output node
gives the positional value of a chess pieces within the interval [0, 1]. This node
also used the logistic function explained before.

Next, we will describe and illustrate the manner in which we obtained the
chess positional values through our neural networks architecture.

4.3.1.1 King’s positional value

The first neural network in Figure 24 obtains the positional value of the king.
This network has four input signals that correspond to the following features.

• Attacking material. In chess, it is very important to determine the number
and type of pieces that are attacking the opposite king. With this feature
we tried to represent the attacking material aspect. This refers to the
material value of the pieces that are attacking the opposite king. By this,
we mean those pieces whose moves act on their opposite king’s square or
on their opposite king’s adjacent squares. For example, in Figure 23, only
the queen on f6 attacks the king on g1; therefore, the attacking material
corresponding to the white king is 900. Similarly, only the queen on g3
attacks the king on f8; therefore, the attacking material corresponding to
the black king is 900.

In this case, the moves of the pieces can jump to other pieces because
this allows to find indirect attacks. This makes possible to detect tactical
themes in chess, such as discovered attacks, discovered checks, X-ray
attack, among others [71]. For example, in Figure 25, the white side can
win the black rook when the bishop on d5 moves to the f3 square.

• Defending material. Similarly, in chess it is also important to determine the
number and type of pieces that defend their king. With this feature we
attempted to represent this aspect. It refers to the material value of the

4.3 methodology 67

King’s positional valueKing’s neural network

Pawns

Knight’s positional valueKnight’s neural network

Knight mobility

Periphery

Supported

Bishop’s positional valueBishop’s neural network

Bishop mobility

Pawns mobility

Weight

Ahead

Rook’s positional valueRook’s neural network
Column type

Rook mobility

seventh row folded

seventh row

Castling

Queen’s positional valueQueen’s neural network

Row

Column

Queen mobility

Column Type

Operations base

Attacking material

Defending material

Pawn’s positional valuePawn’s neural network

Doubled

Isolated

Central

Passed

Figure 24: Neural networks architecture used in the evaluation of the pieces’ posi-
tional values.

68 tuning weights through a neural network architecture

80Z0j0Z0Z
7Zpo0Z0Z0
60a0Z0Z0Z
5Z0ZBZ0Zr
40Z0Z0Z0Z
3Z0Z0Z0Z0
20OPS0Z0Z
1Z0J0Z0Z0

a b c d e f g h

Figure 25: Position to illustrate feature extraction.

pieces that are defending their king. By this, we mean those pieces whose
moves act on their king’s square or on their king’s adjacent squares. For
example, in Figure 23, the queen on g3, the rook on a1, the rook on
f1, the bishop on f4 and the knight on d2 all defend the white king;
therefore, the defending material corresponding to the white king is 2500
(900+ 500+ 500+ 300+ 300).

Again, we considered that the moves of the pieces can jump other pieces
because our chess engine can solve tactical themes more easily. For exam-
ple, in Figure 26, the white side prevents checkmate because the white
queen defends the f1 square.

• Castling. It is a binary value. It is one if and only if the king is castled. In
Figure 26, this value is one for the white king.

• Pawns. It is the number of pawns located on its king’s adjacent squares.
In Figure 26, this value is two for the white king.

4.3.1.2 Queen’s positional value

The second neural network in Figure 24 obtains the positional value of the
queen. This network has four input signals that correspond to the following
features.

4.3 methodology 69

80Z0Z0skZ
7Z0Z0Z0op
60Z0Z0Z0Z
5ZbZ0Z0Z0
40Z0Z0Z0Z
3Z0ZqZ0Z0
20Z0Z0ZPO
1L0S0ZRJ0

a b c d e f g h

Figure 26: The white queen prevents checkmate on f1 square.

• Queen mobility. It is the number of moves of the queen. If more moves
a chess piece has, greater will be its associated value. In Figure 27, this
value is 16 for the white queen and is four for the black queen; therefore,
the white queen is much stronger than the black queen.

• Column type. It is zero if on the queen’s column there are no pawns, it is
one if on the queen’s column there are adversary pawns and the queen
is in front of its pawns (if any), and it is two if on the queen’s column
there are pawns of both sides and the queen is behind any of its pawns.

It is expected that the value of a queen in a column without pawns (or on
front of its pawns) is greater than the value of a queen behind its pawns.
For example, in Figure 27, the value of the queen on g3 is greater than
the value of the queen on a8. In Figure 27, this value is 1 for the white
queen.

• Row. It refers to the row occupied by the queen. In Figure 27, this value
is three for the white queen.

• Column. It refers to the column occupied by the queen. In Figure 27, this
value is seven for the white queen.

The knowledge of the queen’s row and column is very important because
a queen on the center of the board will be stronger than a queen on the

70 tuning weights through a neural network architecture

8qZ0Z0skZ
7opo0Z0op
60ZbZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3ZPZ0Z0L0
2PAPZ0ZPO
1Z0Z0ZRJ0

a b c d e f g h

Figure 27: The value of the queen
of g3 is greater than the
value of the queen on
a8.

80Z0Z0s0j
7Z0Z0S0Z0
6pZpo0Z0Z
5Z0ZpZbL0
40Z0l0O0Z
3Z0Z0Z0ZP
2PZ0A0ZPZ
1Z0Z0Z0ZK

a b c d e f g h

Figure 28: The white rook on the
seventh row permits to
the white side win the
black queen.

periphery of the board. Again, in Figure 27 the value of the queen on g3
is greater than the value of the queen on a8.

4.3.1.3 Rook’s positional value

The third neural network in Figure 24 obtains the positional value of the rook.
This network has four input signals that correspond to the following features.

• Rook mobility. It is the number of moves of the rook. By the same argu-
ments given for the queen, it is important to know the mobility of the
rook. In Figure 27, this value is 12 for the rook on f1.

• Column type. See the definition of the column type for the queen. In
Figure 27, this value is 0 for the rooks on f1 and f8.

• Seventh row. It is a binary value. It is one if and only if the rook is on the
seventh row. A rook on the seventh row is usually very strong because it
allows the gain of material. For example, in Figure 28, the white rook on
the seventh row allows the white side to win the black queen through
the sequence of moves: 1. Qh4+ Kg8 2. Qg3+ Kh8 3. Bc3. This feature is
equal to one for the white rook in this figure.

4.3 methodology 71

8rZ0Z0Z0j
7ZRS0Z0Zp
60Z0Z0Z0O
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZbZ0
2qZ0Z0ZPZ
1Z0Z0Z0J0

a b c d e f g h

Figure 29: The black king re-
ceives checkmate by
the white rooks on b7
and c7.

8rZbZ0ZkZ
7ZpZ0Z0Z0
6pO0ZpZ0Z
5O0ZpA0O0
40Z0M0Z0O
3Z0Z0Z0J0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 30: The value of the
bishop on e5 is
greater than the value
of the bishop on c8.

• Seventh row folded. It is a binary value. It is one if and only if there are
at least two rooks on the seventh row. Rooks folded on the seventh row
allow combinations that lead to the gain of material or checkmate to the
opposite king. For example, in Figure 29, the black side receives check-
mate after the moves 1. Rxh7+ Kg8 2. Rbg7+ Kf8 3. Rh8+ Qg8 4. Rhg8++ .
This value is one for the rook on b7 and for the rook on c7 in this figure.

4.3.1.4 Bishop’s positional value

The fourth neural network in Figure 24 obtains the positional value of the
bishop. This network has four input signals that correspond to the following
features.

• Bishop mobility. It is the number of moves of the bishop. By the same
arguments given for the queen, it is important to know the mobility of
the bishop. In Figure 28, this value is six for the bishop on d2.

• Pawn’s mobility. The pawn’s mobility of a bishop is the number of moves
of its pawns which obstruct (or may obstruct) its mobility. For example,
in Figure 30 the number of the moves is zero and two for the bishop on
c8 and e5, respectively.

72 tuning weights through a neural network architecture

• Ahead. It is the number of pawns which are in front of their bishop and
obstructing its movement. These pawns are those located in a row num-
ber higher than the row number occupied by the bishop for the white
pieces. Similarly, these pawns are those located in a row number lower
than the row number of the bishop for the black pieces. In Figure 30, this
value is four for the black bishop because the pawns on a6, b7, e6 and d5
obstruct its movement. Similarly, this value is one for the white bishop
because the pawn on b6 obstructs its movement.

• Weight. Any chess expert will notice in Figure 23 that the pawn on d4
obstructs more the movement of the bishop on b6 than the pawn on
a7. Each square on the board is assigned a numeric value that reflects
the degree of obstruction of a pawn on the bishop’s movement. Table 7

shows the initial values of the weights of black pawns than obstruct the
black bishop’s movement (these values were taken from [42]), and Table 8

shows the initial values of the weights of the white pawns that obstruct
the black bishop’s movement (these values have been assigned by an
expert in chess). The weights of the white pawns and the black pawns
that obstruct the white bishop’s movement are the mirror of Tables 7

and 8, respectively. The weights in Tables 7 and 8 are initial values and
must be evolved with our method to find their optimal values. It is worth
mentioning that it is not necessary to evolve the weights on the first
and eighth row because there will never be pawns on these squares. In
Figure 23, the weight for the bishop on b6 is 26 (2+ 4+ 16+ 4).

4.3.1.5 Knight’s positional value

The fifth neural network in Figure 24 obtains the positional value of the knight.
This network has four input signals that correspond to the following features.

• Knight mobility. It is the number of moves of the knight. By the same
reasons given for the queen, it is important to know the mobility of the
knight. In Figure 31, this value is eight for the knight on d6.

• Periphery. It is a binary value. It is one if and only if the knight is on
the periphery of the board (first row, eighth row, first column or eight
column). In Figure 31 the black night is bad because is on the periphery
of the board. In this figure, this value is one for the black knight.

4.3 methodology 73

8 0 0 0 0 0 0 0 0

7 2 4 4 8 8 4 4 2

6 2 4 8 16 16 8 4 2

5 2 4 12 24 24 12 4 2

4 2 4 4 4 4 4 4 2

3 2 2 2 2 2 2 2 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

a b c d e f g h

Tabla 7: Initial weight values of black pawns than obstruct the black bishop’s move-
ment.

• Supported. It is a binary value. It is one if and only if the knight is sup-
ported by one of its pawns. In Figure 31, the knight on d6 is better than
the knight on g6. In Figure 31, this value is one for the knight on d6.

• Operations base. It is a binary value. It is one if and only if the knight is on
an operations base. A knight is on an operations base if it cannot be evicted
from its position by an opponent pawn. This value is one for the knight
on d6.

In conclusion, the value of a centralized knight, that has all its moves sup-
ported by one of its pawns and that cannot be evicted from its position by an
opponent pawn will be greater than another knight that lacks in some of these
aspects.

4.3.1.6 Pawn’s positional value

The sixth neural network in Figure 24 obtains the positional value of the pawn.
This network has four input signals that correspond to the following features.

• Doubled. It is a binary value. It is one if and only if there are at least two
pawns located in the same column. A doubled pawn becomes weaker
because it can not be defended by another pawn. In Figure 32, this value
is one for the pawn on g7.

• Isolated. It is a binary value. It is one if and only if a pawn cannot be
defended by another pawn. An isolated pawn becomes weaker because

74 tuning weights through a neural network architecture

8 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

6 0 1 1 1 1 1 1 0

5 0 1 2 2 2 2 1 0

4 0 1 2 2 2 2 1 0

3 0 1 1 1 1 1 1 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

a b c d e f g h

Tabla 8: Initial weight values of the white pawns than obstruct the black bishop’s
movement.

it can be easily attacked. In Figure 32, this value is one for the pawn on
g7.

• Central. It is a binary value. It is one if and only if the pawn is on any of
the following squares: c4, c5, d4, d5, e4, e5, f4 or f5. If a pawn is central,
its associated value will be greater. In Figure 32, this value is one for the
pawn on d5.

• Passed. It is a binary value. It is one if and only if the pawn cannot be
stopped by an opponent pawn. Creating passed pawns is very important
since this fact limits the defense of the adversary to prevent its possible
coronation. In Figure 32, this value is one for the pawn on d5.

The ideal case of a pawn is when it is in the center of the chessboard, is
passed, is not doubled and is not isolated.

It is worth noticing that the values obtained with our neural network archi-
tecture are conceived to correspond to the chess pieces’ positional values of a
mid-game.

4.3.2 Components of our evolutionary algorithm

The components of our evolutionary algorithm are the following.

• Evaluation function. The evaluation function of our evolutionary algo-
rithm was already explained in Section 4.2.

4.3 methodology 75

80m0Z0ZkZ
7Z0ZpZpo0
60ZpM0aNZ
5Z0O0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0OPO
1Z0Z0Z0J0

a b c d e f g h

Figure 31: The value of the knight on d6 is greater than the value of the knight on g6,
and this is greater than the value of the knight on b8.

• Representation. In our evolutionary algorithm we used real-numbers en-
coding, where a chromosome is composed by the weights of the neural
network architecture shown in Figure 24 and the weights of the pawns
which obstruct the bishop’s mobility. We used 426 weights whose de-
scription is given below.

– Weights of the neural networks. Each neural network was fully
connected and has four input nodes, nine hidden nodes and one
output node. In this way, each neural network has 4 × 9 + 9 × 1
weights plus 9+ 1 bias. In total, each neural network has 55 weights.
Because we used six neural networks, we have 55× 6 = 330 weights.

– Weights of the pawns which obstruct the bishop’s mobility. In
this case we have Tables 7 and 8, so we have 96 (48× 2) weights.

• Population. The initial population of our evolutionary algorithm con-
sisted of n = 20 (10 parents and 10 offspring in subsequent generations)
virtual players whose weights were randomly initialized using an uni-
form distribution within their allowable bounds.

• Survivor selection mechanism. This mechanism is explained in Sec-
tion 4.3.3.

76 tuning weights through a neural network architecture

80Z0Z0ZkZ
7o0Z0Zro0
60Z0Z0Z0Z
5ZPoPZ0o0
40ZPZ0ZPZ
3Z0Z0Z0Z0
20Z0Z0ZKZ
1S0Z0Z0Z0

a b c d e f g h

Figure 32: Position to illustrate feature extraction.

• Operators. One offspring was created from each surviving parent by
mutating all weights and biases by adding a Gaussian random variable
with zero mean and a standard deviation of 0.05, as Chellapilla and Fogel
did in [13]. If, after mutating a weight, its value falls outside the range,
this value is re-set to the nearest extreme of its range. Since we adopted
evolutionary programming no crossover operator is employed.

4.3.3 Our evolutionary algorithm

Figure 33 outlines the evolutionary algorithm adopted to adjust the neural
networks’ weights in order to compute the pieces’ positional values. The first
module, called “initialize population”, assigns initial random weights to the
neural networks and the weights of the pawns that obstruct the bishop’s mo-
bility. The features of the position (inputs of the neural network) are obtained
in the module “Features extraction”.

The module “Play tournament” coordinates a tournament between n virtual
players (in our case n = 20). Each virtual player is allowed to play n/2 games
with randomly chosen opponents. The side (either black or white) is also cho-
sen at random. Games are executed until one of the virtual players receives
checkmate or a draw condition arises. Depending on the outcome of the game,
a virtual player obtains one point, half a point or zero points for a win, tie or

4.4 experimental design 77

loss, respectively. Draw conditions are given by the rule of 50 moves (after a
pawn’s move there are 50 moves to pose a checkmate to the opponent), by the
third repetition of the same position or by the lack of victory conditions (e.g.,
in the fight of a king and a bishop against a king). This module uses the chess
engine described in Section 2.7 in the page 26.

After finishing the tournament, the “Selection” module applies the survivor
selection mechanism to choose the n/2 virtual players having the highest num-
ber of points, and in the module “Mutation” these virtual players are mutated
to generate the remaining n/2 virtual players. Finally, the evolutionary algo-
rithm (based on evolutionary programming [33]), continues running for 50
generations.

The weights and biases of the neural networks were initialized in the range
[−15, 15] and the weights of the pawns which obstruct the bishop’s mobility
were initialized in the range [0, 20] (we carried out different experiments, and
we found that the ranges of these weights fall into these intervals).

4.4 experimental design

The experiments were carried out on a PC with a 64-bits architecture, hav-
ing two cores running at 2.8 GHz each and 3 GBytes in RAM. The programs
were compiled using g++ in the OpenSuse 11.1 operating system. For the ex-
periments reported next, we used the opening book Olympiad.abk both for
the virtual players and for the chess engine Rybka 2.3.2a (see the web page
http://www.rybkachess.com/).

4.5 experimental results

In the following experiments we carried out ten runs for each of the following
values of c = 0.1, 0.2, . . . , 1.0 (see equation (17) in the page 64), and we found
that for the value of c = 0.5 our chess engine obtained the best rating.

4.5.1 Experiment A

This experiment consisted of performing ten runs, and in each of them we had
20 virtual players that were evolved during 50 generations. The weights of the
virtual players were randomly initialized within the allowable bounds with a
different seed for each run. At the end of each run, we carried out 200 games
between the best virtual player at generation 50 and the best virtual player at

http://www.rybkachess.com/

78 tuning weights through a neural network architecture

Initial values of weights

N virtual players

N
2
virtual players

Optimal values of weights

N
2
virtual players

+

N
2
offspring mutated

Initialize population

Features extraction

Selection

Mutation

Neural network architecture

Positional values

Features

Begin

End

Play tournament

N virtual players

Figure 33: Flowchart of the evolutionary algorithm adopted in this work.

generation 0; Table 9 shows these results. For example, in run 1 the best player
at generation 50 won 180, drew 14 and lost 6 games against the best player at
generation 0 (the percentage of games won by the best player at generation 50
was 93.50%). The best result corresponds to the third run, in which the best
virtual player at generation 50 won 185, drew 12 and lost 3 games against the
best player at generation 0 (the percentage of games won by the best player at
generation 50 was 95.50%). In this experiment we used a search depth of four
plies (1 ply corresponds to the move of one side),

4.5.2 Experiment B

In this experiment, the best virtual player at generation 0, was called player0
and played 60 games against the chess engine Rybka 2.3.2a using each of the

4.5 experimental results 79

Run Wins Draws Losses Wins%

1 180 14 6 93.50%

2 171 26 3 92.00%

3 185 12 3 95.50%

4 169 28 3 91.50%

5 174 25 1 93.25%

6 176 19 5 92.75%

7 182 16 2 95.00%

8 183 15 2 95.25%

9 178 18 4 93.50%

10 168 28 4 91.00%

Tabla 9: Number of games won, drawn and lost for the best virtual player at genera-
tion 50 against the best virtual player at generation 0.

following ratings: 2300, 2100, 1900 and 1700. The histogram of results is shown
in Figure 34. For example, player0 won, drew and lost 0, 3 and 57 games,
respectively, against Rybka 2.3.2a playing at 2300 rating points; player0 won,
drew and lost 4, 6 and 50 games, respectively, against Rybka 2.3.2a playing at
2100 rating points. The same experiment was carried out with the best virtual
player for the ten runs in Table 9. This virtual player was called player50
and corresponds to the third run in this table. The results against the chess
engine Rybka 2.3.2a are shown in Figure 35. In this figure we can see that
player50 won, drew and lost 14, 10 and 36 games, respectively, against Rybka
2.3.2a playing at 2300 rating points; player50 won, drew and lost 26, 22 and
12 games, respectively, against Rybka 2.3.2a playing at 2100 rating points.

Based on these played games, we used the Bayeselo tool1 to estimate the ra-
tings of our virtual players using a minorization-maximization algorithm [51].
The obtained ratings are shown in Table 10. The columns Rank, Name, Elo, +,
-, Games, Score, Opposition and Draws give the classification obtained, the
name, the rating obtained, the lower bound of the confidence interval (with
95% confidence), the upper bound of the confidence interval (with 95% con-
fidence), the number of games carried out, the percentage of games won, the
average rating of the opponents and the percentage of ties made by each vir-
tual player and the chess engine Rybka2.3.2a. For example, Rybka2300 played

1 http://remi.coulom.free.fr/Bayesian-Elo/

80 tuning weights through a neural network architecture

120 games, won 83% games, with an average rating of the opponents of 1961
points and tied 11% of the games. Rybka won the first place, with a rating of
2309 points which is estimated between 2309+ 64 and 2309− 59 with 95% con-
fidence. In this table, we can see that the rating for the virtual player player0
was 1745, and the rating for the virtual player player50 was 2178, represent-
ing an increase of 433 rating points between the non-evolved and the evolved
virtual players after 50 generations for the third run of Table 9 (2178 ratings
points is a value close to a chessmaster level [30]).

In this experiment we used a search depth of six plies for the chess engine
Rybka2.3.2a, as well as for player0 and player50.

It is worth noticing that Thrun [78] employed one neural network with 175
input nodes, 165 hidden nodes and 175 output nodes within his program Neu-
roChess. NeuroChess successfully won 11% of the games versus the program
GnuChess (which has about 2300 rating points), and our chess program won
31.6% of the games versus Rybka 2.3.2a playing at 2300 rating points. In an-
other previous related work, Fogel et al. [30] employed three neural networks,
each one having 16 input nodes, 10 hidden nodes and 1 output node. The
strength of their program was about 2550 rating points.

Rank Name Elo + - Games Score Opposition Draws

(%) (%)

1 Rybka2300 2309 64 59 120 83% 1961 11%

2 Player50 2178 38 37 240 69% 1997 18%

3 Rybka2100 2097 51 50 120 63% 1961 23%

4 Rybka1900 1883 51 52 120 41% 1961 16%

5 Player0 1745 40 41 240 25% 1997 12%

6 Rybka1700 1699 56 60 120 25% 1961 9%

Tabla 10: Ratings on the third run against Rybka2.3.2a.

In the previous experiments each virtual player was allowed to play n/2
games with randomly chosen opponents. It is also noteworthy that these ex-
periments were repeated allowing each virtual player to play against the re-
maining virtual players (in total n− 1 games), and in this case, the best virtual
player with n − 1 games was only three points higher than the best virtual
player with n/2 games.

4.5 experimental results 81

Win

Draw

Loss

0−3−57 4−6−50

1700190021002300 Rating

20

30

50

60

10

40

Games

14−10−36 28−9−23

Figure 34: Histogram of wins, draws and losses for the best virtual player at genera-
tion 0 (player0) against Rybka 2.3.2a.

Finally, in Table 11 we show the weights of the black pawns than obstruct
the black bishop’s movement for virtual player player50. In this table, we can
confirm the chess knowledge which states that a bishop is “bad” if the pawns
that obstruct its movement are in the middle of the board [42].

4.5.3 Discussion of the results

The idea of experiment A was to carry out games between the evolved virtual
player and the non-evolved virtual player with the aim of validating that the
first player indeed performed better than the second. The idea of experiment
B was to assess the rating of the virtual players adopted as well as that of
a commercial chess engine (in this case, we used Rybka). From experiment
A, we concluded that the evolved virtual player was indeed better (in terms
of performance) than the non-evolved player. In experiment B, we concluded
that the rating achieved by the commercial chess engine Rybka, matched its
expected value (for example, for Rybka2300, the obtained rating was 2309).
Experiments of this sort have also been reported by other authors (see for
example, [30], [31], [5] and [21]).

82 tuning weights through a neural network architecture

Win

Draw

Loss

1700190021002300 Rating

20

30

50

60

10

40

Games

26−22−1214−10−36 47−9−4 57−2−1

Figure 35: Histogram of wins, draws and losses for the best virtual player at genera-
tion 50 (player50) against Rybka 2.3.2a.

4.6 final remarks of this chapter

In this chapter we proposed a neural network architecture to obtain the posi-
tional values of chess pieces. Also, we presented the evolutionary algorithm to
tune the weights and biases of these neural networks and the weights which
obstruct the bishop’s movement.

With this proposal our chess engine reached a rating of 2, 178 points, and
although this value is really good (it corresponds to the level of an expert in
chess by the United States Chess Federation). We are still relatively far from
the main objective of this thesis. We can continue to test other alternatives as
evolve the parameter ci or carry out more runs, among others, but in this mo-
ment, we prefer to set aside neural networks to test exclusively evolutionary
algorithms because they are also belong of the main objectives of this thesis.

4.6 final remarks of this chapter 83

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 1.96 3.83 4.10 8.26 8.08 4.01 3.93 1.57

6 2.24 4.09 7.99 16.25 16.19 7.89 3.89 1.76

5 1.97 4.09 12.21 23.99 23.85 12.31 4.31 2.06

4 1.64 3.74 4.36 4.20 4.23 3.79 3.93 1.99

3 0.13 2.14 1.90 2.31 2.21 2.45 2.19 0.15

2 0.01 0.17 0.00 0.00 0.00 0.55 0.10 0.23

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a b c d e f g h

Tabla 11: Final weight values of black pawns than obstruct the black bishop’s move-
ment.

“Excelling at chess has long been
considered a symbol of more general
intelligence. That is an incorrect
assumption in my view, as pleasant as it
might be.”

Garry Kasparov

5
T U N I N G W E I G H T S W I T H A D ATA B A S E O F C H E S S
G R A N D M A S T E R G A M E S

5.1 introduction

In Chapter 4, we proposed a neural network architecture to carry out the
weights adjustment of our chess engine. Using this architecture, our chess en-
gine increased its rating in 433 points (reaching a performance of 2178 points).
This value is not bad, but it is the value that we were able to reach with the
neural network architecture. For this reason, from this moment on, we proceed
to test exclusively evolutionary algorithms.

In fact, in this chapter we propose an evolutionary algorithm that adjust the
material values of chess pieces and the mobility factor. In case that we find
evidence that the evolutionary algorithm yields good results (that is to say,
the material values of chess pieces match their “theoretical” values), in the
next chapter we will proceed to adjust a greater number of weights in order
to increase the rating of our chess engine.

Most of the previous related work that has been reported in the specialized
literature [30, 31, 32, 6, 7, 54, 68] adopted tournaments among virtual players
from which the final result of each game (win, loss or draw) is used for decid-
ing which players will pass to the following generation.

In the work reported in this chapter, we carried out the automatic tuning of
the weights of our evaluation function using an evolutionary algorithm. The
selection mechanism of the proposal presented here uses games from chess

85

86 tuning weights with a database of chess grandmaster games

grandmasters to decide which virtual player will pass to the following gene-
ration. Our results indicate that the weight values obtained by our proposed
approach match the values that are known from chess theory.

The remainder of this chapter is organized as follows. The chess engine
adopted for our experiments is described in Section 5.2. The methodology,
the evolutionary algorithm and its components are described in Section 5.3.
Finally, in Section 5.4, we present our experimental results.

5.2 chess engine

The components of our chess program were described in Section 2.7 in the
page 26. The only difference is the type of evaluation function employed. Now,
we adopt the evaluation function used by Bošković et al. in [6]. This function
is:

eval = Xm(Mwhite −Mblack) +

5∑
y=0

Xy(Ny,white −Ny,black) (18)

In this equation, Xy represents the weights for all pieces except for the king.
The king’s weight was not taken into account because in eq. (18), its associ-
ated term is zero (there is always a king for each side on the board). Mwhite

represents the number of available moves (mobility) for the white pieces, and
Mblack represents the mobility for the black pieces. Xm is the mobility weight.
Ny,white and Ny,black are the number of y pieces for the white or the black
pieces, respectively. y can denote a queen, rook, bishop or knight. We used the
material value of the pawn as a reference by assigning it a value of 100.

The main aim of the algorithm described in this chapter is to show that the
weights of the evaluation function can be tuned using an evolutionary algo-
rithm, so that they closely match the values derived from chess theory. This
sort of evaluation function is relatively simple, but still provides a reasonably
good search strategy for our chess engine. It is worth adding that the training
of our search engine was conducted using a database of games from chess
grandmasters.

5.3 methodology

Our proposed approach is based on an evolutionary algorithm which has a
selection mechanism based on a database of chess grandmasters games. The

5.3 methodology 87

idea is that the weights adopted in our evaluation function are such that the
move performed is equal to the one that was performed by a human chess
master in a particular game from the database. This similarity is used to decide
which virtual player (individuals in the population) will pass to the following
generation.

5.3.1 Components of our evolutionary algorithm

The main components of an evolutionary algorithm were described in Sec-
tion 3.2.2 in page 39. Next, we will give the details of these components for
the evolutionary algorithm proposed in this chapter.

• Representation. As in Chapter 4, we adopted evolutionary programming
[33] to carry out the weights adjustment of our chess engine. Our algo-
rithm used real numbers encoding, where a chromosome is composed by
the sequence of weights of equation (18), as shown in Figure 36. In fact,
this is the fundamental set of weights that any chess engine should tune.
For this reason, we have chosen them to show experimentally, that the
evolutionary algorithm proposed in this chapter can adjust the weights
of our chess engine.

X mobilityX queenX rookX knight X bishop

Figure 36: Chromosome adopted in our evolutionary algorithm.

• Population. The population of the algorithm was initialized with N vir-
tual players (N2 parents and N

2 offspring in subsequent generations). The
weight values for these virtual players were random values generated
with an uniform distribution within the allowable bounds. The allow-
able bound for each piece and for each mobility weight are described in
Section 5.4.

• Survivor selection mechanism. This mechanism is explained in Sec-
tion 5.3.2.

• Operators. One offspring was created by mutating all weights from each
surviving parent with a probability of 90% (we carried out several runs

88 tuning weights with a database of chess grandmaster games

using mutation rates of 80%, 85%, 90%, 95% and 100%, and found that
90% produced the best convergence and standard deviation values). We
mutated the weights shown in Figure 36.

We adopted Michalewicz’s non-uniform mutation operator [66]. In this
operator, the mutated weight V

′
k (obtained from the previous weight Vk)

is obtained with the following expression:

V
′
k =

{
Vk +∆(t,UB− Vk) if R=TRUE
Vk −∆(t,Vk − LB) if R=FALSE

(19)

where the weight Vk is within the range [LB,UB] and R = flip(0.5). The
function flip(p) simulates the tossing of a coin and returns TRUE with
a probability p. Michalewicz suggests using:

∆(t,y) = y ∗ (1− r(1−t/T)
b
) (20)

where r is a random real number between 0 and 1. T is the maximum
number of generations and b is a user-defined parameter. In our case,
we used b = 2.

If, after mutating a weight, its value falls outside the range, this value is
re-set to the nearest extreme of its range. Since we adopted evolutionary
programming, no crossover operator is employed in our case.

5.3.2 Evolutionary algorithm

Fig. 37 shows the flow chart of our proposed evolutionary algorithm for tuning
the weights of the evaluation function given in eq. (18).

First, the weights of N virtual players are initialized with random values
within their corresponding boundaries. Subsequently, a virtual player’s score
is incremented in one for each move of the P games on the database for which
the virtual player did the same action as the human chess master.

The value of the parameter P is provided by the user and refers to the num-
ber of games that will be (randomly) chosen from the database to calculate the
score of a virtual player for a generation. The survivor selection mechanism

5.3 methodology 89

chooses the N/2 virtual players that achieved the highest score. These virtual
players are allowed to pass to the next generation and, consequently, will be
allowed to generate offspring using mutation, in order to give rise to the new
population ofN virtual players. In our experiments, this procedure is repeated
by 50 generations.

The procedure for computing the score of each virtual player is described
in Algorithm 9. Line 1 gets the set S which consists of P games chosen at
random from the database. Parameter P ranges from 1 to the number of games
available in the database (in our case, 312). In lines 2 to 4, we establish the score
counter to zero for each virtual player. Line 5 chooses d training games from S.
Line 6 sets the starting position of the game d. Line 7 chooses the next move m
from the game d. Finally, each virtual player calculates his next move n, and
if this move matches the move m, this virtual player increases his score in 1.

Algorithm 9 scoreCalculation()

1: S = chooseGames(P)
2: for each virtual player i do
3: score[i] = 0

4: end for
5: for each game d in S do
6: setPosition(d)
7: for each move m in game d do
8: for each virtual player i do
9: n = nextMove(i)

10: if m == n then
11: score[i] + +

12: end if
13: end for
14: end for
15: end for

5.3.3 Database of games

The database that we adopted consists of 312 games taken from the Linares
super tournament in its editions 1999, 2001, 2002, 2003, 2004, 2005, 2008 and
2010. These games can be downloaded from the site http://www.chessbase.com/.
Clearly, the database can be expanded so that a more robust tuning of weights

90 tuning weights with a database of chess grandmaster games

Initial values of weights

N virtual players

N
2
virtual players

Optimal values of weights

Begin

End

N
2
virtual players

+

N
2
offspring mutated

Initialize population

Calculate score

Selection

Mutation

Figure 37: Flowchart of our proposed evolutionary algorithm.

can be performed, but this is not particularly relevant at this point, since our
main aim here is to present some proof-of-principle results of our proposed
methodology.

5.4 experimental results

5.4.1 Tuning weights

In our experiments, we tuned the weights of the pieces and their mobility
as shown in eq. (18). The population size N was set to 10, and the number
of training games P was set to 6. Initialization took place using randomly
generated values within the vicinity of their “theoretical” values (±200 points).

5.4 experimental results 91

The “theoretical” values of the pieces are: 300, 300, 500 and 900 for the knight,
bishop, rook and queen, respectively. The “theoretical” value of the mobility
weight is 10, and its bounds are [0, 300]. The “theoretical” values of the pieces
were discussed in Section 4.2.1 in the page 64. 30 runs were carried out under
these conditions, and in all of them, the “theoretical” values were reached for
all pieces.

In order to visualize better the convergence process, we carried out an ad-
ditional run (number 31) in which the material values were generated within
the range [400, 500] and the mobility weight was set in the interval [0, 300]. At
generation 0 for this run, the average weight values and their standard devia-
tions are shown in Table 12.

Weight Value Standard deviation

Xpawn 100.00 0.00

Xknight 499.42 34.98

Xbishop 464.60 88.67

Xrook 469.85 122.75

Xqueen 437.57 85.90

Xmobility 97.19 173.67

Tabla 12: Average weight values and their standard deviations for run number 31
(generation 0)

At the end of run 31, and after 50 generations, the average weight values
and their standard deviations are shown in Table 13.

The average weight values and their standard deviations for 50 generations
are shown in Figs. 38 and 39, respectively.

From the obtained results, we can see that the tuning process after 50 ge-
nerations resulted in standard deviation values which are lower than those
reported by [6] and [68].

The computational time required by our proposed approach to run during
50 generations was 3 minutes with 34 seconds under the operating system
openSuse, using a PC with a 64 bits architecture, having two cores running at
2.8 Ghz. Unfortunately, most of the references that we consulted do not report

92 tuning weights with a database of chess grandmaster games

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 w

e
ig

h
t
v
a
lu

e

Generation

Knight
Bishop

Rook
Queen

Movility

Figure 38: Average weight values of the population during 50 generations.

any CPU times that could give us an idea of the efficiency of our approach.
The only reference in which we found such information is [30], in which Fogel
et al. reported using a 2.2-Ghz Celeron PC with 128 MB of RAM. His program
required 36 hours for executing 50 generations. However, it is important to
indicate that he optimized many more weights that our approach (namely, the
weights of three neural networks, the weights of the positional values, etc., see
Section 3.4 in the page 50) and adopted a search depth of 4 ply. Thus, this
execution time is not comparable with ours and is provided here just as a
reference.

It is also worth indicating that the CPU time required by our proposed
approach depends on the number of games that are randomly chosen from
the database to compute the score of a virtual player during a generation of
our evolutionary algorithm. In our case, we adopted P = 6.

5.4 experimental results 93

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Generation

Knight
Bishop

Rook
Queen

Mobility

Figure 39: Standard deviation of the weights in the population during 50 generations.

5.4.2 Additional Games

We also performed an additional experiment. We carried out 100 games in
which the first virtual player adopted the average weights from generation 0
of our evolutionary algorithm and the second virtual player adopted the ave-
rage weights from generation 50. The scores achieved by them were 84 from
the second player (who used the weights from generation 50) versus 16 from
the first player. Next, we show one of the games in which the second virtual
player defeated the first virtual player.

[White: "Average weights in generation 0"]
[Black: "Average weights in generation 50"]
[Result: "0-1"]
1 d4 d5 2 c4 c5 3 Nc3 Nf6 4 dXc5 d4 5 Nb1 Nc6 6 e3 e5 7 eXd4 eXd4 8 Nf3
BXc5 9 Bd3 O-O 10 Bg5 Re8+ 11 Be2 Qe7 12 BXf6 gXf6 13 a3 a5 14 a4 Bf5
15 Na3 d3 16 Nh4 QXe2+ 17 QXe2 RXe2+ 18 Kd1 Bg6 19 NXg6 fXg6 20 Rf1

94 tuning weights with a database of chess grandmaster games

Weight Value Standard deviation

Xpawn 100.00 0.00

Xknight 310.89 0.22

Xbishop 325.32 0.45

Xrook 514.92 1.26

Xqueen 841.61 2.62

Xmobility 5.62 1.34

Tabla 13: Average weight values and their standard deviations for run number 31
(generation 50)

Rae8 21 Nb5 BXf2 22 Nc3 Re1+ 23 RXe1 RXe1+ 24 Kd2 RXa1 25 KXd3 Ne5+

26 Ke2 Bd4 27 Nd5 NXc4 28 NXf6+ BXf6 29 Kd3 NXb2+ 30 Kc2 RXa4 31 g3
Rc4+ 32 Kb3 Kf7 33 h4 b5 34 h5 gXh5 35 g4 hXg4 36 Ka3 g3 37 Kb3 g2 38
Ka3 g1Q 39 Ka2 Nd3 40 Kb3 Qb1+ 41 Ka3 Qb2 ++

We also carried out 100 games between the best virtual player in generation
0 versus the best virtual player in generation 50, with a score of 85 to 15 in
favor of the second virtual player. Next, we show one of the games in which
the second virtual player defeated the first virtual player.

[White: "The best virtual player in generation 0"]
[Black: "The best virtual player in generation 50"]
[Result: "0-1"]
1 Nf3 d5 2 d4 Nf6 3 c4 c6 4 Nc3 e6 5 c5 Ne4 6 Nb1 Be7 7 b4 Qc7 8 g3 g5
9 Qd3 Nd7 10 Bh3 h5 11 QXe4 dXe4 12 Ng1 a5 13 Bg2 f5 14 bXa5 QXa5+

15 Bd2 Qa4 16 Bc3 Bd8 17 Bb2 Qc2 18 Ba3 Ba5+ 19 Nc3 QXc3+ 20 Kf1
QXa1+ 21 Bc1 QXc1++

Additionally, we carried out 10 games between a virtual player which adopted
the average weights from generation 50 and a (human) player ranked at 1600
points. The result was 9 to 1 in favor of the human player. Based on these

5.4 experimental results 95

played games, we used the Bayeselo tool1 to estimate the ratings for both the
human player and the chess engine using a minorization-maximization algo-
rithm [51]. The obtained ratings are shown in Table 18. The description of the
columns in this table were given in Section 4.5.2 in the page 78. In this table,
we can see that the rating obtained for the human player was 1737 and for the
chess engine was 1463. Next, we can see the game that was won by the virtual
player.

[White: "Human player"]
[Black: "Average weights in generation 50"]
[Result: "0-1"]
1 c4 e5 2 Nc3 Nf6 3 e4 Bb4 4 Nge2 O-O 5 h3 c6 6 a3 BXc3 7 NXc3 d5 8 cXd5
cXd5 9 eXd5 e4 10 g3 Bf5 11 Bg2 Qc8 12 f3 eXf3 13 QXf3 Re8+ 14 Ne2 Be4
15 Qf2 BXg2 16 QXg2 Nbd7 17 O-O Nc5 18 d4 Ncd7 19 Bg5 h6 20 BXf6
NXf6 21 Rac1 Qd7 22 Nf4 b6 23 Rf2 Rad8 24 Rcf1 Re7 25 b4 NXd5 26 Nh5
Ne3 27 Qf3 NXf1 28 RXf1 QXd4+ 29 Kh2 Qe3 30 h4 Rd2+ 31 Kh3 QXf3 32
RXf3 g6 33 Nf6+ Kg7 34 Ng4 h5 35 Nh2 Ree2 36 Nf1 Ra2 37 g4 Rf2 38 RXf2
RXf2 39 Nh2 hXg4+ 40 NXg4 Rf3+ 41 Kg2 RXa3 42 Ne5 Ra4 43 Nc6 Kh6 44
Kg3 Kh5 45 b5 f5 46 Ne5 a5 47 Nd7 Rb4 48 NXb6 RXb5 49 Nc4 a4 50 Na3
Rb3+

White resigns (see the final position in Figure 40).
It is worth indicating that in these games both virtual players used a database

for openings and the depth of the search was set to 4 ply.

Rank Name Elo + - Games Score Opposition Draws

(%) (%)

1 Human player 1737 132 92 10 90% 1463 0%

2 Chess engine 1463 92 132 10 10% 1737 0%

Tabla 14: Ratings for the human player and our chess engine in a ten-game match.
The final result was 9 to 1 for the human player.

1 http://remi.coulom.free.fr/Bayesian-Elo/

96 tuning weights with a database of chess grandmaster games

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0ZpZ
5Z0Z0ZpZk
4pZ0Z0Z0O
3MrZ0Z0J0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 40: Final position for the game between the human player ranked at 1600

points (with white pieces) versus “average weights in generation 50” (with
black pieces).

5.5 final remarks of this chapter

We have reported here an evolutionary algorithm which incorporates a se-
lection mechanism that favors virtual players that are able to “visualize” (or
match) more moves from those registered in a database of chess grandmaster
games. This information is used to tune the weights of our evaluation function,
which is relatively simple to implement.

Our results indicate that the weight values obtained by our proposed ap-
proach closely match the known values from chess theory. These results give
confidence in our method.

In the next chapter, and aiming to create a chess program that will be able
to play at the level of a master or a chess master level, we plan to tune more
weights (e.g., king security, doubled pawns, isolated pawns, passed pawns,
rooks in open columns, rooks in seventh row, control center of the board, and
so on) using our proposed evolutionary algorithm. We plan to use local search
strategies to carry out a more fine-grained tuning of the weights. Our aim is to
increase the rating of our chess engine as much as we can, adopting relatively
inexpensive approaches (computationally speaking).

“Chess is war over the board. The object
is to crush the opponents mind.”

Bobby Fischer

6
T U N I N G W E I G H T S W I T H T H E H O O K E - J E E V E S M E T H O D

In Chapter 5, we implemented a chess engine based on evolutionary progra-
mming with a selection mechanism relying on grandmaster’s chess games.
The objective was to decide the virtual players that would pass to the follo-
wing generation. Here, we use these same techniques to adjust a larger num-
ber of weights (twenty eight in this work against the five used in Chapter 5).
The aim is to improve the rating of our chess engine. We also introduce here
the use of a local search scheme based on the Hooke-Jeeves algorithm [50],
which is adopted to adjust the weights of the best virtual player obtained in
the evolutionary process. This approach produced an improvement of more
than 220 points the chess rating system. As in Chapter 5, the chess pieces’ ma-
terial values for the best organism produced by the evolutionary process of
this chapter are close to the “theoretical” values.

In the approach of this chapter we used 28 weights and we obtained a ra-
ting of 2424 points. In contrast, the neural network architecture proposed in
Chapter 4 used 426weights and our chess engine registered 2178 rating points.
Therefore, this method represents an increase of 246 rating points and a reduc-
tion of 93.4% in the weights number with respect to the method of Chapter 4.

6.1 evaluation function

A factor is a positional characteristic of a particular piece. Among the evalua-
tion factors used are mobility, column type, and so on. A selection of these

97

98 tuning weights with the hooke-jeeves method

factors was done for each piece, and they are multiplied by weights to change
their influence in the evaluation function. These weights are tuned by an evo-
lutionary process in order to obtain better virtual players.

For carrying out the experiments of this chapter, we used the chess engine
described in Section 2.7 in the page 26. The only difference is the type of
evaluation function. Now, our chess program evaluates board positions from
a particular side with:

eval = pV +mV , (21)

where mV (pV) is the sum of material values (positional values) for the side
under evaluation. In Sections 4.2.1 and 4.2.2 in the page 64 are the definitions
of material and positional values, respectively. We defined mV and pV , respec-
tively by

mV =

r∑
i=1

Xi, (22)

pV =

r∑
i=1

Pi, (23)

here Xi, and Pi represent the material and positional values for piece i, respec-
tively, and r is the number of pieces. All these parameters are measured with
respect to the side under evaluation. In equation 22 the king’s material value
should not be taken into account.
Next, we will describe how to obtain the positional values of the chess pieces.

6.1.1 King’s positional value

The king’s positional value is given by:

Pking =

4∑
i=1

Xking,i ∗ Fking,i, (24)

here Xking,i is the weight factor of Fking,i.

The king’s factors are the input signals of the king’s neural network in Sec-
tion 4.3.1.1 in the page 66, namely:

6.1 evaluation function 99

1. Fking,1 is equal to Defending material input signal.

2. Fking,2 is equal to Attacking material input signal.

3. Fking,3 is equal to Castling input signal.

4. Fking,4 is equal to Pawns input signal.

6.1.2 Queen’s positional value

The queen’s positional value is given by:

Pqueen = Xqueen,1 ∗ Fqueen,1, (25)

here Xqueen,1 is the weight factor of Fqueen,1.

At the moment, we only considered one factor:

1. Fqueen,1 is the queen’s mobility.

In Section 4.3.1.2 in the page 68 the queen’s neural network used four in-
put signals to obtain its positional value. Now, we used only one factor, and
we hope that by adding the remaining input signals (Column type, Row and
Column) our chess engine could increase its rating with respect to the value
reported in this chapter.

6.1.3 Rook’s positional value

The rook’s positional value is given by:

Prook =

7∑
i=1

Xrook,i ∗ Frook,i, (26)

here Xrook,i is the weight factor of Frook,i.

The rook’s factors are the following:

1. Frook,1 is equal to the input signal Rook mobility in Section 4.3.1.3 in the
page 70.

100 tuning weights with the hooke-jeeves method

2. Frook,2 is true if on the rook’s column there are no pawns; otherwise, it is
false.

3. Frook,3 is true if on the rook’s column there are only adversary pawns;
otherwise, it is false.

4. Frook,4 is true if on the rook’s column there are pawns for both sides and
the rook is in front of its pawns; otherwise, it is false.

5. Frook,5 is true if on the rook’s column there are pawns on both sides and
the rook is behind its pawns; otherwise, it is false.

6. Frook,6 is equal to the input signal Seventh row in Section 4.3.1.3.

7. Frook,7 is equal to the input signal Seventh row folded in Section 4.3.1.3.

We tested all possible subsets of the features reported in Section 4.3.1.3 in
the page 70. The subset used here is the one producing the best results. In this
way, the input Column type in Section 4.3.1.3 was replaced by factors 2, 3, 4,
and 5.

6.1.4 Bishop’s positional value

The bishop’s positional value is given by:

Pbishop = Xbishop,1 ∗ Fbishop,1, (27)

here Xbishop,1 is the weight factor of Fbishop,1.

At the moment, we only considered one factor:

1. Fbishop,1 is the bishop’s mobility.

In Section 4.3.1.4 in the page 71 the bishop’s neural network used four input
signals to obtain its positional value. Now, we used only one factor, and we
hope that by adding the remaining input signals (Pawn’s mobility, Ahead and
Weight) our chess engine could increase its rating with respect to the value
reported in this chapter.

6.1 evaluation function 101

6.1.5 Knight’s positional value

The knight’s positional value is given by:

Pknight =

7∑
i=1

Xknight,i ∗ Fknight,i, (28)

here Xknight,i is the weight factor of Fknight,i.

The knight’s factors are the following:

1. Fknight,1 is equal to the input signal Knight mobility in Section 4.3.1.5 in
the page 72.

2. Fknight,2 is equal to the input signal Supported in Section 4.3.1.5.

3. Fknight,3 is equal to the input signal Operation base in Section 4.3.1.5.

4. Fknight,4 is true if the knight is in the squares a1, . . . ,a8, b1, . . . ,g1, h1, . . . ,h8,
and b8, . . . ,g8 (which corresponds to the squares on the periphery of the
board); otherwise, it is false.

5. Fknight,5 is true if the knight is in the squares b2, . . . ,b7, c2, . . . , f2, g2, . . . ,g7,
and c7, . . . , f7; otherwise, it is false.

6. Fknight,6 is true if the knight is in the squares c3, . . . , c6, d3, e3, f3, . . . , f6,
and d6, . . . , e6; otherwise, it is false.

7. Fknight,7 is true if the knight is in the squares d4, e4,d5, e5; otherwise, it is
false.

We tested all possible subsets of the features reported in Section 4.3.1.5. The
subset used here is the one producing the best results. In this way, the input
Periphery in Section 4.3.1.5 was replaced by factors 4, 5, 6, and 7.

We expected that Xknight,4 < Xknight,5 < Xknight,6 < Xknight,7 because if the
knight is located in the center of the board its positional value will be better.

102 tuning weights with the hooke-jeeves method

6.1.6 Pawn’s positional value

The pawn’s positional value is given by:

Ppawn =

5∑
i=1

Xpawn,i ∗ Fpawn,i, (29)

here Xpawn,i is the weight factor of Fpawn,i.

The pawn’s factors are the following:

1. Fpawn,1 is equal to the input signal Doubled in Section 4.3.1.6 in the
page 73.

2. Fpawn,2 is equal to the input signal Isolated in Section 4.3.1.6.

3. Fpawn,3 is equal to the input signal Central in Section 4.3.1.6.

4. Fpawn,4 is equal to the input signal Past in Section 4.3.1.6.

6.2 methodology

Our purpose now is to tune the weights of Section 6.1 using evolutionary
programming. We proceed in two phases. In the first one, we use the algorithm
in Chapter 5 to adjust the weights in equations (22) to (29). In the second
phase, a local search based on the Hooke-Jeeves algorithm is used to look
for local improvements in the optimal organism found. The aim is that the
weights adjustment performed by our approach increase in the rating of the
chess engine.

First, we give a structural description of the evolutionary algorithm.

6.2.1 Components of our evolutionary algorithm

The main components of our evolutionary algorithm were described in Sec-
tion 5.3.1 in the page 87. Here, we change the composition of the chromosome
and the population size. Now, the chromosome encodes the twenty weights in
equations (22) to (29). These weights are shown in Table 15 together with the
material value of the pawn. As in Chapter 5, we assign to each pawn a mate-
rial value of 100 points and consider this as the reference value for the other

6.2 methodology 103

pieces. Also, we changed the population size N from 10 to 20 individuals due
to the fact that in the experiments the rating recorded by our chess engine was
better for the last value.

6.2.2 Phases of our method

The method consists of the following phases or steps:

• Exploration search. It is the first step of the method, and is based on
evolutionary programming [33] which has a selection mechanism based
on a database of chess grandmaster games (supervised learning). The
selection mechanism allows that the virtual players with more positions
properly solved from a database of chess grandmaster games acquire
the right to pass to the next generation. In Chapter 5, we conducted this
phase in a similar way, but now we adjusted a larger number of weights
(we went from five to twenty eight).

• Exploitation search. In this second step of the method, we carried out
a local search procedure, aiming to improve the best virtual player ob-
tained in the previous step. For that sake, we applied the Hooke-Jeeves
algorithm to the best virtual player obtained in the exploration search.
The objective function incorporated into the Hooke-Jeeves method also
used a database of chess grandmaster games to carry out the weights
adjustment under consideration.

Algorithm 10 EvolutionaryAlgorithm()

1: intializePopulation();
2: g = 0;
3: while g++< Gmax do
4: scoreCalculation();
5: selection();
6: mutate();
7: g++;
8: end while

In Section 5.3.2 in the page 88, we showed the flowchart of the evolutionary
algorithm applied to the exploration search. Now, we show the version of the
evolutionary algorithm for this flowchart diagram in Algorithm 10. The evo-
lutionary algorithm and the flowchart operate identically. Its description is as

104 tuning weights with the hooke-jeeves method

follows. Line 1 initializes the weights of N virtual players with random values
within their corresponding boundaries. Line 2 sets the generations counter
equal to zero. Lines 3 to 8 carry out the weights adjustment for virtual players
during Gmax generations. In line 4, we calculate the score for each virtual
player (Algorithm 9 in Section 5.3.2 in the page 88 describes in more detail
this aspect). In Line 5 we apply the selection mechanism so that only the best
N/2 virtual players pass to the following generation. In line 6, we mutate the
first half of the population in order to obtain the second half of the virtual
players. That is, all weights from each surviving parent were mutated to cre-
ate one offspring (the weights that were mutated are shown in Table 15). As it
was done in Chapter 5, we adopted here Michalewicz’s non-uniform mutation
operator [66]. Since, we adopted evolutionary programming, no crossover op-
erator is employed in our case. Finally, line 7 increases the generation counter
by 1.

The procedure for computing the score of each virtual player is described in
Algorithm 9 of Section 5.3.2 in the page 88.

In the exploitation search, we employed the Hooke-Jeeves method to further
adjust the weights of the best virtual player obtained during the exploration
search step. The Hooke-Jeeves method is a direct search algorithm originally
proposed in 1961 [50]. This method carries out a deterministic local search
with a local descent algorithm, which does not make use of the objective func-
tion derivatives.

The fundamental part of the Hooke-Jeeves method is shown in Algorithm 11.
Basically, this method starts in an initial base point, x0, and explores each coor-
dinate axis with its own step size through the function explore(x0, h) describe
in Algorithm 12, where h is the vector of increase in each coordinate axis. Trial
points in all D coordinate directions are compared until the best point, x1, is
found. If the best new trial point is better than the base point, then another
attempt to obtain another move in the same direction is made. If none of the
trial points improve the solution x0, the step is presumed to have been too
large, so the procedure repeats with smaller step sizes.

The objective function f returns the number of positions solved by each
virtual player. In this case, we randomly chose M = 20 positions from chess
grandmaster games that were not solved by any virtual player during the
exploratory search.

6.2 methodology 105

Algorithm 11 HookeJeeves()

{as long as step length is still not small enough}
while h> hmin do

{explore the parameter space}
x1 = explore(x0, h);
{if improvement could be made}
if f(x1) < f(x0) then

{make differential pattern move}
x2 =x1+(x1−x0);
if f(x2) < f(x1) then
x0 = x2;

else
x0 = x1;

end if
else
h= h∗ reduction_factor;

end if
end while

Algorithm 12 explore(vector x0, vector h)

{ei is the unit vector for coordinate i}
{for all D dimensions}
for i = 0; i < D; i++ do

{check coordinate i}
if f(x0+ei∗h) < f(x0) then
x0 =x0+ei∗h;

else if f(x0−ei∗h) < f(x0) then
x0 =x0−ei∗h;

end if
end for
return x0;

106 tuning weights with the hooke-jeeves method

6.2.3 Initialization

During the exploratory search step, the initial population consisted of N =

20 virtual players (10 parents and 10 offspring in subsequent generations).
Their weights (described in equations (22), (24), (25), (26), (27), (28) and (29))
were randomly generated with a uniform distribution within their allowable
bounds (these bounds for each weight are shown in Table 15). These allowable
bounds were taken from other related works (see for example, Bošković et
al. [5]).

6.2.4 Database of games

In the experiments reported in this chapter, we used a database consisting of
1000 games from chess grandmasters having a rating above 2600 Elo points
(see Appendix A). The games were taken from the Linares tournaments, from
matches for the world chess championship, and from the Wijk aan Zee tour-
naments, among others. These games can be download from: http://www.

chessbase.com/.

6.3 experimental results

We carried out three experiments. The first experiment was based on the explo-
ration and the exploitation stages of the search. In the second experiment, we
performed matches between the best virtual player obtained after the explo-
ration phase and the best virtual player obtained after the exploitation phase.
Finally, in the third experiment, we carried out matches between virtual pla-
yers and the popular chess program Chessmaster.

In these experiments, our chess engine used the database Olympiad.abk in
the opening phase. This database is included with the graphical user interface
Arena1. In the following sub-sections, we will describe these experiments.

6.3.1 First experiment

The first experiment was divided into two steps described in Section 6.2. In
the first step, we applied exploration search to adjust the weights shown in
Table 15. In this case, we performed 30 runs, and in each of them, we used

1 http://www.playwitharena.com/

http://www.chessbase.com/

http://www.chessbase.com/

6.3 experimental results 107

Weight Wlow Whigh

X1 (PAWN_VALUE) 100 100

X2 (KNIGHT_VALUE) 200 400

X3 (BISHOP_VALUE) 200 400

X4 (ROOK_VALUE) 400 600

X5 (QUEEN_VALUE) 800 1000

Xking,1 0 4000

Xking,2 −4000 0

Xking,3 0 100

Xking,4 0 100

Xqueen,1 0 100

Xrook,1 0 100

Xrook,2 −50 50

Xrook,3 −50 50

Xrook,4 −50 50

Xrook,5 −50 50

Xrook,6 0 100

Xrook,7 0 100

Xbishop,1 0 100

Xknight,1 0 100

Xknight,2 0 100

Xknight,3 0 100

Xknight,4 −50 50

Xknight,5 −50 50

Xknight,6 −50 50

Xknight,7 −50 50

Xpawn,1 −50 50

Xpawn,2 −50 50

Xpawn,3 −50 50

Xpawn,4 −50 100

Tabla 15: Ranges of the weights for each virual player.

108 tuning weights with the hooke-jeeves method

Gmax = 200 generations, N = 20 virtual players, and p = 1000 training
positions for chess grandmaster games. The best virtual player from these
runs at generation 0, and at generation 200, were called VP0exploration, and
VP200exploration, respectively.

Figure 41 shows the evolutionary process for the exploration search. The
plot shows the number of positions solved (a total of 1000) for the best vir-
tual player and the average weight values of 20 virtual players during 200
generations. At generation 0, the number of positions solved for the average
weight values was 187 (which corresponds to 18.7% of the positions), and 208
for the best virtual player (which corresponds to 20.8% of the positions). At
generation 200, the number of positions solved for the average weight values
and the best virtual player was 328 (which corresponds to 32.8% of the po-
sitions). Note that this value is competitive with the value reported in [21],
which corresponds to 32.4% of the positions. At generation 200, the number
of positions solved for the average weight values and the best virtual player
was the same because we used Michalewicz’s non-uniform mutation operator
(see Section 5.3.1 in the page 87).

In the second step of the first experiment, we applied the exploitation search
to the best virtual player obtained with the exploration search. In this case, we
applied the Hooke-Jeeves algorithm with the following parameters:

• The step reduction factor α = 2.

• The termination parameter ε = 0.5.

• The increments ∆i = 30 for i = 1, . . . ,WN (WN is the number of weights).

The second column in Table 16 shows the weights tuning for the virtual
player VP200exploration. In the third column, we show the weights tuning for the
virtual player VPexploitation. In both cases, we can see that the material values
of pieces are close to their “theoretical” values.

Next, we used the resulting weights of the virtual player VPexploitation to test
them with 1000 training positions from chess grandmaster games. In this case,
the virtual player VPexploitation successfully resolved 483 of the 1000 positions
(which corresponds to 48.3%). Therefore, we can see that the number of posi-
tions solved using both exploration and exploitation was larger than when we
used only exploration (from 32.8% to 48.3%). We consider that the number of
positions solved by this method is satisfactory because we used only a depth
of one ply in the search tree. It is noteworthy that David-Tabibi et al. [21] also
used one ply in their work.

6.3 experimental results 109

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200

P
o
s
it
io

n
s
 s

o
lv

e
d

Generation

Exploration search

Best weight values
Average weight values

Figure 41: Evolutionary process for the exploration search. The plot shows the num-
ber of positions solved (a total of 1000) for the best virtual player and the
average weight values of the 20 virtual players during 200 generations.

With the completion of the exploration and exploitation search, we used
1000 additional positions for testing the virtual player VPexploitation. We let
this virtual player perform a one ply search on each of these positions, and
the percentage of correctly solved positions was 47.9%. This indicates that the
first 1000 positions used for training, cover most of the types of positions that
can arise.

6.3.2 Second experiment

In this experiment, our chess engine used a search depth of four plies. We
carried out 200 games between the virtual player VP200exploration and the vir-
tual player VPexploitation (each virtual player played 100 games with black
pieces and 100 games with white pieces). The virtual player VPexploitation won,

110 tuning weights with the hooke-jeeves method

Weight VP200
exploration VPexploitation

X1 (PAWN_VALUE) 100 100

X2 (KNIGHT_VALUE) 297 302

X3 (BISHOP_VALUE) 315 319

X4 (ROOK_VALUE) 502 506

X5 (QUEEN_VALUE) 923 910

Xking,1 1650 1675

Xking,2 −1430 −1425

Xking,3 47 45

Xking,4 65 72

Xqueen,1 5 9

Xrook,1 62 73

Xrook,2 45 46

Xrook,3 27 33

Xrook,4 32 27

Xrook,5 −8 −7

Xrook,6 63 68

Xrook,7 78 82

Xbishop,1 72 76

Xknight,1 64 68

Xknight,2 56 72

Xknight,3 52 73

Xknight,4 −12 −15

Xknight,5 3 6

Xknight,6 15 26

Xknight,7 42 43

Xpawn,1 −32 −44

Xpawn,2 −47 −48

Xpawn,3 −44 −41

Xpawn,4 43 48

Tabla 16: Values of the weights after the exploration search (shown in the second co-
lumn) and after the exploitation search (shown in the third column).

6.3 experimental results 111

drew, and lost 142, 25, and 32 games, respectively, versus the virtual player
VP200exploration.

Next, we used the Bayeselo tool2 to estimate the ratings of the chess engine
using a minorization-maximization algorithm [51]. The obtained ratings are
shown in Table 17. The description of the columns in this table were given
in Section 4.5.2 in the page 78. In this table, we can see that the rating for
the virtual player VPexploitation was 2425, and the rating for the virtual player
VP200exploration was 2205, representing an increase of 220 rating points between
the virtual player obtained with exploration plus exploitation search and the
virtual player obtained only with exploration search.

Virtual player Elo + - Games Score Opposition

(%)

VPexploitation 2425 25 24 200 77% 2205

VP200
exploration 2205 24 25 200 23% 2425

Tabla 17: Ratings of the second experiment.

We can have an idea of the playing strength of virtual players using the
classification of the United States Chess Federation. From Table 19 (Appendix
A), we can see that the strength of the virtual player VP200exploration (2205 rating
points) is at the level of a master in chess, and the strength of the virtual player
VPexploitation (2425 rating points) is at the level of a senior master in chess.

6.3.3 Third experiment

In this experiment, we carried out 200 games among the virtual players
VP0exploration, VP200exploration, VPexploitation, and the popular chess program Chess-
master (grandmaster edition) which was set at 2500 rating points. The results
are shown in Figure 42. In this figure, we can see that Chessmaster2500’s
wins, draws, and losses were 68, 118, and 14, respectively, versus the vir-
tual player VPexploitation (denoted as the histogram H1 in Figure 42). Also,
Chessmaster2500’s wins, draws, and losses, were 158, 28, and 14, respectively,
versus the virtual player VP200exploration (denoted as the histogram H2 in Fi-
gure 42), respectively, and so on.

Based on these played games, we used again the Bayeselo tool to estimate
the ratings of Chessmaster2500, VPexploitation, VP200exploration, and VP0exploration.

2 http://remi.coulom.free.fr/Bayesian-Elo/

112 tuning weights with the hooke-jeeves method

Win

Draw

Loss

Games

200

150

100

50

158−28−14

H1 H2 H3

68−118−14 200−0−0

Figure 42: Histogram of wins, draws and losses for Chessmaster2500 against
VPexploitation (H1), VP200exploration (H2), VP0exploration (H3).

The obtained ratings are shown in Table 18. The description of the columns in
this table were given in Section 4.5.2 in the page 78. In this table we can see that
the rating for the virtual players VP0exploration, VP200exploration, and VPexploitation
were 1600, 2197, and 2424, respectively. In this experiment, the chess engine
used a search depth of six plies.

Name Elo + - Games Score Opposition Draws

(%) (%)

Chessmaster2500 2499 23 23 600 83% 2074 24%

VPexploitation 2424 28 28 200 37% 2499 59%

VP200
exploration 2197 39 43 200 14% 2499 14%

VP0
exploration 1600 144 348 200 0% 2499 0%

Tabla 18: Ratings of the third experiment.

6.4 final remarks of this chapter

The work of this chapter is an extension of the one presented in Chapter 5. In
this case, we used two steps to carry out the weights tuning of a chess engine.
In the first step, we performed an exploration search through an evolutionary

6.4 final remarks of this chapter 113

algorithm with supervised learning. One difference with respect to our previ-
ous work is that now we adjusted a larger number of weights (from five to
twenty eight). With this change, we obtained an increase in the rating of the
chess engine from 1463 to 2205 points.

Another difference with respect to Chapter 5 is the second step of this
method. In this case, we used the Hooke-Jeeves algorithm to continue the
weights adjustment for the best virtual player obtained in the previous step.
Using this algorithm as a local search engine, we increased the rating of our
chess engine from 2205 to 2425 points (in the second experiment), and from
2197 to 2424 points (in the third experiment).

7
C O N C L U S I O N S A N D F U T U R E W O R K

In this work, we designed and implemented a computer chess program that
plays chess, a chess engine, with the following features:

• Board representation through the 0× 88 method.

• Election of movements through the alpha-beta algorithm.

• Stabilization of positions through the quiescence algorithm that takes
into account the exchange of material and king’s checks.

• Use of iterative deepening and hash tables.

We focused mainly in the incorporation of knowledge to the evaluation func-
tion through artificial intelligence techniques such as evolutionary algorithms
and/or neural networks.

We proposed an original neural network architecture to obtain the positional
values of chess pieces. We also used an evolutionary algorithm to tune the
weights involved in these neural networks and the weights which obstruct
the bishop’s movement. The novelty of this architecture is that proposes an
original method to obtain the positional values of chess pieces in a dynamic
way depending on the characteristics of the position. With this proposal our
chess engine reached a rating of 2, 178 points. Although this value is really
good (it corresponds to the level of an expert in chess by the United States
Chess Federation), we are still relatively far from the main objective of this
thesis, of obtain a 2600 points chess engine.

115

116 conclusions and future work

Due to the limitations in the rating obtained, we proceeded to investigate
the exclusive use of evolutionary algorithms to carry out the weights adjust-
ment of our chess engine. First, we used an evolutionary algorithm based on
supervised learning to obtain the “theoretical values” of chess pieces and their
mobility factor.

Finally, we used two steps to carry out the weights tuning of the chess
engine. In the first step, we employed the previous evolutionary algorithm to
adjust a larger number of weights (from five to twenty eight). With this change,
we obtained an increase in the rating from 1463 to 2205 points. In the second
step, we used the Hooke-Jeeves algorithm to continue the weights adjustment
for the best virtual player obtained in the previous step. Using this method as
a local search engine, we increased the rating of our chess engine from 2205

to 2425 points.
As part of our future work, and aiming to create a chess program that will

be able to play at the level of 2600 rating points, we plan to do the following:

• Regarding the neural network architecture.

– We can evolve the parameter ci to obtain a more accurate relation-
ship between the material and positional value of a piece. We think
that this parameter is important to determine the style of play of
our chess engine.

– We plan to use better strategies that allow us a more efficient explo-
ration of the search space in our neural network architecture.

– We can evolve the topology of each neural network looking for its
optimal configuration.

• Regarding the approach based on the Hooke-Jeeves method.

– Adjust more weights, for example, the pawns weights that obstruct
the bishop’s movement, the queen’s row, queen’s column and queen’s
column type, among others.

Regarding to the two approaches we plan to carry out more experiments
varying the population size and increasing the number of games in the database.
We also plan to add extensions to the quiescence search such as pawn promo-
tions. It is also desirable to add endgame databases to our chess engine.

A
E L O R AT I N G S Y S T E M

The Elo rating system is a method to represent the playing strength in two-
player games such as chess, Go, association football, basketball, among others.
This method was created by the mathematician Arpad Elo. This system has
been adopted by the United States Chess Federation (USCF) since 1960 and by
the World Chess Federation (FIDE, Fédération Internationale des Échecs, by its
French acronym) since 1970. In Table 19, we show the classification of the
USCF.

a.1 elo formula

The formula to obtain the Elo rating of a player is given by [26]:

Rnew = Rold +K(outcome−W), (30)

where:
Rnew is the new rating.
Rold is the old rating.
K is a constant that depends on the rating.
outcome is the game result.
W is the expected or percentage score given by the logistic curve.

The World Chess Federation uses the following values for the K-factor:

117

118 elo rating system

Interval Level

2400 and above Senior Master

2200− 2399 Master

2000− 2199 Expert

1800− 1999 Class A

1600− 1799 Class B

1400− 1599 Class C

1200− 1399 Class D

1000− 1199 Class E

Tabla 19: Elo rating system

K =

30, players with a smaller number of 30 games.
15, players with at least 30 games and less than 2400 rating points.
10, players with at least 30 games and more than 2400 rating points.

The outcome is given by:

outcome =

1, for a win
0.5, for a draw
0, for a loss

The expected or percentage score W is given by:

W =
1

1+ 10
Ropponent−Rold

400

, (31)

here Ropponent is the opponent’s rating.

The rating difference is given by the term Ropponent − Rold. The Elo formula
is a relationship between the rating difference and the expected score. In Ta-
ble 43, we show some values for this relationship. This table is usually called
expectancy table and in the page http://www.fide.com/fide/handbook.html?

id=73&view=article we can see this relationship used by the World Chess Fe-
deration to calculate the rating of chess players. We can also see this theoretical
relationship in Figure 43. After using the expected value in equation (30), we
can know how the rating has changed for a particular player.

http://www.fide.com/fide/handbook.html?id=73&view=article

http://www.fide.com/fide/handbook.html?id=73&view=article

A.1 elo formula 119

Rating difference Expected score

0 0.5000

20 0.529

40 0.557

60 0.585

80 0.613

100 0.640

120 0.666

140 0.691

160 0.715

180 0.738

200 0.760

300 0.849

400 0.909

Tabla 20: Some values for the relationship between rating difference and expected
score.

On the other hand, if we plot the White rating minus the Black rating against
the White’s percentage score, we obtain the Figure 44. In this figure, the square
(�) denotes the White’s percentage score for 266, 000 games between 1994 and
2001, the white curve denotes the Elo’s theoretical prediction and the blue
line gives the best prediction. In this graph, we can see that the Elo rating
system has a drawback. For example, in a game where two players have the
same rating, the Elo rating system indicates a White’s percentage score of 50%;
however, the better prediction gives a percentage greater than this value [36].
In fact, this happens in this way because the white side moves first in chess.

There are two tools to estimate the ratings of chess players or chess engines:
Elostat and Bayeselo. This tools can read a text file that contains the results of
a set of games to compute the rating of the players involved. Elostat tool is
included with the graphical user interface Arena1, but it has the disadvantage
of not taking into account the side’s color to compute the rating involved.

1 http://www.playwitharena.com/

120 elo rating system

Figure 43: Rating difference versus percentage score. This figure was taken from http:

//www.chessbase.com/newsdetail.asp?newsid=7114.

Since the Bayeselo tool eliminates this small drawback, it was adopted to
estimate the ratings in the experiments of Chapters 4, 5 and 6 of this thesis.

a.2 world chess federation

As mentioned before, the World Chess Federation has adopted the Elo rating
System. Until July 2012, the statics of the chess players with a rating higher
than 2200 points are the following:

• 5839 players had a rating between [2200, 2299].

• 2998 players had a rating between [2300, 2399].

• 1382 players had a rating between [2400, 2499].

• 587 players had a rating between [2500, 2599].

• 178 players had a rating between [2600, 2699].

• 42 players had a rating between [2700, 2799].

• 5 active players had a rating over 2800 (Magnus Carlsen, Veselin Topalov,
Viswanathan Anand, Vladimir Kramnik and Levon Aronian).

http://www.chessbase.com/newsdetail.asp?newsid=7114

http://www.chessbase.com/newsdetail.asp?newsid=7114

A.2 world chess federation 121

Figure 44: Comparison of the Elo’s prediction and better prediction. This figure was
taken from http://www.chessbase.com/newsdetail.asp?newsid=562.

The World Chess Federation grants four chess titles:

• Candidate Master. Chess players with a FIDE rating of at least 2200.

• FIDE Master. Chess players with a FIDE rating of at least 2300.

• International Master. Chess players with a FIDE rating of at least 2400.

• Grandmaster. Chess players with a FIDE rating of at least 2500.

In Table 21, we can see the classification of the World Chess Federation for
the top ten chess players until October 2012. In Table 22, we can see some
values for the number of chess grandmasters per country until July 2012.

http://www.chessbase.com/newsdetail.asp?newsid=562

122 elo rating system

Rank Name Country Rating

1 Carlsen, Magnus Norway 2843

2 Aronian, Levon Armenia 2821

3 Kramnik, Vladimir Russia 2795

4 Radjabov, Teimour Azerbaijan 2792

5 Nakamura, Hikaru United States 2786

6 Karjakin, Sergey Russia 2780

7 Anand, Viswanathan India 2780

8 Caruana, Fabiano Italy 2772

9 Ivanchuck, Vassily Ukraine 2771

10 Morozevich, Alexander Russia 2758

Tabla 21: Top ten chess players until October 2012.

Rank Country Number of grandmasters

1 Russia 214

2 Ukraine 79

3 Germany 77

4 United States 72

5 Serbia 52

6 Hungary 51

7 France 46

8 Israel 39

9 Spain 36

...
...

...

22 India 26

23 Cuba 19

...
...

...

53 Mexico 5

Tabla 22: Grandmasters per country until July 2012.

B
U C I P R O T O C O L

The Universal Chess Interface (UCI) [65] is a protocol that enables a chess
engine to communicate with a graphical user interface (GUI).

The features of the UCI protocol are the following:

• This protocol is independent of the operating system.

• All communication is done with text commands via standard input and
output.

• The chess engine must be able to process the standard input, even while
thinking.

• All commands that the chess engine and GUI receive will end with “\n”.
Also, any number of blank spaces between tokens is allowed.

• The chess engine begins to calculate until it has received the current
position through the command position followed by the command go.

• If the chess engine or the GUI receives an unknown token or command
it should just ignore it.

• By default, the opening book handling is done by the GUI.

• The move format is in long algebraic notation. This notation describes
the movement of a chess piece indicating its source square followed by its

123

124 uci protocol

target square, where each square is represented by its column followed
by its row. For example, the move e2e4 denotes the move of a chess piece
from the square e2 to square e4.

In Section B.1, we will describe the commands from the graphical user in-
terface to the chess engine, and in Section B.2, we will describe the commands
in the opposite direction.

b.1 from gui to chess engine

The main commands from the graphical user interface to the chess engine are
the following:

• uci. It tells to the chess engine to use the universal chess interface pro-
tocol. After the chess engine receives the uci command, it must identify
itself with the id command and send the option commands to tell the
GUI which settings the chess engine supports (if any). Finally, the chess
engine should sent the uciok command to acknowledge the uci mode. If
no uciok command is sent within a certain time period, the chess engine
task will be killed by the GUI.

• isready. This command is used to synchronize the chess engine with
the GUI. When the GUI has sent a command or multiple commands that
can take some time to complete, this command can be used to wait for
the engine to be ready again. This command must always be answered
with readyok command when the chess engine is ready.

• ucinewgame. It is sent to the chess engine when the next search (started
with position and go commands) corresponds to a new game. As the en-
gine’s reaction to ucinewgame command can take some time the GUI
should always send the isready command after the ucinewgame co-
mmand to wait for the chess engine to finish its operation.

• position. This command set up a position on the chess board. The syn-
tax is the following:
position [<fen> | startpos] <moves> . . .
where:
<fen> denotes the position.
startposis the command that denotes the start position.
<fen> is the moves list.

B.2 from chess engine to gui 125

• go. With this command the chess engine starts the search of the principal
variation.

• stop. It stops the search of the principal variation as soon as possible.

• quit. It terminates the execution of the chess engine as soon as possible.

b.2 from chess engine to gui

The main commands from the chess engine to the graphical user interface are
the following:

• id. This command identifies the name and author of the chess engine.
Its syntax is the following:
id [name <chess engine name>| author <chess engine author>]
where:
<chess engine name> is the chess engine name.
<chess engine author> is the chess engine author.

• uciok. This command must be sent after the id command to tell the GUI
that the engine is ready in uci mode.

• readyok. This command must be sent when the chess engine has re-
ceived an isready command and is ready to accept new commands.

• bestmove. The chess engine stops the search since it has found the best
move in this position.

B I B L I O G R A P H Y

[1] T. Bäck, J. M. de Graaf, J. N. Kok, and W. A. Kosters. Theory of genetic
algorithms. In Proceedings of the First European Conference on Artificial Life,
pages 263–271. MIT Press, 1997.

[2] J. E. Baker. Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the Second International Conference on Genetic Algorithms,
pages 14–21. Lawrence Erlbaum Associates (Hillsdale), 1987.

[3] D. Beal and M. C. Smith. Multiple probes of transposition tables. ICCA
Journal, 19(4):227–233, 1996.

[4] L. B. Booker. Intelligent behavior as an adaptation to the task environ-
ment. Technical Report 243, University of Michigan, 1982.

[5] B. Bošković, J. Brest, A. Zamuda, S. Greiner, and V. Žumer. History Me-
chanism Supported Differential Evolution for Chess Evaluation Function
Tuning. Soft Computing - A Fusion of Foundations, Methodologies and Appli-
cations, 2011. (in press).

[6] B. Bošković, S. Greiner, J. Brest, and V. Žumer. A differential evolution
for the tuning of a chess evaluation function. In 2006 IEEE Congress on
Evolutionary Computation, pages 1851–1856, Vancouver, BC, Canada, July
16-21 2006. IEEE Press.

[7] B. Bošković, S. Greiner, J. Brest, A. Zamuda, and V. Žumer. An Adaptive
Differential Evolution Algorithm with Opposition-Based Mechanisms,

127

128 Bibliography

Applied to the Tuning of a Chess Program. In U. Chakraborty, editor,
Advances in Differential Evolution, pages 287–298. Springer, Studies in Com-
putational Intelligence, Vol. 143, Heidelberg, Germany, 2008.

[8] J. Branke. Evolutionary algorithms for neural network design and train-
ing. In J. Talander, editor, Proceedings of the First Nordic Workshop on Genetic
Algorithms and its Applications, pages 145–163, Vaasa, Finland, 1995.

[9] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, U. of
Michigan, 1981.

[10] B. P. Buckles and F. E. Petry. Genetic Algorithms. 1992.

[11] M. S. Campbell and T. A. Marsland. A comparison of minimax tree search
algorithms. Artificial Intelligence, 20(4):347–367, 1983.

[12] Y. Chauvin and D. E. Rumelhart, editors. Backpropagation: theory, archi-
tectures, and applications. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
1995.

[13] K. Chellapilla and D. Fogel. Evolution, neural networks, games, and in-
telligence. Proceedings of the IEEE, 87(9):1471 –1496, Sept. 1999.

[14] C. A. Coello Coello, A. D. Christiansen, and A. H. Aguirre. Using a new
ga-based multiobjective optimization technique for the design of robot
arms. Robotica, 16(4):401–414, July 1998.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, New York, 2001.

[16] C. Darwin. The origin of species. New York :P.F. Collier,.
http://www.biodiversitylibrary.org/bibliography/24252.

[17] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-
of-the-art. IEEE Trans. Evolutionary Computation, pages 4–31, 2011.

[18] D. Dasgupta and D. R. Mcgregor. Designing application-specific neural
networks using the structured genetic algorithm. In In Proceedings of the
International Conference on Combinations of Genetic Algorithms and Neural
Networks, pages 87–96. IEEE Computer Society Press, 1992.

Bibliography 129

[19] O. David-Tabibi, M. Koppel, and N. S. Netanyahu. Genetic algorithms
for mentor-assisted evaluation function optimization. In Proceedings of the
10th annual conference on Genetic and evolutionary computation, GECCO ’08,
pages 1469–1476, New York, NY, USA, 2008. ACM.

[20] O. David-Tabibi, M. Koppel, and N. S. Netanyahu. Expert-driven genetic
algorithms for simulating evaluation functions. Genetic Programming and
Evolvable Machines, 12:5–22, March 2011.

[21] O. David-Tabibi, H. J. van den Herik, M. Koppel, and N. S. Netanyahu.
Simulating human grandmasters: evolution and coevolution of evaluation
functions. In GECCO’09, pages 1483–1490, 2009.

[22] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, Ann Arbor, MI, USA, 1975. AAI7609381.

[23] N. Dodd and R. Establishment. Optimisation of network structure using
genetic techniques. In International Symposium on Neural Networks, 1990.

[24] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing (Natural
Computing Series). Springer, Oct. 2008.

[25] T. Ellman. Explanation-based learning: a survey of programs and per-
spectives. ACM Computing Surveys, 21(2):163–221, June 1989.

[26] A. E. Elo. The rating of chessplayers, past and present. Arco Pub., New York,
1978.

[27] L. Fausett, editor. Fundamentals of neural networks: architectures, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[28] D. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3–14, January 1994.

[29] D. B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. Wiley-IEEE Press, 2nd edition, 1999.

[30] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning evolutio-
nary chess program. Proceedings of the IEEE, 92(12):1947–1954, 2004.

[31] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. Further evolution of a
self-learning chess program. In Proceedings of the 2005 IEEE Symposium
on Computational Intelligence and Games (CIG05), pages 73–77, Essex, UK,
April 4-6 2005. IEEE Press.

130 Bibliography

[32] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. The blondie25 chess pro-
gram competes against fritz 8.0 and a human chess master. In S. J. Louis
and G. Kendall, editors, Proceedings of the 2006 IEEE Symposium on Com-
putational Intelligence and Games (CIG06), pages 230–235, Reno, Nevada,
USA, May 22-24 2006. IEEE Press.

[33] L. J. Fogel. Artificial Intelligence through Simulated Evolution. John Wiley,
New York, 1966.

[34] L. J. Fogel. Intelligence through simulated evolution: forty years of evolutionary
programming. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[35] F. Girosi and T. Poggio. Networks and the best approximation property.
Biological Cybernetics, 63:169–176, 1989.

[36] M. E. Glickman. A comprehensive guide to chess ratings. Amer. Chess
Journal, 3:59–102, 1995.

[37] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1989.

[38] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. In Foundations of Genetic Algorithms, pages
69–93. Morgan Kaufmann, 1991.

[39] D. E. Goldberg, K. Deb, and B. Korb. Don’t worry, be messy. In ICGA’91,
pages 24–30, 1991.

[40] D. Gomboc, M. Buro, and T. Marsland. Tuning evaluation functions
by maximizing concordance. Theoretical Computer Science, 349(2):202–229,
2005.

[41] M. Gori and A. Tesi. On the problem of local minima in backpropaga-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:76–
86, 1992.

[42] M. Guid, M. Možina, J. Krivec, A. Sadikov, and I. Bratko. Learning posi-
tional features for annotating chess games: A case study. In CG ’08: Pro-
ceedings of the 6th international conference on Computers and Games, pages
192–204. Springer. Lecture Notes in Computer Sciences, Vol. 5131, Heidel-
berg, Germany, 2008.

Bibliography 131

[43] M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press,
Cambridge, MA, USA, 1st edition, 1995.

[44] A. Hauptman. Gp-endchess: Using genetic programming to evolve chess
endgame players. In In: Proceedings of 8th European Conference on Genetic
Programming (EuroGP2005, pages 120–131. Springer, 2005.

[45] A. Hauptman and M. Sipper. Evolution of an efficient search algorithm
for the mate-in-n problem in chess. In Proceedings of the 10th European
conference on Genetic programming, EuroGP’07, pages 78–89, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[46] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New
York, 1994.

[47] D. O. Hebb. The organization of behavior: A neuropsychological theory. Wiley,
New York, June 1949.

[48] R. Hecht-Nielsen. Neurocomputing / Robert Hecht-Nielsen. Addison-Wesley
Pub. Co., Reading, Mass., 1990.

[49] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1992.

[50] R. Hooke and T. A. Jeeves. “ direct search” solution of numerical and
statistical problems. J. ACM, 8:212–229, April 1961.

[51] R. Hunter. Mm algorithms for generalized bradley-terry models. The
Annals of Statistics, 32:2004, 2004.

[52] S. ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5(4-5):185 – 196, 1993.

[53] J. S. Judd. Learning in neural networks. In Proceedings of the first annual
workshop on Computational learning theory, COLT ’88, pages 2–8, San Fran-
cisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[54] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. In Proceedings of
the 2001 Congress on Evolutionary Computation CEC2001, volume 2, pages
995–1002. IEEE Press, May 2001.

132 Bibliography

[55] H. Kitano. Designing Neural Networks Using Genetic Algorithms with
Graph Generation System. Complex Systems Journal, 4:461–476, 1990.

[56] B. Klein and D. Rossin. Data quality in neural network models: effect of
error rate and magnitude of error on predictive accuracy. Omega, 27(5):569

– 582, 1999.

[57] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293–326, 1975.

[58] T. Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43(1):59–69, 1982.

[59] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464

–1480, sep 1990.

[60] J. R. Koza. Genetic programming: on the programming of computers by means
of natural selection. MIT Press, Cambridge, MA, USA, 1992.

[61] C.-T. Lin and C. S. G. Lee. Neural fuzzy systems: a neuro-fuzzy synergism to
intelligent systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[62] T. A. Marsland. Computers, Chess, and Cognition. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1990.

[63] T. A. Marsland and M. Campbell. A survey of enhancements to the alpha-
beta algorithm. In Proceedings of the ACM ’81 conference, ACM ’81, pages
109–114, New York, NY, USA, 1981. ACM.

[64] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biology, 5(4):115–133, Dec. 1943.

[65] S. Meyer-Kahlen. Uci protocol. http://www.shredderchess.com/chess-
info/features/uci-universal-chess-interface.html, april 2009.

[66] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, second edition, 1996.

[67] M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

Bibliography 133

[68] H. Nasreddine, H. Poh, and G. Kendall. Using an Evolutionary Algo-
rithm for the Tuning of a Chess Evaluation Function Based on a Dynamic
Boundary Strategy. In Proceedings of 2006 IEEE international Conference on
Cybernetics and Intelligent Systems (CIS’2006), pages 1–6. IEEE Press, 2006.

[69] M. Newborn. Kasparov versus deep blue: computer chess comes of age.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[70] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization (Natural Computing Series). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[71] F. Reinfeld. One Thousand and One Winning Chess Sacrifices and Combina-
tions. Wilshire Book Company, 1969.

[72] H.-P. Schwefel. Evolution and optimum seeking. Sixth-generation computer
technology series. Wiley, 1995.

[73] C. Shannon. Programming a computer for playing chess. Philosophical
Magazine, 7(41):256–275, 1950.

[74] D. J. Slate and L. R. Atkin. Chess Skill in Man and Machine, chapter
Chess 4.5 - The Northwestern University Chess Program, pages 82–118.
Springer-Verlag, New York, 1977.

[75] R. S. Sutton and A. G. Barto. A temporal-difference model of classical
conditioning. In Ninth Annual Conference of the Cognitive Science Society,
pages 355–378, Hillsdale, New Jersey, USA, July 1987. Lawrence Erlbaum
Associates, Inc.

[76] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction (Adap-
tive Computation and Machine Learning). The MIT Press, Mar. 1998.

[77] K. Swingler. Applying neural networks: A practical guide. Academic Press,
London, 1996.

[78] S. Thrun. Learning to play the game of chess. In G. Tesauro, D. Touret-
zky, and T. Leen, editors, Advances in Neural Information Processing Systems
(NIPS) 7, pages 1069–1076, Cambridge, MA, 1995. MIT Press.

[79] A. Turing. Digital Computers Applied to Games, of Faster than Thought, chap-
ter 25, pages 286–310. Pitman, 1953.

134 Bibliography

[80] E. Vázquez-Fernández, C. Coello, and F. Sagols. Assessing the positional
values of chess pieces by tuning neural networks’ weights with an evolu-
tionary algorithm. In Proceedings of 2012 World Automation Congress (WAC
2012), Puerto Vallarta, México, 2012.

[81] E. Vázquez-Fernández, C. A. C. Coello, and F. D. S. Troncoso. Evolu-
tionary algorithm with history mechanism for chess evaluation function.
Applied Soft Computing.

[82] E. Vázquez-Fernández, C. A. C. Coello, and F. D. S. Troncoso. An evo-
lutionary algorithm for tuning a chess evaluation function. In 2011 IEEE
Congress on Evolutionary Computation, New Orleans, Louisiana, USA, June
5–8 2011.

[83] E. Vázquez-Fernández, C. A. C. Coello, and F. D. S. Troncoso. An evolu-
tionary algorithm coupled with the hooke-jeeves algorithm for tuning a
chess evaluation function. In IEEE Congress on Evolutionary Computation,
pages 1–8, Brisbane, Australia, 2012.

[84] A. Vellido, P. J. G. Lisboa, and J. Vaughan. Neural networks in busi-
ness: a survey of applications (1992-1998). Expert Systems with Applications,
17(1):51–70, July 1999.

[85] D. Whitley. The genitor algorithm and selection pressure: why rank-based
allocation of reproductive trials is best. In Proceedings of the third interna-
tional conference on Genetic algorithms, pages 116–121, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

[86] D. Whitley, S. Rana, and R. Heckendorn. Representation issues in neigh-
borhood search and evolutionary algorithms, 1998.

[87] A. Zobrist. A new hashing method with application for game playing.
Technical Report 88, The University of Wisconsin, Madison WI, USA,
1970. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp. 69-73.

		Dedication

		Acknowledgments

		Abstract

		Contents

		List of Figures

		List of Tables

		1 Introduction

		1.1 Statement of the problem

		1.2 Hypothesis

		1.3 Objectives

		1.4 Contents of the document

		2 Computer Chess

		2.1 Computer chess history

		2.2 Notions and concepts

		2.2.1 Game tree

		2.2.2 Search tree

		2.3 Fundamental components

		2.4 Board representation and move generation

		2.5 Search algorithms

		2.5.1 Minimax

		2.5.2 Negamax

		2.5.3 Branch-and-bound algorithm

		2.5.4 Alpha-beta pruning

		2.5.5 Quiescence search

		2.5.6 Iterative deepening

		2.6 Evaluation function

		2.7 Our chess engine

		2.8 Final remarks of this chapter

		3 Soft computing in chess

		3.1 Artificial neural networks

		3.1.1 A short history of neural networks

		3.1.2 Basic concepts of artificial neural networks

		3.1.3 Activation function types

		3.1.4 Advantages and disadvantages of neural networks

		3.1.5 Neural networks architecture

		3.1.6 Learning process

		3.2 Evolutionary algorithms

		3.2.1 A short review of evolutionary algorithms

		3.2.2 Components of an evolutionary algorithm

		3.2.3 Evolutionary algorithms versus mathematical programming techniques

		3.2.4 Evolutionary computation paradigms

		3.3 Differential Evolution

		3.3.1 Initialization of vectors

		3.3.2 Mutation

		3.3.3 Crossover

		3.3.4 Selection

		3.3.5 DE Family of Storn and Price

		3.4 Previous Related Work

		3.4.1 Works related to unsupervised adjustment

		3.4.2 Works related to supervised adjustment

		3.4.3 Works related to hybrid adjustment

		3.5 Final Remarks of this chapter

		4 Tuning weights through a neural network architecture

		4.1 Introduction

		4.2 Evaluation function

		4.2.1 Material values of the chess pieces

		4.2.2 Positional values of the chess pieces

		4.3 Methodology

		4.3.1 Neural network architecture

		4.3.2 Components of our evolutionary algorithm

		4.3.3 Our evolutionary algorithm

		4.4 Experimental design

		4.5 Experimental results

		4.5.1 Experiment A

		4.5.2 Experiment B

		4.5.3 Discussion of the results

		4.6 Final remarks of this chapter

		5 Tuning weights with a database of chess grandmaster games

		5.1 Introduction

		5.2 Chess engine

		5.3 Methodology

		5.3.1 Components of our evolutionary algorithm

		5.3.2 Evolutionary algorithm

		5.3.3 Database of games

		5.4 Experimental results

		5.4.1 Tuning weights

		5.4.2 Additional Games

		5.5 Final remarks of this chapter

		6 Tuning weights with the Hooke-Jeeves method

		6.1 Evaluation function

		6.1.1 King's positional value

		6.1.2 Queen's positional value

		6.1.3 Rook's positional value

		6.1.4 Bishop's positional value

		6.1.5 Knight's positional value

		6.1.6 Pawn's positional value

		6.2 Methodology

		6.2.1 Components of our evolutionary algorithm

		6.2.2 Phases of our method

		6.2.3 Initialization

		6.2.4 Database of games

		6.3 Experimental results

		6.3.1 First experiment

		6.3.2 Second experiment

		6.3.3 Third experiment

		6.4 Final remarks of this chapter

		7 Conclusions and future work

		A Elo rating system

		A.1 Elo formula

		A.2 World chess federation

		B UCI protocol

		B.1 From GUI to chess engine

		B.2 From chess engine to GUI

