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Abstract


In this dissertation, we present our studies and proposals for reducing compu-
tational cost in multi-objective evolutionary optimization. First, we describe a
coevolutionary multi-objective approach that we designed in the first stage of
our work, whose main motivation was to achieve a computational cost reduction.
The main idea of the proposed coevolutionary algorithm is to obtain information
throughout the evolutionary process in order to subdivide the search space into
subregions, use a subpopulation for each of these subregions and focus the search
in the “promising” subregions of the search space. The proposed approach is vali-
dated using several test functions taken from the specialized literature. Then, with
the aim of improving the results provided by the coevolutionary approach (es-
pecially in functions with high-dimensional decision search space), a new multi-
objective particle swarm optimization algorithm was designed to replace the ge-
netic algorithm originally adopted as search engine. This new multi-objective
approach is based on the use of Pareto dominance, crowding factors, different
mutation operators and ε-dominance. This approach is detailed and validated, and
its parameters are studied by means of an analysis of variance. As a result, on-line
mechanisms to adapt the values of the most important parameters are proposed.
Also, several test functions are studied in order to explore those types of problems
in which our algorithm has some difficulties. Furthermore, this algorithm is also
tested with constrained functions and it is finally incorporated into the coevolu-
tionary approach previously mentioned. After that, we provide an enhancement
technique based on fitness inheritance, proposed to reduce the computational cost
when applying the multi-objective particle swarm approach previously mentioned.
In fitness inheritance, the fitness value of an offspring is obtained from the fitness
values of its parents. In this way, we do not need to evaluate every individual at
each generation, and the computational cost is reduced. We perform a study of
several different techniques to incorporate fitness inheritance into our approach,
and propose a dynamical scheme to obtain the larger possible amount of savings
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(in terms of function evaluations), without affecting in a significant way the qual-
ity of the results. Finally, we discuss some theoretical issues related to the work
developed, covering both particle swarm optimization and fitness inheritance.







Resumen


En esta Tesis, presentamos nuestros estudios y propuestas para reducir el costo
computacional en optimización evolutiva multi-objetivo.


En primer lugar, se describe un enfoque coevolutivo multi-objetivo que fue
diseñado durante la primera etapa de nuestro trabajo y cuya principal motivación
fue reducir el costo computacional. La idea principal del algoritmo coevolutivo
propuesto es obtener información a lo largo del proceso evolutivo para subdividir
el espacio de búsqueda en subregiones y concentrar la búsqueda en las subregiones
promisorias del espacio de búsqueda. La validación de este algoritmo se lleva a
cabo usando varias funciones de prueba tomadas de la literatura especializada.


Posteriormente, se diseñó un nuevo algoritmo multi-objetivo basado en opti-
mización mediante cúmulos de partı́culas, para sustituir el algoritmo genético que
se estaba usando como motor de búsqueda en el algoritmo coevolutivo propuesto.
Esto se hizo con el fin de mejorar el desempeño del algoritmo coevolutivo, es-
pecialmente en funciones con alta dimensionalidad en el espacio de las variables
de decisión. Este nuevo algoritmo multi-objetivo está basado en el uso de domi-
nancia de Pareto, factores de agrupamiento, diferentes operadores de mutación y
dominancia ε. Ası́ pues, se lleva a cabo la descripción y validación de este nuevo
algoritmo, ası́ como un estudio de sus parámetros por medio de un análisis de
varianza. Como resultado, se proponen mecanismos en lı́nea para adaptar los val-
ores de los parámetros más importantes. Ası́ también, se estudian varias funciones
de prueba con el fin de explorar aquellos problemas que pudieran resultar difı́ciles
para nuestro algoritmo. Además, el algoritmo se valida usando varias funciones
de prueba restringidas, y finalmente se incorpora en el esquema coevolutivo antes
mencionado.


Posteriormente, se propone una técnica de herencia para disminuir el costo
computacional relacionado con el uso del algoritmo multi-objetivo basado en
cúmulos de partı́culas, mencionado previamente. Cuando se usa herencia, no es
necesario evaluar a todos los individuos en cada generación y el costo computa-
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cional se reduce. A este respecto, se lleva a cabo un estudio de distintas técnicas
para incorporar el concepto de herencia en nuestro algoritmo y se propone un
esquema dinámico para obtener el mayor ahorro posible (en el número de evalua-
ciones).


Finalmente, se discuten algunos temas teóricos relacionados con el trabajo
desarrollado, tanto en relación a la optimización mediante cúmulos de particulas
como en relación a la herencia.
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Chapter 1


Introduction


Due to the multicriteria nature of most real-world problems, multi-objective opti-
mization problems are very common, particularly in engineering applications. As
the name indicates, multi-objective optimization problems involve multiple ob-
jectives, which should be optimized simultaneously and that often are in conflict
with each other. This results in a group of alternative solutions which must be
considered equivalent in the absence of information concerning the relevance of
the others.


Since Evolutionary Algorithms (EAs) deal with a group of candidate solutions,
it seems natural to use them in multi-objective optimization problems to find a
group of optimal solutions. Indeed, EAs have proved very efficient in solving
multi-objective optimization problems [21, 25].


Motivation


In many real world problems, the evaluation of the objective function is usually
very expensive (computationally speaking). In engineering design, for example,
one objective function evaluation may take hours, days or even weeks. For this
reason, in some cases the application of EAs is also very expensive, and becomes
limited due to their population-based nature (which implies a great number of
function evaluations). Despite the considerable volume of research on evolution-
ary multi-objective optimization [21], little emphasis has been placed on certain
algorithmic design aspects such as efficiency [27, 57, 19]. Furthermore, research
efforts to decrease the computational cost have been focused on EAs to solve
single-objective optimization problems [53].
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Objectives


Based on the hypothesis that it is possible to design approaches to decrease the
computational cost of multi-objective evolutionary algorithms, the main motiva-
tion of the work reported here was precisely how to design such new mechanisms
able to reduce computational cost, in terms of the number of function evaluations
performed. More precisely, the main objective of this work was to develop mech-
anisms able to obtain results of the same quality of those corresponding to the
approaches representative of the state of the art, but performing a smaller number
of function evaluations.


Our Work


First, since the use of coevolutionary mechanisms (which have strong links to
game theory [4]) has been scarce in the evolutionary multi-objective optimiza-
tion literature, we decided to take advantage of some coevolutionary concepts to
design a multi-objective evolutionary algorithm that could be more efficient (in
terms of fitness function evaluations). With this aim, the proposed approach used
information obtained throughout the evolutionary process to focus the search only
on the promising sub-regions of the search space.


Since the ability of the coevolutionary approach proposed was limited when
using it for solving multi-objective problems with high-dimensional decision vari-
able spaces, we decided to replace the genetic algorithm, used as search engine,
with a particle swarm optimization approach proposed by the author of this work.


Particle swarm optimization is a heuristic search technique that simulates the
movements of a flock of birds which aim to find food. This heuristic has been
found to be very effective in a wide variety of applications, being able to pro-
duce very good results at a very low computational cost [56, 32]. The success of
the particle swarm optimization algorithm as a single-objective optimizer (mainly
when dealing with continuous search spaces) and its relative simplicity have mo-
tivated researchers to extend the use of this bio-inspired technique to other areas.
The fact that this is a population-based technique has made it a natural candidate
to be extended for multi-objective optimization.


In this way, we proposed a new multi-objective particle swarm algorithm
which was found to provide very competitive results. We also conducted stud-
ies about the parameters of the new approach, on-line adaptation mechanisms,
possible difficulties with different types of test functions, and its ability to handle
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constraints.
Finally, after testing the coevolutionary approach with the new particle swarm


algorithm as its search engine and finding that the results obtained on high-
dimensional test functions were not of the quality expected, we decided to im-
plement different techniques to reduce computational cost. Thus, we proposed
to incorporate the concept of fitness inheritance into our multi-objective particle
swarm approach. In fitness inheritance, the fitness value of an offspring is obtained
from the fitness values of its parents. In this way, we do not need to evaluate every
individual at each generation, and the computational cost is reduced (by reducing
the number of function evaluations performed). It is worth noting that the con-
cept of fitness inheritance had never been used to reduce the computational cost
of a real-coded particle swarm optimizer to solve multi-objective problems. As
we will see, by using the concept of fitness inheritance, we were able to reduce
the number of function evaluations by a 30%, without affecting the quality of the
obtained results.


Outline


This document is organized in the following way:


• Chapter 1. Introduction (this chapter).


• Chapter 2. States the multi-objective problem and presents a brief intro-
duction to EAs.


• Chapter 3. Describes the coevolutionary scheme proposed in the first stage
of our work and provides its corresponding empirical validation.


• Chapter 4. Describes the multi-objective particle swarm optimization al-
gorithm proposed and provides its corresponding empirical validation. It
also presents the studies performed on the parameters of the algorithmm
and some of its possible difficulties.


• Chapter 5. Presents an enhancement technique based on fitness inheritance
that we proposed in order to reduce the computational cost of the particle
swarm approach previously described.


• Chapter 6. Presents the study of some theoretical issues related to the work
developed, about particle swarm optimization and fitness inheritance.
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• Chapter 7. Provides our conclusions and future work.







Chapter 2


Preliminary Concepts


2.1 Statement of Multi-Objective Problems


We are interested in solving problems of the type:


minimize f(x) := [ f1(x), f2(x), . . . , fk(x)] (2.1)


subject to:
gi(x)≥ 0 i = 1,2, . . . ,m (2.2)


h j(x) = 0 j = 1,2, . . . , p (2.3)


where x = [x1,x2, . . . ,xn]
T is the vector of decision variables, fi : Rn → R, i =


1, ...,k are the objective functions and gi,h j : Rn→ R, i = 1, ...,m, j = 1, ..., p are
the constraint functions of the problem (m inequality contraints gi and p equality
constraints h j).


To describe the concept of optimality in which we are interested, we will in-
troduce some definitions.


Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ...,k, and that x dominates y (denoted by x≺ y) if x≤ y and x 6= y.


Figure 2.1 shows a particular case of the dominance relation in the presence
of two objective functions.
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dominated solutions
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f2


1


Figure 2.1: Dominance relation in a bi-objective space.


Definition 2. We say that a vector of decision variables x ∈ X , X ⊂ IRn, is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′)≺ f(x).


Definition 3. We say that a vector of decision variables x∗ ∈ F , F ⊂ IRn (F is
the feasible region), is Pareto-optimal if it is nondominated with respect to F .


Definition 4. The Pareto Optimal Set P ∗ is defined by:


P ∗ = {x ∈ F |x is Pareto-optimal}
Definition 5. The Pareto Front P F ∗ is defined by:


P F ∗ = {f(x) ∈ IRk|x ∈ P ∗}
Figure 2.2 shows a particular case of the Pareto front in the presence of two


objective functions.
We thus wish to determine the Pareto optimal set from the set F of all the decision
variable vectors that satisfy (2.2) and (2.3).


2.2 Mathematical Programming Techniques


There exist several techniques developed in Operations Research for solving multi-
objective problems. These techniques can be classified considering the two main
stages of the resolution process of a multi-objective problem:







2.2. MATHEMATICAL PROGRAMMING TECHNIQUES 7


dominated solutions


Pareto front solutions


f


f2


1


Figure 2.2: The Pareto front of a set of solutions in a two objective space.


1. Optimization of the objective functions.


2. Decision Making: Incorporation of preferences.


Given these two stages, mathematical programming techniques are usually
classified into three main groups [22]:


• A Priori incorporation of preferences. Decision making takes place before
searching. Examples: Goal Programming, Lexicographic method, Min-
Max method, etc.


• A Posteriori incorporation of preferences. Decision making takes place after
searching. Examples: ε-constraint method, linear combination of weights,
etc.


• Progressive incorporation of preferences. Decision making and searching
take place in an integrated form. Examples: STEP Method, Sequential
Multi-objective Problem Solving Method, etc.


A disadvantage of these techniques is that sometimes they require information
of the problem that is not always available. For example, some methods usually
need the first or even the second derivative of the objective functions (and also the
constraints). In those cases, if the objective function is not differentiable, those
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methods can not be applied. On the other hand, most of these techniques usually
have to be applied several times in order to obtain different solutions since they
obtain just one solution each time [64]. For these reasons, alternative approaches
are sometimes needed, for solving multi-objective optimization problems.


2.3 Evolutionary Algorithms


Evolutionary Algorithms (EA) are stochastic approaches used for solving opti-
mization problems. The population-based feature of EAs makes them suitable for
solving multi-objective optimization problems since such characteristic allows the
generation of several elements of the true Pareto front in a single run.


Also, EAs have several advantages such as that they don’t need any specific
knowledge about the problem and that they are less susceptible to get trapped in
local optima.


EAs are inspired on the “Neo-Darwinian” theory that establishes that all the
richness of life in the planet can be explained by means of four processes:


• Reproduction. Mechanisms by which new individuals can be obtained by
combining existing individuals.


• Mutation. Mechanism by which one new individual can be obtained by
“changing” an existing individual.


• Competition. Different species sharing resources develelop competent be-
havior.


• Selection. Only the best individuals are able to survive.


In this way, in EAs a set of solutions (known as population) evolves through
generations by means of the natural selection mechanism and the survival of the
fittest principle. For such evolving process, the main components of an EA are:


• A specific encoding for the solutions of the problem (known as individu-
als). In EAs, individuals are represented by chromosomes. Chromosomes
are data structures that encode the parameters of a possible solution of the
problem. Also, chromosomes are usually represented by binary strings, but
it is possible to use an integer or real encoding. See Figure 2.3.
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6.5 2.4 9.3 4.2 8.7 4.51.2 7.2 3.8


Figure 2.3: A chromosome with real encoding.


6.5 2.4 9.3 4.2 8.7 4.51.2 7.2 3.8


Crossover point Crossover point 


2.1 9.6 2.6 8.4 1.9 5.8 7.3 6.4 3.2


6.5 2.4 9.3


8.7 4.51.2 7.2 3.82.1 9.6 2.6 4.2


8.4 1.9 5.8 7.3 6.4 3.2


Figure 2.4: Crossover operator.


• Variation operators. EAs usually apply recombination and/or mutation op-
erators in order to obtain new individuals. The recombination or crossover
operator combines the chromosomes of the parents in order to obtain a new
individual. There exist several types of crossover operators: of one point,
two points, n-points, uniform, etc. In Figure 2.4, an example of the one
point crossover operator is shown. The mutation operator obtains a new
individual “changing” the value of one (maybe more) element of the orig-
inal chromosome. There are also different mutation operators: uniform,
non-uniform, etc. Figure 2.5 shows an example of the uniform mutation
operator.


• A fitness function which plays the role of the environment. The fitness value


6.5 2.4 9.3 4.2 8.7 4.51.2 7.2 3.8


6.5 2.4 4.2 8.7 4.51.2 7.2 3.8


Mutate position 3


6.9


Figure 2.5: Mutation operator.
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of an individual indicates “how good” is an individual with respect to others.
In some cases, the fitness function is the objective function itself.


• A selection procedure which plays the role of the environmental pressure.
Different selection techniques have been proposed for EAs [40]. These
techniques are usually either stochastic or based on a tournament, both types
of techniques are based on the fitness value of the individuals.


Based on different instances of these components, EAs can be classified into
three main groups: Evolution Strategies, Evolutionary Programming and Genetic
Algorithms. However, a paradigm recently proposed, called Swarm Intelligence,
has also been considered a new type of EA. Such paradigms are described below.


2.3.1 Evolution Strategies


Evolution Strategies (ES) were developed by Peter Bienert, Ingo Rechenberg and
Hans-Paul Schwefel [2] in the 60s, inspired in the mutation mechanism that exists
in nature.


The original version of the ES was called (1+1)-ES. This ES has just one par-
ent and creates just one child from this parent (by means of the mutation operator).
The best individual between the parent and child becomes the new parent.


The mutation operator is defined in the following way: x′= x+N(0,σ) where
N(0,σ) represents a random variable normally distributed with mean 0 and stan-
dard deviation σ. Usually, σ = 1.


In general, the population of an ES can have µ parent individuals and create
λ offspring. Recombination in ES is possible but it is a secondary operator and
the selection mechanisms adopted are normally deterministic. Schwefel proposed
a notation for two different selection mechanisms: the (µ + λ)-selection and the
(µ,λ)-selection. In the former, the parents for the next generation are selected from
the union of the µ parents and the λ offspring. In the second case, the parents for
the next generation are selected only from the λ offspring. Figure 2.6 presents the
general algorithm for the ES.


2.3.2 Evolutionary Programming


Lawrence J. Fogel developed Evolutionary Programming (EP) in 1964 [35]. With
this technique, Fogel aimed to model the evolution of species. Since different
species don’t reproduce among themselves, EP has no recombination operator.
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Begin
t← 0
Initialize P(t)
Evaluate P(t)
Repeat


Apply recombination to P(t) to generate P′(t)
Apply mutation to P′(t) to generate P′′(t)
Evaluate P′′(t)
Select the best individuals to obtain P(t +1) from:


P(t)∪P′′(t) (µ+λ)-selection
P′′(t) (µ,λ)-selection


t← t +1
Until stop condition is reached
Report best solution in P(t)


End


Figure 2.6: General algorithm for ES.


The mutation operator used in EP is Gaussian and the selection mechanism is
a (µ + λ)-selection by means of stochastic tournaments. Figure 2.7 presents the
general algorithm for EP.


2.3.3 Genetic Algorithms


Genetic Algorithms (GAs) are probably the most popular type of EA. While the
biologist Fraser was the first to model biological systems by means of a computer
simulation that can be considered an early GA [38], Holland is normally credited
with the conception of this technique which he used to tackle machine learning
tasks [45].


Recombination and mutation operators are both used in GAs. However, in
GAs the recombination operator is the most important one and mutation is a sec-
ondary operator. Variation operators (recombination and mutation) are applied
with a certain probability and the selection mechanism is stochastic (as in EP).
Figure 2.8 presents the general algorithm for the GA.
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Begin
t← 0
Initialize P(t)
Evaluate P(t)
Repeat


Apply mutation to P(t) to generate P′(t)
Evaluate P′(t)
Select P(t +1) from P(t)∪P′(t)


by means of stochastic tournaments
t← t +1


Until stop condition is reached
Report best solution in P(t)


End


Figure 2.7: General algorithm for EP.


Begin
t← 0
Initialize P(t)
Evaluate P(t)
Repeat


Apply recombination to P(t) to generate P′(t)
Apply mutation to P′(t) to generate P′′(t)
Evaluate P′′(t)
Select P(t +1) from P′′(t)


by means of stochastic tournaments
t← t +1


Until stop condition is reached
Report best solution in P(t)


End


Figure 2.8: General algorithm for GA.
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2.3.4 Swarm Intelligence


Swarm Intelligence is related to the study of colonies, or swarms of social organ-
isms. Studies of the social behavior of organisms in swarms inspired the design of
efficient optimization algorithms. For example, the simulation of the choreogra-
phy of bird flocks led to the design of the particle swarm optimization algorithm,
and the studies of the foraging behavior of ants resulted in the ant colony opti-
mization algorithm [31].


In these algorithms, individuals behave according to their past experience and
the interaction with other individuals. These interactions usually cause a global
behavior.


Since in our work we developed a particle swarm optimization algorithm, a
more detailed description of this technique is provided in Chapter 4.


2.4 Multi-Objective Evolutionary Algorithms


The first Multi-Objective Evolutionary Algorithm (MOEA), called Vector Eval-
uated Genetic Algorithm (VEGA), was implemented by Schaffer in the mid-80s
[92, 93]. VEGA basically consisted of a simple GA with a modified selection
mechanism. At each generation, individuals were selected according to each
one of the objective functions, in order to generate k sub-populations for a prob-
lem with k objective functions. Later, all sub-populations were mixed and the
crossover and mutation operators were applied in order to obtain a new whole pop-
ulation. The main disadvantage of VEGA was that it suffered from the problem of
“speciation”, that is, the existence of “species” within the population, formed by
individuals which were very good only on one of the objective functions but that
were no good compromise solutions. This problem was due to the selection mech-
anism which selected individuals based only on one objective function, giving to
compromise solutions few possibilities to survive.


The MOEAs that followed VEGA until the mid-90s used aggregating func-
tions (usually linear) [51, 111], lexicographic ordering [37] and target-vector ap-
proaches [42].


2.4.1 First generation of MOEAs


The first generation of MOEAs arises from the proposal of David Goldberg in
1989, after analyzing VEGA, of using a selection mechanism based on the con-
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cept of Pareto optimality [39]. Also, Goldberg suggested the use of a mechanism
to maintain diversity within the population in order to prevent premature conver-
gence, that is, the fast convergence of the population to a unique solution.


The most representative algorithms of this generation are the following:


1. Nondominated Sorting Genetic Algorithm (NSGA)
This algorithm was proposed by Srinivas and Deb in 1994 [100]. The main
characteristic of this algorithm is that before performing selection, the in-
dividuals are ranked in different levels in the following way: all nondomi-
nated individuals are classified into one category with rank 1 and receive a
dummy fitness that allows them to have the same probability of being se-
lected. Later, fitness sharing is applied on the individuals just classified in
such a way that their fitnesses are penalized based on the number of indi-
viduals that share the same neighborhood (these neighborhoods are called
niches, whose size is controlled through a parameter called niche radius
(σshare), which is defined by the user). Then, this group of individuals with
rank 1 is ignored and the process is repeated. This time, the nondominated
individuals will have rank 2 and a dummy fitness lower than that of the
individuals with rank 1. The process continues until all individuals are clas-
sified. Figure 2.9 shows the ranking process of NSGA.


Since individuals with rank 1 have the maximum fitness value, they will
always be selected more times than the rest of the population. This behav-
ior allows the search of nondominated individuals. On the other hand, the
mechanism of fitness sharing helps to distribute the population along the
Pareto front of the problem.


2. Niched-Pareto Genetic Algorithm (NPGA)
This algorithm was proposed by Horn and Nafpliotis in 1994 [46]. The
NPGA uses a tournament selection mechanism based on Pareto dominance:
two individuals of the population are randomly chosen and compared against
a subset of the population also randomly chosen (usually, around 10% of
the population). If one of the individuals is dominated (by the subset of the
population) and the other is not, the nondominated individual wins. If both
individuals are either dominated or nondominated, the winner is chosen ac-
cording to a mechanism based on fitness sharing. Figure 2.10 illustrates
the niches of both individuals, used for the fitness sharing mechanism. It is
worth noting that the NPGA does not rank the population.
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Figure 2.9: Ranking process of NSGA.
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Figure 2.10: Mechanism of fitness sharing applied by the NPGA. The individual
whose niche is less crowded, wins.
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Figure 2.11: Ranking process of MOGA. The rank of each individual depends of
the number of individuals that dominate it.


3. Multi-Objective Genetic Algorithm (MOGA).
This algorithm was proposed by Fonseca and Fleming in 1993 [36]. In
this algorithm, the rank of an individual is proportional to the number of
individuals that dominate it. For example, the rank of the individual xi at
generation t, which is dominated by domt


i individuals is:


rank(xi, t) = 1+domt
i


In this way, the nondominated individuals have rank 1 and the rest of the
individuals are penalized according to the number of individuals that domi-
nate them. Figure 2.11 shows the ranking process of MOGA.


On the other hand, the fitness assignment is performed in the following way:


• The population is sorted according to the rank of individuals.


• Fitness of individuals is assigned by means of an interpolation process
from the best to the worst individuals according to a function that in
most cases is linear, but not necessarily.


• Fitness of individuals with the same rank is averaged.


• Finally, fitness sharing is applied (as in the case of NSGA):


(a) First we calculate:


φ(di j) =


{


1− (
di j


σshare
), di j < σshare


0, otherwise
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where di j is the euclidean distance (in the decision or objective
function space) between individuals i and j, and σshare is the niche
radius.


(b) Fitness of individuals is modified in the following way:


fSi =
fi


∑M
j=1 φ(di j)


where M is the size of the population.


This algorithm also implemented mating restrictions in such a way that in-
dividuals belonging to different niches can not mate.


The MOEAs of the first generation were characterized by the use of selection
mechanisms based on Pareto dominance and the use of different fitness sharing
mechanisms in order to maintain diversity within the population.


2.4.2 Second generation of MOEAs


The second generation of MOEAs took place with the introduction of the notion
of elitism. In evolutionary multi-objective optimization, elitism is usually im-
plemented through an external archive, also called secondary population, which
stores the nondominated individuals found along the search. However, elitism can
also be implemented through the use of (µ + λ)-selection, by which, at each gen-
eration, parents and children are compared in order to select the best of them, to
conform the next population. Nevertheless, in both cases of elitism, extra mecha-
nisms are usually needed in order to obtain a well distributed final set of solutions.


In the following, we present the most representative algorithms of this gener-
ation:


1. Strength Pareto Evolutionary Algorithm (SPEA)
This algorithm, proposed by Zitzler and Thiele [102], uses an external archive
to store the nondominated individuals found along the search. For each one
of the individuals stored in the external archive, this algorithm calculates a
strength value similar to the rank assigned by MOGA. The strength value of
an individual is proportional to the number of individuals that it dominates.
The fitness of an individual is calculated according to the strength values of
the individuals in the external archive, that dominate it. Also, SPEA uses
a clustering technique, called average linkage method [66], to maintain di-
versity.
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2. Strength Pareto Evolutionary Algorithm 2 (SPEA2)
The second version of SPEA was proposed by Zitzler et al. [117]. This new
version has three main differences with respect to the old one: it assigns the
fitness of an individual taking into account the number of individuals that
it dominates, but also the number of individuals that dominate it; also, it
uses a nearest neighbor density estimation technique that guides the search
more efficiently; and it incorporates a mechanism for filtering the final set
of solutions, that guarantees the preservation of boundary solutions.


3. Pareto Archived Evolution Strategy (PAES)
This is perhaps the simplest MOEA possible and it was proposed by Knowles
and Corne [57]. PAES consists of an (1+1)-ES (one parent generates one
child) with an external archive, which stores some nondominated solutions
found along the search. The most important aspect of this algorithm is the
mechanism used to maintain diversity: an adaptive grid that sub-divides the
objective space. Each individual is placed on a grid location that depends
on its objective function values (which are used as coordinates). In this way,
this algorithm maintains diversity by controlling the number of individuals
placed on each grid location.


4. Nondominated Sorting Genetic Algorithm II (NSGA-II)
The revised version of NSGA, called NSGA-II, was proposed by Deb et al.
[26, 27]. This new version of the NSGA algorithm is more efficient (com-
putationally speaking). The NSGA-II uses a crowding operator to maintain
diversity, by preferring individuals that belong to the less crowded regions
of the search space. Also, this algorithm introduces elitism by means of the
(µ+λ)-selection.


5. Niched-Pareto Genetic Algorithm 2 (NPGA2)
Erickson et al. proposed a revised version of the NPGA, called NPGA 2
[33]. The NPGA 2 uses Pareto ranking, but keeps the tournament selection
mechanism previously described. Elitism was introduced in this algorithm
by means of (µ + λ)-selection, as in the case of the NSGA-II. In this case,
niche counts are performed using the population that is being generated
instead of the current population.


6. Pareto Enveloped-based Selection Algorithm (PESA)
This algorithm was proposed by Corne et al. [24]. PESA is very similar
to PAES, since the external population is larger than the main population
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of the algorithm. Also, PESA uses the same adaptive grid to store the non-
dominated solutions. However, in this case, the external population also
determines the selection method used by the algorithm (based on the same
crowding measure used to determine which individuals are stored in the
grid). There is also a revised version of PESA, called PESA-II, proposed
by Corne et al. [23]. The main difference between PESA and PESA-II
is that, in this case, selection is based on regions rather than individuals.
The main motivation for this modification was to reduce computational cost
associated with Pareto ranking.


7. Micro Genetic Algorithm (micro-GA)
This approach, proposed by Coello and Toscano [18], consists of a genetic
algorithm with a very small population (four individuals) combined with a
reinicialization process and an external archive. Figure 2.12 shows how this
algorithm works.


First, a random population is generated. This population enters into the
memory, which is divided in two parts: the replaceable and the nonreplace-
able. The nonreplaceable part doesn’t change throughout the evolutionary
process and works as a source of diversity. On the other hand, the replace-
able part changes at every cycle of the micro-GA. At every cycle of the
micro-GA, the population of the genetic algorithm is taken (with certain
probability) from both parts of the memory. In this way, within the popu-
lation of the GA there are individuals randomly generated (nonreplaceable
part) and individuals obtained after an evolutionary cycle (replaceable part).
During each cycle, the crossover and mutation operator are applied in an
usual way. After a complete cycle, two nondominated vectors are chosen
from the final population and compared against the individuals stored in the
external archive. If they (one or both) are nondominated, they are stored in
the external archive.


In this way, the micro-GA uses three forms of elitism: an external archive, a
replaceable memory and a mechanism by which the population is partially
filled with the best solutions found so far.


2.4.3 Test Functions


In this section, we provide the definitions of the test functions that are going to be
used to validate the different approaches proposed as part of this work.
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Figure 2.12: Diagram of the micro-GA.
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It is important to note that these functions are representative of the bench-
marks commonly used in the multi-objective optimization literature, to test new
MOEAs. However, they don’t necessarily reflect the characteristics of the opti-
mization problems found in the real world. Nevertheless, some of these functions
possess features that make them extremely difficult problems, even more than the
problems that we could expect to find in real world applications. For this reason,
when using these test functions we are hoping that if a new MOEA is able to
solve them (that is, either to find Pareto optimal solutions or good approximations
of them), it will be also able to solve real-world applications.


• Test Function Deb [21]:


Minimize


f1(x1,x2) = x1, f2(x1,x2) = g(x1,x2)h(x1,x2)


subject to:


g(x1,x2) = 11+ x2
2−10cos(2πx2)


h(x1,x2) =


{


1−
√


f1(x1,x2)
g(x1,x2)


f1(x1,x2)≤ g(x1,x2)


0 otherwise


0.0≤ x1 ≤ 1.0, −30.0≤ x2 ≤ 30.0


• Test Function Kursawe [21]:


Minimize


f1(x) =
2


∑
i=1


(−10exp(−0.2∗
√


x2
i + x2


i+1)), f2(x) =
3


∑
i=1


(|xi|0.8 +5sin(x3
i ))


subject to:
−5.0≤ x1,x2,x3 ≤ 5.0


• Test Function Kita [21]:


Minimize


f1(x1,x2) =−x2
1 + x2, f2(x1,x2) =


1
2


x1 + x2 +1
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subject to:


g1(x1,x2) =
1
6


x1 + x2−
13
2
≤ 0


g2(x1,x2) =
1
2


x1 + x2−
15
2
≤ 0


g3(x1,x2) = 5x1 + x2−30≤ 0


0.0≤ x1,x2 ≤ 7.0


• Test Function Tanaka [21]:


Minimize
f1(x1,x2) = x1, f2(x1,x2) = x2


subject to:


g1(x1,x2) = −x2
1− x2


2 +1+0.1cos(16arctan
x1


x2
)≤ 0


g2(x1,x2) = (x1−
1
2
)2 +(x2−


1
2
)2− 1


2
≤ 0


0.0≤ x1,x2 ≤ π


• Test Function ZDT1 [116]:


Minimize
f1(x) = x1, f2(x) = g(x)h( f1,g)


subject to:


g(x) = 1+9
m


∑
i=2


xi/(m−1)


h( f 1,g) = 1−
√


f1/g


where m = 30, and xi ∈[0,1].


• Test Function ZDT2 [116]:


Minimize
f1(x) = x1, f2(x) = g(x)h( f1,g)
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subject to:


g(x) = 1+9
m


∑
i=2


xi/(m−1)


h( f 1,g) = 1− ( f1/g)2


where m = 30, and xi ∈[0,1].


• Test Function ZDT3 [116]:


Minimize
f1(x) = x1, f2(x) = g(x)h( f1,g)


subject to:


g(x) = 1+9
m


∑
i=2


xi/(m−1)


h( f 1,g) = 1−
√


f1/g− ( f1/g)sin(10π f1)


where m = 30, and xi ∈[0,1].


• Test Function ZDT4 [116]:


Minimize
f1(x) = x1, f2(x) = g(x)h( f1,g)


subjecto to:


g(x) = 1+10(m−1)+
m


∑
i=2


(x2
i −10cos(4πxi))


h( f 1,g) = 1−
√


f1/g


where m = 10, x1 ∈[0,1] and xi ∈[-5,5], i = 2, ...,m.


• Test Function ZDT6 [116]:


Minimize


f1(x) = 1− exp(−4x1)sin6(6Πx1), f2(x) = g(x)h( f1,g)
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subject to:


g(x) = 1+9[(
m


∑
i=2


xi)/(m−1)]0.25,


h( f1,g) = 1− ( f1/g)2


where m = 10 and xi ∈[0,1].


• Test Function DTLZ2 [28]:


Minimize


f1(x) = [1+g(x)]cos(x1π/2)cos(x2π/2)


f2(x) = [1+g(x)]cos(x1π/2)sin(x2π/2)


f3(x) = [1+g(x)]sin(x1π/2)


subject to:


g(x) =
m


∑
i=3


(xi−0.5)2


where m = 12 and xi ∈[0,1].


• Test Function DTLZ4 [28]:


Minimize


f1(x) = [1+g(x)]cos(xα
1 π/2)cos(xα


2 π/2)


f2(x) = [1+g(x)]cos(xα
1 π/2)sin(xα


2 π/2)


f3(x) = [1+g(x)]sin(xα
1 π/2)


subject to:


g(x) =
m


∑
i=3


(xi−0.5)2


where α=100, m = 12 and xi ∈[0,1].


• Test Function DTLZ6 [28]:


Minimize


f1(x) = x1


f2(x) = x2


f3(x) = [1+g(x)]h( f1, f2,g)
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subject to:


g(x) = 1+9/(m−2)
m


∑
i=3


xi,


h( f1, f2,g) = 3−
2


∑
i=1


[
fi


1+g
(1+ sin(3π fi))]


where m = 22 and xi ∈[0,1].


2.4.4 Measures of Performance


In this section, we provide the definitions of the measures of performance that are
going to be used to validate the different approaches proposed as part of this work.


• Error Ratio (ER): This measure was proposed by Van Veldhuizen [105] to
indicate the percentage of solutions (from the nondominated vectors found
so far) that are not members of the true Pareto optimal set:


ER =
∑n


i=1 ei


n


where n is the number of vectors in the current set of nondominated vectors
available; ei = 0 if vector i is a member of the Pareto optimal set, and ei = 1
otherwise. It should then be clear that ER= 0 indicates an ideal behavior,
since it would mean that all the vectors generated by our algorithm belong
to the true Pareto optimal set of the problem.


• Success Counting (SCC): We define this measure based on the idea of
the measure called Error Ratio proposed by Van Veldhuizen [105] which
indicates the percentage of solutions (from the nondominated vectors found
so far) that are not members of the true Pareto optimal set. In this case,
we count the number of vectors (in the current set of nondominated vectors
available) that are members of the Pareto optimal set:


SCC =
n


∑
i=1


si


where n is the number of vectors in the current set of nondominated vectors
available; si = 1 if vector i is a member of the Pareto optimal set, and si = 0
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otherwise. It should then be clear that SCC= n indicates an ideal behavior,
since it would mean that all the vectors generated by our algorithm belong
to the true Pareto optimal set of the problem. For a fair comparison, when
we use this measure, all the algorithms should limit their final number of
nondominated solutions to the same value.


• Generational Distance (GD): The concept of generational distance was
introduced by Van Veldhuizen & Lamont [106] as a way of estimating how
far are the elements in the Pareto front produced by our algorithm from
those in the true Pareto front of the problem. This measure is defined as:


GD =


√


∑n
i=1 d2


i


n


where n is the number of nondominated vectors found by the algorithm be-
ing analyzed and di is the Euclidean distance (measured in objective space)
between each of these and the nearest member of the true Pareto front. It
should be clear that a value of GD= 0 indicates that all the elements gener-
ated are in the true Pareto front of the problem. Therefore, any other value
will indicate how “far” we are from the global Pareto front of our problem.


• Inverted Generational Distance (IGD): As described previously, the GD
measure estimates how far are the elements in the Pareto front produced by
our algorithm from those in the true Pareto front of the problem. In our
case, we implemented an “Inverted” Generational Distance measure (IGD)
in which we use as a reference the true Pareto front, and we compare each of
its elements with respect to the front produced by an algorithm. In this way,
we are calculating how far are the elements of the true Pareto front, from
those in the Pareto front produced by our algorithm. Computing this IGD
value reduces the bias that can arise when an algorithm didn’t fully cover
the true Pareto front. It should be clear that a value of IGD= 0 indicates
that the Pareto front obtained by our algorithm covers the whole true Pareto
front. Therefore, any other value will indicate how “far” is the true Pareto
front from the Pareto front obtained by our approach.


• Spacing (SP): This measure was proposed by Schott [94] as a way of mea-
suring the range (distance) variance of neighboring vectors in the Pareto
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front known. This measure is defined as:


SP =


√


1
n−1


n


∑
i=1


(d̄−di)2


where di = min j(∑m
k=1 | f i


m− f j
m|), i, j = 1, ...,n, m is the number of objec-


tives, d̄ is the mean of all di, and n is the number of vectors in the Pareto
front found by the algorithm being evaluated. A value of zero for this mea-
sure indicates that all the nondominated solutions found are equidistantly
spaced.


• Two Set Coverage (SC): This measure was proposed in [116], and it can
be termed relative coverage comparison of two sets. Consider X ′,X ′′ as two
sets of vectors. SC is defined as the mapping of the order pair (X ′,X ′′) to
the interval [0,1]:


SC(X ′,X ′′) = |{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ ≺ a′′}|/|X ′′|


If all points in X ′ dominate or are equal to all points in X ′′, then by def-
inition SC(X ′,X ′′) = 1. SC(X ′,X ′′) = 0 implies the opposite. In general,
SC(X ′,X ′′) and SC(X ′′,X ′) both have to be considered due to set intersec-
tions not being empty. When SC(X ′,X ′′) = 1 and SC(X ′′,X ′) = 0, we say
that X ′ is better than X ′′.


• Two Set Difference Hypervolume (HV): This measure was proposed in
[115]. Consider X ′,X ′′ as two sets of vectors. HV is defined by:


HV(X ′,X ′′) = δ(X ′+X ′′)−δ(X ′′)


where the set X ′+X ′′ is defined as the nondominated vectors obtained from
the union of X ′ and X ′′, and δ is the unary hypervolume measure. δ(X)
is defined as the hypervolume of the portion of the objective space that is
dominated by X. In this way, HV(X ′,X ′′) gives the hypervolume of the
portion of the objective space that is dominated by X ′ but not for X ′′. We
use the origin as a reference point to compute the hypervolume. So, since all
the test functions used have to be minimized, with this measure we obtain
a difference between the areas that dominate the analyzed Pareto fronts. In
this way, if HV(X ′,X ′′) = 0 and HV(X ′′,X ′) < 0, we say that X ′′ is better
than X ′.
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Chapter 3


Coevolutionary Multi-Objective
Optimization


As the first part of our work, we proposed a multi-objective evolutionary algo-
rithm that incorporates coevolutionary concepts. Such approach is described in
this chapter.


3.1 Coevolution


We call coevolution to a change in the genetic composition of a species (or group
of species) as a response to a genetic change of another one. In a more general
sense, coevolution refers to a reciprocal evolutionary change between species that
interact with each other. The term “coevolution” is usually attributed to Ehrlich
and Raven who published a paper on their studies performed with butterflies and
plants in the mid-1960s [30].


The relationships between the populations of two different species A and B can
be described considering all their possible types of interactions. Such interaction
can be positive or negative depending on the consequences that such interaction
produces on the population. All the possible interactions between two different
species are shown in Table 3.1.


Evolutionary computation researchers have developed several coevolutionary
approaches in which normally two or more species relate to each other using one
of the previously indicated schemes. Also, in most cases, such species evolve
independently through a genetic algorithm. The key issue in these coevolution-
ary algorithms is that the fitness of an individual in a population depends on the


29
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A B
Neutralism 0 0 Populations A and B are independent and don’t interact.
Mutualism + + Both species benefit from the relationship.
Commensalism + 0 One species benefits from the relationship but the other


is neither harmed nor benefited.
Competition - - Both species have a negative effect on each other since


they are competing for the same resources.
Predation + - The predator (A) benefits while the prey (B) is negatively


affected.
Parasitism + - The parasite (A) benefits while the host (B) is negatively


affected.


Table 3.1: All the possible interactions between two different species.


individuals of a different population. In fact, we can say that an algorithm is co-
evolutionary if it has such property. There are two main classes of coevolutionary
algorithms in the evolutionary computation literature:


• Those based on competition relationships: In this case, the fitness of an
individual is the result of a series of “encounters” with other individuals
[73, 85].


• Those based on cooperation relationships: In this case, the fitness of an
individual is the result of a collaboration with individuals of other species
(or populations) [76, 75].


3.2 Related Work


There are very few references in the literature in which coevolutionary concepts
are used to solve multi-objective optimization problems. We will review the main
ones in this section.


• Parmee & Watson [74] proposed a collaborative scheme in which they use
one population to optimize each of the objective functions of a problem. The
authors propose to use individual GAs for the optimization of each objec-
tive. For each generation, solutions relating to each objective are compared
with the best individual from the other GA populations. If a variable is out-
side a defined range, it is adjusted by a penalty function. The method is
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really designed to converge to a single (ideal) trade-off solution. However,
through the use of penalties the algorithm can maintain diversity in the pop-
ulation. These penalties relate to variability in the decision variables values.
The authors also store solutions produced during the evolutionary process
so that the user can analyze the historical paths traversed by the algorithm.


• Jiangming Mao et. al. [62] applied the symbiotic genetic algorithm (SGA)
[43] to multi-objective optimization problems. This approach uses a sin-
gle population in which individuals are ranked based on Pareto dominance.
Then their fitnesses are modified based on two factors: (1) the symbiotic
factor θi j (which represents the symbiotic relationships between individuals
i and j), and (2) the factor θml (which represents the symbiotic relationships
between the objective functions m and l). The SGA is structured in such a
way that, besides the GA loop, there is an outer loop for training symbiotic
relations, which includes the calculation of symbiotic parameters, through
fuzzy inference rules. Training of parameters in the fuzzy inference leads
to obtaining the required distribution of individuals. With this aim, authors
incorporate user’s preferences through an aggregating function, used as ob-
jective function in the training process.


• Barbosa and Barreto [5] proposed a cooperative approach for solving a
graph layout generation problem. The approach uses two populations (a
separate genetic algorithm is used for each of them and information is ex-
changed through a shared fitness function): a graph layout population (i.e.,
individuals that contain the coordinates of all vertices in the graph) and
a population of weights (i.e., individuals that contain, each one, a set of
weights to be applied on the different aesthetic objectives imposed on the
problem). Each of the solutions produced by the system are presented to
a user who ranks them based on (subjective) preferences. This ranking is
used to determine fitness of the population of weights.


• Keerativuttitumrong et. al. [54], Tan et.al. [101] and Iorio and Li [49],
proposed cooperative schemes in which one population is defined for each
decision variable of the problem. In order to evaluate an individual in any
population, individuals from the other populations must be selected in order
to complete a solution. In [54], the evolution of each of these populations
is controlled through Fonseca and Fleming’s MOGA [36]. The method in
[101] uses an external archive to store and update the nondominated solu-
tions found so far and also to guide the search to the less exploited sub-
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regions of the search space. Finally, in [49] the evolution of each of the
populations is controlled through the scheme of NSGA-II [27]. After each
generation, the method uses a nondominated sorting over all the subpopula-
tions of parents and offspring to determine the new parents subpopulations.


As we could see, some of the approaches previously described need some
previous knowledge about the problem (like [74]) or a large set of parameters (like
[62]). Also, there are approaches, like [5], that depend on an interactive feedback
of the user to fix the value of the parameters needed. Finally, it is very important
to note that the main feature of the cooperative approaches (like [54, 101, 49]) is
that they optimize the different variables (or sets of them) of the problem by using
different populations. For this reason, the main disadvantage of these approaches
is that the possible interdependence among variables (also called epistasis) may
cause some difficulties when the variables are being optimized in a separate way.


In the next section, we describe a coevolutionary approach that doesn’t need
any kind of previous knolewdge of the problem or feedback of the user. Addi-
tionally, although the proposed approach also subdivides the search space (similar
to a cooperative scheme), it does such work by using the information obtained
throughout the evolutionary process.


3.3 Coevolutionary Multi-Objective Approach


We proposed a Coevolutionary Multi-Objective Evolutionary Algorithm, called
CO-MOEA, whose main idea is to obtain information along the evolutionary pro-
cess in order to focus the search efforts only on the promising subregions of the
search space, while ignoring the useless subregions and reducing the computa-
tional cost involved in the process of convergence to the optimal solutions.


Our approach subdivides the search space into n subregions, and then it uses
a subpopulation for each of these subregions. At each generation, these different
subpopulations “cooperate” and “compete” among themselves and from these dif-
ferent processes we obtain a single Pareto front. The size of each subpopulation
is adjusted based on their contribution to the current Pareto front. In order to de-
termine what regions of the search space are promising, our algorithm performs
an analysis of the current Pareto front.


In this section, we will describe the three versions of our approach, that rep-
resent the three stages of the process followed to obtain the final version of our
algorithm. As we mentioned before, our approach incorporates the use of sev-
eral populations, obtained by means of a mechanism used to subdivide the search
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space. Thus, one of the main features of our algorithm must be the scalability,
since the number of possible different populations may grow exponencially with
the number of variables of the problem that we want to solve. In this way, as we
will see, the second and third versions of our algorithm incorporate some improve-
ments made with the aim to reduce the scalability problems of the final version of
our approach.


3.3.1 First Version


The evolutionary process of the first version of our approach was divided into 4
stages. The change of stage was controlled by a certain number of generations
during which we run the algorithm. The full evolutionary run was divided into
four parts (i.e., the total number of generations is divided by four), and each stage
was allocated on one of these four parts. Figure 3.1 shows the pseudocode of the
first version of our algorithm.


First Stage. During the first stage (first 25% of the total number of gener-
ations), the algorithm is allowed to explore all of the search space, by using a
population of individuals that evolves using Fonseca and Fleming’s MOGA [36].
Additionally, the approach uses the adaptive grid proposed by [57]. At the end of
this first stage, the algorithm analyses the current Pareto front (stored in the adap-
tive grid) in order to determine what variables of the problem are more critical.
In this first version, this analysis consisted of looking at the current values of the
decision variables corresponding to the current Pareto front (line 6, Figure 3.1).
This analysis was performed independently for each decision variable. The idea
was to determine if the values corresponding to a certain variable were distributed
along all the allowable interval or if such values were concentrated on a narrower
range. When the whole interval was being used, the algorithm kept the entire in-
terval for that variable. However, if only a narrow portion was being used, then the
algorithm tried to identify portions of the interval that could be discarded from the
search process. As a result of this analysis, the algorithm determined whether was
convenient or not to subdivide (and, in such case, it also determined how many
subdivisions should be created) the interval of a certain decision variable. Each of
these different regions were assigned a different population (line 7, Figure 3.1).


We illustrate this process with an example. Let us suppose that our problem
has two variables and that, after the analysis, the algorithm determines that it is
not convenient to subdivide the interval of the first variable. Additionally, the
algorithm determines that the interval of the second variable must have two sub-
divisions. What the algorithm does is to divide the interval of the second decision
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Begin
Initialize population


1. gen← 1
2. populations← 1
3. While (gen≤ Gmax)
4. If(!gen%(Gmax/4))
5. check active populations()
6. decision variables analysis()


(compute number of subdivisions)
7. construct new subpopulations()


(update populations)
EndIf


8. For (i← 1; i≤ populations; i← i+1)
9. If (population i contributes


to the current Pareto front)
10. evolve and compete(i)


EndIf
EndFor


11. elitism()
12. reassign resources()
13. gen← gen+1


EndWhile
Report results in current Pareto front


End


Figure 3.1: Pseudocode of the first version of our algorithm.


variable into three parts of equal size (i.e., add two subdivisions to the interval).
The process to decide how many populations to have and to which region of the
search space to assign each of them is illustrated in Figure 3.2.


Second Stage. When reaching the second stage, the algorithm consists of
a certain number of populations looking each at different regions of the search
space. At each generation, the evolution of all the populations takes place indepen-
dently and, later on, the nondominated elements from each population are stored
in the adaptive grid where they “cooperate” and “compete” in order to conform a
single Pareto front (line 10, Figure 3.1). After this, we count the number of indi-
viduals that each of the populations contributed to the current Pareto front. Our
algorithm is elitist (line 11, Figure 3.1), because after the first generation of the
second stage, all the populations that do not provide any individual to the current
Pareto front are automatically eliminated and the sizes of the other populations
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Figure 3.2: Mechanism used to assign regions of the search space to each popula-
tion.


are properly adjusted (i.e., those populations that contributed more to the current
Pareto front get their sizes proportionally increased and those who contribute less
get their sizes decreased; line 12, Figure 3.1). Thus, populations contributing with
more individuals to the current Pareto front are “rewarded” with a number of ex-
tra individuals which is proportional to the percentage contributed to the current
Pareto front. Individuals to be added or removed are randomly generated/chosen.
Thus, populations compete with each other to get as many extra individuals as
possible. This process is illustrated in Figure 3.3. Figure 3.4 illustrates the second
stage of our algorithm.


50%


50% 20%


80% 80%


20%


Population 1


Population 2


in the Pareto
front


percentage of individuals


evolving evolving


Figure 3.3: Resources reassignment: Each population is assigned or removed
individuals such that its final size is proportional to its contribution to the current
Pareto front.
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Figure 3.4: Graphical representation of the second stage of our algorithm.


Third Stage. During the third stage, we perform a check on the current pop-
ulations in order to determine how many (and which) of them can continue (i.e.,
those populations which continue contributing individuals to the current Pareto
front) (line 5, Figure 3.1). Over these (presumably good) populations, we will
apply the same process from the second stage (i.e., they will be further subdivided
and more populations will be created in order to exploit these “promising regions”
of the search space).


In order to determine the number of subdivisions that are to be used during
the third stage, we repeat the same analysis as before (i.e., the analysis performed
during the first stage). The individuals from the “good” populations are kept. All
the good individuals are distributed across the newly generated populations. A
new count is undertaken so that the algorithm can determine how many individuals
are contributed by each of the new populations to the current Pareto front. Again,
populations that do not contribute to the current Pareto front are eliminated. Note
however, that we define a minimum population size and this size is enforced for
all populations at the beginning of the third stage. After the first generation of
the third stage, the size will be adjusted based on the same criteria as before (i.e.,
the size of populations will be modified based on their contribution to the current
Pareto front).


Fourth Stage. During this stage, we apply the same procedure of the third
stage in order to allow a fine-grained search.


Decision Variables Analysis. The mechanism adopted for the decision vari-
ables analysis was very simple. Given a set of values within an interval, we
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computed both the minimum average distance of each element with respect to
its closest neighbor and the total portion of the interval that was covered by the
individuals contained in the current Pareto front. Then, only if the set of values
covered less than 80% of the total of the interval, the algorithm proceeded to di-
vide it. In this case, the number of divisions got increased (without exceeding a
total of 10 divisions per interval), as explained next. Let us define range as the
percentage of the total of interval that is occupied by the values of the variable
under consideration. Let d̄min be the minimum average distance between individ-
uals and let divisions be the number of divisions to perform in the interval of the
variable:


If (range <0.8∗interval)
While (d̄min <0.2∗interval)


divisions← divisions+1;
interval←0.2∗interval;


EndWhile
EndIf


The results of this approach can be consulted in [16]. In general, the results of our
algorithm in low-dimensional functions were of good quality. However, when we
tested our approach using functions with search spaces with higher dimension, we
started to have problems with the number of populations that it could potentially
need to handle. That is, the first version of our algorithm had scalability prob-
lems. In this way, we considered to redesign the algorithm so that such multiple
populations were no longer needed. Also, we considered the use of a clustering al-
gorithm to determine the most critical decision variables of the problem (replacing
the current analysis used). These improvements gave place to the second version
of our algorithm.


3.3.2 Second Version


The second version of our algorithm performs a clustering analysis on the set of
decision variables of the current Pareto front in order to identify promising regions
of the search space. In this way, the number of populations needed does not grow
exponentially with the number of decision variables as in our original proposal.
In fact, the number of populations needed does not exceed the total number of
members on the true Pareto front.


Figure 3.5 shows the pseudocode of the second version of our algorithm. In
this version, the evolutionary process of our approach is only divided into two
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main stages. The first stage works in a similar way that the previous version,
but in this case we replace the decision variables analysis described before with
a clustering analysis, in order to determine the promising regions of the search
space.


Begin
Initialize population


1. gen← 1
2. populations← 1
3. While (gen≤ Gmax)


If (gen≥Gmax/4)
4. If (!gen%(Gmax/4) or


∃ x ∈ popzero : x ∈ current Pareto front)
5. check active populations()
6. clustering algorithm()
7. construct new subpopulations()


EndIf
EndIf


8. For (i← 1; i≤ populations; i← i+1)
9. If (population i contributes to the current Pareto front)
10. evolve and compete(i)


EndIf
EndFor


11. elitism()
12. reassign resources()
13. gen← gen+1


EndWhile
Report results in current Pareto Front


End


Figure 3.5: Pseudocode of the second version of our algorithm.


Thus, we perform a clustering analysis on the set of values of the decision
variables corresponding to the current Pareto front. This analysis is performed in-
dependently for each decision variable. Once we know the clusters corresponding
to each one of the decision variables, we proceed to form a set of new populations.
Each cluster provides a specific interval. Then, a set of sub-regions is created as a
cartesian product of the set of the intervals corresponding to the clusters of each
variable. After that, we assign a new population to those sub-regions that have in-
dividuals in the current Pareto front (line 7, Figure 3.5). This process is illustrated
in Figure 3.6.
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Figure 3.6: Mechanism used to locate the promising regions of the search space.
A population will be assigned to each located promising region.


Finally, we use one extra population (called population zero) that is searching
for good solutions on the sub-regions that are not being explored by the other
populations (for this purpose we use a special mutation operator that keeps the
individuals from belonging to the sub-regions explored by the other populations).


The second stage of the algorithm consists of the second, third and fourth
stages of the previous version. That is, we join those three stages in just one. In
this version, we have called checkpoint to the process made in the previous version
at the beginning of the third and fourth stages:
Checkpoint. During the second stage, we perform a checkpoint at specific mo-
ments of the evolutionary process (line 4, Figure 3.5). The checkpoint takes place
as before (see Figure 3.1), but also when the population zero includes a new in-
dividual in the current Pareto front. When the checkpoint occurs, we perform a
check on the current populations in order to determine how many (and which) of
them can continue (line 5, Figure 3.5). As at the end of the first stage, we perform
again the clustering analysis on the set of values of the decision variables corre-
sponding to the current Pareto front, and proceed to form a set of new populations.
Clustering Analysis. We implemented a clustering algorithm based on the nature
of the k−means algorithm [50]. This algorithm begins with k random centroids
and puts every point of the analyzed set on the cluster corresponding to the nearest
centroid. After that, the means of each cluster are calculated and considered as the
new centroids, and the process is repeated until no further changes are done. The
algorithm stops when the minimum of the sum of the distances between each point
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to its corresponding centroid is found. This algorithm has two disadvantages:
(1) it depends on the initial centroids and (2) it requires the number of clusters
needed. For this reason, we made two modifications to overcome these drawbacks.
Regarding the first disadvantage, we look for a point that could be a new centroid:
Let xi a point that belongs to a cluster with centroid ci, and dmin the minimum
distance between two centroids. If d(xi,ci) > dmin, xi will be a new centroid. To
maintain the number of clusters constant, once we have selected a point to be
a new centroid, we choose one of the closest centroids to be eliminated. With
respect to the second disadvantage, we use the following mechanism [50]: Let
xi be a point that belongs to cluster q (with centroid cq) and K the current total
number of clusters. The average distance between xi and the K centroids is: d̄i =
(1/K)∑K


k=1 d(xi,ck). We create a new cluster with centroid xi when: |d(xi,cq)−
d̄i| ≤ d̄iT where T is such that 0 < T < 1. The number of clusters created is
proportional to the value of T . Since the previous mechanism creates new clusters,
we also eliminate clusters when the corresponding centroids are very close: If the
distance between two centroids is less that T times the average distance between
centroids, one of them is eliminated.


It is worth emphasizing that the clustering technique used was taken from the
specialized literature for being one of the most popular approaches in current use
and representative of the state-of-the-art. However, the use of a different (perhaps
better, under certain conditions) technique is always possible for this purpose, as
for example the subtractive clustering technique proposed by Chiu in 1994 [13].


The results of this approach can be consulted on [83]. Although the results
obtained by the second version of our approach were better than the obtained
by the previous one, in this case we still had scalability problems. However, in
this case the problem was not the number of populations actually needed, but
the number of populations virtually constructed. Thus, the main drawback of
this version was the procedure followed for constructing new populations. As
we described before, in such process we constructed virtually all the possible
regions given by the cartesian product of the set of intervals corresponding to
the clusters of each variable. When we tested the algorithm with functions with
high dimensional decision spaces, once again the problem was the number of
virtual regions that it needed to handle. For this reason, we decided to improve
the construction procedure, and this update gave place to the third and final version
of our approach.


Parameters Required. Our proposed approach requires the following parameters
(the parameter T of the clustering algorithm used was fixed to T = 1):
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1. Crossover rate (pc) and mutation rate (pm).


2. Maximum number of generations (Gmax).


3. Size of the initial population (popsizeinit) to be used during the first stage
and minimum size of the secondary population (popsizesec) to be used dur-
ing the further stages.


3.3.3 Third Version


In this version, the set of sub-regions is created in the following way. Once we
know the intervals corresponding to the clusters obtained for each variable, for
each point in the current Pareto front, we proceed to locate the interval on each
variable to which it belongs. This process gives us a region in the search space.
Then, for each point in the current Pareto front, we first check if it belongs to any
region already located. If the point belongs to an existing region, we continue with
the next point. Otherwise, we proceed to create the corresponding region. And so
on. After that, we assign a new population to each region created, i.e., those that
have individuals in the current Pareto front (line 7, Figure 3.5). In this way, in the
worst case we will have as many populations as points in the current Pareto front.


On the other hand, in this version we decided to initialize the population zero
(described before) with an 80% of points of the current Pareto front and a 20%
of random points (with the aim of generating intermediate points on the current
Pareto front while adding diversity).


Finally, for the final version of our approach, we also decided to change the
representation used. The binary representation used before was replaced by a real
numbers representation. This change improved the obtained results.


3.3.4 Coevolutionary Interactions


In this section, we would like to discuss the coevolutionary interactions implicit in
our three proposed approaches. As we mentioned before, at each generation of the
second stage, the populations (considered as separate species1) “cooperate” and
“compete” (through their nondominated elements) in order to conform a single
Pareto front. As a result of this competition/collaboration process, the size of the
populations is adjusted in such a way that the populations assigned to the promis-
ing regions of the search space become larger, while the populations assigned to


1In this case, we consider each population as a different species.
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the worst regions of the search space may even extinguish (be eliminated). In
this way, every population competes to provide the largest possible number of
individuals to the final Pareto front, in order to be able to increase its size and,
as a consequence, its survival possibilities. These coevolutionary interactions are
indicated in the diagram shown in Figure 3.7.
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Figure 3.7: Diagram of the final version of our algorithm.


On the other hand, although this is in fact a competition process between indi-
viduals (where those nondominated win), the fitness of each individual is affected
by the competition results of its whole species. This is due to the use of fitness
sharing, incorporated in the MOGA approach (used as a search engine by our
coevolutionary scheme). As we mentioned in Section 2.4.1, when fitness sharing
is used, the fitness of an individual is degraded in proportion to the number and
closeness to individuals that belong to its same niche. See Figure 3.8.


Thus, we can see that the main coevolutionary interaction incorporated into
our approach is the competition between species in order to conform a single
Pareto front, since the fitness of each individual within each one of the popu-
lations depends of the resources reassignment determined by the results of the
competition process.
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Figure 3.8: For each individual, a niche is defined. The fitness of an individual is
degraded in proportion to the number and closeness to individuals that belong to
its same niche.


3.4 Results


We present the results obtained by the third and final version of our approach [96].
We used the methodology normally adopted in the evolutionary multi-objective


optimization literature [21]. We performed both quantitative comparisons (adopt-
ing four measures of performance) and qualitative comparisons (plotting the Pareto
fronts produced) with respect to two multi-objective evolutionary algorithms
(MOEAs) that are representative of the state-of-the-art in the area: the Nondomi-
nated Sorting Genetic Algorithm II (NSGA-II) [27], and the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) [118].


For our comparative study, we implemented four measures of performance:
Error Ratio (ER), Generational Distance (GD), Spacing (SP) and Two Set Cover-
age (SC). All these measures are defined in Section 2.4.4, page 25. Also, we used
four different test functions: Deb, Kursawe, Kita and Tanaka (defined in Section
2.4.3, page 19).


For each of the test functions, we performed 30 runs per algorithm and a total
of 10,000 evaluations. The parameters for NSGA-II were popsize=100 and 100
generations and for SPEA2 were α = µ = λ = 100 and 100 generations. All
the algorithms used real numbers representation, a bit mutation probability (pm)
equal to 1/codesize (Parameter Based Mutation) and a crossover probability (pc)
equal to 0.8 (Simulated Binary Crossover). The Pareto fronts that we will show
correspond to the median of the 30 runs with respect to the ER measure.


Regarding constraint-handling, we used the original scheme provided in the
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case of the NSGA-II. However, since the other two algorithms (including our
own) didn’t have a constraint-handling mechanism, we implemented for them a
simple dynamic penalty function (based on the number of generations) over the
value of the objective functions of each infeasible individual.


Test Function Deb
In this example, our approach used: popsizeinit = 100, popsizerec = 30 (38


gen). Table 3.2 shows the values of the measures for each of the MOEAs com-
pared.


Test Function Deb
CO-MOEA NSGA-II SPEA2


best 0.02 0.00 0.02
median 0.10 0.07 0.05


ER worst 0.44 0.47 0.39
average 0.15 0.13 0.08
std. dev. 0.1112 0.1289 0.0856


best 0.0001 0.0047 0.0048
median 0.0040 0.0056 0.0056


GD worst 0.0910 0.0061 0.6116
average 0.0159 0.0055 0.0829
std. dev. 0.0249 0.0004 0.1303


best 0.0045 0.0064 0.0027
median 0.0090 0.0073 0.0041


SP worst 0.9069 0.0084 1.9915
average 0.1344 0.0073 0.4252
std. dev. 0.2491 0.0006 0.6227


Two Set Coverage Metric SC
X SC(X , I) SC(X , II) SC(X , II)


I CO-MOEA 0.00 0.00 0.00
II NSGA-II 0.02 0.00 0.01
III SPEA2 0.00 0.03 0.00


Average 1% 2% 0%


Table 3.2: Comparison of results between our approach (denoted by CO-MOEA),
the NSGA-II [27] and the SPEA2 [118] for test function Deb.


As we can see in Table 3.2, the three algorithms have similar results with re-
spect to the ER measure. However, the SPEA2 algorithm has the best results on
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average. In the case of the GD and SP measures, although our algorithm and the
SPEA2 algorithm, respectively, have better best and median results than the other
algorithms, the best results on average are from the NSGA-II algorithm in both
cases given its low standard deviation. Finally, regarding the SC measure all the
algorithms have very similar results (between 0 and 2%). The Pareto fronts for
this function are shown in Figure 3.9.
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Figure 3.9: Pareto fronts obtained by our approach (CO-MOEA), the NSGA-II
[27] and the SPEA2 [118], for test function Deb.


Test Function Kursawe
In this case, our approach used: popsizeinit = 100, popsizerec = 30 (40 gen).


Table 3.3 shows the values of the measures for each of the MOEAs compared.
With respect to the ER and GD measures (see Table 3.3), the three algorithms


have very similar results, being our algorithm marginally the best. Regarding the
SP measure, the NSGA-II algorithm has the best results. Finally, in this case with
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Test Function Kursawe
CO-MOEA NSGA-II SPEA2


best 0.12 0.16 0.19
median 0.23 0.27 0.26


ER worst 0.35 0.37 0.36
average 0.24 0.28 0.25
std. dev. 0.0578 0.0578 0.0412


best 0.0028 0.0032 0.0028
median 0.0032 0.0036 0.0033


GD worst 0.0038 0.0044 0.0035
average 0.0032 0.0037 0.0032
std. dev. 0.0002 0.0004 0.0002


best 0.0519 0.0450 0.0991
median 0.1100 0.0553 0.0867


SP worst 0.1534 0.1060 0.0801
average 0.1069 0.0606 0.0866
std. dev. 0.0306 0.0156 0.0042


Two Set Coverage Metric SC
X SC(X , I) SC(X , II) SC(X , II)


I CO-MOEA 0.00 0.07 0.17
II NSGA-II 0.07 0.00 0.14
III SPEA2 0.07 0.09 0.00


Average 7% 8% 16%


Table 3.3: Comparison of results between our approach (denoted by CO-MOEA),
the NSGA-II [27] and the SPEA2 [118] for test function Kursawe.


respect to the SC measure, our algorithm has the best results with an average of
7% of its points dominated by other algorithms. In this case, the percentages of
NSGA-II and SPEA2 are: 8% and 16%, respectively. The Pareto fronts for this
function are shown in Figure 3.10.


Test Function Kita
In this example, our approach used: popsizeinit = 100, popsizerec = 30 (40


gen). Table 3.5 shows the values of the measures for each of the MOEAs com-
pared.


In this function, there are clear differences between the three algorithms in
the values of the ER measure: the best is SPEA2 followed by NSGA-II and our
algorithm (see Table 3.4). With respect to the GD measure, although our algorithm
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Figure 3.10: Pareto fronts obtained by our approach (CO-MOEA), the NSGA-II
[27] and the SPEA2 [118], for test function Kursawe.


has the best value, on average the SPEA2 has the best results, followed by our
algorithm and the NSGA-II. In the case of the SP measure, although the better best
and median results are from SPEA2 and NSGA-II, the best results on average are
from our algorithm given its low standard deviation. Regarding the SC measure,
SPEA2 has the best results with an average of 11% of its points dominated by
other algorithms. In this case, the percentages of NSGA-II and our algorithm
are: 22% and 34%, respectively. The Pareto fronts for this function are shown in
Figure 3.11.


Test Function Tanaka
In this example, our approach used: popsizeinit = 100, popsizerec = 30 (40


gen). Table 3.5 shows the values of the measures for each of the MOEAs com-
pared.


As we can see in Table 3.5, the best results on average with respect to the ER
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Test Function Kita
CO-MOEA NSGA-II SPEA2


best 0.37 0.30 0.27
median 0.52 0.44 0.33


ER worst 0.67 0.58 0.43
average 0.51 0.46 0.35
std. dev. 0.0793 0.0624 0.0455


best 0.0025 0.0019 0.0026
median 0.0056 0.0025 0.0038


GD worst 0.1980 0.5224 0.1569
average 0.0239 0.0627 0.0222
std. dev. 0.0411 0.1412 0.0395


best 0.0351 0.0192 0.0190
median 0.0539 0.0248 0.0284


SP worst 0.1868 2.8625 1.3698
average 0.0636 0.1513 0.1504
std. dev. 0.0295 0.5286 0.3025


Two Set Coverage Metric SC
X SC(X , I) SC(X , II) SC(X , II)


I CO-MOEA 0.00 0.15 0.14
II NSGA-II 0.28 0.00 0.07
III SPEA2 0.39 0.29 0.00


Average 34% 22% 11%


Table 3.4: Comparison of results between our approach (denoted by CO-MOEA),
the NSGA-II [27] and the SPEA2 [118] for test function Kita.


measure are from SPEA2, followed by NSGA-II and our algorithm. With respect
to the GD measure, the results of the three algorithms are almost equal. In the case
of the SP measure, the best results on average are from SPEA2, followed by our
algorithm and NSGA-II. Regarding the SC measure, NSGA-II has the best results
with an average of 17% of its points dominated by other algorithms. In this case,
the percentages of SPEA2 and our algorithm are: 18% and 26%, respectively. The
Pareto fronts for this function are shown in Figure 3.12.


In general, in the first two functions our algorithm obtained very good results.
The values of the measures on these two functions indicate that our algorithm
was able to approximate the true Pareto front in each case as well as the other
algorithms. This is reflected in the values of the SC measure, too. In the case
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Figure 3.11: Pareto fronts obtained by our approach (CO-MOEA), the NSGA-II
[27] and the SPEA2 [118], for test function Kita.


of the third and fourth functions, our algorithm obtained results somehow poor
with respect to the other algorithms regarding the ER measure. This means that
our algorithm couldn’t find as many points of the true Pareto front as the other
algorithms, and this is the reason for the relatively high values of our algorithm in
the SC measure. However, the values obtained in these cases on the GD measure
indicate that our algorithm was as close of the true Pareto front as the other algo-
rithms. Regarding the distribution (SP measure), except in the fourth function, the
values of our algorithm are not as good as those of the other algorithms.


Results using high-dimensional functions


With the aim of exploring the scalability capacities of our coevolutionary ap-
proach, we finally present some results using three different high-dimensional
bi-objective functions: ZDT1, ZDT2 and ZDT3 (defined in Section 2.4.3, page
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Test Function Tanaka
CO-MOEA NSGA-II SPEA2


best 0.05 0.01 0.02
median 0.16 0.08 0.06


ER worst 0.29 0.17 0.10
average 0.15 0.08 0.06
std. dev. 0.0461 0.0339 0.0216


best 0.0009 0.0008 0.0010
median 0.0012 0.0013 0.0012


GD worst 0.0015 0.0016 0.0014
average 0.0012 0.0012 0.0012
std. dev. 0.0001 0.0002 0.0001


best 0.0047 0.0065 0.0037
median 0.0085 0.0099 0.0052


SP worst 0.0185 0.0155 0.0079
average 0.0092 0.0101 0.0053
std. dev. 0.0027 0.0022 0.0009


Two Set Coverage Metric SC
X SC(X , I) SC(X , II) SC(X , II)


I CO-MOEA 0.00 0.14 0.18
II NSGA-II 0.17 0.00 0.17
III SPEA2 0.34 0.20 0.00


Average 26% 17% 18%


Table 3.5: Comparison of results between our approach (denoted by CO-MOEA),
the NSGA-II [27] and the SPEA2 [118] for test function Tanaka.


19). We performed 30 runs and a total of 20,000 evaluations (on average), for
each test function. Table 3.6 shows the results obtained by our algorithm, with
respect to the ER, GD and SP measures. Also, Figure 3.13 shows the solutions
obtained by our coevolutionary approach, for the three functions. The plots on
the left show the union of the 30 Pareto fronts obtained. The plots on the right
show the nondominated solutions obtained from the union of the 30 Pareto fronts
obtained. As we can see in Table 3.6, the results of the ER measure indicate that
our algorithm was not able to converge to the true Pareto fronts of any of the three
functions, that is, our algorithm was not able to obtain optimal solutions. On the
other hand, although the results of the GD and SP measures indicate that our ap-
proach was able to obtain good approximations of the true Pareto fronts, we can
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Figure 3.12: Pareto fronts obtained by our approach (CO-MOEA), the NSGA-II
[27] and the SPEA2 [118], for test function Tanaka.


see in Figure 3.13 that the obtained sets of solutions don’t cover the whole true
Pareto fronts, in the majority of cases. In function ZDT1, our algorithm obtains
a partial approximation of the true Pareto front. In function ZDT2, our algorithm
collapses on just one point (near point (0,1)). Finally, it was in function ZDT3
where our algorithm obtained the best approximations.


In this case, we didn’t compare our algorithm against any other MOEA, since
it was not able to converge to the true Pareto fronts of the problems used.2 Never-
theless, results obtained by other MOEAs on these test functions will be presented
in the next chapter.


2As we will see in the next chapter, other MOEAs are able to converge to the true Pareto fronts
of the problems used, performing the same number of function evaluations (20000).
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ZDT1 ZDT2 ZDT3
best 0.82 0.40 1.00


median 0.97 1.00 1.00
ER worst 1.00 1.00 1.00


average 0.95 0.98 1.00
std. dev. 0.0475 0.1095 0.0000


best 0.0026 0.00001 0.0041
median 0.0061 0.0006 0.00114


GD worst 0.0797 0.0025 0.0599
average 0.0107 0.0008 0.0154
std. dev. 0.0159 0.0006 0.0126


best 0.0014 0.0000 0.0025
median 0.0076 0.0000 0.0242


SP worst 0.4150 0.0001 0.3462
average 0.0326 0.00001 0.0606
std. dev. 0.0854 0.00003 0.0910


Table 3.6: Results obtained by our approach in high-dimensional functions.


3.5 Conclusions


We presented a coevolutionary multi-objective evolutionary algorithm whose main
idea is to detect the most “promising” sub-regions of the search space and focus
the search on them. Thus, our approach is expected to ignore the useless subre-
gions of the search space and, as a consequence, reduce computational cost. With
this aim, the final version of the proposed algorithm applies a clustering algorithm
on the set of decision variables of the known Pareto front. The proposed approach
was validated using several test functions taken from the specialized literature.
Our comparative study showed that the proposed approach provides competitive
results, however, it was marginally outperformed by two other algorithms that are
representative of the state-of-the-art in the area, especially regarding the distribu-
tion of the Pareto fronts produced.


On the other hand, after doing experiments with test functions with high-
dimensional decision spaces, we could observe that our algorithm was not able
to converge to the true Pareto fronts of such problems. Thus, since other MOEAs
are able to obtain such optimal solutions, while performing the same number of
function evaluations (as we will see in the next chapter), we concluded that some
improvements to our algorithm were needed. That is, our coevolutionary approach
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is expected to obtain Pareto fronts of at least the same quality of those obtained
by other approaches, while performing the same number of functions evaluations.
In fact, our proposed algorithm should be able to obtain the same results but per-
forming a smaller number of function evaluations. For this reason, since our co-
evolutionary scheme was using MOGA [36] as its search engine, we considered
the idea of using a more efficient multi-objective algorithm in order to improve
the obtained results. Thus, the following part of our work concerns the design of
a new algorithm to be used as a search engine. In the following chapter, we will
describe the new approach designed.
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Figure 3.13: Solutions obtained by our coevolutionary approach, for functions
ZDT1, ZDT2 and ZDT3. The plots on the left show the union of the 30 Pareto
fronts obtained. The plots on the right show the nondominated solutions obtained
from the union of the 30 Pareto fronts obtained.







Chapter 4


Multi-Objective Particle Swarm
Optimization


In this chapter, we describe the new algorithm that we designed with the aim of
using it as a search engine in the previously described coevolutionary approach.


4.1 Particle Swarm Optimization


Kennedy and Eberhart [55] initially proposed the swarm strategy for optimization.
The Particle Swarm Optimization (PSO) algorithm is a population-based search
algorithm based on the simulation of the social behavior of birds within a flock. In
PSO, individuals, referred to as particles, are “flown” through a hyperdimensional
search space. Changes to the position of the particles within the search space are
based on the social-psychological tendency of individuals to emulate the success
of other individuals.


A swarm consists of a set of particles, where each particle represents a po-
tential solution. The position of each particle is changed according to its own
experience and that of its neighbors. Let xi(t) denote the position of particle i, at
time step t. The position of particle i is then changed by adding a velocity vi(t) to
the current position, i.e.:


xi(t) = xi(t−1)+vi(t) (4.1)


The velocity vector drives the optimization process and reflects the socially ex-
changed information. In general, based on the social information that is ex-
changed at each iteration, there are three different versions of the PSO algorithm:


55
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• Individual best. Each particle compares its current position to its own best
position (pbest), only.


• Local best. Particles are influenced by the best position within their neigh-
borhood (lbest), as well as their own past experience (pbest).


• Global best. Each particle uses its history of experiences in terms of its own
best solution thus far (pbest) but, in addition, the particle uses the position
of the best particle from the entire swarm (gbest).


In the global best version (used here) of PSO, the velocity vector changes in the
following way:


vi(t) = W vi(t−1)+C1r1(xpbesti−xi(t−1))+C2r2(xgbesti−xi(t−1)) (4.2)


where W is the inertia weight, C1 and C2 are the learning factors, and r1,r2 ∈ [0,1]
are random values. The inertia weight W is employed to control the impact of the
previous history of velocities on the current velocity of a given particle. On the
other hand, the learning factors represent the attraction that a particle has toward
either its own success or that of its neighbors. C1 is the cognitive learning factor
and represents the attraction that a particle has toward its own success. C2 is the
social learning factor and represents the attraction that a particle has toward the
success of its neighbors. Both, C1 and C2, are usually defined as constants.


Figure 4.1 shows the way in which the general PSO algorithm works. First,
the swarm is initialized: positions and velocities. The corresponding pbest of each
particle is initialized and the gbest is located. Then, for a maximum number of
iterations, each particle flies through the search space updating its position (using
(4.1) and (4.2)) and its pbest and, finally, the gbest solution is updated too.


The successful application of PSO in many single objective optimization prob-
lems reflects its effectiveness [56]. However, PSO must be modified in order to
apply it to multi-objective problems. In most approaches (which will be gener-
ically called MOPSOs, for Multiple-Objective Particle Swarm Optimizers), the
major modifications of the PSO algorithm are the selection process of pbest and
gbest [20, 68, 114, 6].


4.2 Related Work


There have been several proposals to extend PSO to handle multiple objectives.
We will review next the most representative of them:
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Begin
Initialize swarm
Locate gbest
g← 0
While g < gmax


For each particle
Update Position (Flight)
Evaluation
Update pbest


EndFor
Update gbest
g← g+1


EndWhile
Report gbest


End


Figure 4.1: Pseudocode of the general PSO algorithm.


• Ray and Liew [78]: This algorithm uses Pareto dominance and combines
concepts of evolutionary techniques with the particle swarm. The approach
uses crowding to maintain diversity (by means of a roulette selection scheme
of leaders1 based on this value) and a multilevel sieve to handle constraints
(for this, the authors adopt the constraint and objective matrices proposed
in some of their previous research [77]).


• Hu and Eberhart [47]: In this algorithm, only one objective is optimized
at a time using a scheme similar to lexicographic ordering [21]. Lexico-
graphic ordering tends to be useful only when few objective functions are
used (two or three), and it may be sensitive to the ordering of the objec-
tives. In further work, Hu et al. [48] adopted a secondary population (called
“extended memory”) and introduced some further improvements to their
dynamic neighborhood PSO approach.


• Fieldsend and Singh [34]: This approach uses an unconstrained elite archive
(in which a special data structure called “dominated tree” is adopted) to


1It is worth noting that the leader or guide is used as the gbest solution used in the formula for
updating positions.
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store the nondominated individuals found along the search process. The
archive interacts with the primary population in order to define local guides.
This approach also uses a “turbulence” operator that is basically a mutation
operator that acts on the velocity value used by PSO.


• Coello et al. [17, 20]: This proposal is based on the idea of having a global
repository in which every particle will deposit its flight experiences after
each flight cycle. Additionally, the updates to the repository are performed
considering a geographically- based system defined in terms of the objective
function values of each individual; this repository is used by the particles to
identify a leader that will guide the search. It also uses a mutation operator
that acts both on the particles of the swarm, and on the range of each design
variable of the problem to be solved. In more recent work, Toscano and
Coello [103] use the concept of Pareto dominance to determine the flight
direction of a particle. The authors adopt clustering techniques to divide the
population of particles into several swarms in order to have a better distri-
bution of solutions in decision variable space. In each sub-swarm, a PSO
algorithm is executed and, at some point, the different sub-swarms exchange
information: the leaders of each swarm are migrated to a different swarm in
order to variate the selection pressure. Also, this approach does not use an
external population since elitism in this case is an emergent process derived
from the migration of leaders.


• Mostaghim and Teich [68]: They propose a sigma method in which the best
local guides for each particle are adopted to improve the convergence and
diversity of a PSO approach used for multi-objective optimization. They
also use a “turbulence” operator, but applied on decision variable space.
The idea of the sigma method is similar to compromise programming. The
use of the sigma values increases the selection pressure of PSO (which was
already high). This may cause premature convergence in some cases. In
further work, Mostaghim and Teich [67] study the influence of ε-dominance
[58] on MOPSO methods. ε-dominance is compared with existing cluster-
ing techniques for fixing the archive size and the solutions are compared in
terms of computational time, convergence and diversity. The results show
that the ε-dominance method can find solutions much faster than the clus-
tering technique with a comparable (and even better in some cases) conver-
gence and diversity. The authors suggest a new diversity measure (sigma
method) inspired on their previous work [68]. Also, based on the idea that
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the initial archive from which the particles have to select a local guide has
influence on the diversity of solutions, the authors propose the use of suc-
cessive improvements using a previous archive of solutions. In more re-
cent work, Mostaghim and Teich [69] propose a new method called cover-
ingMOPSO (cvMOPSO). This method works in two phases. In phase 1, a
MOPSO algorithm is run with a restricted archive size and the goal is to
obtain a good approximation of the Pareto-front. In the phase 2, the non-
dominated solutions obtained from the phase 1 are considered as the input
archive of the cvMOPSO. The particles in the population of the cvMOPSO
are divided into subswarms around each nondominated solution after the
first generation. The task of the subswarms is to cover the gaps between the
nondominated solutions obtained from the phase 1. No restrictions on the
archive are made in phase 2.


• Li [59]: This approach incorporates the main mechanisms of the NSGA-II
[27] to the PSO algorithm. It combines the population of particles and all
the personal best positions of each particle, and selects the best particles
among them to conform the next population. It also selects the leaders ran-
domly from the leaders set among the best of them, based on two different
mechanisms: using a niche count and using a crowding distance. In more
recent work, Li [60] proposes the maximinPSO, which uses a fitness func-
tion derived from the maximin strategy [3] to determine Pareto-domination.
The author shows that one advantage of this approach is that no additional
clustering or niching technique is needed, since the maximin fitness of a
solution can tell us not only if a solution is dominated or not, but also if it
is clustered with other solutions, i.e., the approach also provides diversity
information.


• Baumgartner et al. [7]: This approach uses weighted sums (i.e., linear ag-
gregating functions). In this approach, the swarm is equally partitioned into
n subswarms, each of which uses a different set of weights and evolves
into the direction of its own swarm leader. The approach adopts a gradient
technique to identify the Pareto optimal solutions.


• Chow and Tsui [14]: In this paper, a novel autonomous agent response
learning algorithm is presented. The authors propose to decompose the
award function into a set of local award functions and, in this way, to model
the response extraction process as a multi-objective optimization problem.
A modified PSO called “Multi-Species PSO” is introduced by considering
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each objective function as a species swarm. A communication channel is
established between the neighboring swarms for transmitting the informa-
tion of the best particles, in order to provide guidance for improving their
objective values. Also, the authors propose to modify the equation used to
update the velocity of each particle, considering also the global best particle
of its neighboring species.


• Alvarez-Benitez et al. [1]: They propose methods based exclusively on
Pareto dominance for selecting guides from a unconstrained nondominated
archive. Three different techniques are presented: Rounds which explicitly
promotes diversity, Random which promotes convergence and Prob which
is a weighted probabilistic method and forms a compromise between Ran-
dom and Rounds. Also, the authors propose and evaluate four mechanisms
for confining particles to the feasible region, that is, constraint-handling
methods. The authors show that probabilistic selection favoring archival
particles that dominate few particles provides good convergence towards
and coverage of the Pareto front. Also, they concluded that allowing par-
ticles to explore regions close to the constraint boundaries is important to
ensure convergence to the Pareto front.


• Ho et al. [44]: The authors propose a novel formula for updating veloc-
ity and position particles, based on three main modifications to the known
flight formula for the gbest version of PSO. First, since the authors argue
that the random factors r1 and r2 in Equation (4.2) are not completely inde-
pendent, they propose to use: r2 = 1− r1. Second, they propose to incorpo-
rate the term (1−W ) in the second and third terms of Equation (4.2), where
W = rnd(0,1). Third (and last), under the argument of allowing a particle to
fly sometimes back, the authors propose to allow the first term of Equation
(4.2) being negative with a 50% probability. On the other hand, the au-
thors introduce a “craziness” operator in order to promote diversity within
the swarm. This “craziness” operator is applied (with certain probability)
to the velocity vector before updating the position of a particle. Finally, the
authors introduce one external archive for each particle and one global ex-
ternal archive for the whole swarm. The archive of each particle stores the
latest Pareto solutions found by the particle and the global archive stores
the current Pareto optimal set. Every time a particle updates its position, it
selects its personal best from its own archive and the global best from the
global archive. In both cases, the authors use a roulette selection mechanism
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based on the fitness values of the particles (assigned using the mechanism
originally proposed by Zitzler et al. [119], for the SPEA algorithm) and on
an “age” variable that the authors introduce and that is increased at each
generation.


• Villalobos-Arias et al. [108]: The authors propose a new mechanism to
promote diversity in multi-objective optimization problems. Although the
approach is independent of the search engine adopted, they incorporate it
into the MOPSO proposed in [20]. The new approach is based on the use
of stripes that are applied on the objective function space. Based on an
analysis for a bi-objective problem, the main idea of the approach is that
the Pareto front of the problem is “similar” to the line determined by the
minimal points of the objective functions. In this way, several points (that
the authors call stripe centers) are distributed uniformly along such line, and
the particles of the swarm are assigned to the nearest stripe center. When
using this approach for solving multi-objective problems with PSO, one
leader is used in each stripe. Such leader is selected minimizing a weighted
sum of the minimal points of the objective functions. The authors show that
their approach overcomes the drawbacks on other popular mechanisms such
as ε-dominance [58] and the sigma method proposed in [68].


• Salazar-Lechuga and Rowe [89]: The main idea of this approach is to use
PSO to guide the search with the help of niche counts (applied on objec-
tive function space) [41] to spread the particles along the Pareto front. The
approach uses an external archive to store the best particles (nondominated
particles) found by the algorithm. Since this external archive helps to guide
the search, the niche count is calculated for each of the particles in the
archive and the leaders are chosen from this set by means of an stochas-
tic sampling method (roulette wheel). Also, the niche count is used as a
criterion to update the external archive. Each time the archive is full and
a new particle wants to get in, its niche count is compared with the niche
count of the worst solution of the archive. If the new particle is better than
the worst particle, then the new particle enters into the archive and the worst
particle is deleted. Niche counts are updated when inserting or deleting a
particle from the archive.


• Janson and Merkle [52]: The authors propose a hybrid particle swarm op-
timization algorithm for multi-objective optimization, called ClustMPSO.
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ClustMPSO combines the PSO algorithm with clustering techniques to di-
vide all particles into several subswarms. For this aim, the authors use the
K-means algorithm. Each subswarm has its own nondominated front and
the total nondominated front is obtained from the union of the fronts of
all the subswarms. Each particle randomly selects its neighborhood best
(lbest) particle from the nondominated front of the swarm to which it be-
longs. Also, a particle only selects a new lbest particle when the current is
no longer a nondominated solution. On the other hand, the personal best
(pbest) of each particle is updated based on dominance relations. Finally,
the authors define that a subswarm is dominated when none of its parti-
cles belongs to the total nondominated front. In this way, when a sub-
swarm is dominated for a certain number of consecutive generations, the
subswarm is relocated. The proposed algorithm is tested on an artificial
multi-objective optimization function and on a real-world problem from
biochemistry, called the molecular docking problem. The authors refor-
mulate the molecular docking problem as a multi-objective optimization
problem and, in this case, the updating of the pbest particle is also based
on the weighted sum of the objectives of the problem. ClustMPSO outper-
forms a well-known Lamarckian Genetic Algorithm that had been previ-
ously adopted to solve such problem.


• Xiao-hua et al. [113]: The authors propose an Intelligent Particle Swarm
Optimization (IPSO) algorithm for multi-objective problems based on an
Agent-Environment-Rules (AER) model to provide an appropriate selection
pressure to propel the swarm population towards the Pareto optimal front.
In this model, the authors modify the global best flight formula including
the lbest position of the neighborhood of each particle. The neighborhood
of a particle is determined by a lattice-like topology. On the other hand,
each particle is taken as an agent particle with the ability of memory, com-
munication, response, cooperation and self-learning. Each particle has its
position, velocity and energy, which is related to its fitness. All particles live
in a latticelike environment, which is called an agent lattice, and each par-
ticle is fixed on a lattice-point. In order to survive in the system, they com-
pete or cooperate with their neighbors so that they can gain more resources
(increase energies). Each particle has the ability of cloning itself, and the
number of clones produced depends of the energy of the particle. General
agent particles and latency agent particles (those who have smaller energy
but contain certain features—e.g., favoring diversity—that make them good
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candidates to be cloned) will be cloned. The aim of the clonal operator
(which is modeled in the clonal selection theory also adopted with artificial
immune systems [70]) is to increase the competition among particles, main-
tain diversity of the swarm and improving the convergence of the process.
Also, a clonal mutation operator is used. Leaders are selected based on
the energy values of the particles. Finally, this approach adopts an external
archive in order to store the nondominated solutions found throughout the
run and to provide the final solution set.


Although some of the approaches previously described represent very illus-
trative proposals (like the unconstrained external archive in [34] and the study of
different leader selection techniques in [1]), some others provide proposals with
clear disadvantages. For example, some approaches require information of the
problem that is not always available (like the gradient in [7]) or implementations
that can be considered somehow complicated (like the species per function in
[14], the clustering techniques in [52, 20] and the intelligent system in [113]).
Also, some other approaches require specific conditions of the objective functions
that imply some previous management of the problem (like the nonnegative con-
dition in [68]), or include parameters which are very important for the behavior of
the algorithm and that have to be fixed by the user (like the σshare in [89]). In fact,
some approaches don’t seem to be scalable for solving problems with more than
two objectives (like the stripes proposal in [108]).


In general, among the most important features of the MOPSO approaches are
the mechanisms used to define, select and maintain the available set of leaders. As
we could see, the majority of the approaches previously proposed maintain a set
of leaders that grows at each iteration, that is, the size of such set is unbounded.
This characteristic introduces some difficulties when a leader has to be selected
for updating the position of one particle (as in the case of the parameteres needed
for that sake in [59, 60]) or when a size fixed set of solutions has to be returned as
the output of the algorithm (like in [59, 60, 103], where the proposed approaches
don’t have any mechanism to fix the final set of solutions).


In the next section, we describe a new proposal of our MOPSO approach,
which does not require any knowledge or specific condition of the problem. Also,
it is relatively easy to implement and needs very few parameters which are also
very easy to set. On the other hand, the proposed algorithm incorporates mecha-
nisms for maintaining fixed the size of the available set of leaders and that allow
the design of easy techniques for selecting leaders at each iteration, and also for
selecting the final solutions of the algorithm.
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Figure 4.2: The crowding factor gives us an idea of how crowded are the closest
neighbors of a given particle, in objective function space.


4.3 PSO-Based Multi-Objective Approach


It should be obvious that the main issue when extending PSO to deal with multiple
objectives is how to generalize the concept of leader in the presence of several
(equally good) solutions. The most straightforward approach is simply to consider
every nondominated solution as a new leader. This approach has, however, the
drawback of increasing the size of the set of leaders very quickly. This increase
on the size of the leaders set is very important because such set has to be updated
at each generation, and this can become a very expensive process. Also, the size
of the set of leaders has a significant impact on the selection of a leader in order
to make a movement through the search space at each generation.


If the set of leaders becomes too large, the election of a good leader turns out
to be difficult (how do we discriminate from among many nondominated indi-
viduals?). This particular issue has not been addressed in most of the research
conducted in this area and is the main focus of this work. In our approach, we
use a crowding factor [27] in order to establish a second discrimination criterion,
additional to Pareto dominance. See Figure 4.2.


Since leader selection is a key component in PSO, for each particle, we select
the leader using a combination of two different techniques:


I Given a particle x, we assign as its leader a particle y, randomly chosen,
but if and only if y dominates x. If it is the case that x is a nondominated
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Figure 4.3: Procedure followed to maintain fixed the size of the set of leaders.


particle, the leader will be randomly chosen.


II A binary tournament based on the crowding value of the leaders.


Technique I is used in order to speed up the convergence to the true Pareto
front, and technique II is used in order to avoid losing diversity within the swarm.
After an extensive series of experiments, we determined that our approach reached
its best performance when using technique I during 97% of the time and technique
II the remaining 3% of the time.


The crowding criterion is also adopted to decide what leaders to keep over
generations when the maximum list size has been exceeded. The maximum size
of the set of leaders is fixed equal to the size of the swarm or population (this value
is provided by the user as a parameter). After each generation, the set of leaders
is updated, and so are the corresponding crowding values. If the size of the set
of leaders is greater than the maximum allowable size, only the best leaders are
retained based on their crowding value. The rest of the leaders are eliminated.
This process is illustrated in Figure 4.3. Although there are previous approaches
that use the crowding factor to select the leaders (see for example [78, 59]), our
approach is the first to adopt this information to fix the size of the set of leaders.
This feature of our algorithm considerably simplifies the mechanism to control
the set of leaders without requiring any additional parameter or selection criterion
(e.g., in [59], a parameter is required to define the portion of the list of leaders to
be retained). Additionally, the use of this selection criterion promotes diversity
within the swarm.
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When adopting PSO for solving multi-objective optimization problems, the
use of a mutation operator is very important in order to escape from local optima
and to improve the exploratory capabilities of PSO which, in some cases, becomes
severely limited (see for example [20]). Several researchers have used mutation
operators before. For example, Fieldsend & Singh [34], Coello & Lechuga [17]
and Mostaghim & Teich [68]. It is worth noticing that all of the previous proposals
require of some user-defined parameter.


From our perspective, the election of a good mutation operator is a difficult
task that has a significant impact on performance. Thus, in this work we pro-
pose the use of two mutation operators that are well-known in the EA literature:
uniform mutation (i.e., the variability range of each decision variable is kept con-
stant over generations) [39] and non-uniform mutation (i.e., the variability range
of each decision variable decreases over time) [63]. Both operators act on the
decision variables of the updated particle. These operators modify the values of
the decision variables of a particle with a certain probability. This makes a sig-
nificant difference with respect to the previous proposals in which all the decision
variables are modified when the turbulence (or mutation) operator is applied. Ad-
ditionally, we considered the possibility of not using mutation at all, since in some
of our previous research we found that such condition may be beneficial in some
cases [20].


Given the uncertainty regarding how much mutation to apply, we propose a
scheme by which the swarm is subdivided into three parts (of equal size). Each
sub-part of the swarm will adopt a different mutation scheme: the first sub-part
will have no mutation at all, the second sub-part will have uniform mutation and
the third sub-part will have non-uniform mutation. This process is illustrated in
Figure 4.4. With the use of these different operators we are aiming to have the
ability of exploring (uniform mutation) and exploiting (non-uniform mutation)
the search space as the process progresses. The available set of leaders is the
same for each of these sub-parts. Additionally, each particle can use as a leader
a particle produced by a different sub-part of the swarm. In this way, the three
different sub-parts of the swarm will share their particular success and the final
results will be a combination of using different behaviors inside the same swarm.


In order to avoid the definition of extra parameters for the mutation operators,
we adopt a rule of thumb commonly used in the EA literature: the mutation rate is
defined as 1/codesize, where codesize refers to the total length of the string that
encodes all the decision variables of the problem. Since real-numbers encoding is
adopted, in our case codesize is equal to the number of decision variables of each
problem.







4.3. PSO-BASED MULTI-OBJECTIVE APPROACH 67


SWARM


LEADERS


No Mutation Uniform Mutation Non−uniform Mutation


Figure 4.4: Graphical illustration of the subdivision of the swarm adopted by our
scheme.
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Figure 4.5: Graphical illustration of ε-dominance.


Finally, we adopt the concept of ε-dominance [58] in order to fix the size of the
external archive that contains the (nondominated) solutions that will be reported
by the algorithm. A decision vector x1 is said to ε-dominate a decision vector
x2 for some ε > 0 iff: fi(x1)/ε ≤ fi(x2),∀i = 1, ...,m and fi(x1)/ε < fi(x2), for
at least one i = 1, ...,m. See Figure 4.5. It is worth noting that, when using ε-
dominance, the size of the final external archive depends on the ε-value, which is
normally a user-defined parameter [58]. For the sake of simplicity, we consider
the same value of ε for all the objective functions.


Figure 4.6 shows the way in which our algorithm works. We have marked
with italics the processes that make this algorithm different from the general PSO
algorithm. First, we initialize the swarm. The nondominated particles found in
the swarm will be introduced into the set of leaders. Later on, the crowding factor
of each leader is calculated. At each generation, for each particle, we perform the
flight and apply the corresponding mutation operator based on the subdivision of
the swarm previously described. In order to perform the flight of each particle, the
changes to the velocity vector are done in the following way:


vi(t) = W vi(t−1)+C1r1(xpbesti−xi(t−1))+C2r2(xgbesti−xi(t−1))


where W = random(0.1,0.5), C1,C2 = random(1.5,2.0), and r1,r2 = random
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Begin
Initialize swarm
Locate leaders
Send leaders to ε-archive
crowding(leaders)
g← 0
While g < gmax


For each particle
Select leader, Flight
Mutation
Evaluation, Update pbest


EndFor
Update leaders
Send leaders to ε-archive
crowding(leaders)
g← g+1


EndWhile
Report results in ε-archive


End


Figure 4.6: Pseudocode of our algorithm.


(0.0,1.0). Note that most of the previous PSO proposals fix the values of W,C1


and C2 instead of using random values as in our case. The only exception that we
know (in the specific case of MOPSOs) is some of our own previous work [103].
We adopted this scheme since we found it as a more convenient way of dealing
with the difficulties of fine tuning the parameters W , C1 and C2 for each specific
test function.


Then, we proceed to evaluate the particle and update its personal best posi-
tion (pbest). A new particle replaces its pbest position if the current pbest is
dominated by the new particle or if both are incomparable (i.e., they are both non-
dominated with respect to each other). After all the particles have been updated,
the set of leaders is updated, too. Obviously, only the particles that outperform
their pbest position will try to enter the leaders set. Once the leaders set has been
updated, the ε-archive is updated. Finally, we proceed to update the crowding val-
ues of the set of leaders and we eliminate as many leaders as necessary in order
to avoid exceeding the allowable size of the leaders set. This process is repeated
a fixed number (gmax) of iterations.


The parameters needed by our approach are:
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1. swarmsize: size of the swarm (defined by the user).


2. gmax: number of iterations (defined by the user).


3. pm: bit mutation probability (fixed by the algorithm).


4. ε: value for the bounding the size of the ε-archive (defined by the user).


4.4 Discussion of Results


Previous to the final version of our algorithm, described in the previous section,
we implemented a first version whose only difference was that it only adopted
technique I as its selection mechanism. The results of this previous version can be
seen in [95] and [98].


In this section, we discuss the results obtained by the final version of our ap-
proach [97]. All the corresponding tables and figures can be consulted in Ap-
pendix A, page 157. To validate our approach, we performed both quantitative
(adopting four performance measures) and qualitative comparisons (plotting the
Pareto fronts produced) with respect to two MOEAs that are representative of
the state-of-the-art in the area: the Strength Pareto Evolutionary Algorithm 2
(SPEA2) [118], and the Nondominated Sorting Genetic Algorithm II (NSGA-II)
[27]. We also compared our approach against three PSO-based approaches re-
cently proposed: MOPSO [21], Sigma-MOPSO [68] and Cluster-MOPSO [103].
For our comparative study, we implemented two unary and two binary measures
of performance: Success Counting (SCC), Inverted Generational Distance (IGD),
Two Set Coverage (SC) and the Two Set Difference Hypervolume (HV). All these
measures are defined in Section 2.4.4, page 25.


For each of the test functions used, we performed 20 runs per algorithm. All
the algorithms compared adopted real-numbers encoding. The parameters of each
approach were set such that they all performed 20000 objective function evalua-
tions.


It is very important to mention that our approach was firstly tested with func-
tions with low dimensionality and the results were very satisfactory. In this way,
we proceeded to test our approach with high dimensional functions and the corre-
sponding results are shown here. Also, we would like to mention that, given the
limitations imposed by the No Free Lunch Theorem [112], we do not expect to ob-
tain conclusive (i.e. general) results, but only partial results about the behavior of
our algorithm. The test functions adopted in our comparative study were: ZDT1,
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ZDT2, ZDT3, ZDT4, DTLZ2, DTLZ4 and DTLZ6 (defined in Section 2.4.3, page
19).


The PSO approaches will be identified with the following labels: MOPSO
refers to the approach reported in [17, 20], sMOPSO refers to the approach re-
ported in [68], cMOPSO refers to the approach reported in [103], and OMOPSO
(Our Multi-Objective Particle Swarm Optimizer) refers to our approach.


The Pareto fronts that we will show correspond to the nondominated vectors
obtained from the union of the 20 obtained Pareto fronts. It should be noted that
the Pareto fronts shown were also used to apply the binary measures of perfor-
mance. All the algorithms, except for the Cluster-MOPSO, were set such that
they provided Pareto fronts with 100 points. The Cluster-MOPSO does not have a
scheme to fix the size of its final archive. Thus, in order to allow a fair comparison
with respect to the Cluster-MOPSO, the values of the SCC measures were scaled
to the interval [0,100].


From Table A.1 to Table A.14 we show the values of the performance mea-
sures obtained for each of the algorithms compared.


Through the use of binary measures of performance, and under certain con-
ditions, we can conclude that a certain algorithm is better than another [120]. In
this work, since we use two different binary measures, we will conclude that an
algorithm is better than another when at least one of the measures indicates so, ac-
cording to the definitions previously provided (see Section 2.4.4, page 25). Since
the conditions to conclude that an algorithm is better that another using the binary
measures are very difficult to satisfy in most cases, we will use the values obtained
by the SC binary measure in order to conclude partial results: We will say that
an algorithm A is relatively better than algorithm B when SC(A,B)¿SC(B,A), and
almost better than B when SC(B,A) = 0 and SC(A,B) > 0.9. The values of the
HV binary measure will be used to make only conclusions of the type: algorithm
A is better than algorithm B, just like it was previously defined.


Function ZDT1. From Table A.1, we can conclude that our algorithm obtained
the best results with respect to the SCC measure and, with respect to the IGD mea-
sure, we obtained results as good as those obtained by all the other MOEAs com-
pared, improving the results obtained by the other three PSO-based approaches.


Regarding the binary measures (Table A.2) and considering both of them, we
can conclude that OMOPSO is relatively better than the rest of the algorithms,
except for sMOPSO, since sMOPSO is relatively better than OMOPSO. In fact,
OMOPSO is almost better than MOPSO and cMOPSO.


We will now analyze in more detail the results obtained by our algorithm in
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these measures. We cannot conclude that OMOPSO is better than the NSGA-II
(for example) since SC(OMOPSO,NSGA-II)6= 1 but, since SC(OMOPSO,NSGA-
II)¿SC(NSGA-II,OMOPSO), OMOPSO is relatively better than NSGA-II. On the
other hand, we have SC(MOPSO,OMOPSO)= 0 and SC(OMOPSO,MOPSO)=0.96,
so OMOPSO is almost better than MOPSO. Although it should be clear that
OMOPSO is better than MOPSO, the results obtained do not allow to reach this
conclusion since OMOPSO lost the extreme superior point of the front, as we can
see in Figure A.1. This is due to the use of the ε-dominance scheme to fix the
number of solutions in the external archive. This also explains the positive values
obtained for the binary hypervolume measure in the column of OMOPSO in Ta-
ble A.2. In Figure A.2, we show the Pareto front obtained from the union of the
MOPSO and OMOPSO fronts. We can see that the hypervolume corresponding
to the front shown in Figure A.2 is marginally bigger than the hypervolume cor-
responding to the front of OMOPSO, giving a positive value to the difference in
the binary measure. This exemplifies the sort of anomalous behavior that can go
undetected even when using binary performance measures.


Function ZDT2. From Table A.3, we can conclude that our algorithm (OMOPSO)
obtained the best results in both unary measures, with the largest number of points
(on average) belonging to the true Pareto front and the minimum IGD (on aver-
age).


Regarding the binary measures (considering both of them) (Table A.4), we
can conclude that OMOPSO is better than MOPSO and sMOPSO. Also, we can
say that OMOPSO is almost better than NSGA-II and SPEA2, and it is relatively
better than cMOPSO.


In this case, there are two interesting issues to discuss. First, we can see in
the SC binary measure values that almost 80% of the points of the cMOPSO algo-
rithm are concentrated on the top part of the true Pareto front. Thus, although the
major part of the observed front of the cMOPSO algorithm (see Figure A.3) is not
on the true Pareto front, the corresponding results on the SC measure are not as
expected. Second, the sMOPSO algorithm obtained just one point: (0.0,1.0). It is
very interesting to note that none of the other algorithms was able to generate this
point, as we can see in the SC measure values from Table A.4. Fortunately, these
problems with the SC measure are overcome by the HV measure with a small
modification: the values that we have marked with an asterisk (*) in Table A.4
were originally positive. However, we changed them to correspond more closely
with reality, since the hypervolume corresponding to the front of sMOPSO is zero.
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Function ZDT3. From the results shown in Table A.5, we can conclude that our
algorithm (OMOPSO) obtained the best results in both unary measures, with the
largest number of points (on average) belonging to the true Pareto front and the
minimum IGD (on average).


Regarding the binary measures (see Table A.6), we can conclude that OMOPSO
is relatively better than the rest of the algorithms. In fact, OMOPSO is almost bet-
ter than MOPSO and cMOPSO. We can see the Pareto fronts obtained for this
function in Figure A.4.


Function ZDT4. Based on the results shown in Table A.7, we can conclude that
our algorithm (OMOPSO) obtained the best results with respect to the two unary
measures adopted, with the largest number of points (on average) belonging to the
true Pareto front and the minimum IGD (on average).


Regarding the binary measures and considering both of them (see Table A.8),
we can conclude that OMOPSO is better than the other three PSO-based ap-
proaches. Also, OMOPSO is almost better than NSGA-II and SPEA2.


In this case, our approach is only almost better than the NSGA-II and SPEA2
for the same reason that we discussed in the case of function ZDT1. OMOPSO
lost the top extreme point of the Pareto front due to the use of the ε-dominance
scheme. For this reason, OMOPSO can’t dominate completely the fronts pro-
duced by NSGA-II and SPEA2. In fact, it can’t even dominate the isolated points
obtained by the other PSO-based approaches. Additionally, for this same reason
we find positive values in the column of OMOPSO for the binary hypervolume
measure. However, the binary hypervolume measure lead us to conclude the su-
periority of OMOPSO compared with the other PSO-based approaches.


It is very important to note that our algorithm was the only PSO-based ap-
proach that was able to generate the entire Pareto front of this function. This
illustrates the effectiveness of the mechanisms adopted in our approach to main-
tain diversity and to select and filter out leaders. We can see the Pareto fronts
obtained for this function in Figure A.5.


Function DTLZ2. From Table A.9, we can conclude that the MOPSO algorithm
obtained the best results in this function with respect to the SCC measure with an
average of 89 points belonging to the true Pareto front. However, as we can see
in Figure A.6, all the points obtained by the MOPSO algorithm are concentrated
on one of the inferior corners of the true Pareto front. This fact is reflected by the
values obtained by the MOPSO algorithm in the IGD measure, giving the worst
values in this case. In this case, although in the SCC measure our proposed ap-
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proach didn’t obtain better results compared with the other PSO-based approaches
(except cMOPSO), the corresponding values of the IGD measure indicate that our
algorithm obtained as good approximations to the true Pareto front as the other
approaches.


Regarding the binary measures and considering both of them (see Table A.10),
we can conclude that no algorithm was better than any other. Also, we can say that
the OMOPSO is relatively better than the cMOPSO and the NSGA-II algorithms.
As in function ZDT2 and ZDT4, the sign of the values that we have marked with
an asterisk (*) in Table A.10 was changed to correspond more closely with real-
ity, since the hypervolume corresponding to the front of MOPSO is less than the
hypervolume of the other algorithms, but this fact is due to the poor distribution
of the solutions obtained by MOPSO.


Function DTLZ4. From the results shown in Table A.11, we can conclude that
sMOPSO obtained the best result in the SCC measure and almost the same quality
(on average) than the best result in the IGD measure (obtained in this case by the
SPEA2). In this case, our algorithm didn’t obtain good results, in fact, it was able
to improve only the results of the cMOPSO algorithm. However, as we can see in
Figure A.7, our algorithm had a very similar behavior to the sMOPSO algorithm
(which, in general, had the best performance in this function).


Regarding the binary measures and considering both of them (see Table A.12),
we can conclude that all the algorithms are better than cMOPSO. Also, we can say
that OMOPSO is relatively better than NSGA-II, MOPSO and sMOPSO. The val-
ues marked with an asterisk (*) in Table A.12 were changed for reasons similar to
those provided in function DTLZ2.


Function DTLZ6. From Table A.13, we can conclude that our algorithm (O-
MOPSO) obtained the best results in the SCC measure and almost the same qual-
ity (on average) than the best result in the IGD measure (obtained in this case by
the SPEA2).


Regarding the binary measures and considering both of them (see Table A.14),
we can conclude that OMOPSO is better than sMOPSO. Also, OMOPSO is rel-
atively better than NSGA-II, SPEA2, MOPSO and cMOPSO. The values marked
with an asterisk (*) in Table A.14 were changed to correspond more closely with
reality, since the hypervolume corresponding to the front of sMOPSO is zero. We
can see the Pareto fronts obtained for this function in Figure A.8.


Overall Discussion. With respect to the unary performance measures, our ap-
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proach obtained the best results in both measures in three functions (ZDT2, ZDT3
and ZDT4), the best results in one measure in other three functions (ZDT1, DTLZ2
and DTLZ6), and it was outperformed in both measures only in function DTLZ4.


In function DTLZ2, our algorithm was outperformed with respect to the SCC
measure. However, in this function, our approach obtained as good results as the
best results obtained, with respect to the IGD measure. On the other hand, similar
results were obtained in functions ZDT1 and DTLZ6, where our approach was
marginally outperformed with respect to the IGD measure. This indicates that
OMOPSO was able to obtain a good approximation and a good number of points
of the true Pareto fronts of six of the seven test functions used.


Regarding the binary measures, our approach was relatively outperformed
only in three (out of seven) functions (ZDT1, DTLZ2 and DTLZ4). However,
OMOPSO was at least relatively better than almost all the algorithms in all func-
tions, except in function DTLZ2.


In this way, except in function DTLZ4, OMOPSO was clearly superior com-
pared with the other PSO-based approaches adopted in our comparative study.
Also, the results obtained by OMOPSO showed that it is highly competitive with
respect to both NSGA-II and SPEA2, which are two algorithms representative of
the state-of-the-art in evolutionary multi-objective optimization.


4.5 Impact of the Parameters of Our Approach


With the aim of exploring which parameters were the most important for the per-
formance of our approach, we performed an Analysis of Variance (ANOVA).


As we mentioned before, the selection of a leader in our MOPSO approach is
done by means of a combination of two different techniques: (I) by dominance
and (II) by crowding values. In this way, our approach chooses technique I with
certain probability (that we will call Ps), otherwise, it chooses technique II. After
an extensive series of experiments, we fixed the value of Ps to 0.97. However, Ps
is itself a parameter of our approach.


On the other hand, in order to perform the flight of each particle, the changes
to the velocity vector are done using Equations (4.1) and (4.2), where we use:
W = random(0.1,0.5), C1,C2 = random(1.5,2.0), and r1,r2 = random (0.0,1.0).
However, W , C1 and C2 can be considered parameters of our approach.


Finally, although the value of ε is a parameter of our approach that determines
the number of solutions provided by the algorithm, ε has some properties that
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allowed us to design a relatively simple mechanism to adapt its value. This mech-
anism will be described in Section 4.6.1.


Thus, the parameters of our approach that were be considered in our study
are: swarmsize (size of the swarm), gmax (number of iterations), Ps (selection
probability) and W , C1 and C2 (velocity update formula). For such study, we
considered 3 different levels for each of the parameters of our approach:


• swarmsize: 50, 100, 200.


• gmax: 50, 100, 200.


• Ps: 0.3, 0.6, 0.97.


• W : 0.1, 0.5, random(0.1,0.5).


• C1,C2: 1.5, 2.0, random(1.5,2.0).


In this way, the total number of combinations was: 729. We used the Suc-
cess Counting (SCC) measure of performance (defined in Section 2.4.4, page 25),
and we performed 30 runs for each combination and for each one of seven differ-
ent test functions (21870 runs per function, 153090 runs in total): ZDT1, ZDT2,
ZDT3, ZDT4, DTLZ2, DTLZ4 and DTLZ6 (previously defined). All the figures
corresponding to the obtained results can be consulted in the Appendix B, page
173.


The ANOVA provided the following conclusions:


• swarmsize: large values give better results. See Figure B.1.


• gmax: as swarmsize, large values give better results, although at a lower
rate. See Figure B.2.


In fact, from the ANOVA we were able to conclude that it is better to use a
large swarm size than a high number of generations. See Figure B.3.


• Ps: except for function DTLZ4, large values give better results. See Figure
B.4.


• W : except for function DTLZ2, large values give better results. See Figure
B.5.
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• C1: this parameter is not important for our MOPSO approach, that is, its
value doesn’t affect the performance of the algorithm. In Figure B.6, we
can see that the use of different values for the parameter C1 does not affect
the performance of the algorithm in a significant way.


• C2: except for function DTLZ2, large values give better results. See Figure
B.7.


Besides these conclusions, from the results obtained by the ANOVA, we could
observe some interesting correlations among some parameters. The two most
significant were:


• Large values of W not only provide better performance, in general, but also
decrease the impact of parameter C2. See Figure B.8.


• Large values of C2 not only provide better performance, in general, but also
increase the impact of parameter Ps. See Figure B.9.


As we can see, the parameters Ps, W and C2 are the most important for our
approach, since their values affect the performance of the algorithm (that is, their
best value in order to obtain a good performance, is problem dependent). In this
way, we performed another ANOVA in which the value of the parameters swarm-
size, gmax and C1 were fixed at: 200, 100 and random (1.5,2.0), respectively. In
this case, we considered the following levels for the parameters that were found
to be the most important:


• Ps: 0.0, 0.2, 0.4, 0.6, 0.8, 0.97, 1.0 (7 levels).


• W : 0.1, 0.2, 0.3, 0,4, 0.5, random (6 levels).


• C2: 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, random (7 levels).


In this way, this time we had a total of 294 combinations. We performed 30
runs for each combination and for each one of the seven test functions previously
defined (8820 runs per function, 61740 runs in total). As in the case of the pre-
vious ANOVA, we obtained very similar conclusions. However, in this case, we
were able to obtain the values that gave the best performance of our MOPSO ap-
proach:
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• Ps: 0.2, 0.8, 0.97. See Figure B.10.


• W : 0.2, 0.4, 0.5. See Figure B.11.


• C2: 1.5, 2.0. See Figure B.12.


These values were used for designing the on-line adaptation mechanism de-
scribed in the next section.


4.6 On-Line Adaptation


In this section, we describe the on-line adaptation mechanisms proposed for set-
ting the values of the parameters of our MOPSO approach. Given the properties
of the concept of ε-dominance, we proposed one adaptation scheme for the ε pa-
rameter and another different scheme for the rest of the parameters.


4.6.1 ε Adaptation Mechanism


As we mentioned before, when using our MOPSO approach, for each problem,
the value of ε has to be tuned based on the desired number of points in the final
Pareto front. In this section we describe a relatively simple mechanism to adapt
the value of the parameter ε throughout the run.


The mechanism implemented is based on the formula [58]:


PF≤
(


logK
log(1+ ε)


)m−1


,


where PF is the number of points desired in the final Pareto front, K is an upper
bound for all the objective functions (calculated over the current values) and m is
the number of objective functions.


Our approach initializes the value of ε using the previous formula. Later on,
the value of ε is adjusted based on the number of points that the current Pareto
front contains. At each generation, the number of solutions in the current Pareto
front is compared with the desired number of solutions. Then, since large values of
ε produce Pareto fronts with few solutions (and viceversa), the value of ε increases
or decreases depending on the current number of solutions in the Pareto front. The
change in the value of ε is proportional to the difference between the desired and
the current number of optimal solutions. For example, if the desired number of
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solutions is 10 and there are 12 solutions in the current Pareto front, the value of
ε is increased by 20% of its current value.


4.6.2 Adaptation Mechanism for Other Parameters


As we observed in Section 4.5, from the two ANOVAs performed we obtained
a set of values for the most important parameters of our MOPSO approach, that
give the best performance. Since we have a finite set of possible values for the
parameters Ps, W and C2, we considered the problem of the selection of the best
value for each parameter as a multi-armed bandit problem.


The multi-armed bandit problem was originally described by Robbins [84].
A multi-armed bandit, also called K-armed bandit, is similar to a traditional slot
machine (one-armed bandit) but, in general, has more than one lever. Initially, the
gambler has no knowledge about the levers, but through repeated trials, he can fo-
cus on the most rewarding levers. There are two versions of the K-armed bandit,
the opaque in which a unique reward is observed at each round, and the trans-
parent in which all rewards are observed. The gambler plays iteratively one lever
at each round and observes the associated reward. His objective is to maximize
the sum of the collected rewards. The problem of determining the best strategy
for the gambler is called the multi-armed bandit problem and many strategies or
algorithms have been proposed as solutions to this problem.


In our case, each lever corresponds to one of the possible values for the pa-
rameters that we want to adapt. Each time the MOPSO approach selects a specific
value (a lever) for a parameter, that value (lever) receives a reward. We define two
types of reward:


• Reward 1: If the obtained particle is able to enter into the set of leaders, the
lever receives a reward of 1. Otherwise, the lever receives a reward of 0.


• Reward 2: If the obtained particle is able to enter into the set of leaders, the
lever receives a reward of 0.5. Furthermore, if the obtained particle is able
to dominate at least one member of the set of leaders, the lever receives an
additional reward of 0.5. Otherwise, the lever receives a reward of 0.


All the levers, for the three parameters (Ps, W and C2), start with a total reward
of zero. The first generation (zero) of the MOPSO approach is used to obtain
initial values for the mean reward for each lever, of each parameter. That is, any
specific strategy is applied beginning with generation 1.
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We used three different mechanisms to adapt the corresponding values of the
studied parameters. The first is proposed by us, and the other two were chosen
based on the work presented in [107]:2


• Proportional. This strategy consists of a random choice according to the
probability:


pk =
µk


∑n
i=1 µi


where µi is the estimated mean of the rewards brought by the lever i and n
is the total number of levers.


• The ε-Greedy Strategy. This is probably the simplest and the most widely
used strategy to solve the bandit problem as it was described by Watkins
[110]. The ε-greedy consists of choosing a random lever with ε-frequency,
and otherwise choosing the lever with the highest estimated mean. ε must be
in the open interval (0,1) and its choice is left to the user. The ε value con-
trols the amount of exploration (the probability of executing actions other
than the one with the highest estimated mean). In this way, the ε-greedy
strategy is sub-optimal because asymptotically, the constant factor ε pre-
vents the strategy from getting arbitrarily close to the optimal lever.


• The Soft Max Strategy. This strategy, also called Boltzmann Exploration
[61], consists of a random choice according to a Gibbs distribution. The
lever k is chosen with probability


pk =
eµk/τ


∑n
i=1 eµi/τ


where µi is the estimated mean of the rewards brought by the lever i and
τ ∈ IR+ is a parameter called the temperature. The choice of τ’s value is left
to the user. The parameter τ has an impact similar to ε. Small values of τ
increase the tendency to choose the lever with the best estimated mean.


We tested the proposed mechanisms using the test functions ZDT1, ZDT2,
ZDT3, ZDT4, DTLZ2, DLZT4 and DTLZ6 (previously defined). For the ε-greedy
and the softmax approach, the allowable values of ε and τ are {0.05, 0.10, 0.15},
based on the work presented in [107], and given the impact of these parameters


2In [107], Vermorel et al. provided the first preliminary empirical evaluation of several multi-
armed bandit algorithms.
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(briefly discussed in the previous section). We performed 30 runs for each func-
tion and each mechanism. The parameters adopted for the MOPSO algorithm
were: 200 particles, 100 generations and 100 points in the final Pareto front.3 The
obtained results, using the SCC measure of performance, are shown in Tables B.1
to B.7 (Appendix B, page 173). For each test function, we present the best, me-
dian, worst, mean and standard deviation of the SCC measure, for the MOPSO
approach without adaptation and the MOPSO approach with adaptation, with the
different mechanisms and the two types of reward. The results shown in this sec-
tion were published in [82].


Function ZDT1. As we can see in Table B.1, all the approaches obtained very
good results with both types of reward. However, only the proportional strategy
was able to improve the results of the approach without adaptation, by almost 10
particles (on average), using reward 2. It is very interesting to note that in all cases,
the approaches with adaptation improved the worst results of the approach without
adaptation (except for softmax, whose quality was the same when τ = 0.1). In this
way, the standard deviation of the approaches with adaptation was smaller than for
the approach without adaptation. In general, the ε-greedy and softmax strategies,
had a better performance (on average) using reward 1, being the softmax better
than the ε-greedy strategy. Also, we can observe that the ε-greedy strategy lost
quality when using reward 2.


Function ZDT2. As in function ZDT1, in this function the proportional approach
(using reward 2) obtained the best results having the same quality than the re-
sults of the approach without adaptation (see Table B.2). In this case, the softmax
strategy had a better performance using reward 2, being better than the ε-greedy
strategy (whose best results were obtained using reward 1). As in the previous
function, we can observe again that the ε-greedy strategy lost quality when using
reward 2.


Function ZDT3. From Table B.3, we can conclude that the proportional ap-
proach obtained again the best results using reward 2 and also slightly improved
the results obtained by the approach without adaptation. In this case, the ε-greedy


3It should be noted that, based on the results obtained from the ANOVA described in the
previous section, we were able to improve the performance of our algorithm by changing the
configuration of the values used: in all the previous experiments, we used a swarm of 100 particles
for 200 generations. The ANOVA indicated that better results could be obtained by using a swarm
of 200 particles for 100 generations.
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and the softmax strategies had a best performance using reward 1, being ε-greedy
marginally better. Finally, we can observe that the ε-greedy strategy lost quality
again when using reward 2.


Function ZDT4. As we can see in Table B.4, in this function all the approaches
had a very similar behavior. All the adaptation strategies improved the results
obtained by the approach without adaptation or at least reached the same quality.
The only exception was the ε-greedy strategy when ε=0.05 and it used reward 2.
Also, this same case was the only that didn’t improve the worst results obtained
by the approach without adaptation. In this case, the best results were from the
softmax strategy using reward 1. However, in this case there are no important
differences in the performance of the approaches, when compared with respect to
the type of reward used.


Function DTLZ2. In this function (see Table B.5) all the adaptation strategies had
again very similar behavior. However, only the softmax strategy (using reward 1)
was able to improve the results obtained by the approach without adaptation. In
this case, all the strategies had better results using reward 1, improving the worst
results from the approach without adaptation, in all cases.


Function DTLZ4. As in function ZDT4, in this case all the adaptation strate-
gies improved the results obtained by the approach without adaptation or at least
reached the same quality (see Table B.6). Also, all the approaches had their best
performance using reward 1, being the best the ε-greedy strategy, in this case. It
is very interesting to note that, in this function, all the adaptation strategies sig-
nificantly improved the best result obtained by the approach without adaptation,
specially in the case of the ε-greedy strategy (almost 70 particles, when ε=0.05
and using reward 1). However, since the median and worst values were not im-
proved, the standard deviations were greater in this case.


Function DTLZ6. As we can see in Table B.7, in this function it is again reward
1 the one that provided the best results, for all the adaptation strategies. The best
results, in this case, were obtained by the softmax strategy. In this function, the
softmax strategy improved the best and median results obtained by the approach
without adaptation. However, as in function DTLZ4, since the worst values were
not improved, the standard deviations were greater in this case.


Overall discussion. As we observe, the proportional strategy obtained very good
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results in three of the seven test functions, using reward 2: ZDT1, ZDT2 and
ZDT3. However, this behavior was not consistent. In general, reward 1 provided
better results than reward 2, specially in the case of the ε-greedy strategy. The
obtained results seem to indicate that the knowledge about the ability of a set of
parameters to provide a nondominated particle is enough information to reward
it. In general, the softmax strategy had better performance than the proportional
and the ε-greedy strategies. In fact, unlike the case of the two other approaches
(specially the ε-greedy), the results of the softmax strategy were not significantly
affected by the use of different rewards. Also, the softmax strategy was able to
improve the performance (on average) of the approach without adaptation in five
of the seven test functions, and to maintain the quality of the obtained solutions
in one more test function. Finally, for all the test functions, at least one of the
three proposed strategies was able to improve the performance (on average) of the
approach without adaptation.


4.7 Test Problems Analysis


With the aim of exploring the abilities (or difficulties) of our MOPSO approach
for solving different types of test functions, in this section we present a brief
analysis of a set of eight different functions, including the seven test functions
previously used, which were taken from the specialized literature on evolutionary
multi-objective optimization. The test functions considered are: ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6, DTLZ2, DTLZ4 and DTLZ6 (defined in Section 2.4.4, page
25).


• Test Function ZDT1: This 30-variable problem has a convex and continu-
ous true Pareto front. Figure 4.7 shows the true Pareto front of this function
and a set of 30000 randomly generated solutions. As we can see, the density
of solutions in the search space, and across the true Pareto front, is uniform.


• Test Function ZDT2: This problem has also 30 decision variables, but a
nonconvex true Pareto front. This test function is considered the noncon-
vex counterpart of ZDT1. Figure 4.8 shows the true Pareto front of this
problem, and also a set of 30000 randomly generated solutions. As in the
case of function ZDT1, we can observe a uniform density of solutions. The
difficulty with this problem is that the true Pareto front is nonconvex.
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Figure 4.7: True front and 30000 randomly generated solutions, for test function
ZDT1.


• Test Function ZDT3: This 30-variable problem represents the discreteness
feature. The true Pareto front of this test function consists of several discon-
nected convex parts. Figure 4.9 shows the true Pareto front of this problem,
and 30000 randomly generated solutions. As we can see, the density of the
solutions is uniform. This problem tests the ability of a MOEA to find all
parts of the true Pareto front with a uniform spread.


• Test Function ZDT4: This function has 10 decision variables and a convex
true Pareto front. The difficulty of this problem is that there exist 219 or
about 8(1011) local Pareto optimal solutions in the decision variable space,
making a total of 100 distinct local Pareto fronts in the objective space,
of which only one is global. Figure 4.10 shows the true Pareto front of
this problem and 30000 randomly generated solutions. Function ZDT1 and
function ZDT4 have the same true Pareto front. However, if we compare
Figure 4.10 and Figure 4.7, we can see that such property is not very clear
because, in the case of function ZDT4, the randomly generated solutions
are located far away from the true Pareto front, when compared to the case
of function ZDT1. This problem tests the ability of a MOEA to deal with
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Figure 4.8: True front and 30000 randomly generated solutions, for function
ZDT2.


multimodality.


• Test Function ZDT6: This 10-variable problem has a nonconvex true Pareto
front (the same front of function ZDT2). Figure 4.11 shows 100 uniformly
distributed Pareto optimal solutions (in search space x1 ∈ [0,1]), and 30000
randomly generated solutions. As we can see, the density of solutions in
the search space is nonuniform. In fact, the Pareto optimal solutions are
nonuniformly distributed along the global Pareto front (the front is biased
for solutions for which f1 is near one). Thus, the nonuniform density of so-
lutions and the nonconvex nature of the Pareto front may cause difficulties
for a MOEA to converge to the true Pareto front.


• Test Function DTLZ2: This test function has 12 variables and a nonconvex
true Pareto front. Figure 4.12 shows the true Pareto front of this problem
and 30000 randomly generated solutions. As we can see, the density of
solutions is uniform. This problem tests the ability of a MOEA to scale up
its performance with a large number of objectives.
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Figure 4.9: True front and 30000 randomly generated solutions, for function
ZDT3.


• Test Function DTLZ4: As in the case of function DTLZ2, this test function
has 12 decision variables and a nonconvex true Pareto front. Figure 4.13
shows the true Pareto front of this problem and 30000 randomly generated
solutions. As we can see, the true Pareto front of this function is the same
that in Function DTLZ2. However, in this case, the density of solutions
is nonuniform. There exists a dense set of solutions near the f3− f1 and
f2− f1 planes. This problem tests the ability of a MOEA to maintain a
good distribution of solutions (as in the case of function ZDT6).


• Test Function DTLZ6: This 22-variable problem has a true Pareto front
that consists of four disconnected regions. Figure 4.14 shows the true Pareto
front of this problem and 30000 randomly generated solutions. This prob-
lem tests the ability of a MOEA to maintain distributed subpopulations in
different Pareto-optimal regions.


As we could see in Section 4.4, our MOPSO approach provided results of good
quality in almost all the test functions used. However, the quality of the results
obtained for the cases of functions DTLZ2 and DTLZ4 was not good enough. In
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Figure 4.10: True front and 30000 randomly generated solutions, for function
ZDT4.


fact, the worst results provided by our algorithm were those obtained for function
DTLZ4.


Functions DTLZ2 and DTLZ4 have both three objectives and 12 variables.
Thus, the first feature that may cause these functions being hard to optimize is
the number of objectives. Nevertheless, function DTLZ6 has also three objectives
and our approach had a good results on that test function. This behavior might be
due to the fact that function DTLZ6 has the same (design) structure of functions
ZDT. Thus, we argue that the combination of the number of objectives and the
nonlinearity of functions DTLZ2 and DTLZ4 is the reason for these functions
being “difficult” test functions.


The case of function DTLZ4 is special. As we mentioned before, this function
was the most difficult to optimize, for our MOPSO approach. We think that this
behavior of our algorithm is caused by the nonuniform density of the solutions in
the search space defined by function DTLZ4, as we can see in Figure 4.13.


As it was described before, function ZDT6 has a nonuniform density of solu-
tions in the search space. For this reason, although function ZDT6 was not used
in the validation of our MOPSO approach, we decided to test our algorithm on
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Figure 4.11: True front and 30000 randomly generated solutions, for function
ZDT6.


this function, as part of this analysis. Figure 4.15 shows the true Pareto front of
function ZDT6 and the union of 30 Pareto fronts generated by our approach, after
20000 evaluations of the objective functions. As we can see, this function is hard
to optimize, for our MOPSO approach.


Therefore, it seems that our approach has some difficulties optimizing func-
tions with a nonuniform density of solutions in the search space. Test functions
with this feature, test the ability of a MOEA to find a good distribution of so-
lutions, despite the natural non-uniform density of solutions in the search space.
That is, in these cases, a MOEA should be able to maintain diversity.


These conclusions seem to agree with the behavior of our algorithm, given
the following discussion. As we mentioned in Section 4.3, the final version of
our approach uses a leader selection technique obtained from the combination
of two different techniques: technique I and technique II. Technique I is based
only on dominance relations and technique II was designed to favor diversity into
the swarm (based on the crowding factor of each leader). The first version of
our MOPSO approach only adopted leader selection technique II. Figure 4.16
shows the nondominated solutions obtained from the union of 20 Pareto front
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Figure 4.12: True front and 30000 randomly generated solutions, for function
DTLZ2.


generated by the first version of our MOPSO approach, after 20000 evaluations of
the objective functions. As we can see, the previous version of our approach had
better results on function DTLZ4 than the final version. More precisely, while the
final version of our approach obtained an average of 11 Pareto optimal solutions
for function DTLZ4, the previous version was able to obtain an average of 43
optimal solutions (these results can be seen in [95]).


This behavior also agrees with the results obtained from the ANOVA previ-
ously described in Section 4.5. The performed ANOVA indicated that, for func-
tion DTLZ4, the value of the Ps parameter should be small in order to obtain
better results. Parameter Ps determines the probability with which the leader is
selected using technique I, otherwise, technique II is used. That is, parameter Ps
indicates the probability with which leaders are selected based only on dominance
relations, otherwise, leaders are selected based on diversity measures. Thus, small
values of parameter Ps favor diversity into the swarm. In this way, small values of
parameter Ps may improve the performance of our MOPSO approach in functions
with nonuniform density on the search space.
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Figure 4.13: True front and 30000 randomly generated solutions, for function
DTLZ4.
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Figure 4.14: True front and 30000 randomly generated solutions, for function
DTLZ6.
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Figure 4.15: True front (+) and the union of 30 Pareto fronts (×) generated by the
final version of our approach, for function ZDT6.
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Figure 4.16: True front and the nondominated solutions obtained from the union
of 20 Pareto fronts generated by the first version of our approach, for function
DTLZ4.


As we can see in the definition of functions ZDT6 and DTLZ4, nonuniform
density in the search space is caused by the high nonlinearity of the objective
functions: sin


6 ( f1) in ZDT6, and α = 100 ( f1, f2 and f3) in DTLZ4. We per-
formed an experiment to investigate the variation in the values of the objective
functions of problems ZDT6 and DTLZ4, comparing them to the correspond-
ing variations in problems ZDT2 and DTLZ2, respectively. For each test func-
tion, we evaluated d(f(x),f(x+δ)), where d is the Euclidean distance and ε ∈
{0.1,0.01,0.001,0.0001,0.00001,0.000001}. For each different value of δ, we
evaluated the value of d for 100 different x vectors randomly generated. Tables
4.1 and 4.2 show the standard deviations of the values obtained, for each value
of δ. As we can see, the standard deviations for functions ZDT6 and DTLZ4
are much higher than the corresponding values of functions ZDT2 and DTLZ2,
respectively. Thus, these results indicate the variability (nonlinearity) of the dif-
ferent test functions.


In this way, we can conclude that, given the fixed value of parameter Ps (0.97),
the final version of our MOPSO approach has some difficulties optimizing func-
tions with high nonlinearity. This is due to the fact that high nonlinearity in the
objective functions defines search spaces with nonuniform density. In those cases,
diversity is the key to obtain good approximations of the true Pareto front. There-
fore, in functions with such characteristics, a leader selection technique based on
diversity measures is needed. Thus, based on the previous analysis, we finally
conclude that when using our MOPSO approach to optimize high nonlinear func-







92 CHAPTER 4. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION


Test Function ZDT2
ε 0.1 0.01 0.001 0.0001 0.00001 0.000001


std. dev. 0.0022059 0.0002526 0.0000256 0.0000025 0.0000004 0.0000000
Test Function ZDT6


ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
std. dev. 0.0862285 0.0403831 0.00429982 0.0004316 0.0000432 0.0000043


Table 4.1: Standard deviations in the objective values of functions ZDT2 and
ZDT6.


Test Function DTLZ2
ε 0.1 0.01 0.001 0.0001 0.00001 0.000001


std. dev. 0.0897617 0.0082031 0.0008242 0.00008252 0.0000082 0.0000008
Test Function DTLZ4


ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
std. dev. 1.0311648 0.2692921 0.0184366 0.00176306 0.0001755 0.0000175


Table 4.2: Standard deviations in the objective values of functions DTLZ2 and
DTLZ4.
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tions, the user may try using small values for the parameter Ps in order to obtain
better approximations of the true Pareto front.


Finally, as we mentioned in Section 4.4, it is important to note that these con-
clusions are restricted to the set of functions used, since by the No Free Lunch
Theorem [112], general conclusions about the behavior of our algorithm can not
be possibly drawn.


4.8 Constrained Multi-Objective Optimization


In this section, we provide some results of a set of experiments performed to test
the ability of our MOPSO approach to deal with constrained search spaces. Our
MOPSO approach incorporates constraints by modifying the dominance relation:


• When two particles are feasible, the previous defined Pareto dominance is
checked.


• When one particle is feasible and the other one is not, the feasible dominates
the infeasible.


• When both particles are infeasible, the one with the lowest sum of violations
dominates the other.


Table 4.3 provides the list of functions used, with the corresponding number of
variables, objectives and constraints. Also, Table 4.3 indicates the number of
evaluations performed for each one of the test functions. Since function Osyczka
is considered the hardest of the seven functions used, it was the only on which our
algorithm performed 20000 evaluations. Functions Kita and Tanaka were defined
in Section 2.4.3 (page 19), and the definitions of the rest of the functions can be
found in [21].


Table 4.4 shows the results obtained by our algorithm using the SCC and IGD
measures of performance (previously defined). Also, Figure 4.17 shows the Pareto
front corresponding to the median result with respect to the IGD measure, for each
function. As we can see in Table 4.4, function Osyczka was the only in which
our algorithm was not able to obtain optimal solutions. Also, from the rest of
the functions, Jimenez was the hardest to optimize. However, as we can see in
Figure 4.17, our algorithm was able to obtain very good approximations of the
true Pareto front of all functions, including Jimenez and excepting Osyczca. In
the case of function Osyczca, our algorithm obtained a partial approximation of
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Function variables objectives constraints evaluations
Srinivas 2 2 2 5000


Belegundu 2 2 2 5000
Kita* 2 2 3 5000


Jimenez* 2 2 4 5000
Binh 2 2 2 5000


Tanaka 2 2 2 5000
Osyczka 6 2 6 20000


Table 4.3: Constrained test functions used to validate our MOPSO approach.
Functions marked with an asterisk (*) are maximization problems.


Srinivas Belegundu Kita Jimenez Binh Tanaka Osyczka
best 95 100 92 46 93 98 0


median 86 98 85 33 86 78 0
SCC worst 75 92 78 17 79 60 0


mean 85 98 85 32 86 77 0
st. dev. 5.1 1.7 3.5 6.2 3.5 9.3 0


best 0.0305 0.0019 0.0023 0.0142 0.1746 0.0009 0.1138
median 0.0333 0.0019 0.0026 0.0149 0.1843 0.0013 0.2514


IGD worst 0.0395 0.0019 0.0032 0.0168 0.1883 0.0018 0.3967
mean 0.0336 0.0019 0.0026 0.0150 0.1837 0.0013 0.2366


st. dev. 0.0020 0.0000 0.0002 0.0006 0.0038 0.0003 0.0635


Table 4.4: Results obtained by our approach, in constrained functions.


the true Pareto front. However, being function Osyczka a very hard function, we
can consider this as a good result.


4.9 Coevolutionary Multi-Objective Particle Swarm
Optimization


As we mentioned in Chapter 3, the MOPSO approach described and studied in the
previous sections was designed with the aim of incorporating it as a search engine
into the coevolutionary scheme described in Chapter 3.


In this section, we provide some results of the coevolutionary scheme provided
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Figure 4.17: Results obtained by our approach, in constrained functions.
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ZDT1 ZDT2 ZDT3
best 77 73 51


median 43 15 11
SCC worst 2 0 2


average 33 20 17
std. dev. 24.5 23.5 12.5


Table 4.5: Results obtained by our approach in high-dimensional functions.


in Chapter 3 with the MOPSO approach previously defined, as a search engine.
We performed 20 runs and a total of 20,000 evaluations (on average), for functions
ZDT1, ZDT2 and ZDT3 (previously defined).


Table 4.5 shows the results obtained by our algorithm, with respect to the SCC
measure. Also, Figure 4.18 shows the solutions obtained by our coevolutionary
approach, for the three functions. The plots on the left show the union of the 20
Pareto fronts obtained. The plots on the right show the nondominated solutions
produced from the union of the 20 Pareto fronts obtained.


As we can see in Table 4.5, the results of the SCC measure indicate that our
algorithm was able to obtain some optimal solutions, for the three functions con-
sidered. However, although the results obtained by this new version of our coevo-
lutionary approach are better than those of the previous one, we can see that the
quality of these new results is not better than that of the corresponding results of
the MOPSO approach itself. On the other hand, as we can see in Figure 4.19, our
coevolutionary approach still has problems covering the whole Pareto front. In
fact, in function ZDT2, our algorithm collapses on just one point in several runs.


From the obtained results, we conclude that the proposed coevolutionary
scheme is not able to improve the results of the MOPSO approach itself, neither
to obtain at least the same results while performing the same number of function
evaluations. In this way, it seems that the coevolutionary scheme proposed is not
able to reduce computational cost, as it was expected, for the test functions used.


4.10 Conclusions


In this chapter, we described a new MOPSO algorithm, designed with the aim of
incorporating it, as a search engine, into the coevolutionary approach described
in Chapter 3. The MOPSO approach was tested and studied using several differ-
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Figure 4.18: Solutions obtained by our coevolutionary approach, for functions
ZDT1, ZDT2 and ZDT3. The plots on the left show the union of the 20 Pareto
fronts obtained. The plots on the right show the nondominated solutions produced
from the union of the 20 Pareto fronts obtained.
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Figure 4.19: Example of one run in which our coevolutionary approach was not
able to obtain the whole Pareto front, for functions ZDT1, ZDT2 and ZDT3.
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ent test functions taken from the multi-objective optimization literature, and the
obtained results were very competitive.


Finally, we proceeded to incorporate the MOPSO algorithm into our coevolu-
tionary approach. That is, we replaced the MOGA algorithm with our new PSO-
based approach. Unfortunately, we didn’t obtain the expected results. The pro-
posed coevolutionary approach was expected to obtain the same results as those
produced by the search engine alone (in terms of the measures of performance
used), while performing a smaller number of function evaluations. However, as
we could see, the obtained results indicate that the coevolutionary approach was
not able to equal the results of the MOPSO approach itself, while performing the
same number of function evaluations.


We concluded that the previously proposed coevolutionary approach had some
disadvantages. When testing the approach with low dimensional functions the
results were reasonably good. However, when using high dimensional functions,
the coevolutionary approach degraded the quality of the results obtained by the
PSO-based approach alone. In this way, we could see that our coevolutionary
approach had problems with high dimensional decision spaces. We argue that this
problem is due to the fact that the usefulness of the partition scheme used by our
coevolutionary approach depends on the test function adopted. That is, to perform
a partition of the search space is, in general, not useful. In particular, the proposed
coevolutionary scheme does not seem to be useful for the set of test functions
adopted, which consists of very specific continuous real-valued functions (that is
precisely the type of problem in which we are interested). However, it remains
open the posibility of testing the usefulness of such scheme when using it for
solving other types of problems.


For these reasons, we decided to study alternative mechanisms for reducing
computational cost. The following chapter describes our work done on this topic.
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Chapter 5


Fitness Inheritance in
Multi-Objective
Particle Swarm Optimization


While studying different mechanisms to reduce computational cost, we found a
biological concept previously proposed with that purpose and that had not been
applied to Particle Swarm Optimization. In this chapter, we describe our proposal
to incorporate the concept of fitness inheritance into the PSO-based approach de-
scribed in the previous chapter, in order to reduce the number of function evalua-
tions performed.


5.1 Fitness Inheritance


Fitness inheritance is an enhancement technique that has been proposed to im-
prove the performance of EAs [99]. In fitness inheritance, the fitness value of an
offspring is obtained from the fitness values of its parents. In this way, we do not
need to evaluate every individual at each generation, and therefore, the computa-
tional cost is reduced.


The use of fitness inheritance to improve the performance of GAs was orig-
inally proposed by Smith et al. [99]. The authors proposed two possible ways
of inheriting fitness: the first consists of taking the average fitnesses of the two
parents and the other consists of taking a weighted (proportional) average of the
fitnesses of the two parents. The second approach is related to how similar the
offspring is with respect to its parents (this is done using a similarity measure).
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They applied inheritance to a very simple problem (the OneMax problem) [99]
and found that the weighted average fitness resulted in a better performance and
indicated that fitness inheritance was a viable alternative to reduce the computa-
tional cost of a genetic algorithm.


Sastry et al. [91] provide some theoretical foundations for fitness inheritance.
They investigated convergence times, population sizing and the optimal propor-
tion of inheritance for the OneMax problem. Chen et al. [12] investigate fitness
inheritance as a way to speed up multi-objective GAs and EAs. They extended
the analytical model proposed by Sastry et al. for multi-objective problems. Con-
vergence and population-sizing models are derived and compared with respect to
experimental results. The authors concluded that the number of function evalua-
tions can be reduced with the use of fitness inheritance.


5.2 Previous Work


There are very few references in the literature in which fitness inheritance is used
to reduce computational cost. We will review the main ones in this section:


• Ducheyne et al. [29] tested the performance of average and weighted av-
erage fitness inheritance on a well-known test suite of multi-objective opti-
mization problems [116], using a binary GA. They concluded that the fit-
ness inheritance efficiency enhancement techniques can be used in order to
reduce the number of fitness evaluations provided that the Pareto front is
convex and continuous. They also concluded that if the Pareto surface is
not convex or if it is discontinuous, the fitness inheritance strategies fail to
reach the true Pareto front.


• Salami et al. [88] proposed a “Fast Evolutionary Algorithm” in which a
fitness and associated reliability value are assigned to each new individual
that is only evaluated using the true fitness function if the reliability value
is below a threshold. Also, they incorporated random evaluation and error
compensation strategies. The authors obtained an average reduction of 40%
in the number of evaluations while obtaining solutions of similar quality. In
the same work, they presented an application of fitness inheritance to image
compression obtaining reductions between 35% and 42% of the number of
evaluations.
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• Bui et al. [10] compared the performance of anti-noise methods, partic-
ularly probabilistic and re-sampling methods, using NSGA-II [27]. They
applied the concept of fitness inheritance to both types of methods in or-
der to reduce calculation time. The authors obtained a substantial amount
of savings in computational time (reaching 30% in the best case), without
deteriorating the performance.


As we could see, two of the previously described approaches apply fitness
inheritance to solve multi-objective problems, using genetic algorithms [29, 10].
However, it is important to mention that, in the case of the work developed by
Bui et al. [10], the motivation for using inheritance was not the high cost of the
objective function itself (as it is in our case). In [10], since the use of anti-noise
methods increases the number of function evaluations in a considerable way, the
authors propose the use of fitness inheritance to overcome such disadvantage. For
this reason, we can see fitness inheritance, in this case, as a way of improving the
applicability of the anti-noise methods.


On the other hand, in the proposal of Ducheyne et. al [29], the motivation for
using fitness inheritance is actually the high cost of the objective function itself.
However, their approach doesn’t work when the true Pareto front of the problem
is not convex or discontinuous.


In the next sections, we will describe several fitness inheritance techniques
especially designed for multi-objective optimization problems, and whose appli-
cability is not affected by the topology of the true Pareto front. Also, the proposed
tehcniques represent the first attempt to incorporate the use of fitness inheritance
into a PSO-based optimization algorithm.


5.3 First Proposed Technique


Since PSO has no recombination operator, we adopted as “parents” of a particle
the previous position of the particle and its leader. We performed experiments
using the weighted average inheritance over real numbers encoding [99]:


Given the previous position of a particle xold, its assigned leader xld and the
new position xnew, we proceed to calculate the distance from xnew to its “parents”
(as defined before):


d1 = d(xnew,xold), d2 = d(xnew,xld),
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Figure 5.1: The two possible cases of fitness inheritance: (a) when the leader
dominates the particle and (b) when the leader does not dominate the particle.


where d is an Euclidean distance in the decision variable space. Later, we cal-
culate how near is the new position from these two positions (xold and xld) and
proceed to inherit the corresponding objective function values:


r =
d1


d1 +d2


fi(xnew) = r fi(xld)+(1− r) fi(xold), i = 1, ...,n


where fi is the value of the objective function i and n is the number of objective
functions. As we can see, the new objective values are linear combinations of the
previous values of the particle and the values of the leader.


Ducheyne [29] noted that the previous form of fitness inheritance has problems
when the Pareto front is not convex. We came across this same limitation and after
some analysis, we concluded that the problem arises in our MOPSO only when
the leader chosen does not dominate the current particle. So, we changed the
fitness inheritance mechanism when the above situation arises. In this case, we
use the values obtained using the original scheme to locate the closest leader to
that position. Then, the objective function values of such leader are assigned to
the new position. We can see both types of inheritance in Figure 5.1.


In Figure 5.2, the symbol (⇒) indicates the line in which the concept of fitness
inheritance is incorporated. The inheritance proportion, pi, is the proportion of
individuals in the population whose fitness is inherited. It is very important to
note that a particle that has inherited its objective values can not enter into the
final Pareto front.
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Begin
Initialize swarm. Initialize leaders.
Send leaders to ε-archive
crowding(leaders), g← 0
While g < gmax


For each particle
Select leader. Flight. Mutation.


⇒ If(pi) Inherit Else Evaluation.
Update pbest.


EndFor
Update leaders, Send leaders to ε-archive
crowding(leaders), g← g+1


EndWhile
Report results in ε-archive


End


Figure 5.2: Pseudocode of our algorithm. The symbol (⇒) indicates the line in
which the concept of fitness inheritance is incorporated.


5.3.1 Discussion of Results


The results discussed in this section were published in [97]. We tested our ap-
proach using four test functions: ZDT1, ZDT2, ZDT3 and ZDT4 (defined in Sec-
tion 2.4.3, page 19). We performed experiments with different values of inher-
itance proportion pi. We experimented with: pi= 0.1, 0.2, 0.3, 0.4. Note that
this proportion of individuals indicates also the percentage by which the num-
ber of evaluations is reduced (e.g., pi = 0.1 means that 10% less evaluations are
performed). Also, we compared our results against another PSO-based multi-
objective approach representative of the state-of-the-art: the Sigma-MOPSO [68].
The approaches will be identified with the following labels: sMOPSO refers to
[68], and oMOPSO is our MOPSO [98, 97].


We performed 20 runs for each function and each approach. The parameters
of each approach were set such that they all performed 20000 objective function
evaluations. In this way, the approach with fitness inheritance performed approx-
imately 18000 evaluations when pi= 0.1, 16000 when pi= 0.2, 14000 when pi=
0.3 and 12000 when pi= 0.4. All the algorithms were set such that they provided
Pareto fronts with 100 points. For our comparative study we used three measures
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of performance: Success Counting (SCC), Inverted Generational Distance (IGD)
and Two Set Coverage (SC). These measures are defined in Section 2.4.4, page 25.
All the tables and figures corresponding to the obtained results can be consulted
in Appendix C, page 191.


Tables C.1 and C.2 summarize the results obtained with respect to the unary
measures and Table C.3 summarizes the results obtained for the binary measure.
The Pareto fronts shown in Figures C.1 and C.2 correspond to the nondominated
vectors obtained from the union of the 20 Pareto fronts produced by each ap-
proach. It should be noted that the Pareto fronts shown were also used to apply
the binary measure of performance.


Tables C.1 and C.2 show that, with respect to the SCC measure, the use of
fitness inheritance decreases the quality of the results as we increase pi. How-
ever, with respect to the IGD measure all the approaches with fitness inheritance
have almost the same median and mean values that the approach without inheri-
tance, except in function ZDT3. In this way, we can conclude that the approaches
with fitness inheritance obtained as good approximations to the corresponding
true Pareto front, as the approach without inheritance. In fact, it is very interesting
to note that, in some cases, when the value of pi is low, the quality of the results
with respect to the SCC measure is better than the algorithm without fitness in-
heritance. This is the case of functions ZDT1 (pi = 0.1), ZDT3 (pi = 0.1) and
ZDT4 (pi = 0.1,0.2). This effect in the results may be a product of the diversity
that is introduced by a particle that has inherited the objective values of a leader.
On the other hand, it is always greater the number of function evaluations saved,
than the loss of quality in the obtained results (on average, with respect to the SCC
measure). For example, in functions ZDT1, ZDT2 and ZDT3, the worst results
were obtained by the approach with pi = 0.4, reducing the quality of the results
in a 14.1%, 13.5% and 13.2%, respectively. In function ZDT4, the worst results
were obtained by the approach with pi = 0.3 reducing the quality of the results in
a 25%. In fact, even in the worst case with a saving of 40% of evaluations, the
results of the approaches with fitness inheritance are better than the results of the
another PSO-based approach (sMOPSO).


Since, in general, the performance with respect to the IGD of all the ap-
proaches with inheritance in very similar, we choose the approach with the worst
results with respect to the SCC measure to be represented by means of its corre-
sponding Pareto front in Figures C.1 and C.2. Thus, in functions ZDT1, ZDT2
and ZDT3, we show the Pareto front corresponding to the approach with pi = 0.4
and, in the case of function ZDT4, the Pareto front corresponding to the approach
with pi = 0.3. We can see in Figures C.1 and C.2 that the approaches with in-
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heritance do not lose the Pareto front even in cases where the true Pareto front is
not convex or discontinuous. As we described in Section 5.3, we implemented a
simple mechanism (shown in Figure 5.1, page 104) in order to avoid producing
invalid particles in the cases of Pareto fronts which are non-convex or discontinu-
ous, this is the main reason why our algorithm does not have problems with these
types of test functions.


From the results shown in Table C.3, and following the definitions provided
in Section 4.4 (page 69), we can conclude that our algorithm without inheritance
(oMOPSO) is relatively better than almost all the approaches with fitness inheri-
tance in all functions, except for the case when pi = 0.1. The approach with pi =
0.1 is relatively better than the approach without inheritance in three of the four
functions: ZDT1, ZDT2 and ZDT3. This conclusion agrees with the results ob-
tained with the unary measures. The only function in which the algorithm without
inheritance is relatively better than all the approaches with fitness inheritance is
ZDT4. These results seem to indicate that the fitness inheritance approach is more
useful when the decision space of the problem has a high dimension, since func-
tion ZDT4 is the one with the lowest number of variables (function ZDT4 has only
10 variables while the rest have 30 variables).


From our results, we concluded that the efficiency enhancement technique
proposed reduces the computational cost without decreasing the quality of the
results in a significant way. Also, the fitness inheritance technique used in our
approach is able to generate non-convex and discontinuous Pareto fronts. On
the other hand, obtained results seem to indicate that the proposed enhancement
technique is more useful, that is, the quality of the results is less affected when the
decision space is high-dimensional.


Given the obtained results, we decided to explore alternative ways to incorpo-
rate fitness inheritance into our PSO-based approach. Such work is described in
the following section.


5.4 Study of Different Techniques


Since the results obtained with the first proposed fitness inheritance technique
were promising, we decided to study other ways of incorporating such concept
into our PSO-based approach. Also, we decided to apply the concept of fitness
approximation in order to reduce computational cost. In this way, we proposed
a total of nineteen techniques: fifteen fitness inheritance techniques and four ap-
proximation techniques. In this section we describe these techniques and the re-
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sults obtained.


5.4.1 Fitness Approximation


Another promising possibility when an evaluation is very time consuming or ex-
pensive is not to evaluate every individual, but just estimate the quality of some of
the individuals based on an approximate model of the fitness landscape.


By using approximation techniques [53], it is possible to estimate the fitness
of an individual using the previously calculated fitness of its neighbors. There are
many possible approximation models. In the simplest case, the fitness of a new
individual is derived from its parents’ fitnesses (fitness inheritance). However,
there are some other methods like polynomials, the kriging model [9], neural net-
works [53] and interpolation and regression [8]. Reported experiments [8] show
that using fitness estimation, it is possible to either reach a better fitness level in a
certain given time, or to reach a desired fitness level much faster. We adopt very
simple approximation techniques, based only on the objective values of the closest
neighbors.


As in the case of the technique described in the previous section, we can see
in Figure 5.2 (page 105) that the symbol (⇒) indicates the line in which the con-
cept of fitness inheritance (or approximation) is incorporated into our MOPSO
approach.


5.4.2 Proposed Techniques


Fitness Inheritance


Linear Combination Based on Distances (LCBD)
We propose to calculate the new position in the objective space of a particle by


means of a linear combination of the positions of the particles that were considered
to calculate the new position in the search space.


Given the previous position of a particle xold , its personal best xpbest , the posi-
tion of its assigned leader xld and the new position xnew, we proceed to calculate
the distance from xnew to its “parents” (as defined before): d1 = d(xnew,xold),d2 =
d(xnew,xpbest),d3 = d(xnew,xld), where d is an Euclidean distance. We propose
variants of the same idea, based on the individuals that can be considered. We
consider the position of the leader as the most important. Thus, the leader will be
always considered:
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Figure 5.3: Illustration of techniques FI1, FI2 and FI3.


FI1 Previous position and position of the leader: r = d1
d1+d2


,


fi(xnew) = r fi(xld)+(1− r) fi(xold), i = 1, ...,n.


FI2 pbest position and position of the leader. r = d2
d2+d3


,


fi(xnew) = r fi(xld)+(1− r) fi(xpbest), i = 1, ...,n.


FI3 Previous position, pbest position and position of the leader.
r1 = d1


d1+d2+d3
, r2 = d2


d1+d2+d3
, r3 = d3


d1+d2+d3
, r1 = 1/r1,r2 = 1/r2,r3 = 1/r3


fi(xnew) = r1 fi(xold)+ r2 fi(xpbest)+ r3 fi(xld),


i = 1, ...,n. Where fi is the value of the objective function i and n is the number
of objective functions. See Figure 5.3 for an illustration of these techniques.


The technique FI1 is the one proposed in the previous section. As in the previ-
ous case, in all the inheritance techniques, if the leader selected does not dominate
the current particle, we will proceed as before. See Figure 5.1.


Flight Formula on Objective Space (FFOS)
As we mentioned in Chapter 4, in PSO, the position of a particle i in the search


space is updated using the formula:


xi(t) = xi(t−1)+vi(t)


vi(t) = Wvi(t−1)+C1r1(xpbesti −xi(t−1))+C2r2(xgbesti −xi(t−1))


In this case, we propose the analogous formula to update the position of parti-
cle i in the objective space:
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fi(t) = fi(t−1)+vfi(t)


vfi(t) = Wvfi(t−1)+C1r1(fpbesti − fi(t−1))+C2r2(fgbesti − fi(t−1))


where fi, fpbesti and fgbesti are the objective vectors for the current particle i,
its pbest and gbest, respectively. We use the same values of W , C1, r1, C2 and r2


previously adopted for the flight in the decision variable space. We will consider
the following variants based on the vectors considered:


FI4 Considering the whole formula:


vfi(t) = Wvfi(t−1)+C1r1(fpbesti − fi(t−1))+C2r2(fgbesti − fi(t−1))


FI5 Ignoring the previous direction:


vfi(t) = C1r1(fpbesti − fi(t−1))+C2r2(fgbesti − fi(t−1))


FI6 Ignoring the direction to the pbest:


vfi(t) = Wvfi(t−1)+C2r2(fgbesti − fi(t−1))


Combination Using Flight Factors
Non-linear Combination (NLC)


In this case, we propose to calculate the new objective position of a particle
using the elements of the flight formula:


fi(t) = W fi(t−1)+C1r1fpbesti +C2r2fgbesti


As in the previous cases, the variants considered are:


FI7 Considering the whole formula:


fi(t) = W fi(t−1)+C1r1fpbesti +C2r2fgbesti


FI8 Ignoring the previous position:


fi(t) = C1r1fpbesti +C2r2fgbesti


FI9 Ignoring the position of the pbest:


fi(t) = W fi(t−1)+C2r2fgbesti
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On the other hand, since W ∈ (0.1,0.5) and C1r1, C2r2 ∈ (0.0,2.0), we propose
to modify the previous formula in the following way:


fi(t) =
W
0.5


fi(t−1)+
C1r1


2.0
fpbesti +


C2r2


2.0
fgbesti


As a result, we obtain the following variants:


FI10 Considering the whole formula:


fi(t) =
W
0.5


fi(t−1)+
C1r1


2.0
fpbesti +


C2r2


2.0
fgbesti


FI11 Ignoring the previous position:


fi(t) =
C1r1


2.0
fpbesti +


C2r2


2.0
fgbesti


FI12 Ignoring the position of the pbest:


fi(t) =
W
0.5


fi(t−1)+
C2r2


2.0
fgbesti


Linear Combination (LC)
We propose to use the previous formula but in such a way that the result is a


linear combination of the elements considered:


fi(t) =
W
r


fi(t−1)+
C1r1


r
fpbesti +


C2r2


r
fgbesti


where r = W +C1r1 +C2r2. The corresponding variants are the following (note
the changes in r):


FI13 Considering the whole formula, r = W +C1r1 +C2r2:


fi(t) =
W
r


fi(t−1)+
C1r1


r
fpbesti +


C2r2


r
fgbesti


FI14 Ignoring the previous position, r = C1r1 +C2r2:


fi(t) =
C1r1


r
fpbesti +


C2r2


r
fgbesti


FI15 Ignoring the position of the pbest, r = W +C2r2:


fi(t) =
W
r


fi(t−1)+
C2r2


r
fgbesti
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Fitness Approximation (FA)


We propose four simple approximation techniques. In each case, the particle will
take the objective values of the particle indicated:


FA1 The closest particle: leader or member of the swarm.


FA2 The closest leader.


FA3 The closest particle (member of the swarm).


FA4 The average of the 10 closest particles (leaders or members of the swarm).


We use the Euclidean distance in the decision variable space. In technique
FA4, there are cases in which an invalid particle may be created. In this way, if
among the 10 closest particles there are two or more leaders, or there is just one
leader but this leader does not dominate the current particle, we will proceed as it
was explained before. See Figure 5.1.


5.4.3 Discussion of Results


The results discussed in this section were published in [79]. We performed a
study using functions ZDT1, ZDT2, ZDT3 and ZDT4 (previously defined). Also,
we used different values of inheritance (approximation) proportion pi, we exper-
imented with: pi= 0.1, 0.2, 0.3, 0.4. We performed 20 runs for each function and
each technique. The parameters adopted for our MOPSO were: 100 particles,
200 generations and 100 particles in the external archive. We show the results
corresponding to the Success Counting (SCC) measure (previously defined). Ta-
bles C.4, C.5, C.6 and C.7 present a summary of the results obtained, and can be
consulted in Appendix C, page 191. In each case, we present the average of the
SCC measure over the 20 runs, and the percentage of decrement or increment on
the quality of the results. Also, we present the average of the percentages for each
value of inheritance proportion, for each technique.


Since comparing 19 different techniques is very difficult, we decided to repre-
sent each technique with a vector. The vector used is that containing the average
of the change in the quality of results for each inheritance proportion value. For
example, to represent technique FI1, we construct the following vector (see Table
C.4):


Inheritance proportion pi 0.1 0.2 0.3 0.4
Average vector 2.6 -4.1 -13.7 -14.0
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In this way, in Table 5.1 we present the vectors of all techniques. Since every
entry in each vector is a change in the quality of the obtained results given a
value of inheritance proportion, the bigger the values of the vector, the better
the corresponding technique is. Thus, we are interested on the vector or vectors
that represent the solution to the problem of maximizing all the entries (i.e. each
entry is considered as an objective). The non-dominated vectors among all the
19 techniques are the vectors corresponding to techniques FI5 and FA3. That is,
the techniques FI5 and FA3 are the best. For this reason these two techniques
are marked with a level of 1 in Table 5.1. FI5 is an inheritance technique and
FA3 is an approximation technique. For these two techniques, in the worst case,
the decrement in quality of results is no more than 13%, even when a 40% of
the total number of evaluations is saved. After eliminating techniques FI5 and
FA3, we proceed again to locate the non-dominated vectors. In this case, the best
techniques, marked with a level 2 are: FI1, FI2, FI4, FI6 and FA1. This leads us
to conclude that, in general, the set of inheritance techniques based on the flight
formula on the objective space (FFOS) are the best.


5.4.4 Comparison with other PSO approaches


In the previous section, we found two enhancement techniques to be the best
from the set proposed: one of fitness inheritance and one of fitness approxima-
tion. In this section, these two techniques are compared against other two PSO-
based multi-objective approaches representative of the state-of-the-art: the Sigma-
MOPSO [68] and the Cluster-MOPSO [103]. For this comparison we use two
different test functions: DTLZ2 and DTLZ6 (previously defined). As in previous
experiments, we used different values of pi. We performed 20 runs for each func-
tion and each approach. The approaches without fitness inheritance or approx-
imation performed 20000 objective function evaluations. The PSO approaches
will be identified with the following labels: sMOPSO refers to [68], cMOPSO
refers to [103], and oMOPSO is our MOPSO. All the algorithms were set such
that they provided Pareto fronts with 100 points. In this case, we also show the
obtained results with respect to the Inverted Generational Distance (IGD) measure
(previously defined).


Tables C.8 and C.9 present a summary of the results obtained (Appendix C,
page 191). In each case, we present the average and standard deviation of the
SCC and IGD measures over the 20 runs. From Table C.8, we conclude that
the fitness inheritance technique FI5 has a better performance in function DTLZ6
than in function DTLZ2 with respect to the SCC measure. However, the IGD
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Group 0.1 0.2 0.3 0.4 level
FI1 2.6 -4.1 -13.7 -14.0 2


LCBD FI2 -3.6 -2.4 -11.9 -12.9 2
FI3 0.1 -4.9 -13.8 -17.8
FI4 0.1 -1.7 -8.7 -13.6 2


FFOS FI5 4.7 -1.2 -8.1 -11.7 1
FI6 1.6 -2.8 -10.1 -16.7 2
FI7 -4.9 -10.3 -19.5 -30.2
FI8 -0.7 -7.5 -20.7 -29.8


NLC FI9 -0.2 -7.3 -16.7 -28.5
FI10 -3.0 -9.2 -19.3 -33.3
FI11 -3.6 -6.0 -14.1 -26.7
FI12 -3.0 -9.5 -17.5 -22.1
FI13 -2.1 -2.6 -12.5 -18.8


LC FI14 -3.7 -4.9 -10.3 -16.0
FI15 0.3 -5.0 -12.3 -16.6
FA1 4.2 -3.4 -8.4 -14.1 2


FA FA2 -0.3 -11.2 -16.6 -15.9
FA3 1.5 0.4 -6.9 -12.9 1
FA4 0.3 -4.1 -12.3 -16.2


Table 5.1: Vectors of change in quality for each technique, for each value of
inheritance or approximation proportion.


measure indicates a very good performance in all cases, even with respect to the
other PSO-based approaches. Table C.9 shows a very good performance of the
fitness approximation technique FA3 in both functions and with respect to the two
measures.


In general, technique FA3 was better than FI5 in function DTLZ2, in which it
offers a 12% of decrement in quality with a saving of 30% in evaluations in the
best case, and a 28% of decrement in quality with a saving of 40% in evaluations,
in the worst case. On the other hand, technique FI5 was better than FA3 in function
DTLZ6. In function DTLZ6, technique FI5 offers a 2% of decrement in quality
with a saving of 30% in evaluations in the best case, and a 30% of decrement in
quality with a saving of 40% in evaluations, in the worst case. These results agree
with those obtained before. As we can see in Table 5.2, the results obtained in the
previous study show that technique FA3 is consistently better than technique FI5
in function ZDT4. In this way, we can conclude that the fitness approximation
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FI5 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 69 (-2.8%) 61 (-14.1%) 56 (-21.1%)
ZDT2 89 89 ( 0.0%) 79 (-11.2%) 84 (-5.6%) 77 (-13.5%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 55 (-19.1%) 58 (-14.7%)
ZDT4 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)


Average +4.7% -1.2 % -8.1 % -11.7%
FA3 Approximation proportion pa


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 67 (-5.6%) 63 (-11.3%) 50 (-29.6%)
ZDT2 89 88 (-1.1%) 87 (-2.2%) 85 (-4.5%) 76 (-14.6%)
ZDT3 68 65 (-4.4%) 65 (-4.4%) 55 (-19.1%) 57 (-16.2%)
ZDT4 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)


Average +1.5% +0.4 % -6.9 % -12.9%


Table 5.2: Results obtained for different values of inheritance and approximation
proportion, for techniques FI5 and FA3.


technique FA3 has better results when the test function has a low dimensional
decision space and that the fitness inheritance technique FI5 has better results
when the test function has a high dimensional decision space. This conclusion
seems to agree with the results obtained from the first fitness inheritance technique
proposed.


From the nineteen techniques proposed to reduce the computational cost, we
found two of them as the best: one inheritance technique and one approximation
technique. The best fitness inheritance technique is based on the flight formula for
the objective space proposed by us. The best approximation technique is based on
the simple idea of assigning to a particle the same objective values of the closest
particle member of the swarm. Both techniques were tested on other functions and
compared with other PSO-based multi-objective algorithms. The obtained results
show that both enhancement techniques have a good performance and are very
promising.


On the other hand, fitness inheritance techniques seem to be more appropri-
ate for high-dimensional decision space problems and fitness approximation tech-
niques seem more appropriate for low-dimensional decision space problems.


Since our major interest is reducing computational cost, in the next section we
describe the work done in order to improve the results described until now.
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5.5 Dynamic Inheritance Proportion


In this chapter, we have shown that the use of an enhancement technique is very
useful to reduce the computational cost of EAs.


The fitness inheritance (and approximation) techniques proposed have reduced
the computational cost significantly without decreasing the quality of the results
in a dramatic way. However, in all the previous experiments, the savings in the
number of evaluations has been completely determined by the value of inheritance
(or approximation) proportion pi.


With the aim of obtaining major savings in the number of evaluations per-
formed, we decided to study the possibility of setting the value of the inheritance
proportion parameter pi following a dynamical scheme.


5.5.1 Proposed Dynamical Approach


As it has been mentioned before, the use of fitness inheritance decreases the qual-
ity of the results as we increase the value of the parameter pi. So, our main idea
is to increase the saving in number of function evaluations but setting the value of
pi in such a way that the quality of the obtained results can be less affected.


We proceeded to analyze the behavior of our MOPSO approach, with re-
spect to the improvement on the results through the evolutionary process, that
is, through the generations.


Given the current Pareto front in generation t, PF(t), and the Pareto front in the
previous generation PF(t− 1), we calculated the value of the Two Set Coverage
measure SC (defined in Section 2.4.4, page 25):


SC(PF(t),PF(t−1))


In this way, we can know “how much” better is the current Pareto front with
respect to the front of the previous generation.


We performed 20 runs of our approach using function ZDT1, 100 particles
and 200 generations, and we obtained the average of SC(PF(t),PF(t−1)) on each
generation. Figure 5.4 shows the obtained results.


As we can see in Figure 5.4, the most important improvement takes place
during the first quarter of the total of generations (the first 50 generations in this
case). In this way, we concluded that at the beginning of the process it is not
convenient to use too much fitness inheritance. However, towards the end of the
process, fitness inheritance is more suitable.
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Figure 5.4: Two Set Coverage measure (SC).


Thus, given the previous conclusions, we propose to set the value of the pa-
rameter pi dynamically with respect to the current generation number. The main
idea is to increase the use of fitness inheritance through the evolutionary process.
In this way, we propose six different functions to adapt the value of the inheritance
proportion with respect to the number of the current generation: Let gen be the
number of the current generation and Gmax the total number of generations:


• nonlinear1: pi(gen) =
( gen


Gmax


)4


• nonlinear2: pi(gen) =
( gen


Gmax


)2


• nonlinear3: pi(gen) = gen
Gmax −


sin(2Π gen
Gmax )


6.3


• linear: pi(gen) = gen
Gmax


• nonlinear4: pi(gen) =
( gen


Gmax


)
1
2


• nonlinear5: pi(gen) =
( gen


Gmax


)
1
4
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Figure 5.5: Plot of the six different functions proposed to adapt the value of the
inheritance proportion (pi) through the evolutionary process.


The six previous functions (that we will call adaptive functions) are designed
in such a way that the value of inheritance proportion increases through the evo-
lutionary process. Nevertheless, it is important to note that gen = 0, ...,Gmax−1,
and that pi = 0 when gen = 0, since fitness inheritance must not be applied when
gen = 0. Figure 5.5 presents a plot of the six adaptive functions.


The adaptive functions are numbered following an ascending order with re-
spect to the savings on the total number of evaluations that they define. In this
way, the adaptive function nonlinear1 is the one that defines the least savings on
the total number of evaluations. On the other hand, the adaptive function nonlin-
ear5 is the one that defines the greatest savings on the total number of evaluations.
See Figure 5.5.


5.5.2 Discussion of Results


The results discussed in this section were published in [80], and can also be seen
in [81]. In order to test the mechanism proposed to set the value of the parameter
pi, we proceeded to incorporate it into the MOPSO approach and we performed
the following experiments. We ran our algorithm 30 times using functions ZDT1,
ZDT2, ZDT3, ZDT4 and DTLZ6 (previously defined).


The parameters used were 200 particles, 100 generations and 100 points in
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the final Pareto Front. In this way, the total number of evaluations is 20200 in
the absence of fitness inheritance. In all the experiments performed we used the
fitness inheritance technique FI5, since it was found to be the best among the
inheritance techniques previously described in Section 5.4. For our comparative
study, we used the SCC and IGD measures of performance (previously defined).
All the tables and figures corresponding to the obtained results can be consulted
in Appendix C, page 191.


Tables C.10, C.11 and C.12 present the results obtained using the unary mea-
sures. For each test function, we present first the results obtained by the MOPSO
approach without inheritance and then, the results of the approach with inheri-
tance with each one of the adaptive functions, from function nonlinear1 to func-
tion nonlinear5. For each approach, we present the best, median, worst, mean and
standard deviation values with respect to the two unary measures implemented.
Also, we show the average number of evaluations performed on each case and the
corresponding percentage of savings obtained.


On the other hand, Tables C.13, C.14 and C.15 present the confidence intervals
for the mean statistic (with 95% of confidence), for the SCC and IGD measures,
for each function and each approach. We performed a Kolmogorov-Smirnov test
for each sample of each function and each approach, to verify if the corresponding
distributions were close to a normal one. For those distributions that were not
close to a normal, we calculated the bootstrap bias-corrected accelerated (BCA).


In addition, for each test function, we selected the Pareto fronts corresponding
to the median value with respect to the SCC measure to represent each approach.
In this way, Table C.16 presents the results obtained when applying the SC mea-
sure to the Pareto fronts that represent each approach. For each case, we compare
the Pareto front corresponding to the approach without inheritance against the
Pareto fronts corresponding to the approaches with inheritance, using adaptive
functions nonlinear1 to nonlinear5. Also, for each case we compare the Pareto
fronts corresponding to the approaches with inheritance against the Pareto front
of the approach without inheritance.


Finally, Figures C.3, C.4 and C.5 show the Pareto fronts that represent each
approach. For each test function, we present three plots. The first one, shows
the Pareto fronts from the approach without inheritance and the approaches with
inheritance and adaptive functions nonlinear1 and nonlinear2. The second plot
shows the Pareto fronts from approaches with inheritance and adaptive functions
nonlinear3 and linear. Finally, the third plot shows the Pareto fronts from ap-
proaches with inheritance and adaptive functions nonlinear4 and nonlinear5.


As we can see in Tables C.10 to C.15, for all the test functions, when the
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application of the inheritance increases, the quality on the results is more affected.
This behavior can be observed more dramatically in functions ZDT1, ZDT3 and
DTLZ6. In functions ZDT2 and ZDT4, the quality of the results is less affected
by the application of fitness inheritance. In fact, in function ZDT4, we can see
that the results with respect to the IGD measure are almost of the same quality,
even when a 78% of evaluations are saved. Actually, in function ZDT4 we argue
that, considering both measures of performance, it is possible to save even a 49%
of function evaluations without affecting the quality of the results.


Taking into account both unary measures of performance, we consider that
the quality of the results is maintained when at least one of the measures indicates
so. In this way, we can conclude that in general, it is possible to save even a
32% of evaluations without affecting the quality of the obtained solutions. That
is, adaptive functions nonlinear1 and nonlinear2, seem to be good options to save
evaluations without deteriorating the quality of the results.


On the other hand, as it was expected from their definition, adaptive functions
nonlinear3 and linear, provide the same percentage of savings in the number of
evaluations. In general, the results when using function linear are better than the
corresponding results using function nonlinear3. Since both adaptive functions
(nonlinear3 and linear) provide the same amount of savings, we conclude that
given their corresponding definition, the obtained results indicate that it is impor-
tant to maintain the true evaluations at the end of the run, even if we try not to
apply inheritance at the beginning of the evolutionary process.


As we can see in Tables C.10 to C.15, adaptive functions that save more than
a 50% of the total number of evaluations, nonlinear4 and nonlinear5, affect the
results more dramatically. That is, the damage on the quality of the results increase
more rapidly when the savings are greater than a 50% of the evaluations.


Very similar conclusions can be obtained from the results obtained using mea-
sure SC. In Table C.16, we can see again that the percentage of dominated solu-
tions by the Pareto front corresponding to the approach without inheritance grows
when we increase the use of fitness inheritance. In functions ZDT2 and ZDT4,
the quality of the results is less affected by the use of inheritance, especially in
the case of function ZDT4. In the case of adaptive functions nonlinear1 and non-
linear2, the results in Table C.16 indicate that the Pareto fronts obtained using
function nonlinear2 are better. On the other hand, results from adaptive functions
nonlinear3 and linear are very similar, but we can conclude again that function
linear provides better results than function nonlinear3. Finally, it is very clear that
the use of adaptive functions nonlinear4 and nonlinear5 affects dramatically the
obtained results, especially in the case of functions ZDT1 and ZDT3.
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From Table C.16, we can conclude that it may be possible to save a 65% of
the total number of evaluations expecting to lose a 40% of quality, in the worst
case. Also, it seems very harmful to save a 78% of evaluations, since in the worst
case the quality was reduced by 67%.


Finally, as we can see in Figures C.3, C.4 and C.5, the Pareto fronts generated
by the approaches with inheritance are very similar to the Pareto front from the
approach without inheritance, even when a 49% of the total number of evalua-
tions is saved. It is only in the case of the approaches with inheritance and adap-
tive functions nonlinear4 and nonlinear5 in which we can observe Pareto fronts
of relatively low quality (especially in the case of function DTLZ6 and adaptive
function nonlinear5). However, we can see that the Pareto fronts obtained by those
approaches are very good approximations of the true Pareto front, except in the
case of function DTLZ6, in which adaptive function nonlinear5 lost some portions
of the true Pareto front.


In general, from the obtained results shown in Tables C.10 to C.16, we can
conclude that it is possible to save a 32% of the total number of evaluations with-
out significantly affecting the quality of the obtained solutions. Also, the quality
of the results when having savings of 49% of the evaluations, is very acceptable.
Finally, in the case of reducing the total number of evaluations by more than a
50%, the quality of the results is even more affected. However, as we can see in
the Pareto fronts shown, even with a 78% of savings, the approach with inher-
itance still provides very good approximations of the true Pareto front. In this
way, although the quality of the results can be significantly affected when reduc-
ing the computational cost by more than 50%, if the real world application is very
expensive to evaluate and we are interested only on a few optimal solutions, the
proposed approach may be a suitable choice.


5.5.3 Comparison with Other MOEAs


In this section, we present a final comparison of the results discussed in the pre-
vious section, with respect to the results of the NSGA-II and SPEA2 algorithms,
provided in Chapter 4.


In Table 5.3, we show the results of the inheritance approach previously dis-
cussed, and the results of the NSGA-II and the SPEA2, for functions ZDT1,
ZDT2, ZDT3, ZDT4 and DTLZ6. We show in boldface the cases in which the
results of our approach are either better or of the same quality (on average) than
the corresponding results of both the NSGA-II and the SPEA2.


As we can see in Table 5.3, in functions ZDT2 and ZDT4 our results are







122
CHAPTER 5. FITNESS INHERITANCE IN MULTI-OBJECTIVE


PARTICLE SWARM OPTIMIZATION


OMOPSO NSGA-II SPEA2


savings 0% 19% 32% 49% 49% 65% 78% 0% 0%
ZDT1


SCC mean 87 84 74 71 68 53 21 21 27
st.dv. 12.5 12.6 21 18.6 22.7 21.6 13.5 7.5 8.1


IGD mean 0.0010 0.0010 0.0010 0.0031 0.0028 0.0039 0.0084 0.0009 0.0007
st.dv. 0.0000 0.0000 0.0002 0.0089 0.0069 0.0098 0.0180 0.0001 0.0001


ZDT2


SCC mean 92 93 89 83 84 69 45 6 7
st.dv. 12.9 6.1 12.2 21.7 22.9 26.6 34.2 9.8 10.4


IGD mean 0.0007 0.0007 0.0007 0.0009 0.0008 0.0052 0.0038 0.0512 0.0404
st.dv. 0.0001 0.0000 0.0000 0.0010 0.0005 0.0139 0.0090 0.0337 0.0367


ZDT3


SCC mean 76 73 72 53 59 37 16 44 39
st.dv. 12.7 11.6 15.9 21.5 16.2 18 12.6 6.8 6.0


IGD mean 0.0009 0.0010 0.0020 0.0074 0.0023 0.0109 0.0178 0.0013 0.0018
st.dv. 0.0001 0.0003 0.0032 0.0138 0.0049 0.0137 0.0147 0.0021 0.0030


ZDT4


SCC mean 96 94 93 89 90 77 47 0 0
st.dv. 4.8 6.6 6.0 12.6 14.2 18.1 22.6 0 0


IGD mean 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0012 0.1508 0.1224
st.dv. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0973 0.0943


DTLZ6


SCC mean 74 71 66 52 52 42 20 0.1 0.6
st.dv. 14.2 15.8 14.2 14.6 19.2 14.3 7.9 0.3 0.9


IGD mean 0.0064 0.0087 0.0104 0.0126 0.0118 0.0139 0.0205 0.0132 0.0067
st.dv. 0.0053 0.0057 0.0053 0.0048 0.0067 0.0061 0.0082 0.0083 0.0051


Table 5.3: Comparison of the results obtained by the inheritance approach, with
respect to the NSGA-II and the SPEA2.
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better than the results of the NSGA-II and the SPEA2, even when a 78% of the
total number of evaluations is saved. In the rest of the functions, we can see
that we are able to save at least a 49% of the total number of evaluations, while
obtaining results of better quality than the two other MOEAs, with respect to the
SCC measure. Also, with respect to the IGD measure, we are able to save at least a
32% of the total number of evaluations, without affecting the quality of the results
in a significant way.


In this way, we can see that the proposed fitness inheritance approach enables
our MOPSO algorithm to obtain better results than the NSGA-II and the SPEA2
(which are two of the most representative algorithms of the state-of-the-art), while
performing a smaller number of function evaluations.


5.6 Conclusions


In this chapter, we first propose the use of fitness inheritance in order to reduce
the computational cost of the PSO-based multi-objective approach described in
the previous chapter. Since the obtained results with the first technique proposed
were very promising, we study several different ways of incorporating such en-
hancement technique and also experimented with some simple fitness approxima-
tion schemes.


Since both fitness inheritance and approximation techniques provide a reduc-
tion in the computational cost that is completely determined by the value of in-
heritance (or approximation) proportion pi, we proposed mechanisms to adapt
the value of the inheritance proportion in a dynamical way, throughout the evolu-
tionary process. Six different functions to adapt the inheritance proportion were
proposed, each one defining a different percentage of savings, from 19% to 78%
of the total number of evaluations.


From the results obtained, we can conclude that, in general, the use of fitness
inheritance affects the quality of the provided Pareto fronts as we increase the
number of true evaluations saved. However, such effect was less noticeable in
the test function with the decision space of lowest dimensionality. On the other
hand, we conclude that it is possible to save until a 32% of the total number of
evaluations without significantly deteriorating the quality of the results. When the
proposed approaches save a 49% of evaluations, the effect on the quality of the
results is more noticeable. However, the provided results are of very good quality.
Furthermore, although the quantitative quality of the Pareto fronts provided by
the approaches that save 65% and 78% of evaluations is more affected, the corre-
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sponding plots show that such strategies are able to generate good approximations
of the true Pareto front.


Finally, when comparing the results provided by the proposed fitness inheri-
tance approach with respect to two of the most representative algorithms of the
state-of-the-art, the NSGA-II and the SPEA2, we conclude that the proposed
mechanism enables the MOPSO approach previously described, to obtain better
results while performing a smaller number of function evaluations.







Chapter 6


Theoretical Issues


In this chapter, we discuss some theoretical issues related to the work developed
in this thesis, about PSO and fitness inheritance.


With the aim of exploring the convergence properties of the MOPSO approach
described in this thesis, we first discuss the convergence properties of PSO. We
briefly describe some of the characteristics of the models that have been developed
to analyze the convergence of PSO and present an outline of the model which is
more related with our MOPSO approach. Afterwards, we obtain some conclusions
about the convergence properties of our algorithm.


For the case of the study of fitness inheritance, we proceed in a similar way.
We first present the existing theoretical studies about fitness inheritance. We
present the models developed by Sastry [91] and Chen [12], which analyze the
behavior of fitness inheritance when it is applied into a genetic algorithm, for the
single and multi-objective cases of a very simple problem, respectively. As we
will see, these models are based on the use of binary representation and some
other hypothesis which make them difficult to use in order to explore the proper-
ties of the fitness inheritance techniques proposed as part of our work.


In this way, in the last part of this chapter, we provide a simple analysis of the
behavior of one of the fitness inheritance techniques presented in Chapter 5. We
discuss the impact of the fitness inheritance technique studied on the trajectory of
the particles of the swarm, when it is applied to real-coded vectors and under the
mechanisms defined by our MOPSO approach. With this analysis, we attempt to
explore the possible reasons of the effect of fitness inheritance in the quality of the
results, previously observed. Some interesting conclusions are obtained as well as
some directions for future research.
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6.1 Convergence Properties of PSO and MOPSO


Recently, some theoretical studies about the convergence properties of PSO have
been published. As in the case of many evolutionary algorithms, these studies
have concluded that the performance of the PSO is sensitive to control parameter
choices [32].


Most of the theoretical studies are based on simplified PSO models, in which
the trajectory of one particle of one dimension is studied, assuming that the other
particles in the swarm will remain “frozen” while the trajectory is analyzed. The
pbest and gbest particles are assumed to be constant throughout the process. Also,
the terms φ1 = C1r1, φ2 = C2r2 (used in Equation 4.2) are assumed to be constant.
Under these conditions, particle trajectories and convergence of the swarm have
been analyzed.


In the theoretical studies developed about PSO, convergence has been defined
as follows:


Definition 1. Considering the sequence of global best solutions {gbestt}∞
t=0,


we say that the swarm converges iff


limt→∞gbestt = p


where p is an arbitrary position in the search space.
Since p refers to an arbitrary solution, Definition 1 does not mean convergence


to a local or global optimum.
The first studies on the convergence properties of PSO were developed by


Ozcan and Mohan [71, 72]. Ozcan and Mohan studied a PSO under the condi-
tions previously described but, in addition, their model did not consider the inertia
weight. They concluded that, when 0 < φ < 4, where φ = φ1 +φ2, the trajectory of
a particle is a sinusoidal wave where the initial conditions and parameter choices
determine the amplitude and frequency of the wave. Also, they concluded that the
periodic nature of the trajectory may cause a particle to repeatedly search regions
of the search space already visited, unless another particle in its neighborhood
finds a better solution.


In [104], van den Bergh developed a model of PSO under the same conditions,
but considering the inertia weight. We present here the model developed by van
den Bergh.


Using φ1 = C1r1 and φ2 = C2r2, we repeat here Equations 4.1 and 4.2, corre-
sponding to the case of a particle x of one dimension:


v(t +1) = Wv(t)+φ1(pbest− x(t))+φ2(gbest− x(t)) (6.1)
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x(t +1) = x(t)+ v(t +1) (6.2)


where pbest is the best position found by particle x and gbest is the best posi-
tion found by the entire swarm (which are supposed to remain constant).


Substituting 6.1 into 6.2, the following recurrence relation is obtained:


xt+1 = (1+W −φ1−φ2)xt−W xt−1 +φ1 pbest +φ2gbest (6.3)


where xt denotes x(t). This recurrence relation can be written as a matrix-
vector product, so that








xt+1


xt


1





=








1+W −φ1−φ2 −W φ1 pbest +φ2gbest
1 0 0
0 0 1














xt


xt−1


1





 (6.4)


The characteristic polynomial of the matrix 6.4 is:


(1−λ)(W −λ(1+W −φ1−φ2)+λ2)


which has a trivial solution of λ = 1.0 and two other solutions


α =
1+W −φ1−φ2 + γ


2


β =
1+W −φ1−φ2− γ


2
where


γ =
√


(1+W −φ1−φ2)2−4W


The explicit form of the recurrence relation 6.3 is then given by


x(t) = k1 + k2αt + k3βt (6.5)


where k1, k2 and k3 are constants determined by the initial conditions of the
system. Since there are three unknowns, a system of three equations must be
constructed to find their values. The initial conditions of PSO provide two such
conditions, x0 and x1, corresponding to the position of the particle at time steps 0
and 1. The third constraint of the system can be calculated using the recurrence
relation to find the value of x2, thus,
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x2 = (1+W −φ1−φ2)x1−W x0 +φ1 pbest +φ2gbest


From these initial conditions, the system








x0


x1


x2





=








1 1 1
1 α β
1 α2 β2














k1


k2


k3








is derived. Using the property α−β = γ, these equations can be further sim-
plified to yield


k1 =
φ1 pbest +φ2gbest


φ1 +φ2


k2 =
β(x0− x1)− x1 + x2


γ(α−1)


k3 =
α(x1− x0)+ x1− x2


γ(β−1)


Equation 6.5 can be used to compute the trajectory of a particle, under the
assumption that pbest, gbest, φ1, φ2 and W remain constant. Convergence of the
sequence {xt}∞


t=0 is determined by the magnitude of the values α and β. In this
way, when max{‖α‖,‖β‖}< 1 we have:


limt→∞xt = limt→∞k1 + k2αt + k3βt = k1


Thus


limt→∞xt =
φ1 pbest +φ2gbest


φ1 +φ2
(6.6)


If the expected values of φ1 and φ2:


E[φ1] = C1


Z 1


0
xdx =


C1


2


E[φ2] = C2


Z 1


0
xdx =


C2


2


are substituted in 6.6, we obtain:


limt→∞xt =
C1 pbest +C2gbest


C1 +C2
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In this way, if C1 = C2, the particle converges to the point


pbest +gbest
2


.


In general, for arbitrary values of C1 and C2, we have:


limt→∞xt =
C1 pbest +C2gbest


C1 +C2


=
C1


C1 +C2
pbest +


C1


C1 +C2
gbest


= (1− C2


C1 +C2
)pbest +


C1


C1 +C2
gbest


= (1−a)pbest +agbest


where a = c2
c1+c2


. In this way, van den Bergh proved that a particle converges to a
weighted average between its personal best and its neighborhood best position.


As we said before, the condition max{‖α‖,‖β‖}< 1 is needed to ensure con-
vergence. In [104], van den Bergh experimentally concluded that such condition
is equivalent to have:


w >
1
2
(c1 + c2)−1 (6.7)


However, van den Bergh also noted that it is not strictly necessary to choose
the values of C1, C2 and W , so that relation 6.7 is satisfied. Considering the
stochastic nature of C1 and C2, it is possible to choose values of C1, C2 and W
such that condition 6.7 is violated, and the swarm still converges [104]: if


φratio =
φcrit


c1 + c2


is close to 1.0, where φcrit = sup {φ | 0.5φ−1 < w}, φ ∈ (0,c1 +c2], the swarm
has convergent behavior. This implies that the trajectory of the particle will con-
verge most of the time, occasionally taking divergent steps.


The studies developed by Ozcan and Mohan, and van der Bergh, consider
trajectories that are not constricted. In [15], Clerc and Kennedy provide a theoret-
ical analysis of particle behavior in which they introduce a constriction coefficient
whose objective is to prevent the velocity from growing out of bounds.


As we could see, the convergence of PSO has been proved. However, we can
only ensure the convergence of PSO to the best position visited by all the particles
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of the swarm. In order to ensure convergence to the local or global optimum, two
conditions are necessary [86, 104]:


(1) The gbestt+1 solution can be no worse than the gbestt solution (monotonic
condition).


(2) The algorithm must be able to generate a solution in the neighborhood of
the optimum with nonzero probability, from any solution x of the search
space.


In [104], van den Bergh provides a proof to show that the basic PSO is not a
local (neither global) optimizer. This is due to the fact that, although PSO satis-
fies the monotonic condition indicated above, once the algorithm reaches the state
where x = pbest = gbest for all particles in the swarm, no further progress will be
made. The problem is that this state may be reached before gbest reaches a mini-
mum, whether be local or global. The basic PSO is therefore said to prematurely
converge. In this way, the basic PSO algorithm is not a local (global) search algo-
rithm, since it has no guaranteed convergence to a local (global) minimum from
an arbitrary initial state.


Also, van den Bergh suggests two ways of extending PSO in order to make
it a global search algorithm. The first is related to the generation of new random
solutions. In general, the introduction of a mutation operator is useful. Neverthe-
less, forcing PSO to perform a random search in an area surrounding the global
best position, that is, forcing the global best position to change in order to prevent
stagnation (by means of a hill-climbing search, for example), is also a suitable
mechanism [32]. On the other hand, van den Bergh also proposes to use a “multi-
start PSO”, in which, when the algorithm has converged (under some criteria), it
records the best solution found and the particles are randomly reinitialized.


To the best of our knowledge, until this date, there are no studies about the
convergence properties of MOPSOs. From the discussion previously provided,
we can conclude that it is possible to ensure convergence, by correctly setting the
parameters of the flight formula. But, as in the case of single-objective optimiza-
tion, such property does not ensure the convergence to the true Pareto front, in
this case. In the case of multi-objective optimization, we may conclude that we
still need conditions (1) and (2), to ensure convergence. However, in this case,
condition (1) may change to:


(1’) The solutions contained in the external archive at iteration t + 1 should be
nondominated with respect to the solutions generated in all iterations τ, 0≤
τ≤ t +1, so far (monotonic condition).
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The use of the ε-dominance based archiving, as proposed in [58] ensures this
condition, but the normal dominance-based strategies do not, unless they incor-
porate a mechanism to ensure that for any solution discarded from the archive
one with equal or dominating objective vector is accepted. In this way, given a
MOPSO approach, and assuming it satisfies condition (1), it remains to explore if
it satisfies condition (2), to ensure global convergence to the true Pareto front.


In the particular case of the MOPSO approach proposed in this work, as de-
scribed in Chapter 4, we have that it satisfies conditions (1’) and (2). Condition
(1’) is satisfied since our MOPSO approach uses the ε-dominance based archiv-
ing mechanism which, as said before, ensures condition (1’). On the other hand,
one of the mutation operators used by our MOPSO approach ensures condition
(2). The uniform mutation operator is able to generate any solution of the search
space from any solution x with nonzero probability, including those solutions in
the neighborhood of the Pareto optimal solutions [86, 87]. In this way, we can
conclude that our MOPSO approach converges to the true Pareto front.


6.2 Fitness Inheritance for the OneMax Problem


The existing theoretical studies about fitness inheritance are those developed by
Sastry et al. [91] and Chen et al. [12]. They investigated convergence times, pop-
ulation sizing and the optimal proportion of inheritance for the OneMax problem,
for the single and multi-objective case, respectively.


In this section, we first present the model developed by Sastry, for the single
objective case, and then we present the extensions performed by Chen, for the
multi-objective case. The material presented in this section was taken from the
masters [90] and PhD [11] theses of Sastry and Chen, respectively.


The following two definitions are useful for the understanding of the material
discussed here.


Definition 2. A schema H = (h1,h2, . . . ,hl) is defined as a string of lenght l,
where hi = {0,1,∗}, i = 1,2, . . . , l and ∗ denotes the “don’t care” symbol.


Definition 3. If a solution A of a problem is an instance of a schema H, the
schema H is called a building block (BB).


The OneMax problem is well-known and well-studied in the context of GAs.
The OneMax problem, originally defined as single-objective, is a bit-counting
problem where the fitness value of a binary string is equal to the number of 1s in
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it. The OneMax problem is defined as follows:


f =
l


∑
i=1


xi


where xi is the value of the ith bit. The global optimum of the OneMax problem is
a string with all 1s and its fitness value is equal to the string length l. The OneMax
problem has the property that the fitness is binomially distributed. Therefore, the
mean of fitness values can be written as


µt = l pt (6.8)


and the variance as
σ2


t = l pt(1− pt) (6.9)


where pt is the proportion of correct BBs at generation t. On the other hand,
the OneMax is a uniformly scaled problem, that is, the contribution of fitness
by building blocks from different partitions are the same. This equal salience of
building blocks leads to a parallel search in terms of the best building blocks.
Therefore, the quality of the search can be quantified by a single proportion of
correct building blocks in the population. This property simplifies the model to be
derived.


In the model developed by Sastry, inherited fitness is taken as the mean of the
parent fitness values. However, for analytical tractability, the mean of the parent
fitnesses is taken as the mean building-block (BB) fitness. Fitness of a BB is the
average fitness of all the individuals in the population that possess the schemata
under consideration.


The model assumes that the actual fitness distribution, F , is Gaussian with
mean µ f ,t and variance σ2


f ,t :


F = N(µ f ,t ,σ2
f ,t)


and that the distribution of fitness with inheritance, F ′, is also Gaussian with mean
µ f ′,t and variance σ2


f ′,t :


F ′ = N(µ f ′,t ,σ2
f ′,t)


Therefore
µ f ′,t = µ f ,t(1− pi)+µi,t pi (6.10)


σ2
f ′,t = σ2


f ,t(1− pi)+σ2
i,t pi (6.11)
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where µi,t and σ2
i,t are the fitness mean and variance, respectively, of individuals


whose fitness is inherited (remember that pi is the inheritance proportion). Since
the inherited fitness, fi, is equal to the average of BB fitness


fi =
1
l


l


∑
j=1


f̂ (BB j)


where, l is the string length, and f̂ (BB j) is the estimated BB fitness which can be
written as


f̂ (BB j) = f (BB j)+(l−1)pt


where, f (BB j) is the actual BB fitness, pt is the proportion of correct BBs, and
the term (l−1)pt incorporates the noise arising from other BBs. Using the above
relation, fi for uniformly scaled problems can be written as


fi =
f
l


+(l−1)pt .


The mean inherited fitness, µi,t is given by


µi,t =
1
n


n


∑
j=1


fi, j


=
1
n


n


∑
j=1


[


f j


l
+(l−1)pt


]


=
1
l


[


1
n


n


∑
j=1


f j


]


+
1
n


n


∑
j=1


(l−1)pt


=
1
l


µ f ,t +(l−1)pt


=
1
l


l pt + l pt− pt = l pt = µ f ,t


where n is the population size. Using the above relation in equation 6.10, we get:


µ f ′,t = µ f ,t.
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The inherited fitness variance, σ2
i,t can be derived as follows:


σ2
i,t =


1
n


n


∑
j=1


f 2
i, j− (l pt)


2


=
1
n


n


∑
j=1


[


f j


l
+(l−1)pt


]2


− (l pt)
2


=
1
l2


1
n


n


∑
j=1


f 2
j − (l pt)


2 +
2(l−1)pt


l
1
n


n


∑
j=1


f j +
1
n


n


∑
j=1


(l−1)2 p2
t


=
1
l2


[


1
n


n


∑
j=1


f 2
j − (l pt)


2


]


− (l2−1)p2
t +


2(l−1)pt


l
(l pt)+(l−1)2 p2


t


=
1
l2 σ f ,t− (l2−1)p2


t +2(l−1)p2
t +(l−1)2 p2


t


=
1
l2 l pt(1− pt)− (l2−1)p2


t +(l2−1)p2
t


=
pt(1− pt)


l


Using the above relation in equation 6.11, we get:


σ2
f ′,t = (1− pi)σ2


f ,t + pi
pt(1− pt)


l
≈ (1− pi)σ2


f ,t


Using the selection intensity equation1 [90], we can write the expected average
fitness with inheritance as:


µ f ′,t+1 = µ f ′,t + Iσ f ′,t


= µ f ′,t + I
√


1− piσ f ,t . (6.12)


Since both the actual fitness and inherited fitness distributions are normally dis-
tributed, the expected actual fitness value of F at generation t + 1, given µ f ′,t+1
is:


E(F/µ f ′,t+1) = µ f ,t+1 = µ f ,t +
σF,F ′


σ2
f ′,t


(µ f ′,t+1−µ f ′,t)


1In Equation 6.12, I is the selection intensity and is defined as the expected increase in the
average fitness of a population after selection is performed upon a population whose fitness is
distributed according to a normal distribution.
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It can be seen that the covariance, σF,F′ is (1− pi)σ2
f = σ2


f ′,t . Using this relation
and Equation 6.12, we get:


µ f ,t+1 = µ f ,t + I
√


1− piσ f ,t (6.13)


Now substituting Equations 6.8 and 6.9 in 6.13:


l pt+1 = l pt + I
√


1− pi


√


l pt(1− pt)


pt+1 = pt + I


√


1− pi


l


√


pt(1− pt)


pt+1− pt = I


√


1− pi


l


√


pt(1− pt) (6.14)


Approximating the above equation as a differential equation yields:


dp
dt


=
I
√


1− pi√
l


√


p(1− p)


Integrating the above equation and using the initial condition p0 = 0.5 (since the
initial population is generated with uniform distribution), we get:


pt = sin2


(


π
4


+
I
√


(1− pi)t


2
√


l


)


(6.15)


An equation for convergence time can be derived by substituting pt = 1, and in-
verting Equation 6.15:


tconv =
π
2I


√


l
(1− pi)


.


On the other hand, Sastry based his model for population sizing in the model
previously developed by Miller [65]:2


n =−2k−1log(ψ)
√


π
dmin


√


σ2
f ,


where n is the population size, k is the BB length, ψ is the failure rate, dmin is the
distance between the best BB and the second best BB, and σ2


f ′ is the variance of


2Miller developed a model for calculating the optimal population size required to ensure a good
number of initial BBs supply and a good decision between competing BBs.
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the fitness function. Not only σ2
f ′ , but also dmin depends on pi. For the OneMax


problem, dmin was empirically determined to be:


dmin = (1− p3
i )
√


1− pi


The population sizing equation can now be written as:


n =−2k−1log(ψ)
√


π
(1− p3


i )


√


σ2
f ,


Now, we proceed to determine the inheritance proportion such that the total num-
ber of function evaluations required is minimized. The total number of function
evaluations is given by:


n fe = n[(tconv−1)(1− pi)+1]


= n[tconv(1− pi)+ pi] (6.16)


From the results previously obtained, we have:


tconv =
t0√


1− pi
,


n =
n0


1− p3
i


where, t0 = tconv(pi = 0)


= π
√


l/(2l), and n0 = n(pi = 0) =−2k−1log(ψ)
√


πσ2
f /dmin, are the convergence


time and the population size when inheritance is not used. Using the above equa-
tions, an expression for the total number of function evaluations is given by:


n fe =
n0


1− p3
i


[


t0
√


1− pi + pi


]


The optimal proportion inheritance is then given by solving:


∂n fe


∂pi
= 0


3p2
i


[


t0(1− pi)+ pi


√


1− pi


]


+(1− p3
i )
[


−0.5t0 +
√


1− pi


]


= 0


The above equation can be solved for two asymptotic cases: (1) the string lenght,
l = 0, then t0 = 0, and the optimal evaluates to p∗i = 0, and (2) the string length is
very long, then t0→ ∞. For this case the above equation reduces to:


3p2
i (1− pi)−


1
2
(1− p3


i ) = 0
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p2
i −


1
5


pi−
1
5


= 0


The above quadratic equation can be easily solved, and the optimal proportion for
this case is:


p∗i = 0.558


For other values of string length, Equation 6.17 cannot be solved analytically, and
hence, it was solved numerically for different problems sizes. For moderate-to-
large size problems the optimal proportion of inheritance values belong to the
interval:


0.54≤ p∗i < 0.558


For the multi-objective case, Chen extended the OneMax problem. He defined
the bicriteria OneMax problem as:


Maximize


{


f1 = l−d(A,A1)
f2 = l−d(A,A2)


where A is the string to be evaluated, A1 and A2 are two fixed strings with
lenght l, and d(A,Ai) is the Hamming distance function. If the fixed string Ai is
an all-1s string, then the corresponding objective function fi will be that of the
OneMax problem. The number of Pareto-optimal solutions, Q, in the bicriteria
OneMax problem can be calculated by


Q = 2d(A1,A2)


In the analysis developed by Chen, A1 is an all-1s string, and A2 is an all-1s string
except for the last b bits of A2 which are 0s. Therefore, d(A1,A2) = b.


Chen derived the convergence model for the bicriteria OneMax problem by
extending Equation 6.13.3 Based on the concept of fitness sharing, Chen assumes
that the population is divided into several subpopulations (niches), and each niche
optimizes its own separate OneMax problem. Therefore, the optimizing process
for the bicriteria OneMax problem can be regarded as optimizing several OneMax
problems simultaneously. Since niches are from the same population, each niche
will receive external noise from other niches. For each niche, the convergence


3It is worth noting that, in [12, 11], Chen indicates that in the case of the bicriteria One Max
problem, he inherits the values of the two objective functions instead of the fitness values. How-
ever, the model developed by Chen is based on the same premises of the model developed by
Sastry.
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model can be expressed as:


µ f ,t+1 = µ f ,t + I
√


1− pi
σ2


f
√


σ2
f +σ2


N


where σ2
N is the noise variance from other niches. Let M be the number of niches


in the population, and


ρe =


√


σ2
f +σ2


N


σ2
f


.


The noise variance from other niches can be approximated by (M−1)pt(1− pt).
In this way, Chen generalizes Equations 6.14 and 6.15:4


pt+1− pt =
I


ρe


√


1− pi


l


√


pt(1− pt)


pt = sin2


(


π
4


+
I
√


(1− pi)t


2ρe
√


l


)


From which, Chen obtains:5


tconv =
π
2I


√


l
(1− pi)


ρe


=
π
2I


√


l
(1− pi)


√


1+
M−1


l
(6.17)


On the other hand, assuming the population is divided into M niches, and each
niche optimizes its own separate OneMax problem, Chen extended the model
derived by Sastry for predicting the optimal population size:


n =−2k−1log(ψ)M
√


π
(1− p3


i )


√


σ2
f +σ2


N , (6.18)


4In this case, we don’t provide details since we were not able to obtain them, from the analysis
provided by Chen in [12, 11]


5It is important to note that, as in the case of the single objective version of the One Max
problem, Chen considers that convergence has been reached when pt = 1 (that is, when the whole
population is composed of correct BBs). However, this assumption is not justified by Chen in the
case of the multi-objective version of the One Max problem.







6.3. FITNESS INHERITANCE FOR A REAL-CODED MOPSO 139


Finally, similar to the process developed by Sastry, from Equations 6.16, 6.17 and
6.18, Chen obtains:


p∗i = 3


√


1− κ
n


where κ =−2k−1log(ψ)M
√


π(σ2
f +σ2


N).


6.3 Fitness Inheritance for a real-coded MOPSO


As we could see in the previous section, the existing studies about fitness inheri-
tance are based on models in which binary representation is used. Also, the mod-
els previously presented analyze the properties of fitness inheritance under the
assumption of a very particular problem (OneMax). In this section, we present
a simple analysis (discussion) of the impact of a fitness inheritance technique
applied on real-valued vectors, for the particular case of the MOPSO approach
described in Chapter 4. As we mentioned previously, with this analysis we at-
tempt to explore the possible reasons of the effect that fitness inheritance has on
the quality of the results provided by our MOPSO approach (as we could see in
Chapter 5).


In Chapter 5, we described fifteen different fitness inheritance techniques,
which were incorporated into the MOPSO approach previously described. In all
cases, when inheritance is applied, a particle inherits its new objective function
values (after updating its position in search space) from the corresponding values
of its parents, by means of a specific mechanism (different for each inheritance
technique). According to the results provided by the techniques proposed, we
found that the best of them were based on two main concepts:


• Linear combination of the objective values of the parents.


• Formula to update positions (flight) in the objective space.


As we could see in Section 6.1, when applying the formula of PSO for updat-
ing positions of particles, in the search space, we obtain convergence to a linear
combination of the corresponding pbest and gbest positions. In this way, we de-
cided to analyze one of the fitness inheritance techniques proposed in Chapter
5, called FI2, which calculates a linear combination of the pbest and gbest posi-
tions, in objective function space. By analyzing technique FI2, we aim to explore
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some of the properties of the fitness inheritance techniques proposed in Chapter
5, considering technique FI2 as the general case.


First of all, it is important to note that, in the implementations performed of
the fitness inheritance techniques previously proposed, we never let a particle with
inherited objective values, enter into the available set of leaders. In this way, all
available leaders have true objective values. Thus, we can conclude that a particle
which inherits its objective values does not affect directly the trajectory of the rest
of the particles of the swarm. That is, a particle which inherits its function values
only affects directly its own trajectory.6 This property allows us to analyze the
effects of inheritance on the trajectory isolated of a single particle.


We remember here the equations for updating the position of the particles in
PSO:


xi(t) = xi(t−1)+vi(t) (6.19)


vi(t) = W vi(t−1)+C1r1(pbesti−xi(t−1))+C2r2(leaderi−xi(t−1)) (6.20)


where pbest represents the personal best position of particle x and leader repre-
sents the gbest solution selected by particle x from the available set of leaders. As
we mentioned before, the leader particle will always have true objective function
values. In this way, it remains to explore how the pbest particle is affected when
particle x inherits its objective function values.


As we described in Chapter 4, our MOPSO approach updates the pbest posi-
tion of a particle x when its new position:


1. dominates the current pbest position.


2. is incomparable to the current pbest position.


In this way, the only case in which the pbest position is not updated with the new
position of the particle is when the new position of the particle is dominated by the
current pbest position. We can see all possibles cases in Figure 6.1. From Figure
6.1, we can conclude that in a given time step t, the pbest position of a particle
is either the current position of the particle itself or a position that dominates the
current position of the particle.


On the other hand, when a particle selects a leader in order to update its posi-
tion in the search space, such leader (by definition) either dominates or is incom-
parable to the particle. For this reason, given the previous discussion about the


6It is clear that a particle which inherits its objective function values affects indirectly the
trajectory of the other particles of the swarm, but this effect will be discussed later.
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Figure 6.1: Possible directions in which a particle can move in the objective space
(assuming a bi-objective maximization case). Only when the new position is dom-
inated by the previous one, the pbest position is not updated.
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Figure 6.2: Possible positions of a linear combination of the pbest position and
the leader: (a) when the pbest position is the current position of the particle and
(b) when the pbest position dominates the current position of the particle. The
resulting (new) position always dominates or is incomparable to the (old) position
of the particle.
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location of the pbest position, any linear combination of the pbest position and
the leader will either dominate or be incomparable to the current position of the
particle. In fact, such linear combination will either dominate or be incomparable
to the current pbest position of the particle. Figure 6.2 shows the possible cases,
in a bi-objective maximization example, for the position of the linear combination
calculated for inheriting objective function values.


As a conclusion, we have that the new position (in objective function space)
of a particle which inherits its objective function values will either dominate or
be incomparable to the pbest position of the particle. In this way, based on the
mechanism used by our MOPSO approach for updating the pbest position, we
can conclude that when a particle inherits its objective function values, the corre-
sponding pbest position is always updated.


Thus, we have that when a particle with inherited objective function values
updates its position in the search space, the term related to the pbest position in
the velocity formula vanishes:


C1r1(pbesti−xi(t−1)) = 0,


and the obtained velocity vector is:


vi(t) = Wvi(t−1)+C2r2(leaderi−xi(t−1)).


As we can see, the first (immediate) consequence of inheritance in the trajec-
tory of a single particle is the elimination of the direction to the pbest position in
the velocity vector. In this way, inheritance eliminates from the velocity vector,
the term that allows the particle to return to the previous position, in the case that
the new position is not better. Thus, we can conclude that the impact of inheri-
tance is negative on the velocity vector (and in the trajectory of the particle) only
in the case that the last movement takes the particle to a dominated position.


Other consequences of inheritance in the trajectory of a particle are impor-
tant. In fact, the pbest position is the one that always suffers the impact of in-
heritance. For example, once a particle has inherited its objective function values
and updated its pbest position (without true knowledge of its quality), the process
of updating the pbest position in subsequent steps becomes difficult because the
pbest position has no true objective function values. In this way, every time we
compare the objective function values of the pbest position against new objective
function values of the particle (either true or inherited), the winner is not necessar-
ily the best. In this point, it is important to note that, in the particular case of our
MOPSO approach, a particle with true objective function values is allowed to (try
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to) enter into the set of available leaders only if in the last movement, the particle
was able to improve its pbest position. Thus, inheritance might prevent nondom-
inated particles with true objective function values of entering into the available
set of leaders due to the inherited objective function values assigned to the pbest
position in previous steps.


On the other hand, the inherited objective function values of the pbest position
of the particle also affect the new objective function position of the particle if
inheritance is applied again in subsequent steps. Since the new inherited objective
function values are calculated using a linear combination of the pbest position and
the leader, the obtained values are based on values that are not necessarily true.
We may call this effect error transmission.


In this way, we can conclude that fitness inheritance affects directly the trajec-
tory of a particle through the pbest solution, in two main forms:


E1 Eliminating from the velocity vector the term that allows the particle to turn
back to the previous position, in the case that the new one is not better (when
inheritance is applied for the first time).


E2 Preventing the pbest position of being correctly updated, due to the inherited
objective values assigned to it, in previous steps.


In the second case, the pbest position introduces some kind of noise in the
trajectory of a particle, since it introduces, into the velocity vector, a direction to a
particle of uncertain quality. This effect may be considered as a way of introducing
some diversity into the swarm.


Thus, fitness inheritance affects the trajectory of a particle through the corre-
sponding pbest position. However, it is convenient to remember that the ANOVA
described in Chapter 4 indicated that the value of the parameter C1 in Equation
6.20 is not important for the behavior of the algorithm. That is, the pbest posi-
tion does not have an important impact in the trajectory of particles neither on the
performance of the algorithm. For this reason, we may argue that this effect of
fitness inheritance on the trajectory of particles is not the most important factor to
consider, or at least not by itself alone.


On the other hand, there are two main ways by which fitness inheritance af-
fects indirectly the trajectory of particles and, in general, the performance of the
algorithm:


E3 A particle which has inherited its objective function values is not allowed to
(try to) enter into the set of available leaders.
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E4 A particle with true objective function values may not be able to improve its
corresponding pbest position (due to the objective function values inherited
in previous steps) and, consequently, it may not be able to (try to) enter into
the set of available leaders.


The first consequence of these two effects of fitness inheritance is the corre-
sponding size of the set of leaders. However, the most important consequence
is the loss of information. As we previously discussed, inheritance affects im-
mediately the information stored in the pbest position of a particle. Thus, the
selection of a good leader becomes crucial for the performance of the algorithm.
In this way, we can conclude that inheritance decreases the number of solutions
reported by the algorithm but also the quality of the final set of solutions, since
the set of leaders (which guide the search) is not correctly updated throughout the
evolutionary process.


As we could see, fitness inheritance might have negative effects on the perfor-
mance of the MOPSO algorithm proposed in two main cases:


• When a particle updates its pbest position incorrectly, as a result of inheri-
tance. That is, when the pbest position of a particle is updated with a domi-
nated position.


• When a particle is not allowed to (try to) enter into the available set of lead-
ers. This case is possible even when the particle has true objective function
values, as we previously discussed.


In this way, in order to explore how important is the effect of inheritance in the
performance of the algorithm, we would like to answer the following questions:


• How often a particle moves to a dominated position (by the pbest position)?
That is, how often a particle does not improve its pbest position?


• How much is the size of the set of leaders affected by inheritance?


The second question is related to the first one, since the answer to the first
question would give us an idea of how often a particle intends to enter into the
set of leaders. In fact, the value of the inheritance proportion (the probability by
which a particle inherits its objective values) gives us a very clear idea of how
many particles will not be able to enter into the set of leaders. Thus, it would
remain to explore how often a particle with true objective values is not able to
improve its pbest position. However, this last case seems difficult to study.
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We performed some experiments using our MOPSO approach and the inheri-
tance technique FI2, in order to obtain an empirical answer to the questions pre-
viously mentioned. We ran our algorithm 30 times with and without inheritance.
The values of inheritance proportion used were: pi= 0.0 (without inheritance),
0.1, 0.3, 0.6 (we maintained the value of pi fixed throughout the run). The param-
eters adopted were a swarm size of 100 particles and 100 generations. The test
functions used were ZDT1, ZDT2, ZDT3 and ZDT4. For each function and each
value of inheritance proportion we calculated two values:


• Average number of particles that improved its corresponding pbest position,
at each generation.


• Average number of leaders at each generation.7


Figures 6.3, 6.4, 6.5 and 6.6, show the results obtained, for the average number
of particles that improved its corresponding pbest position, at each generation. For
each function, we present two plots. The first plot shows the results corresponding
to the case of our algorithm without inheritance and the second plot shows the
results of our algorithm with all the different inheritance proportion values used.
Also, in all cases, we plot a constant function with value 100, that would represent
the case of all particles improving its pbest position at each generation.


As we can see in the results of our algorithm without inheritance, the aver-
age number of particles that improve its pbest position at each generation is very
high. This average has values over the 80% of particles, for all the cases. In fact,
for functions ZDT1 and ZDT2 almost 100% of particles improve its pbest posi-
tion at each generation. On the other hand, for function ZDT4, the corresponding
average is over the 90% of particles. With these results, we can conclude that a
particle almost never moves to a position dominated by its current pbest position
(which is the only case in which the pbest position is not updated). In this way,
we may conclude that the effect E1 of inheritance when forcing a particle to re-
place its current pbest position does not significantly affect in a negative way, the
performance of the algorithm.


We can see that the results of our algorithm with inheritance are, in general,
very similar to the corresponding results without inheritance. In some cases, we
can see that the use of inheritance decreases marginally the average of particles


7In this case, we record the total number of leaders obtained after updating the current set
of leaders, but before reducing it to the maximum size allowed. Since the swarm size and the
maximum number of leaders used were of 100 particles, the total number of leaders lies between
100 and 200, at each generation.
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that improve its pbest position, especially at the beginning of the process. This
effect is more noticeable in functions ZDT1 and ZDT3 (see Figures 6.3 and 6.5).
We conclude that this behavior is due to the effect E2 of inheritance, when the
process of updating the pbest position is affected by the objective function values
inherited in previous generations. On the other hand, we can see that the use of
inheritance also increases the same average value by the end of the process. This
behavior is due to the effect E1 of inheritance (previously discussed) and is more
noticeable in function ZDT3 (see Figure 6.5). In general, we can observe that the
behavior of our algorithm, produced by the use of inheritance, is more stressed
when the value of inheritance proportion increases (see, for example, Figure 6.5).


On the other hand, Figures 6.7, 6.8, 6.9 and 6.10, show the results obtained,
for the average number of leaders at each generation. As we can see, the number
of leaders decreases as the value of inheritance proportion increases, for all cases.
However, the impact is not as noticeable as we would have expected. In the worst
case, when the biggest value of inheritance proportion is used (pi = 0.6), the
average number of leaders decreases by 30% with respect to the corresponding
average when inheritance is not used. Also, we can observe in Figure 6.8 that, in
some cases, the average of the number of leaders at each generation grows when
pi = 0.1. This may be the reason for the improvement on the quality of the results
shown in Chapter 5, when pi = 0.1.


Thus, we have seen that the most important effect of fitness inheritance in
the evolutionary process of our MOPSO approach is the decrement of the size
of the set of available leaders. In this way, we may conclude that this behavior
is the one that has the most important impact on the quality of the final set of
solutions (as it was observed in the experiments presented in Chapter 5), since
such set of leaders guides the search. On the other hand, although we could see
that the impact of inheritance when forcing a particle to update its pbest position
is not very important, it remains to study the effects that the error transmission
discussed before has on the quality of the results provided by the algorithm.
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Figure 6.3: Average number of particles that improved its corresponding pbest
position, at each generation, for test function ZDT1.
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Figure 6.4: Average number of particles that improved its corresponding pbest
position, at each generation, for test function ZDT2.
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Figure 6.5: Average number of particles that improved its corresponding pbest
position, at each generation, for test function ZDT3.
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Figure 6.6: Average number of particles that improved its corresponding pbest
position, at each generation, for test function ZDT4.
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Figure 6.7: Average number of leaders at each generation, for function ZDT1.
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Figure 6.8: Average number of leaders at each generation, for function ZDT2.
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Figure 6.9: Average number of leaders at each generation, for function ZDT3.
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Figure 6.10: Average number of leaders at each generation, for function ZDT4.







Chapter 7


Final Remarks


Given the population-based nature of EAs, their application to real-world prob-
lems whose objective function cost is computationally expensive is limited.


With the aim of designing new mechanisms able to reduce computational cost
(in terms of the number of function evaluations performed), in the first part of this
work we presented a coevolutionary multi-objective algorithm whose main idea
was to detect the most “promising” sub-regions of the search space and focus the
search on them. With this aim, the algorithm applied a clustering technique on the
set of decision variables of the Pareto front known so far. Thus, by obtaining in-
formation along the evolutionary process, the proposed approach was supposed to
ignore the useless sub-regions of the search space and to reduce the computational
cost involved in the process of convergence to the optimal solutions.


After doing experiments with test functions with high-dimensional decision
spaces, we could observe that our coevolutionary algorithm was not able to con-
verge to the true Pareto fronts of the problems. For this reason, we designed a new
PSO-based multi-objective algorithm to be used as a search engine (replacing the
genetic algorithm originally used).


The proposed PSO-based approach was found to be highly competitive. How-
ever, once incorporated into our coevolutionary approach, we didn’t obtain the
expected results. In fact, the obtained results indicated that the coevolutionary
approach was not able to match the results of the MOPSO approach alone, while
performing the same number of function evaluations. Thus, we concluded that
our coevolutionary scheme had some limitations when solving the problems with
high dimensional decision spaces used in our study. For this reason, we decided
to study different mechanisms for reducing computational cost.


In this way, we proposed the use of fitness inheritance in order to reduce the
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computational cost of the PSO-based multi-objective approach provided before.
Since the results obtained by our first attempt were very promising, we studied
several different ways of incorporating such enhancement technique and also ex-
perimented with some simple fitness approximation schemes. Afterwards, since
both fitness inheritance and approximation techniques provide a reduction in the
computational cost that is completely determined by the value of inheritance (or
approximation) proportion pi, we proposed several schemes that set the value of
this parameter in a dynamical way throughout the evolutionary process. The re-
sults provided by the proposed approaches showed that fitness inheritance enables
our MOPSO approach to obtain better results than two algorithms representative
of the state-of-the-art, while performing a smaller number of function evaluations.


Finally, we presented some theoretical studies that allowed us to analyze the
convergence properties of the multi-objective particle swarm approach and the
effects of the fitness inheritance techniques proposed.


7.1 Conclusions


• Coevolutionary schemes that partition the search space are not suitable for
solving the test problems with high-dimensional decision spaces used in our
study. In particular, the proposed coevolutionary scheme does not seem to
be useful for the set of test functions adopted, which consists of very specific
continuous real-valued functions (that is precisely the type of problem in
which we are interested). However, it remains open the posibility of testing
the usefulness of such scheme when using it for solving different types of
problems.


• The particle swarm optimization strategy is very effective for solving multi-
objective problems. In particular, it was successful when solving the test
functions with high-dimensional decision spaces adopted in our study.


• Although the proposed MOPSO approach has some difficulties solving the
test problems with nonuniform density of solutions in the search space, from
the set of test functions adopted, it was successful for solving multimodal
problems. It is worth noting that our approach was the only PSO-based
algorithm (out of four adopted in our study) able to solve a test problem
with 219 local Pareto optimal solutions in decision variable space (a total of
100 distinct local Pareto fronts in objective function space).
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• Leader selection is a key component when designing PSO-based multi-
objective approaches. The ANOVA performed, let us realize that the value
of the parameter related to leader selection in our approach has a very im-
portant impact on the performance of our algorithm, for the test functions
adopted, especially in those with nonuniform density of solutions in the
search space.


• From the statistical analysis performed, we were able to propose on-line
adaptation mechanisms for the parameters of our MOPSO approach, that
provided good results for the test functions adopted. Nevertheless, the
ANOVA also provided some guidelines to set the values of the parameters
of our approach, if we have some a priori knowledge about the problem to
be solved.


• Although for the test function used, fitness inheritance affects the quality
of the provided Pareto fronts as we increase the number of true evaluations
saved, we were able to save a 32% of the total number of evaluations without
significantly deteriorating the quality of the results. In fact, although the
quantitative quality of the Pareto fronts provided by the approaches that
save 65% and 78% of evaluations is more affected, the corresponding plots
show that such approaches are able to generate good approximations of the
true Pareto front.


• When comparing the results provided by the proposed fitness inheritance
approach with respect to two of the most representative algorithms of the
state-of-the-art (the NSGA-II and the SPEA2), we conclude that the pro-
posed mechanism enables the MOPSO approach previously described, to
obtain better results while performing a lower number of function evalua-
tions, for the test functions adopted.


• From our results obtained in the test functions adopted, we may conclude
that the effect of fitness inheritance on the quality of the results is less no-
ticeable in test functions with decision spaces of high dimensionality.


• Also, it seems that fitness inheritance has a greater impact on the quality of
the obtained results, as the number of objectives increases.


• From the results found in the literature, we were able to conclude the con-
vergence of our MOPSO approach to the true Pareto front.
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• The most important effect of fitness inheritance in the evolutionary process
of our MOPSO approach is the decrement of the size of the set of leaders
and the error transmission.


7.2 Future Work


Part of our future work includes the following:


• To study different coevolutionary algorithms able to reduce computational
cost.


• To apply the proposed MOPSO approach and the fitness inheritance tech-
niques proposed to real-world problems.


• To test the fitness inheritance techniques proposed on different evolution-
ary algorithms. Also, to test fitness inheritance techniques on different test
functions in order to explore the corresponding performance when higher
dimensional problems are adopted.


• Since we applied the concept of fitness inheritance is such a way that we re-
duce the computational cost and we explored how the quality was affected,
it remains to apply inheritance by maintaining fixed the number of evalua-
tions and exploring the changes on quality when we allow the evolutionary
process to run during a larger number of generations.


• To study the so-called error transmission, in order to propose mechanisms
by which we are able to maintain the quality of the solutions throughout the
evolutionary process, despite the use of fitness inheritance.


• To explore different mechanisms to reduce computational cost, like surro-
gate models [109].







Appendix A


Results provided by the MOPSO
approach proposed


Test Function ZDT1
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 84 38 47 0 93 37
median 74 20 26 0 58 7


SCC worst 22 9 15 0 23 1
average 71 21 27 0 59 8
std. dev. 13.6 7.5 8.1 0 24.2 7.9


best 0.0009 0.0008 0.0006 0.0240 0.0031 0.0016
median 0.0010 0.0008 0.0007 0.0276 0.0260 0.0029


IGD worst 0.0011 0.0011 0.0008 0.0385 0.0448 0.0041
average 0.0010 0.0009 0.0007 0.0286 0.0269 0.0030
std. dev. 0.00005 0.00009 0.00006 0.0040 0.0095 0.0007


Table A.1: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function ZDT1 with respect to the unary measures.


157







158 APPENDIX A. RESULTS PROVIDED BY THE MOPSO APPROACH PROPOSED


Test Function ZDT1 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.76 0.68 0.96 0.08 0.95
NSGA-II 0.00 0.00 0.22 1.00 0.01 0.99
SPEA2 0.00 0.49 0.00 1.00 0.01 1.00


MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.35 0.69 0.66 0.99 0.00 0.90
cMOPSO 0.00 0.01 0.00 1.00 0.00 0.00


Test Function ZDT1 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.003267 -0.002367 -0.325765 0.006035 -0.021381
NSGA-II 0.001942 0.000000 -0.000037 -0.322274 0.007647 -0.016607
SPEA2 0.002345 -0.000534 0.000000 -0.322771 0.007733 -0.017104


MOPSO 0.001718 0.000000 0.000000 0.000000 0.000000 0.000000
sMOPSO 0.000356 -0.003241 -0.002658 -0.333162 0.000000 -0.020032
cMOPSO 0.000435 0.000000 0.000000 -0.305667 0.007463 0.000000


Table A.2: Comparison of results using the binary measures for test function
ZDT1. Our algorithm is denoted by OMOPSO.


Test Function ZDT2
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 100 30 34 0 1 94
median 91 0 0 0 1 0


SCC worst 60 0 0 0 1 0
average 89 6 7 0 1 29
std. dev. 10 9.8 10.4 0 0 38.9


best 0.0006 0.0008 0.0007 0.0271 0.0723 0.0030
median 0.0007 0.0724 0.0723 0.1098 0.0723 0.0723


IGD worst 0.0008 0.0737 0.0736 0.3525 0.0723 0.0852
average 0.0007 0.0512 0.0404 0.1561 0.0723 0.0680
std. dev. 0.00005 0.0337 0.0367 0.0952 0.0000 0.0152


Table A.3: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function ZDT2 with respect to the unary measures.
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Figure A.1: Pareto fronts obtained by all the approaches for test function ZDT1.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.0075.
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Figure A.2: Pareto front obtained from the union of the fronts obtained by
OMOPSO and MOPSO, in the first test function.


Test Function ZDT2 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.92 0.93 1.00 0.00 0.21
NSGA-II 0.00 0.00 0.34 1.00 0.00 0.21
SPEA2 0.00 0.21 0.00 1.00 0.00 0.21


MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.00 0.01 0.01 0.44 0.00 0.00
cMOPSO 0.00 0.02 0.02 0.99 0.00 0.00


Test Function ZDT2 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.006493 -0.006565 -0.343317 -0.665454* -0.037835
NSGA-II 0.001015 0.000000 -0.000493 -0.336593 -0.672178* -0.031559
SPEA2 0.001138 0.000486 0.000000 -0.335614 -0.673157* -0.030560


MOPSO 0.000000 0.000000 0.000000 0.000000 -0.897843* 0.000000
sMOPSO 0.000000 0.000000 0.000000 -0.110928 0.000000 0.000000
cMOPSO 0.000231 -0.000217 -0.000197 -0.305251 -0.703520* 0.000000


Table A.4: Comparison of results using the binary measures for test function
ZDT2. Our algorithm is denoted by OMOPSO.
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Test Function ZDT3
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 90 56 50 0 89 0
median 72 42 39 0 15 0


SCC worst 18 33 25 0 0 0
average 68 44 39 0 26 0
std. dev. 18.2 6.8 6.0 0 25.4 0


best 0.0008 0.0008 0.0007 0.0281 0.0023 0.0028
median 0.0008 0.0009 0.0009 0.0316 0.0249 0.0054


IGD worst 0.0021 0.0104 0.0106 0.0447 0.0374 0.0096
average 0.0009 0.0013 0.0018 0.0334 0.0245 0.0062
std. dev. 0.0003 0.0021 0.0030 0.0048 0.0095 0.0020


Table A.5: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function ZDT3 with respect to the unary measures.
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Figure A.3: Pareto fronts obtained by all the approaches for test function ZDT2.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.0075.
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Test Function ZDT3 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.55 0.63 0.99 0.23 0.92
NSGA-II 0.06 0.00 0.66 1.00 0.14 1.00
SPEA2 0.03 0.08 0.00 1.00 0.13 1.00
MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.13 0.42 0.41 0.99 0.00 0.75
cMOPSO 0.00 0.00 0.00 1.00 0.01 0.00


Test Function ZDT3 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.004777 -0.008855 -0.509439 0.002317 -0.040068
NSGA-II 0.002496 0.000000 -0.002404 -0.503446 0.006138 -0.032923
SPEA2 0.000894 0.000072 0.000000 -0.500970 0.007052 -0.030447
MOPSO 0.001280 0.000000 0.000000 0.000000 0.000000 0.000000
sMOPSO 0.000967 -0.002485 -0.004047 -0.512069 0.000000 -0.028319
cMOPSO 0.000128 0.000000 0.000000 -0.470523 0.013227 0.000000


Table A.6: Comparison of results using the binary measures for test function
ZDT3. Our algorithm is denoted by OMOPSO.


Test Function ZDT4
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 96 0 0 0 0 0
median 88 0 0 0 0 0


SCC worst 35 0 0 0 0 0
average 80 0 0 0 0 0
std. dev. 16.3 0 0 0 0 0


best 0.0009 0.0126 0.0256 4.6415 0.1541 0.4203
median 0.0010 0.1317 0.0811 12.407 0.7393 1.6404


IGD worst 0.0010 0.3219 0.3464 15.250 1.2865 4.1864
average 0.0010 0.1508 0.1224 9.9195 0.7591 1.8621
std. dev. 0.00003 0.0973 0.0943 4.0106 0.3147 0.9357


Table A.7: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function ZDT4 with respect to the unary measures.
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Figure A.4: Pareto fronts obtained by all the approaches for test function ZDT3.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.0026.
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Test Function ZDT4 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.92 0.93 0.00 0.00 0.00
NSGA-II 0.00 0.00 1.00 1.00 1.00 1.00
SPEA2 0.00 0.00 0.00 1.00 1.00 1.00
MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.00 0.00 0.00 1.00 0.00 1.00
cMOPSO 0.00 0.00 0.00 1.00 0.00 0.00


Test Function ZDT4 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.163966 -0.342159 -0.333024* -0.333024* -0.333024*
NSGA-II 0.000935 0.000000 -0.179995 -0.497925* -0.497925* -0.497925*
SPEA2 0.002737 0.000000 0.000000 -0.677920* -0.677920* -0.677920*
MOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sMOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cMOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000


Table A.8: Comparison of results using the binary measures for test function
ZDT4. Our algorithm is denoted by OMOPSO.


Test Function DTLZ2
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 31 24 26 98 32 31
median 18 17 20 92 24 15


SCC worst 9 11 12 50 16 7
average 18 16 20 89 25 16
std. dev. 6.9 3.2 4.3 10.2 4.2 6.7


best 0.0014 0.0018 0.0013 0.0101 0.0013 0.0013
median 0.0014 0.0020 0.0013 0.0118 0.0014 0.0021


IGD worst 0.0015 0.0025 0.0014 0.0213 0.0015 0.0027
average 0.0014 0.0020 0.0013 0.0129 0.0014 0.0021
std. dev. 0.00004 0.0002 0.00004 0.0030 0.00005 0.0004


Table A.9: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function DTLZ2 with respect to the unary measures.
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Figure A.5: Pareto fronts obtained by all the approaches for test function ZDT4.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.0075.
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Test Function DTLZ2 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.22 0.10 0.00 0.05 0.55
NSGA-II 0.04 0.00 0.06 0.00 0.03 0.51
SPEA2 0.17 0.39 0.00 0.00 0.07 0.64
MOPSO 0.18 0.24 0.21 0.00 0.21 0.40
sMOPSO 0.28 0.53 0.35 0.00 0.00 0.97
cMOPSO 0.03 0.08 0.04 0.00 0.00 0.00


Test Function DTLZ2 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.003302 0.001478 -0.222739* 0.001736 -0.043070
NSGA-II 0.023198 0.000000 0.004201 -0.242413* 0.003977 -0.034526
SPEA2 0.017948 -0.005829 0.000000 -0.235493* 0.003266 -0.047018
MOPSO 0.000975 0.005851* 0.002741* 0.000000 0.002248* 0.013356*
sMOPSO 0.014884 -0.009375 -0.000056 -0.232664* 0.000000 -0.050838
cMOPSO 0.022044 0.004088 0.001626 -0.273522* 0.001128 0.000000


Table A.10: Comparison of results using the binary measures for test function
DTLZ2. Our algorithm is denoted by OMOPSO.


Test Function DTLZ4
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 23 88 91 92 68 10
median 11 20 18 34 42 0


SCC worst 2 13 11 6 8 0
average 11 34 35 37 39 1.4
std. dev. 4.4 27.1 32.8 22.9 14.8 3.3


best 0.0044 0.0016 0.0013 0.0026 0.0051 0.0074
median 0.0106 0.0018 0.0014 0.0047 0.0068 0.0234


IGD worst 0.0168 0.0168 0.0168 0.0117 0.0073 0.0342
average 0.0106 0.0047 0.0045 0.0060 0.0064 0.0223
std. dev. 0.0034 0.0054 0.0057 0.0031 0.0007 0.0074


Table A.11: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function DTLZ4 with respect to the unary measures.
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Figure A.6: Pareto fronts obtained by all the approaches for test function DTLZ2.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.066.
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Test Function DTLZ4 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.08 0.06 0.14 0.17 0.98
NSGA-II 0.04 0.00 0.10 0.24 0.25 1.00
SPEA2 0.07 0.19 0.00 0.28 0.25 1.00
MOPSO 0.06 0.14 0.11 0.00 0.27 0.94
sMOPSO 0.06 0.09 0.08 0.10 0.00 1.00
cMOPSO 0.00 0.00 0.00 0.00 0.00 0.00


Test Function DTLZ4 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 0.000893* 0.000467* 0.000125 0.166099 -0.221553
NSGA-II - 0.304934* 0.000000 0.005186 -0.046700* -0.430067* -0.527380*
SPEA2 - 0.301975* 0.001801 0.000000 -0.043671* -0.426669* -0.523995*
MOPSO - 0.259236* 0.000016* 0.000341 0.000000 -0.383423* -0.480664*
sMOPSO 0.041476 0.000383* 0.000396* 0.000311* 0.000000 0.000000
cMOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000


Table A.12: Comparison of results using the binary measures for test function
DTLZ4. Our algorithm is denoted by OMOPSO.


Test Function DTLZ6
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO


best 84 1 2 0 1 0
median 61 0 0 0 1 0


SCC worst 33 0 0 0 1 0
average 61 0.1 0.6 0 1 0
std. dev. 12.6 0.3 0.9 0 0 0


best 0.0024 0.0064 0.0037 0.0375 0.0673 0.0110
median 0.0138 0.0088 0.0045 0.0583 0.0673 0.0345


IGD worst 0.0151 0.0314 0.0214 0.1185 0.0673 0.0742
average 0.0096 0.0132 0.0067 0.0658 0.0673 0.0373
std. dev. 0.0058 0.0083 0.0051 0.0205 0.0000 0.0172


Table A.13: Comparison of results between our approach (denoted by OMOPSO),
NSGA-II [27], SPEA2 [118], MOPSO [17], sMOPSO [68] and cMOPSO [103],
for test function DTLZ6 with respect to the unary measures.
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Figure A.7: Pareto fronts obtained by all the approaches for test function DTLZ4.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.059.
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Test Function DTLZ6 - Two Set Coverage Measure SC
SC(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.00 0.72 0.73 0.87 0.00 0.57
NSGA-II 0.00 0.00 0.31 1.00 0.00 0.80
SPEA2 0.00 0.30 0.00 0.98 0.00 0.57
MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.00 0.07 0.12 0.45 0.00 0.24
cMOPSO 0.00 0.04 0.12 1.00 0.00 0.00


Test Function DTLZ6 - Two Set Hypervolume Measure HV
HV(X , OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)


OMOPSO 0.000000 -0.171358 -0.174556 -0.340801 -3.597268* -0.638663
NSGA-II 0.057354 0.000000 0.001996 -0.113803 -3.825408* -0.410346
SPEA2 0.071737 0.019577 0.000000 -0.096222 -3.843163* -0.392616
MOPSO 0.001714 0.000000 0.000000 0.000000 -3.880365* 0.000000
sMOPSO 0.000000 0.000572* 0.000398* 0.059418* 0.000000 0.001163*
cMOPSO 0.000286 -0.000109 0.000040 0.296434 -4.235054* 0.000000


Table A.14: Comparison of results using the binary measures for test function
DTLZ6. Our algorithm is denoted by OMOPSO.







172 APPENDIX A. RESULTS PROVIDED BY THE MOPSO APPROACH PROPOSED


OMOPSO NSGA-II


omopso
truefront


0
0.1


0.2
0.3


0.4
0.5


0.6
0.7


0.8
0.9 0


0.1
0.2


0.3
0.4


0.5
0.6


0.7
0.8


0.9


0


2


4


6


8


10


 0
 0.1


 0.2
 0.3


 0.4
 0.5


 0.6
 0.7


 0.8
 0.9  0


 0.1
 0.2


 0.3
 0.4


 0.5
 0.6


 0.7
 0.8


 0.9


 0


 2


 4


 6


 8


 10


truefront
nsgaII


SPEA2 MOPSO


 0
 0.1


 0.2
 0.3


 0.4
 0.5


 0.6
 0.7


 0.8
 0.9  0


 0.1
 0.2


 0.3
 0.4


 0.5
 0.6


 0.7
 0.8


 0.9


 0


 2


 4


 6


 8


 10


truefront
spea2


 0
 0.1


 0.2
 0.3


 0.4
 0.5


 0.6
 0.7


 0.8
 0.9  0


 0.1
 0.2


 0.3
 0.4


 0.5
 0.6


 0.7
 0.8


 0.9


 0


 2


 4


 6


 8


 10


truefront
mopso


sMOPSO cMOPSO


-1
-0.5


 0
 0.5


 1-1


-0.5


 0


 0.5


 1


 5.94


 5.96


 5.98


 6


 6.02


 6.04


 6.06


smopso


 0
 0.1


 0.2
 0.3


 0.4
 0.5


 0.6
 0.7


 0.8
 0.9  0


 0.1
 0.2


 0.3
 0.4


 0.5
 0.6


 0.7
 0.8


 0.9


 0


 2


 4


 6


 8


 10


truefront
cmopso


Figure A.8: Pareto fronts obtained by all the approaches for test function DTLZ6.
Our algorithm is denoted by OMOPSO and, in this case, it used ε=0.05.
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APPENDIX B. RESULTS PROVIDED BY THE ANOVA PERFORMED AND THE


ADAPTATION MECHANISMS PROPOSED


Figure B.1: Results obtained from the ANOVA, for the swarmsize parameter.
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Figure B.2: Results obtained from the ANOVA, for the gmax parameter.
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Figure B.3: Correlation observed between parameters swarmsize and gmax.
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Figure B.4: Results obtained from the ANOVA, for the Ps parameter.
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Figure B.5: Results obtained from the ANOVA, for the W parameter.
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Figure B.6: Results obtained from the ANOVA, for the C1 parameter.
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Figure B.7: Results obtained from the ANOVA, for the C2 parameter.
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Figure B.8: Correlation observed between parameters W and C2.
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Figure B.9: Correlation observed between parameters C2 and Ps.
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Figure B.10: Results obtained from the second ANOVA, for the Ps parameter.
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Figure B.11: Results obtained from the second ANOVA, for the W parameter.
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Figure B.12: Results obtained from the second ANOVA, for the C2 parameter.
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ADAPTATION MECHANISMS PROPOSED


Function ZDT1
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 100 99 99 98 99 99 100 97


median 86 82 82 81 85 84 83 85
worst 15 51 30 18 20 48 58 62
mean 84 81 78 80 82 82 82 84
st.dev. 17.5 9.1 17.7 15.0 15.3 11.9 9.9 9.5
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 100 100 98 93 93 97 98 96


median 86 95 76 72 77 82 81 83
worst 15 54 19 27 29 49 15 60
mean 84 92 70 68 72 82 80 82
st.dev. 17.5 9.8 19.6 17.2 17.3 9.9 15.8 9.7


Table B.1: Results obtained for function ZDT1.


Function ZDT2
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 100 100 100 100 100 100 100 100


median 96 93 93 94 95 90 93 92
worst 60 16 23 58 45 34 30 0
mean 94 89 84 89 89 83 86 87
st.dev. 7.8 15.9 18.4 10.6 13.4 15.4 16.9 18.1
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 100 100 100 100 100 100 100 100


median 96 98 82 92 91 93 94 95
worst 60 54 12 0 22 24 44 1
mean 94 94 76 77 81 90 87 88
st.dev. 7.8 9.5 23.7 28.2 20.2 13.9 15.5 18.6


Table B.2: Results obtained for function ZDT2.
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Function ZDT3
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 95 92 90 88 92 93 91 91


median 83 74 74 78 76 74 78 74
worst 63 9 41 51 25 30 16 39
mean 81 69 74 75 72 74 74 72
st.dev. 9.8 19.5 10.8 9.7 14.8 16.5 15.7 10.6
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 95 97 83 81 83 92 91 93


median 83 86 63 60 60 75 76 72
worst 63 46 13 22 21 32 33 25
mean 81 83 59 56 55 73 73 68
st.dev. 9.8 12.5 15.7 14.5 17.5 11.5 14.8 18.9


Table B.3: Results obtained for function ZDT3.


Function ZDT4
SCC without with adaptation and reward 1


measure adaptation Prop. ε =0.05 ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 99 100 100 100 100 100 99 99


median 97 97 97 97 95 99 97 97
worst 73 94 81 88 85 86 89 89
mean 95 97 95 96 95 98 97 96
st.dev. 5.2 1.5 4.4 3.4 3.7 2.7 2.1 2.3
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 99 98 100 100 100 100 100 100


median 97 95 97 98 98 97 97 97
worst 73 84 0 89 91 84 88 88
mean 95 94 92 97 97 96 96 96
st.dev. 5.2 2.8 17.9 2.7 2.6 3.2 2.9 2.6


Table B.4: Results obtained for function ZDT4.
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Function DTLZ2
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 50 41 38 48 38 51 40 47


median 28 29 28 26 27 32 27 30
worst 9 13 12 11 16 14 15 10
mean 30 28 27 26 26 32 27 28
st.dev. 9.6 7.4 6.9 8.1 5.9 9.5 6.9 8.4
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 50 34 31 35 37 47 42 43


median 28 22 20 17 18 28 28 30
worst 9 8 8 5 5 7 13 8
mean 30 21 20 19 19 28 29 28
st.dev. 9.6 6.2 6.7 8.6 6.8 9.3 7.8 7.7


Table B.5: Results obtained for function DTLZ2.


Function DTLZ4
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 17 58 86 51 77 44 63 27


median 9 9 10 10 12 10 10 12
worst 1 1 1 1 2 1 1 2
mean 9 11 18 11 17 11 14 12
st.dev. 4.7 10.9 22 11.3 17.4 8.3 13.5 4.4
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 17 19 49 75 83 26 61 58


median 9 9 8 7 9 8 9 11
worst 1 2 1 0 0 0 0 1
mean 9 8 11 9 11 9 11 13
st.dev. 4.7 3.9 12.3 13.9 15.8 6.1 13.7 10.2


Table B.6: Results obtained for function DTLZ4.
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Function DTLZ6
SCC without with adaptation and reward 1


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 97 96 100 92 100 98 100 100


median 64 62 66 56 59 68 71 75
worst 43 18 38 23 29 33 38 27
mean 67 62 68 57 60 69 73 71
st.dev. 14.9 14.9 16.6 18.5 16.1 21.1 17.1 21.5
SCC without with adaptation and reward 2


measure adaptation Prop. ε(0.05) ε(0.10) ε(0.15) τ(0.05) τ(0.10) τ(0.15)
best 97 94 96 96 96 100 100 97


median 64 68 54 49 46 72 73 76
worst 43 27 9 2 6 18 21 14
mean 67 65 52 48 51 69 67 69
st.dev. 14.9 17.7 21.9 25.8 22.2 22.6 23.2 21.9


Table B.7: Results obtained for function DTLZ6.
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APPENDIX C. RESULTS PROVIDED BY THE FITNESS INHERITANCE TECHNIQUES


PROPOSED


Test Function ZDT1
sMOPSO oMOPSO 0.1 0.2 0.3 0.4


best 93 84 94 94 78 86
median 58 74 79 72 69 65


SCC worst 23 22 44 27 25 36
mean 59 71 77 64 62 61


std. dev. 24.2 13.6 14.5 19.8 16.4 14.8
best 0.0031 0.0009 0.0009 0.0009 0.0009 0.0009


median 0.0260 0.0010 0.0009 0.0010 0.0010 0.0010
IGD worst 0.0448 0.0011 0.0010 0.0011 0.0012 0.0087


mean 0.0269 0.0010 0.0009 0.0010 0.0010 0.0014
std. dev. 0.0095 0.00005 0.00003 0.00005 0.00008 0.0017


Test Function ZDT2
sMOPSO oMOPSO 0.1 0.2 0.3 0.4


best 1 100 100 100 100 97
median 1 91 93 92 88 84


SCC worst 1 60 6 54 23 33
mean 1 89 83 86 79 77


std. dev. 0 10 22.5 13.1 22.4 20.7
best 0.0723 0.0006 0.0006 0.0006 0.0006 0.0006


median 0.0723 0.0007 0.0007 0.0007 0.0007 0.0007
IGD worst 0.0723 0.0008 0.0011 0.0009 0.0010 0.0009


mean 0.0723 0.0007 0.0007 0.0007 0.0007 0.0007
std. dev. 0.0000 0.00005 0.0001 0.00007 0.0001 0.00008


Table C.1: Results obtained for functions ZDT1 and ZDT2, for sMOPSO,
oMOPSO, and oMOPSO with fitness inheritance (pi=0.1,0.2,0.3,0.4).
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Test Function ZDT3
sMOPSO oMOPSO 0.1 0.2 0.3 0.4


best 89 90 88 82 85 92
median 15 72 77 66 67 67


SCC worst 0 18 51 30 27 8
mean 26 68 73 65 64 59


std. dev. 25.4 18.2 11.2 13.9 14.5 21.2
best 0.0023 0.0008 0.0008 0.0008 0.0008 0.0008


median 0.0249 0.0008 0.0008 0.0009 0.0008 0.0009
IGD worst 0.0374 0.0021 0.0106 0.0103 0.0014 0.0049


mean 0.0245 0.0009 0.0015 0.0014 0.0009 0.0016
std. dev. 0.0095 0.0003 0.0022 0.0021 0.0002 0.0012


Test Function ZDT4
sMOPSO oMOPSO 0.1 0.2 0.3 0.4


best 0 96 96 96 89 94
median 0 88 83 81 63 77


SCC worst 0 35 50 55 27 11
mean 0 80 81 81 60 68


std. dev. 0 16.3 13 12.8 22.7 25.4
best 0.1541 0.0009 0.0009 0.0009 0.0009 0.0009


median 0.7393 0.0010 0.0010 0.0009 0.0010 0.0009
IGD worst 1.2865 0.0010 0.0010 0.0010 0.0010 0.0013


mean 0.7591 0.0010 0.0010 0.0009 0.0010 0.0010
std. dev. 0.3147 0.00003 0.00003 0.00003 0.00004 0.00009


Table C.2: Results obtained for functions ZDT3 and ZDT4, for sMOPSO,
oMOPSO, and oMOPSO with fitness inheritance (pi=0.1,0.2,0.3,0.4).
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PROPOSED


Test Function ZDT1
SC(X, sMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)


sMOPSO 0.00 0.35 0.25 0.35 0.38 0.41
oMOPSO 0.08 0.00 0.22 0.36 0.46 0.41


0.1 0.08 0.45 0.00 0.46 0.51 0.52
0.2 0.06 0.29 0.24 0.00 0.38 0.40
0.3 0.05 0.21 0.16 0.28 0.00 0.32
0.4 0.05 0.28 0.16 0.31 0.36 0.00


Test Function ZDT2
SC(X, sMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)


sMOPSO 0.00 0.00 0.00 0.00 0.00 0.00
oMOPSO 0.00 0.00 0.28 0.34 0.28 0.47


0.1 0.00 0.31 0.00 0.39 0.29 0.51
0.2 0.00 0.26 0.25 0.00 0.24 0.44
0.3 0.00 0.35 0.32 0.37 0.00 0.48
0.4 0.00 0.18 0.15 0.22 0.17 0.00


Test Function ZDT3
SC(X, sMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)


sMOPSO 0.00 0.13 0.14 0.19 0.20 0.18
oMOPSO 0.23 0.00 0.28 0.40 0.44 0.38


0.1 0.25 0.41 0.00 0.49 0.53 0.45
0.2 0.22 0.26 0.22 0.00 0.38 0.31
0.3 0.22 0.20 0.17 0.29 0.00 0.26
0.4 0.23 0.26 0.22 0.34 0.39 0.00


Test Function ZDT4
SC(X, sMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)


sMOPSO 0.00 0.00 0.00 0.00 0.00 0.00
oMOPSO 0.00 0.00 0.38 0.32 0.54 0.42


0.1 0.00 0.21 0.00 0.24 0.48 0.33
0.2 0.00 0.25 0.36 0.00 0.53 0.39
0.3 0.00 0.11 0.15 0.12 0.00 0.20
0.4 0.00 0.17 0.24 0.21 0.40 0.00


Table C.3: Results obtained for the test function ZDT4, for sMOPSO, oMOPSO,
and oMOPSO with fitness inheritance (pi=0.1,0.2,0.3,0.4).
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Test Function ZDT1 Test Function ZDT2
sMOPSO sMOPSO
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Figure C.1: Pareto fronts obtained by sMOPSO, oMOPSO, and oMOPSO with
inheritance proportion of 0.4, for functions ZDT1 y ZDT2.
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Test Function ZDT3 Test Function ZDT4
sMOPSO sMOPSO
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Figure C.2: Pareto fronts obtained by sMOPSO, oMOPSO, and oMOPSO with
inheritance proportion of 0.4, for function ZDT3, and with inheritance proportion
of 0.3, for function ZDT4.
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FI1 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 77 (+8.5%) 64 (-9.9%) 62 (-12.7%) 61 (-14.1%)
ZDT2 89 83 (-6.7%) 86 (-3.4%) 79 (-11.2%) 77 (-13.5%)
ZDT3 68 73 (+7.4%) 65 (-4.4%) 64 (-5.9%) 59 (-13.2%)
ZDT4 80 81 (+1.3%) 81 (+1.3%) 60 (-25.0%) 68 (-15.0%)


Average +2.6% -4.1 % -13.7 % -14.0 %
FI2 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 68 (-4.2%) 68 (-4.2%) 59 (-16.9%)
ZDT2 89 81 (-9.0%) 82 (-7.9%) 78 (-12.4%) 77 (-13.5%)
ZDT3 68 64 (-5.9%) 67 (-1.5%) 58 (-14.7%) 63 (-7.4%)
ZDT4 80 77 (-3.8%) 83 (+3.8%) 67 (-16.3%) 69 (-13.8%)


Average -3.6% -2.4 % -11.9 % -12.9 %
FI3 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 73 (+2.8%) 69 (-2.8%) 69 (-2.8%) 50 (-29.6%)
ZDT2 89 87 (-2.2%) 82 (-7.9%) 71 (-20.2%) 76 (-14.6%)
ZDT3 68 67 (-1.5%) 63 (-7.4%) 64 (-5.9%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 59 (-26.3%) 68 (-15.0%)


Average +0.1% -4.9 % -13.8 % -17.8%
FI4 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 62 (-12.7%) 62 (-12.7%) 59 (-16.9%) 49 (-31.0%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 78 (-12.4%) 79 (-11.2%)
ZDT3 68 73 (+7.4%) 69 (+1.5%) 60 (-11.8%) 58 (-14.7%)
ZDT4 80 88 (+10.0%) 88 (+10.0%) 85 (+6.3%) 82 (+2.5%)


Average +0.1% -1.7 % -8.7 % -13.6%
FI5 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 69 (-2.8%) 61 (-14.1%) 56 (-21.1%)
ZDT2 89 89 ( 0.0%) 79 (-11.2%) 84 (-5.6%) 77 (-13.5%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 55 (-19.1%) 58 (-14.7%)
ZDT4 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)


Average +4.7% -1.2 % -8.1 % -11.7%


Table C.4: Results obtained for different values of inheritance proportion, for
techniques FI1, FI2, FI3, FI4 and FI5.
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FI6 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 70 (-1.4%) 61 (-14.1%) 62 (-12.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 82 (-7.9%) 76 (-14.6%) 70 (-21.3%)
ZDT3 68 72 (+5.9%) 72 (+5.9%) 59 (-13.2%) 61 (-10.3%)
ZDT4 80 83 (+3.8%) 84 (+5.0%) 80 (0.0%) 79 (-1.3%)


Average +1.6% -2.8 % -10.1 % -16.7%
FI7 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 64 (-9.9%) 58 (-18.3%) 57 (-19.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 74 (-16.9%) 68 (-23.6%) 66 (-25.8%)
ZDT3 68 66 (-2.9%) 69 (+1.5%) 64 (-5.9%) 57 (-16.2%)
ZDT4 80 80 (0.0%) 74 (-7.5%) 57 (-28.8%) 44 (-45.0%)


Average -4.9% -10.3 % -19.5 % -30.2%
FI8 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 62 (-12.7%) 53 (-25.4%) 47 (-33.8%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 66 (-25.8%) 65 (-27.0%)
ZDT3 68 71 (+4.4%) 67 (-1.5%) 61 (-10.3%) 52 (-23.5%)
ZDT4 80 80 (0.0%) 72 (-10.0%) 63 (-21.3%) 52 (-35.0%)


Average -0.7% -7.5 % -20.7 % -29.8%
FI9 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 67 (-5.6%) 58 (-18.3%) 54 (-23.9%) 44 (-38.0%)
ZDT2 89 90 (+1.1%) 85 (-4.5%) 69 (-22.5%) 68 (-23.6%)
ZDT3 68 68 (0.0%) 67 (-1.5%) 61 (-10.3%) 51 (-25.0%)
ZDT4 80 83 (+3.8%) 76 (-5.0%) 72 (-10.0%) 58 (-27.5%)


Average -0.2% -7.3 % -16.7 % -28.5%
FI10 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 58 (-18.3%) 59 (-16.9%) 48 (-32.4%)
ZDT2 89 78 (-12.4%) 78 (-12.4%) 69 (-22.5%) 58 (-34.8%)
ZDT3 68 70 (+2.9%) 63 (-7.4%) 61 (-10.3%) 47 (-30.9%)
ZDT4 80 78 (-2.5%) 81 (+1.3%) 58 (-27.5%) 52 (-35.0%)


Average -3.0% -9.2 % -19.3 % -33.3%


Table C.5: Results obtained for different values of inheritance proportion, for
techniques FI6, FI7, FI8, FI9 and FI10.
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FI11 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 62 (-12.7%) 63 (-11.3%) 55 (-22.5%) 37 (-48.0%)
ZDT2 89 84 (-5.6%) 87 (-2.2%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 69 (+1.5%) 60 (-11.8%) 57 (-16.2%) 44 (-35.3%)
ZDT4 80 82 (+2.5%) 81 (+1.3%) 73 (-8.8%) 73 (-8.8%)


Average -3.6% -6.0 % -14.1 % -26.7%
FI12 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 66 (-7.0%) 56 (-21.1%) 55 (-22.5%) 48 (-32.4%)
ZDT2 89 87 (-2.2%) 85 (-4.5%) 74 (-16.9%) 80 (-10.1%)
ZDT3 68 66 (-2.9%) 64 (-5.9%) 55 (-19.1%) 53 (-22.1%)
ZDT4 80 80 (0.0%) 75 (-6.3%) 71 (-11.3%) 61 (-23.8%)


Average -3.0% -9.5 % -17.5 % -22.1%
FI13 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 68 (-4.2%) 69 (-2.8%) 63 (-11.3%) 58 (-18.3%)
ZDT2 89 84 (-5.6%) 81 (-9.0%) 79 (-11.2%) 80 (-10.1%)
ZDT3 68 70 (+2.9%) 68 ( 0.0%) 63 (-7.4%) 54 (-20.6%)
ZDT4 80 79 (-1.3%) 81 (+1.3%) 64 (-20.0%) 59 (-26.3%)


Average -2.1% -2.6 % -12.5 % -18.8%
FI14 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 75 (+5.6%) 66 (-7.0%) 58 (-18.3%) 59 (-16.9%)
ZDT2 89 88 (-1.1%) 79 (-11.2%) 83 (-6.7%) 72 (-19.1%)
ZDT3 68 74 (+8.8%) 69 (+1.5%) 63 (-7.4%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 73 (-8.8%) 67 (-16.3%)


Average +3.7% -4.9 % -10.3 % -16.0%
FI15 Inheritance proportion pi


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 63 (-11.3%) 69 (-2.8%) 56 (-21.1%)
ZDT2 89 86 (-3.4%) 81 (-9.0%) 72 (-19.1%) 73 (-18.0%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 64 (-5.9%) 58 (-14.7%)
ZDT4 80 81 (+1.3%) 78 (-2.5%) 63 (-21.3%) 70 (-12.5%)


Average +0.3% -5.0 % -12.3 % -16.6%


Table C.6: Results obtained for different values of inheritance proportion, for
techniques FI11, FI12, FI13, FI14 and FI15.
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PROPOSED


FA1 Approximation proportion pa


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 64 (-9.9%) 63 (-11.3%) 55 (-22.5%)
ZDT2 89 88 (-1.1%) 85 (-4.5%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 73 (+7.4%) 61 (-10.3%) 60 (-11.8%) 55 (-19.1%)
ZDT4 80 85 (+6.3%) 89 (+11.3%) 79 (-1.3%) 80 (0.0%)


Average +4.2% -3.4 % -8.4 % -14.1%
FA2 Approximation proportion pa


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 75 (+5.6%) 57 (-19.7%) 54 (-23.9%) 46 (-35.2%)
ZDT2 89 83 (-6.7%) 72 (-19.1%) 63 (-29.2%) 76 (-14.6%)
ZDT3 68 63 (-7.4%) 58 (-14.7%) 58 (-14.7%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 87 (+8.8%) 81 (+1.3%) 83 (+3.8%)


Average -0.3% -11.2 % -16.6 % -15.9%
FA3 Approximation proportion pa


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 67 (-5.6%) 63 (-11.3%) 50 (-29.6%)
ZDT2 89 88 (-1.1%) 87 (-2.2%) 85 (-4.5%) 76 (-14.6%)
ZDT3 68 65 (-4.4%) 65 (-4.4%) 55 (-19.1%) 57 (-16.2%)
ZDT4 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)


Average +1.5% +0.4 % -6.9 % -12.9%
FA4 Approximation proportion pa


function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 59 (-16.9%) 60 (-15.5%) 52 (-26.8%)
ZDT2 89 87 (-2.2%) 80 (-10.1%) 76 (-14.6%) 71 (-20.2%)
ZDT3 68 67 (-1.5%) 71 (+4.4%) 56 (-17.6%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 85 (+6.3%) 79 (-1.3%) 80 (0.0%)


Average +0.3% -4.1 % -12.3 % -16.2%


Table C.7: Results obtained for different values of approximation proportion, for
techniques FA1, FA2, FA3 and FA4.
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Test Function DTLZ2
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4


SCC mean 25 16 18 18 12 13 12
std. dev. 4.2 6.7 6.9 7.7 5.2 6.4 6.8


IGD mean 0.0014 0.0021 0.0014 0.0014 0.0015 0.0015 0.0015
std. dev. 0.00005 0.0004 0.00004 0.00005 0.0001 0.00008 0.00009


Test Function DTLZ6
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4


SCC mean 1 0 62 61 60 61 43
std. dev. 0 0 13 17.3 21.7 17.2 20.7


IGD mean 0.0673 0.0373 0.0091 0.0074 0.0089 0.0087 0.0101
std. dev. 0.0000 0.0172 0.0058 0.0060 0.0060 0.0058 0.0058


Table C.8: Results obtained for the test functions DTLZ2 and DTLZ6, for
sMOPSO, cMOPSO, oMOPSO, and oMOPSO with the fitness inheritance tech-
nique FI5 incorporated (pi=0.1,0.2,0.3,0.4).


Test Function DTLZ2
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4


SCC mean 25 16 18 16 15 16 13
std. dev. 4.2 6.7 6.9 6 7.7 8.2 7.3


IGD mean 0.0014 0.0021 0.0014 0.0014 0.0015 0.0015 0.0015
std. dev. 0.00005 0.0004 0.00004 0.00005 0.00007 0.0001 0.0001


Test Function DTLZ6
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4


SCC mean 1 0 62 62 51 54 53
std. dev. 0 0 13 15 27 20 20


IGD mean 0.0673 0.0373 0.0091 0.0109 0.0099 0.0100 0.0116
std. dev. 0.0000 0.0172 0.0058 0.0056 0.0059 0.0061 0.0056


Table C.9: Results obtained for the test functions DTLZ2 and DTLZ6, for
sMOPSO, cMOPSO, oMOPSO, and oMOPSO with the fitness approximation
technique FA3 incorporated (pa=0.1,0.2,0.3,0.4).
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Function ZDT1
noinherit nlinear1 nlinear2 nlinear3 linear nlinear4 nlinear5


best 99 99 94 97 95 81 62
median 93 87 79 76 75 55 17


SCC worst 47 38 16 29 12 10 1
mean 87 84 74 71 68 53 21


st. dev. 12.5 12.6 21 18.6 22.7 21.6 13.5
best 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010


median 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0014
IGD worst 0.0010 0.0010 0.0020 0.0492 0.0318 0.0492 0.0831


mean 0.0010 0.0010 0.0010 0.0031 0.0028 0.0039 0.0084
st. dev. 0.0000 0.0000 0.0002 0.0089 0.0069 0.0098 0.0180


evaluations 20200 16306 13640 10295 10303 6966 4319
savings 0% 19.3% 32.5% 49% 49% 65.5% 78.6%


Function ZDT2
noinherit nlinear1 nlinear2 nlinear3 linear nlinear4 nlinear5


best 100 100 100 99 100 98 95
median 96 94 94 91 93 79 46


SCC worst 35 69 47 0 2 0 0
mean 92 93 89 83 84 69 45


st. dev. 12.9 6.1 12.2 21.7 22.9 26.6 34.2
best 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007


median 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0011
IGD worst 0.0010 0.0008 0.0008 0.0059 0.0035 0.0678 0.0456


mean 0.0007 0.0007 0.0007 0.0009 0.0008 0.0052 0.0038
st. dev. 0.0001 0.0000 0.0000 0.0010 0.0005 0.0139 0.0090


evaluations 20200 16304 13641 10295 10298 6968 4316
savings 0% 19.3% 32.5% 49% 49% 65.5% 78.6%


Table C.10: Results obtained for all the test functions and all the adaptive func-
tions.
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Function ZDT3
noinherit nlinear1 nlinear2 nlinear3 linear nlinear4 nlinear5


best 91 91 93 86 89 69 48
median 78 74 74 57 60 37 11


SCC worst 42 38 9 4 17 10 2
mean 76 73 72 53 59 37 16


st. dev. 12.7 11.6 15.9 21.5 16.2 18 12.6
best 0.0007 0.0008 0.0008 0.0009 0.0008 0.0009 0.0017


median 0.0008 0.0009 0.0009 0.0019 0.0011 0.0028 0.0129
IGD worst 0.0013 0.0020 0.0159 0.0542 0.0273 0.0491 0.0505


mean 0.0009 0.0010 0.0020 0.0074 0.0023 0.0109 0.0178
st. dev. 0.0001 0.0003 0.0032 0.0138 0.0049 0.0137 0.0147


evaluations 20200 16312 13622 10290 10304 6966 4336
savings 0% 19.2% 32.6% 49.1% 49% 65.5% 78.5%


Function ZDT4
noinherit nlinear1 nlinear2 nlinear3 linear nlinear4 nlinear5


best 100 99 98 99 99 95 81
median 97 97 96 94 95 83 48


SCC worst 78 69 74 49 28 3 2
mean 96 94 93 89 90 77 47


st. dev. 4.8 6.6 6.0 12.6 14.2 18.1 22.6
best 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010


median 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011
IGD worst 0.0010 0.0010 0.0010 0.0010 0.0010 0.0014 0.0021


mean 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0012
st. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003


evaluations 20200 16287 13626 10315 10304 6958 4315
savings 0% 19.4% 32.5% 48.9% 49% 65.6% 78.6%


Table C.11: Results obtained for all the test functions and all the adaptive func-
tions.
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Function DTLZ6
noinherit nlinear1 nlinear2 nlinear3 linear nlinear4 nlinear5


best 97 100 93 75 84 73 38
median 74 68 67 52 51 41 21


SCC worst 42 41 37 21 16 16 1
mean 74 71 66 52 52 42 20


st. dev. 14.2 15.8 14.2 14.6 19.2 14.3 7.9
best 0.0023 0.0023 0.0026 0.0030 0.0026 0.0031 0.0095


median 0.0030 0.0136 0.0138 0.0141 0.0140 0.0147 0.0210
IGD worst 0.0187 0.0166 0.0165 0.0205 0.0248 0.0231 0.0447


mean 0.0064 0.0087 0.0104 0.0126 0.0118 0.0139 0.0205
st. dev. 0.0053 0.0057 0.0053 0.0048 0.0067 0.0061 0.0082


evaluations 20200 16303 13643 10297 10304 6959 4343
savings 0% 19.3% 32.5% 49% 50.9% 65.5% 78.5%


Table C.12: Results obtained for all the test functions and all the adaptive func-
tions.


Confidence Intervals for the mean of SCC
approach ZDT1 ZDT2 ZDT3 ZDT4 DTLZ6
no-inherit [82.1,91.5] [87.0,95.4] [71.3,80.8] [94.7,96.8] [67.8,78.1]
nonlinear1 [79.1,88.6] [91.1,95.6] [69.1,77.7] [91.2,95.9] [62.3,74.5]
nonlinear2 [65.5,80.2] [82.3,93.0] [66.1,78.0] [91.1,94.9] [60.2,70.0]
nonlinear3 [63.6,77.7] [72.3,87.0] [45.3,61.4] [85.0,92.4] [46.3,57.1]


linear [60.0,76.9] [76.2,90.4] [52.5,64.6] [85.2,93.8] [43.2,56.7]
nonlinear4 [45.2,61.3] [58.6,78.5] [30.3,43.8] [69.2,81.6] [36.4,46.2]
nonlinear5 [15.6,25.7] [31.7,57.3] [11.8,21.2] [38.2,55.1] [16.9,22.3]


Table C.13: Confidence intervals for the mean of the Success Counting measure.
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Confidence Intervals for the mean of IGD
approach function ZDT1 function ZDT2 function ZDT3
no-inherit [0.000945,0.000964] [0.000647,0.000686] [0.000874,0.000962]
nonlinear1 [0.000945,0.000971] [0.000647,0.000666] [0.000954,0.001130]
nonlinear2 [0.000946,0.001125] [0.000657,0.000688] [0.001198,0.003866]
nonlinear3 [0.001807,0.004922] [0.000676,0.001372] [0.003199,0.015646]


linear [0.000970,0.006952] [0.000674,0.001084] [0.001197,0.004792]
nonlinear4 [0.001537,0.009697] [0.001544,0.011302] [0.007711,0.015563]
nonlinear5 [0.005391,0.019967] [0.001469,0.010545] [0.012888,0.023290]


Table C.14: Confidence intervals for the mean of the Inverted Generational Dis-
tance measure.


Confidence Intervals for the mean of IGD
approach function ZDT4 function DTLZ6
no-inherit [0.000943,0.000966] [0.004636,0.007801]
nonlinear1 [0.000950,0.000967] [0.007273,0.011590]
nonlinear2 [0.000949,0.000967] [0.008654,0.011922]
nonlinear3 [0.000939,0.000961] [0.010853,0.014540]


linear [0.000946,0.000971] [0.009773,0.014772]
nonlinear4 [0.000964,0.001030] [0.011890,0.016370]
nonlinear5 [0.001122,0.001359] [0.017997,0.024043]


Table C.15: Confidence intervals for the mean of the Inverted Generational Dis-
tance measure.







206
APPENDIX C. RESULTS PROVIDED BY THE FITNESS INHERITANCE TECHNIQUES


PROPOSED


Function ZDT1
X nl1 nl2 nl3 lin nl4 nl5


SC(no-inh,X) 0.33 0.23 0.25 0.25 0.23 0.66
SC(X,no-inh) 0.04 0.02 0.00 0.00 0.00 0.00


Function ZDT2
X nl1 nl2 nl3 lin nl4 nl5


SC(no-inh,X) 0.37 0.21 0.29 0.20 0.39 0.30
SC(X,no-inh) 0.03 0.07 0.05 0.04 0.00 0.00


Function ZDT3
X nl1 nl2 nl3 lin nl4 nl5


SC(no-inh,X) 0.27 0.20 0.34 0.37 0.40 0.67
SC(X,no-inh) 0.14 0.08 0.02 0.01 0.00 0.00


Function ZDT4
X nl1 nl2 nl3 lin nl4 nl5


SC(no-inh,X) 0.21 0.12 0.19 0.13 0.11 0.30
SC(X,no-inh) 0.05 0.14 0.06 0.01 0.01 0.01


Function DTLZ6
X nl1 nl2 nl3 lin nl4 nl5


SC(no-inh,X) 0.01 0.05 0.09 0.10 0.12 0.13
SC(X,no-inh) 0.01 0.01 0.01 0.01 0.00 0.00


Table C.16: Set Coverage measure.
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Test Function ZDT1 Test Function ZDT2
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Figure C.3: Pareto fronts obtained for functions ZDT1 and ZDT2.
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Test Function ZDT3 Test Function ZDT4
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Figure C.4: Pareto fronts obtained for functions ZDT3 and ZDT4.
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Test Function DTLZ6
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Figure C.5: Pareto fronts obtained for function DTLZ6.
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México, 2004.


[96] Margarita Reyes Sierra and Carlos A. Coello Coello. Coevolutionary Multi-
Objective Optimization using Clustering Techniques. In Fourth Mexican
International Conference on Artificial Intelligence (MICAI), pages 603–
612, Monterrey, Mexico, 2005. Lecture Notes in Computer Science.


[97] Margarita Reyes Sierra and Carlos A. Coello Coello. Fitness Inheritance
in Multi-Objective Particle Swarm Optimization. In IEEE Swarm Intelli-
gence Symposium, pages 116–123, Pasadena, California, USA, 2005. IEEE
Service Center.


[98] Margarita Reyes Sierra and Carlos A. Coello Coello. Improving PSO-based
Multi-objective Optimization using Crowding, Mutation and ε-Dominance.
In Third International Conference on Evolutionary Multi-Criterion Opti-
mization, EMO 2005., pages 505–519, Guanajuato, México, 2005. LNCS
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