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Abstract

This document presents a new artificial immune system algorithm based olomiaé selection principle
and hypervolume contribution. The main aim is to investigate the performantésaflass of algorithm
with respect to other algorithms which are representative of the state ofttimesalving Multi Objective
Problems (MOP). The main features of an immune system algorithm are implenagctsdme results are
provided comparing them to the well-known algorithm NSGA-II. The restitssthat artificial immune
system algorithms based on hypervolume are competitive, even when uding few of the features,
among the many available, that a true immune system ffan o
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1. Introduction

For the last decade, evolutionnary algorithms (EAs) have been widetytoseolve MOPs. An EA
uses some mechanisms inspired by biological evolution, which have been shbe dficient on a large
set of dificult problems, including NP-Hard or even NP-complete class problems. af\said to be
population-based algorithms because they use a set (population) of ssltitéd is updated at each itera-
tion (generation). The main advantage of EAs, and metaheuristics in gasdnat at each generation, the
algorithm is able to provide solutions (exact or approximate) in a reasolmbl@Emount of time (polyno-
mial complexity). On the contrary, exact algorithms always lead to solutiorsbikt ones) after a costly
search, even if using intelligent methods (e.g. Branch & Bound). The dnalywback of EAs is that, in
general, their convergence cannot be guaranteed. Neverthelgsaciite, EAs generate approximations
that are generally sficiently good to justify their use.
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Many metaheuristics have been designed aiming to solve as many problenssif¢epohile changing
a minimum number of parameters from the algorithm. However, most of the exatjogithms which
solve MOPs have to be tuned to lE@ent on a large set of fierent and complex problems. The purpose
of the algorithm proposed here is not to overcome thiisadilty but rather to create a fast and robust algo-
rithm with basic features based on artificial immune system algorithms andvaygeie contribution. The
future addition of more elaborate self-adaptation mechanisms to the progoserich should improve its
performance and robustness. Next, we provide some basic condapdsl te multi-objective optimization
and artifical immune systems.

1.1. Multi Objective Optimization

In multi-objective optimization, the aim is to optimize two or more objective functionsidlw are
normally in conflict with each other) at the same time. Objectives could be maximizedhimized, but
here, we assume that all of them are to be minimized. The problem can hestradoed or constrained and
is generally modeled as:

opt (% Vie{l,..,m
st

0¥ <0 Vje{l..,pl

h(®) =0 Vkel(l..q)

x € [lb,u] Vle{l..n

where:

opt € {min, max,

mis the number of objective functions,

p is the number of inequality constraints,

g is the number of equality constraints,

nis the number of decision variables of the problem,

Ib, ub are the lower and upper bound of each variapleespectively.

Finding the optimal vectox* of a single objective problem can be easily defined as

# X such that f1(X) < f(X")

In the multiobjective case, each vector solution has to be optimized throughth@orene objective
function, then, fom objectives, the problem can be described as

{min §:XeR">R Vi | gj(x)<0, he(x)=0 Vj,k}

In this case, there is no unique solution. Indeéid, € {1, 2}, and for two solution; and X,, we can
suppose thafi(X;) < fi(X2) and fo(X2) < fo(X1). Then we can’t deduce anything by comparing these
solutions and they are considered as two feasible solutions of the prollenddr to define formally this
relation, we need to introduce the notion of Pareto dominance.

1.1.1. Pareto Dominance

One vectorX* dominates (in the Pareto sense) a ve&tdrand only if f;(X*) < fi(X) Vi € {1,...,m} and
there exists at least oneuch thatfj(X*) < fi(X) (assuming minimization). We also say thas dominated
by X*. A binary operator <" is defined as:

Xdominates Y &< X<V
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Figure 1: A simple bi-objective problem with two variables

1.1.2. Pareto Optimal Se&t Pareto Front

All the solutions whose vectors are not dominated by any other vect&™irare said to benon-
dominated. Pareto optimal set is composed of all vectors in the search &jatteat are non-dominated.
The image of the Pareto optimal set (i.e., their objective function value) foenP#neto front. The main
goal in multi-objective optimization is to generate as many elements of the Pareto log#inas possible.
A simple graphical representation is given in Figlire

1.1.3. Spreadr Convergence

When working with multi-objective problems, two important notions have to be walerstood : con-
vergence and spread. The convergence allows to measure how &oldltiens found are, from the true
Pareto front; a classical performance measure to calculate it is the Genar®istance (GD). The al-
gorithm’s convergence can also be seen as the time (or number of gem&rageded to reach the Pareto
front. For example, an algorithm would have a good convergence if

deeN, e< T, such that Itim GDi(S)=0

where:
S is the set of solutions found,
T is the maximum number of generations.

The spread indicates how well-distributed are the solutions on the true Rargtdor its approximation).
This is an important indicator as it gives more choices to the decision-malar glfoosing one or more
non-dominated solutions. The spread proposed]iis[a widely used indicator that adopts, of course, the
distance between solutions, but also the Pareto front's extreme soluti@rsleinto take into account the
maximum interval where the solutions are found for each objective.

1.2. Multi Objective Atrtificial Immune System (MOAIS)
1.2.1. The Immune System

The immune system’s role is to defend the body against infections. It hasaselefenses against
outside attacks: the barrier of the skin, mucous membranes, and theeg@asgiem defense of cells, but the

IMean distance betweeen solutions found so far and the nearest sokitioiging to the true Pareto front
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functioning of antibodies is its main element. Usually, when a foreign elementdstdd by the immune
system, an immediate elimination reaction sets in. This reaction involves phagatigiared lymphocytes
that circulate continuously throughout the body. This reaction is fastalted non-specific, meaning that
the immune system attacks the antigen without knowing its nature.

Depending on the severity of the infection, this rapid and non-specific immasmnse may not be
suficient to eliminate the intruder. A second reaction, slower and more specifibevilet up: it puts
into play the recognition of the foreign element by immune cells. Following thegrétton, immune cells
specifically adapted for the destruction of the foreign agent (lymphocwitiéamultiply rapidly. Some of
these clones may be corrupt, and a risk of generating autoimmune cells.o€herimmune system is able
to suppress self-generated cells (suppression of similar individuals i@)M8ubsequently, the organism
keeps track of this encounter with the foreign element (thanks to the B cdll®re is some form of
memory in the immune system. This will optimize the specific immune response, whichevidster at a
forthcoming encounter with the same foreign element.

Immunity is a very complex system that idiitiult to simulate retaining all of its characteristics. Nev-
ertheless, the key ideas that can be used to build an AIS are:

e A set of immune agents (antibodies) that try to find the best binding to fit to gathagents (anti-
gens).

e A set of cells that record characteristics of antigens previously enemeh
e Communication between these entities.
e The capability of some cells to clone (asexual reproduction) and mutate.

Some more features of AIS are given B#],[nevertheless, most of them are not relevant for MOO and,
therefore, are not discussed here.

1.2.2. AIS applied to MOO

In MOAIS, we usually consider two sets of solutions, antibodies and argtigBifferences between
these are defined by the designer of the algorithm. The most common idealisgoap and bad solutions.
Interactions between the solutions (Ag-Ab, Ag-Ag,...) are usually defilyea tunction called “&inity”
with classical methods such as distance measures, Pareto dominancg,reitkiDepending on thefmity
value a selection and a cloning process occurs, then the clones are mbtiai@ty, a strategy is used to
generate the new population and to store the best solutions found secfavifag is nowadays a common
feature in MOEAS). In2], a canonical algorithm gives the main procedure of an MOAIS, whicapsited
here in Algorithm1 with the notation of this document.

The canonical MOAIS algorithm first defines the problem, like all populatiased algorithms (line
1). An archive is defined (line 2) in order to store the non-dominated sokifimund so far. The online
population is initialized (line 3) containing the solutions from the current gaiter. The main loop starts
and performs the following steps until a stop criterion is met. The algorithm a&esuhe online population
(line 5) using objective functions and constraints. Depending on theehai@ade, the solutions of the set
B are analysed and given affinity value (line 6), the archivé can be used, for example to define the
new dfinities between best solutions found so far. The cloning selection is triddeliewing stochastic
or deterministic rules (line 7), based ofiimities values or not. The cloning process is usually done based
on the dhnity values (proportional cloning), while the mutation of each individual carelseveral variants
(line 8). The two previous steps are commonly adapted in all AIS, this is cakezldhal selection principle.
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Algorithm 1: Outline of the canonical MOAIS

1 Define the search spafg objectives functions;, constraintsy;, hy ;
2 At = 0) « Initialize offline population;

3 B(t = 0) < Initialize online population with random individuals;
4 while - stop criteriondo

5 Evaluate populatioB(t) using f;, g, hy;

6 B1(t) «— Define dhinitiesB(t), [A(D)]);

7 B, (t) «— Selection for cloning® (t), [A)]);

8 Bs(t) «— Proliferation and mutatioi(t));

9 B4(t) < Diversification & Suppression;

10 B(t + 1) «— Bs(t) U By(t) ;

11 At + 1) «— UpdatefA(t), B(t + 1));

12 te—1t+1;

13 end

The diversification procedure (line 9) is not mandatory, its goal is to adtiads to bring some diversity
to the population usually by creating new random individuals. Suppressioot mandatory either and
can be applied to delete some individuals (responsible for autoimmune disqaicularly to individuals
that are not relevant for further optimization. The new population is géeéttaking into account the best
clones (line 10), applying some predefined rules. Eventually, the a&@hiydated (line 11).

1.3. State of the art

An overview of Artificial Immune System for MOO s given iB][ It shows that MISA is considered
as the first MOAIS proposed in the litteratu#Qruz Corés, 2002). The algorithm is designed to fit the
immune system metaphor and it follows the canonical algorithm previoushemexs MISA uses the
classical non-dominated Pareto ranking algorithm to classify solutions addtéomine which of them
will be cloned. The number of clones depends on antibody-antibfithitiés. The clones are uniformly
mutated according to their antigen-antibodiirdaties whereas other solutions use non-uniform mutation.
An adaptive grid is used to ensure diversity in the fixed size archivéectsan to access the archive is
determined by some defined rules based on the non-dominated Paretgraftis algorithm is the first
AIS explicitly designed to solve MOP, and its results show that in spite of béiasgd on simple rules,
MISA can be éicient. MISA was successively improved until 2005 but, after that, metapihom the
immune system were not followed as strictly as before. The following algorifimesented are chosen
according to five critera:

1. Respect of the canonical AlS algorithm
No use of a recombination operator
Implemented for real-coded variables
Detailed results

Most recently published

SN SN
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1.3.1. VAIS

In [5], Freschi & Repetto (2005, 2006) present VA]&n algorithm using selection, cloning, mutation,
suppression and an archiving process. For non-dominated indisjditi@ess is determined by the strength
defined in SPEA26§]. For dominated solutions, fitness corresponds to the number of indigiedach
dominate them. A suppression procedure is used for the archive assaglligersification procedure by
allowing a fixed number of random individuals to enter the archive. Reatdtsompared with NSGA-II
and show that VAIS can outperform NSGA-II on unconstrained amstrained problems such as Tanaka,
Viennet and Zitzler. Nevertheless, no results are provided on DTLEl@nws, which are considered to be
harder to solve.

1.3.2. IDCMANNIA

IDCMA* was presented ir7] (Jiao, Gong, Shang, Du & Lu, 2005). As the algorithm hafiiclilties
solving DTLZ problems, NNIA&, was later presented as an improved version of IDCMA]r{Gong, Jiao,
Du & Bo, 2008). The selection mechanism which chooses the set of edaditb be cloned is based on
non-dominated solutions. If the non-dominated solutions are beyond &ndéreshold, then the crowding
distance is used. The archive process uses the same methods to selatdtea to enter the archive. In
NNIA, recombination is used, nevertheless, some results are presattieahd others without this feature.
It shows that recombination is a powerful method that gives better resghisding the "two sets coverage”
between NNIA-X and NNIA (ZDT[1-4,6], DTLZ[1-4,6]).

1.3.3. IFMOA

In [9], IFMOA? (Lu, Jiao, Du & Gong, 2005) is presented. THerity assignment is based on Pareto
strengthf] and antibody-antibodyfanity is inversely proportional to the sum of two smallest Euclidean
distances between an antibody and the rest of the population. The “imnmget dait” is a set of solutions
that are not participating in clonal proliferation. Results are given by eoimg the algorithm to MOGA
and SPEA2 on six unconstrained MOP. On the results shown, the algowitionmps well but no results are
given for more dfficult problems.

1.3.4. omni-aiNet

Coelho & Von Zuben (2006) presented omni-aiNet as a single and multitodgjeaptimizer in fL0].
First, all the individuals will be clonelll; times. N is a parameter. A random variation with rates inversely
proportional to its finity to the antigen is applied to each generated clone. Polynomial mutation is used
to apply variations to the clones. Solutions are arranged in classes, thetbettdass, the smaller the
variation. The algorithm is using suppression and diversification. tnfately, results are provided only
by comparing the algorithm with another algorithm called "DT omni-optimizer”. dbwer, results are only
graphical and on only focused three problems.

1.3.5. SMS-EMOA
It is worth presenting the well-known SMS-EMOA ] algorithm, which is based on Hypervolume.
At each iteration, a new solution is generated by means of randomised vargterators. Then, the

3Vector Artificial Immune System

4lmmune Dominance Clonal Multiobjective Algorithm
SNondominated Neighbor Immune Algorithm

SNNIA without recombination

“Immune Forgetting Multiobjective Optimization Algorithm
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algorithm sorts the solutions by ranks and discards an individual frorwainst rank that contributes the
least in maximizing the Hypervolume. All results show that SMS-EMOA is a verygsful solver even
for difficult problems. Its main drawback however,is its high computational complexitighvis related
to the calculation of the hypervolume contribution which can be very time conguwtien the number of
objectives increases.

2. The MOAIS-HV algorithm

In this section, MOAIS-HYV is detailed. First, some basic about hypervolumealiscussed, then the
algorithms, data structures and other choices that have been taken to implé@I&A-HV are presented.
The main goal of the algorithm is to investigate the quality of the results while congoifa and Hyper-
volume. The algorithm is designed to be tested on a large number of problehasgt@ low complexity,
to respect the number of function evaluations and to follow the characteridtecpure AIS algorithm (no
recombination operator is adopted).

2.1. Hypervolume vs. Hypervolume contribution

Hypervolume is a very common indicator used to measure and compare the gbdilitgl solutions
in population-based algorithms. The hypervolume measure was originappsed by Zitzler and Thiele
in [12]. This indicator represents the surface (or the volume for more than 2tnigig) of the region
dominated by solutions found so far. Letdenote the Lebesgue measure, thenSmeetric is defined as

S(A, Yref) = A[U {)/| y<y < Yref} ,ACRM

yeA

where:

Ais a subset of the objective space,

Vret denotes a reference point that is dominated by all Pareto-optimal solutions,
" <" denotes the dominance relation.

The main drawback of the hypervolume indicator is that no general polyh@igarithm exists in or-
der to calculate it, therefore it has been unpopular for use as an ondingddn MOO. Nevertheless, it
is now well-known that using the hypervolume indicator provides goodtsesuboth convergence and
spread. Indeed, it has been shownlifi][that given a finite search space and a reference point, maximizing
hypervolume enables the finding of all the non-dominated solutions of tle¢cHamnt.

In this document, hypervolume is used to seleirtdividuals among = A+ u individuals. A represents
the number of individuals discarded one by one. fliedividuals are the candidates to be cloned. The aim
is to find the set of: individuals that maximizes the hypervolume. Two methods are commomly uséd, eac
of them having advantages and drawbacks:

e Hypervolume indicator

This algorithm computes the hypervolume for the whole set of solutions. deyga there is no
general polynomial algorithm to calculate it for any number of objectivelusT computingﬂ)
hypervolumes is considered to be too time consuming.
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Figure 2: Hypervolume contribution

e Hypervolume contribution

Hypervolume contribution computes the contribution of each solution in maximizegtpervol-
ume taking into account its neighbours on each objective, see RAg@eecting the optimal set af
solutions implies calculatin ) conventional hypervolume contributions, which is considered to be
computationally too expensive. 144], an algorithm is presented to compute the sei gblutions
that contributes less in maximizing the hypervolumedimzlog n+ nt), wheren is the number of
solutions,mthe number of objectives, amdthe number of solutions to discard.

Another method just discards the lowest contributor of a population itekativeil reaching a pop-
ulation of sizeu. It has been shown irLp] that this method can lead to a set that is not the optimal
according to the hypervolume maximization. Nevertheless, the error ratit isgiher than 35% and
the small complexity of such an algorithm makes it more competitive compared too$tidue art
algorithms.

Considering these facts, in the algorithm presented in the following, theiselet individuals will be
processed by discarding iteratively solutions that contribute the least immizéng the hypervolume. The
reason is to avoid using complicated data structures and to have an atzeptaplexity. Future work
should improve theféiciency of the hypervolume algorithm. The method used for calculating ther-hype
volume contribution is to sort the population of each objective via a quickeadh solution is assigned
the distance to its neighboor for the first objective. Then, this value is multiplietistances found by the
same process on other objectives. This can be do@¢nm), but requireg)(mrflog n) on average.

2.2. Description of the algorithm

The following describes the new immune system algorithm based on hypewaantribution. The
main idea is to maintain an online population of antigens and antibodies. The araigeconsidered to be
the good solutions, the antibodies the bad ones. These two sets form tvgnbpapulations. The antigens
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‘ Initializing populations ‘

Evaluate main population
(Pareto ranking}

Split main population and
Define Affinities on Ab & Ag

Select best solutions
{with higher affinity)

Clone & mutate solutions
previously selected

Merge antigens
& clones

Non dominated sorting on
the merged population

‘ Update main population
and archive

Stop criterion met ?

yes

Return the archive as the
approximation of the Pareto front.

Figure 3: Main algorithm loop

are cloned (best antibodies are cloned too if the number of antigens fEdiesu) and a mutation operator
is applied. If only one rank exists, candidates to be cloned are seleotadrfdividuals that contribute the
most to maximize the hypervolume, otherwise successive ranks are seladiégpervolume selection is
only applied to the last one. The clones and the best antigens found agech@rd the size of the main
population is maintained by discarding individuals that contribute the least immzixg the hypervolume.
The main loop of the algorithm is represented in Figdirén the algorithm, the following notations will be
used:

Q, P: the main population and the pool,

Ab, Ag: the sets of antibodies and antigens (subse€)of

n: size of the main population,

m, ngen number of objectives and number of generations.

1. Initializing populations:
Initialize populationQ (Main population) by generating random individuals.
— fixed sizen.
Initialize Antibodies populatiobto empty.
— fixed sizen.
Initialize Antigens (or Archive) populatioAg to empty.
— fixed sizen. Store the best individuals found so far.
Initialize a poolP to empty (to store the clones).
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— fixed size 2« n.

. Evaluate all individuals of the populatién

— Feasibility and objective values

For constrained problems, the constraints are handled as in NSGA-II.

— Fast non-dominated ranking

In order to compute the ranks of all individuals, the well-known algorithesented in16] is used

and has a complexity aP(mr?). Nevertheless, more investigation would have to be done regard-
ing the paper of Bentley (199317] who presents an algorithm to find the convex hull of a set in
mn+ O(n*YMog!™n) scalar comparisons.

. Split the populatior® into two sets:
Constrained problems

Antigens:

— Feasible and non-dominated
Antibodies:

— Unfeasible and non-dominated
— Feasible and dominated

— Unfeasible and dominated
Unconstrained problems
Antigens:

— Non-dominated

Antibodies:

— Dominated

. Define Afinity for antibodies and antigens.

All the distance measures are normalized values on all objectives in oraesitbthe relative impor-
tance between objectives.

Defining affinity on antibodies:

For each antibody, select randomly one antigeAdnThe dfinity value of an antibodybis defined
by its euclidean distance to the selected anti§gn

1.0
EuclDist(Ab, Ag)
If there’s no antigen, each antibody is assignedféinity based on its rank:

1.0
(RanKAb) + 1)

For each antibody belonging to bounded solutions, theity is equal to the maximumfnity found
so far. By doing this, antibodies belonging to the extreme solutions on egettioe will be more
cloned and thus increase the probability to extend the Pareto front.

Af f(Abey) = max(Af f(Ab)) Vext

Aff(AD) = ) Vi

Aff(Al) = ) Vi

Defining affinity on antigens
For each antigen, thetaity is based on Hypervolume contribution:

Aff(Ag) = HypervCont(Ag) + max(Af f(Ab;)) Vi
10



Algorithm 2 : Computing Hypervolume contributions

1
2
3
4
5
6
7
8
9

1
11

o

Input: PopulatiorAg ;
Initialize Affinities(Ag) to 0.0 ;
for i from 1 to mdo
SortAgby obji;
for j from 1 to Agsizd€) do
\ Ag.ind[j].af finity += (Agind[j].obj[i] — Agind[j + 1].0b|[i]);
end
end
for j from 1 to Agsizd€) do
\ Agind[j].af finity += max(Af f(Aby));
end

The algorithm that computes Hypervolume contribution is presented in alga2ithm

For each antigen belonging to bounded solutions, theity is equal to the maximumfinity found
so far (on antigens). By doing this, antigens belonging to the extreme sawim@ach objective will
be more cloned and thus increase the probability to extend the Pareto front.

AT f(Agex) = max(Aff(Ag)) Yext

For both antibodies and antigens, the greater fheity, the better.

5. Clonal selection principle

Most of the population-based algorithms don't discard dominated indilddmaen selecting solu-
tions to be cloned or mutated. The main aim in doing this is to keep some diversitypopldation.
After some experiments, the choice for this algorithm was to select domindtetbse only if nec-
essary (if non-dominated solutions are fewer than the number of cldd@s)e previous results have
shown that cloning the antibodies gives worse results (convergencie)ntleain considering the best
individuals found so far, the antigens. In order to fit to the immune systempim@ataone can con-
sider here that if the main population already contains a certain number oésitij means that
the immune system has already recognised some pathogen agents and & thidmso perform the
cloning process (the antibody which reached the pathogen agent aod isonsidered as an anti-
gen). The number of clones is usually defined as about 20% of the populatavertheless, as the
behaviour of the algorithm is not known and some statistics on results stiltbd@emade, a param-
eter is introduced to control the number of candidatdscl € [0, 1]. The number of candidatehlC)

is defined once for all iterations by the formula:

NC = n= 10%+ nb_cl * n = 30%

In the main population, the antigens and antibodies are classed acordingr tafihéy. The first
NC best solutions are chosen and for each of thenfferént number of clones will be calculated
depending on theirfanity. Moreover, these candidates are split into two getsl, 2. the extreme
solutions and the others. For each set, we define their total number ofctbresxtreme solutions
will be cloned more at the beginning and less at the end.

11



Generation 1, total number of clones:

For extreme solutionB; = n = 50%, for other solution®; = n* 50%
Generatiomgen total number of clones:

For extreme solutionB; = n = 10%, for other solution®; = n = 90%

Then, for eaciNC solution, the number of clones of each candid&€C) is given by:

AFH(A )

o 7]
Yiso ATT(A))

NCC(Aij) = Pj =
where:
A j is thei™ antigen or the'" antibody of the sef,
Pj is the total number of clones for the get
nj is the number of candidates in the et

6. Mutation
Mutation is an important part of any metaheuristic since it guides the seantigththe generations.
It is well-known that some basic mutations can’t provide good resultsféerelt problems don'’t
need the same proportions of global search and local search to findrte Front.
Most metaheuristics require parameters in order to tune the algorithm deg@mdthe problem they
are solving. As the number of parameters increases, experiments deglragal comparisons with
other algorithms can then befliicult. Therefore, a small number of parameters is preferable.
Regarding mutation, two important choices have to be made:

e the mutation probability
It controls the probability to mutate one variable of a vector.

e the mutation step-size
It controls the degree of perturbation given to the variable selected to ta¢adu

Concerning the mutation probability, the aim of this study is to simplify the algorithrdardo em-
phasize the combination MOAJIBypervolume and investigate this new idea. Moreover, comparison
is easier with NSGA-1l while using the same probability for mutation. Thus, thetmatprobability
mpin this document is fixed. L

MP= hreal
Nevertheless, as an improvement, it will be interesting to change the mutatigeiyiity throughout
the search. For example, SANUYMas been shown to befieient in [18].

7. Hybrid mutation
Up to now, hybrid mutation]9] has been adopted to find the optimal mutation step-size. The main
idea is to use two types of mutation to perform the search. When a variabledseskto be mutated,
we perform either a mutation that will provide a long step size, or a small step $lze Gaussian
mutation is a well-known mutation that can be very easily tuned to perform lopgsie or small
step size mutation. Let's say we have two types of mutation, na@elyGaussian local) an@&G
(Gaussian global). At the begining of the search, depending on théeprplve have to explore a

8Statistics-Based Adaptive Non-uniform Mutation
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Figure 4: Gaussian mutation type probability. WhesOsprobability to do local search is very low until generation 60 (on 100
generations). If Is1, probability to do local search is growing fast as soon as the algorithia.sta

large zone in order to improve significantly the fitness of solutions. Whenlg¢iogitam performs
searches near the final generations, we expect a small mutation in offtledt &mlutions closer to
the Pareto front. This idea can be seen as a kind of non-uniform mutatibthdre, two types of
mutation can be processed in one generation. Non-uniform mutation sheekplored in a future
work on the Local Gausian mutation.

Each time a variable has to be mutated, we compute the following value:

1.0
(1.0 + exg=2.0% (x + p)))

p_muttype=

where:
x = —6.0 + (t/ngen = 12.0, increasing with the number of generations.
p = —4.0 + Is = 8.0, with Is a parameter which determines the trdfibetweenGL andGG.

While the algorithm is running, the probability to chodSé will increase and the mutation will
perform more local searches. Figyrshows both curves for extreme parametsrs 0 andls = 1.
Local Gaussian mutation is performed following this formula:

X' = X + (max —min) = 0.1« (O, sty)
Global Gaussian mutation is performed following this formula:
X' =% + (max — min) = 0.1 « N(O, St)

where:

max, min are the bounds of the decision variable,

X is the variable to be mutated,

N(0, X) is the Normal distribution with mean 0 and standard deviation

st € [0.1, 0.5], parameter which controls the local Gaussian mutation step,
sk € [0.5, 1.5], parameter which controls the global Gaussian mutation step.

The curves of the dlierent density of probability for Gaussian mutation are shown in Figure
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deviations

8. Evaluate the pool: Objectives, feasibility.
9. Add the Antigens into the po#
10. Non-dominated sorting in the poel
11. Update the main populaticp
The archiving process is quite simple but some choices have to be madehghrenchive is full and
candidates to enter it are non-dominated individuals. The main aim of theaisho increase the
value of the whole hypervolume at each generation. In order to achiewattiation, new individuals
are added to the archive only if they dominate a previous individual. Arvang method is presented
in [20] but the complexity is, once again, exponential with the number of objectindsis document,
the hypervolume maximization of the archive will be ensured by only accepiuligiduals that
dominate previous individuals. One drawback of this method is that we asthanthe previous
generation has a good spread to ensure that all optimal solutions of i@ RFant are reachable
(relatively because of the bounded size of the archive) - this is not swst cases (see Figuég.
The following method is adopted in order to find a good spread of soluticiosebaccepting only
individuals that will maximize the Hypervolume.

(a) Fill the main population with successive ranks from the ol

(b) If the addition of the individuals of the current rank is greater thamwo cases occur:
- if (curgen < %nger), perform Hypervolume discard process (the individual which has the
lowest hypervolume contribution is discarded. The procedure is rapaati reaching a rank
of sizen — nprey Which will be added to the main population). The aim here is to find a good
spread.
- Otherwise, only accept individuals that dominate solutions already in tiévarby replacing
them. The aim here is to maximise the hypervolume.

The vaIue% is obviously a parameter that has to be optimized upon the problem, it condssfman
approximation of the generation number for which the Pareto front foarfdrds well-distributed.
Knowing when the global optimum front is reached is a hard task... Sometmstsp the hypervol-
ume discard process would be to detect relative stability on hypervolume @fttble set or on the
number of new non-dominated solutions.

12. Split the population (Antigens & Antibodies)

13. Go to step 4 if the stop criterion is not met.

14
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Figure 6: Pareto front gaps. By accepting only solutions that dominatéguis solutions, some parts of the Pareto front cannot be
reached.

14. Return the antigen population as the approximation of the Pareto front.

2.3. Data structures, Algorithms, Complexity

A MOAIS algorithm can be considered as a genetic algorithm whose feameechanged for selection,
proliferation, mutation and archiving. In order to keep the comparison WBBAH| as fair as possible, the
implementation of the new algorithm is based on the data structures usgdfan NSGA-II. Other data
structures used are simply arrays and the code is easily understana@dihaiatainable for further work.

All algorithms used are classical ones (Non dominated sorting, Dominamwket.) or are easily
understandable in the cotjehus not relevant to incorporate in this document.

A competitive complexity is always hard to achieve when dealing with hypemveliNevertheless, the
complexity of the algorithm presented@mrf) andO(mrflogn) on average. This low complexity makes
the algorithm suitable for real-world problems.

3. Comparison

An algorithm has been implemented in C to compare NSGA-II and MOISA-HehEdgorithm is run
100 times on each problem and numerical results are mean values on thesd&he algorithm provides
some indicators:

e Pareto Front Hypervolume:

Pareto front data files are quite hard to find online. Some data baseswgfiktdare often faulty. The
Pareto front provided for the comparator has been done on a poputdtid®®0 individuals for bi-
objective problems and 2000 individuals on three-objective problenth g@blem has been run for

®http://tom.pierrard.free.fr/thesis/
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1000 generations on each algorithm, then final populations merged to kBefne non-dominated
solutions.

Hypervolume (to be maximized):

This indicator provides good numerical values to analyze the behavioreddlgorithms for both
convergence and spread. The reference point is computed aactodioth the algorithms and the
true Pareto front. The code used is the one presented by Fons@d in [

Coverage two sets (to be maximized):

The coverage of two sets is an indicator that counts how many solutionsagldapion dominate
solutions from another population. Because of the non-dominated solutfossndicator is not
symmetrical and should be computed for both sets. The following formulaedetire two sets cov-
erage :
Xe AldyeB : X<V}

A
whereA andB are two sets of final solutions from twoftérent algorithms.

(A, B) = i

The valuel(B, A) is also computed, as well &agPF, [A, B]) where PF represents the Pareto front.

Inverted General distance (to be minimized):

This indicator was introduced for measuring how far the elements in the Rgp&taal set are from
those in the set of non-dominated vectors found. It corresponds to the digtance between each
value of the Pareto Front and the nearest individual from the non-ddedrvectors found. It is
defined as:

d?

IGD = —

5 |15

where:

nis the number of vectors in the Pareto optimal set.

di is the Euclidean distance between each of these solutions and the neand&trroéthe set of the
non-dominated vectors found

Spread (to be minimized):

The Spread indicator is a diversity metric that measures the extent ofdspchéeved among the
obtained solutions. This metric is defined as:

n-1
dy +dI+Z|di—d_|
i1

df +d +d_(n—1)
where:
d; is the Euclidean distance between consecutive solutions.
d is the mean of these distances.
ds andd, are the Euclidean distances to the extreme solutions of the Pareto front.

16



4. Setting up parameters
The algorithm presented can be tuned with 4 parameters, each of thergdidQ 1]:

e a: Parameter which defines the tradBlmetween global search and local search, (Gausian global,
Gaussian local).

0.0 allows a more global search and Allows a more local search.

e b & c: Parameters which define mutation stepsize for Gaussian mutation.
0.0 allows smaller step-size mutation wheredsskets the mutation to a larger step-size.

e d: Parameter which defines the number of candidates to be cloned.
0.0 represents 10% of the size of the populatiaf.répresents 40% of the population’s size.

NSGA-II is used with its usual parametery.[ For problems that were not originally implemented in
NSGA-II, parameters were chosen depending on the number of olgigctigriables and constraints that
are dficient in other problems. Compilation and execution of MOISA-HV, NSGAH( éhe comparator
are detailed in their "ReadMe” files.

5. Results

The aim of this document is to compare NSGA-II and MOISA-HV, while beiadar as possible.
In order to achieve this, the same number of function evaluations is usédtoalgorithms. The same
population size and same number of generations are used. The new atduatbeen written with a view
to having low complexity. A large set of problems are tested to compare thdthigst capability to be
efficient on most of them. Considering these facts, a comparison on the qudlitglgfopulations on both
algorithms is processed.

A search on parameters has been done, each parameter belongint wifd a step of ® (6 values
for each parameter). The parameters for MOISA-HV were chosembgidering (maximizing) the ratio
Hypervolume found by MOISA-HV Pareto front. Obviously, the set of parameters chosen doesn’t repre
sent the best results provided by the algorithm and more statistics andisioalyse parameters still have
to be made. In the following, a list of classical problems is given and some cotarare made according
to the results shown in appendices. For each problem, a score is giveactoalgorithm. The score is the
number of indicators in which one algorithm is better than the other.

5.1. Bi-objective unconstrained problems

According to the Hypervolume, MOISA-HV performs better on all the protddested, excepts for
ZDT4 in which it gives worse results. Nevertheless, ZDT4 is multi-frontad & is considered hard to
solve. B] shows that recombination (used in NSGA-II) can play an important rolelirirgy such problems.
Concerning the other indicators, soméidulties are encountered on ZDT3. The discontinuous Pareto front
of ZDT3 seems to be afiiiculty for MOISA-HV. It is worth noting that, when the Pareto front is conting,
the best parameter to control the number of clones is low. (See Table 1)

5.2. Bi-objectives constrained problems

Results show that MOISA-HV performs again well on problems which hasenénuous Pareto front.
Problem OSY seems to befiilcult to solve for MOISA-HV. The reason could be the selection of solutions
based on the Hypervolume contribution. Indeed, depending on the ehdpePareto front, the algorithm
may discard individuals belonging to a part of the curve with a very ste@e s(&ee Table 2)
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Name | # Variables| # Objectives| # Constraints Score(NSGAIl)| Score(MOISA-HV)
ZDT1 30 2 0 0 5
ZDT2 30 2 0 0 5
ZDT3 30 2 0 2 3
ZDT4 10 2 0 5 0
ZDT6 10 2 0 0 5
KUR 3 2 0 0 5
SCH1 1 2 0 1 4
SCH2 1 2 0 0 5

Table 1: Bi-objective unconstrained problems

Name | # Variables| # Objectives| # Constraints| Score(NSGAII)| Score(MOISA-HV)
BNH 2 2 2 0 5
osy 6 2 6 5 0
SRN 2 2 2 0 5
TNK 2 2 2 2 3

Table 2: Bi-objectives constrained problems

5.3. Three objectives problems

On three objectives problems, once again the algorithm performs well argrdphical results show
that convergence through the Pareto front is achieved. The DTLZ pladlems are known to be hard
to solve. Nevertheless, in 4 DTLZ problems, some indicators show that M®INS can perform better,
among them two problems are significantly better. The comparison with othel $1&gorithms is dficult
since only a few results on DTLZ problems have been provided in the [Best. Table 3)

Those results show that MOISA-HV is competitive even if using very basatures. Hard problems
obviously give worse results but adding new methods taken from the imnystens metaphor should
significantly improve these results. Implementing an immune system memory seemsdievaatrin
order to avoid cloning candidates in bad regions of the objective spagethér idea would be to use a

Name | # Variables| # Objectives| # Constraints Score(NSGAII)| Score(MOISA-HV)
BNH4 2 3 2 0 5
VNT1 2 3 0 0 5
VNT2 2 3 0 1 4
VNT3 2 3 0 0 5
DTLZ1 12 3 0 5 0
DTLZ2 12 3 0 1 4
DTLZ3 12 3 0 4 1
DTLZ4 12 3 0 3 2
DTLZ7 22 3 0 1 4

Table 3: Three objectives problems
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diversity function to add some random elements "between” two good solufidrese solutions would be
non-dominated solutions that were suppressed previously by the loyymer discard process.

6. Conclusion

In this document, a new algorithm has been presented. The aim was to iatestig competitivity of
the proposed approach with respect to state-of-the-art MOEA. M@#¢Secent algorithms that have al-
ready shown to beficient. Here, the new idea was to combine basics of MOAIS with Hypervoluitniehw
is known to have good characteristics for achieving convergencepardds Comparisons on population
based-algorithms is still nowadays a hard task and many papers dont f@lktandard methodology to
present results, which is why some frameworks have recently appesaiddas ParadisEO-MOEZY] or
JmetalR3]. Nevertheless, these frameworks are either quite complicated to hanslitéten in a language
that is considered ill-adapted for optimization. In this paper, the choice wds taamplement a robust and
maintainable algorithm in C, as well as a comparator that can be applied torfumtkstigation on other
algorithms.

The results show that the new algorithm performs well on a large set bfggns even while using very
simple features from MOAIS. Moreover, the hypervolume contributionadisprocess was simplified with
the purpose of limiting the complexity of the algorithm. This obviously decreasd@idl population qual-
ity. Many improvements are expected on population-based algorithms wavikimgn online hypervolume
indicator, especially working with 3 or more objectives. This algorithm seerhs tbe first MOAIS using
Hypervolume contribution, and many drawbacks still remain to be studied:

e Among the 4 parameters, at least 2 have to be tuned to fit specific problestépsize and GL
stepsize). Nevertheless, some experiments showed that categorieblefis share the same param-
eters.

e Difficulties while solving some problems (ZDT4, OSY, DTLZ)
e Local Gaussian search can lead to a loss of diversity, especially @adhjectives problems.

In the litterature, only 2 papers have been found providing results orZipfablems solved via Immune
System Algorithms. These algorithms are not true Immune System Algorithmsdeeiteey use a crossover
operator, which is quite a powerful feature. Therefore, this algorittmhe considered as the first one
that provides results (that are reasonably good) éicdit problems as a true MOAIS. An analysis of the
results with an exhaustive search on parameters still has to be made. It & akn@in that bounds of
the parameters have to be redefined. Furthermore, many improvements igdhikim can be envisaged
as Artificial Immune System algorithms caffer many more methods taken as a metaphor from the true
immune system. The next paragraph gives the main ideas about the wonlathstill being planned when
starting to write this document, and some other investigations that could be daferther work.

6.1. Future work
e Investigate self-adaptive parameters.

The algorithms being run with basic parameters always reaches the Rardtafter a few genera-
tions, but can be much mordieient if the set of parameters is well-chosen. After some experiments,
it appears that the parameter defining the number of clones is the one shittehizast influence
regarding the final quality of the population. The mutation steps size is a pnathat should be
self-adapting. The parameter that controls the mutation type may be setivadap well starting
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with a high probability to do global search and trying to detect when the algorglaches the Pareto
front to increase local Gaussian probability.

e Changing the mutation probability

In population-based algorithmﬁé—al is commonly used as the mutation probability. It has been shown
that this value can be increased at the begining of the search to exgteedad be moreficient.
Statistics on previous good mutation values can also be used to guide the wéhreariables that
participate the most in improving the set of solutions.

e Improving Diversity

The diversity feature presented in the canonical algorithm is not uged Rer some problems, not
using recombination leads to a significant loss of diversity. The reasobeaasily understood by
comparing the selection, proliferation and mutation of candidates as simple éacahss. To avoid

such behavior in the algorithm, random individuals (or from a previongggion) should be created
and used as candidates to enter the archive.

e Non-uniform mutation

Non-uniform mutation has given good results in genetic algorithms. It woelldely easy to apply
a codficient to the Gaussian mutation, local, global or both and to try some experimenntieinto

see if it worth doing. If a method detecting the convergence to the true Faoatds found, then
one could envisage starting a non-uniform mutation by decreasing thaigeepiutation after the
detection.

e Comparator

Up to now, the comparator has given good numerical values when comgpadnalgorithms with a
large set of indicators. Nevertheless, the algorithm was implemented quro#lgnare work could
be done to improve its design. Later, the algorithm will be able to generate esults; faster, and
will be capable of handling a larger number of runs for experiments. Atgoconvergence rate is an
indicator that still has to be implemented. This new operator could be used wigvdhéion of the
hypervolume throughout the generations, or the inverted generatidistethce.
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Appendix A. Problem ZDT1

Table A.4: ZDT1 problem with parametess= 0.6,b = 1.0,c = 1.0,d = 0.0

PROB=zdt1, A1I=NSGAII, A2=AIS-HV

POPSIZE100, PFSIZE= 1000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 8.972159e-01 -
HYPERVOLUME (Al): | 8.889857e-01| 5.097441e-04
HYPERVOLUME (A2): | 8.924710e-01| 1.428605e-04
Inv-Gen-Dst (Al): 1.981111e-04| 1.007348e-05
Inv-Gen-Dst (A2): 1.678874e-04| 8.989136e-06
COV2SETS (A1A2): 7.100000e-01| 8.977193e-01
COV2SETS (AZAL): 3.166000e01 | 6.638102e00
COV2SETS (PFAL): 3.295500e02 | 4.710082e01
COV2SETS (PFA2): 2.716000e01 | 1.405327a01

SPREAD (Al): 2.543682e-01| 5.710559e-04
SPREAD (A2): 1.916463e-01| 2.677102e-04
%t ' ! ! Taishv  +

0.8 ﬂ%“h‘h
(a) Ais-HV
M
E‘m
0.6 - ﬂﬁ“‘wﬁ
wal +h—-w+++h}ﬂ+ .
(b) NSGA-II

Figure A.7: Generation 200 on Ais-H{&), and NSGA-II(b)

21



Appendix B. Problem ZDT2

Table B.5: ZDT2 problem with parameteas= 0.4,b=0.8,c=0.4,d = 0.0

PROB=zdt2, A1I=NSGAIl, A2=AIS-HV

POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)
HYPERVOLUME (Al):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):
SPREAD (Al):
SPREAD (A2):

5.764303e-01
5.675995e-01
5.717070e-01
1.966293e-04
1.632170e-04
7.000000e-01
4.265000e-01
4.211600e02
2.152000e-01
2.511818e-01
1.773486e-01

5.716423e-04
1.715964e-04
8.388726e-06
9.104609e-06
9.110434e-01
7.250345e00

6.013281e01

1.253434e01

4.924860e-04
2.244342e-04
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Figure B.8: Generation 200 on Ais-H\4), and NSGA-II(b)
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Appendix C. Problem ZDT3

Table C.6: ZDT3 problem with parameteas- 0.6,b=1.0,c=0.0,d = 0.6

PROB-=zdt3, A1=NSGAIIl, A2=AIS-HV

POPSIZE100, PFSIZE= 1000, RUNS-100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 1.121989e00 -
HYPERVOLUME (A1): | 1.115808e00 | 3.356911e-03
HYPERVOLUME (A2): | 1.119018e-00 | 2.652612e-04
Inv-Gen-Dst (Al): 2.619783e-04| 3.233972e-04
Inv-Gen-Dst (A2): 3.662419e-04| 1.237625e-04
COV2SETS (A1A2): 2.640000e00 | 3.024963e00
COV2SETS (A2A1): 3.014000e 01 | 5.856654e00
COV2SETS (PFAL): 3.061900e02 | 4.153834e01
COV2SETS (PFA2): 7.464000a01 | 3.494897e01

SPREAD (Al): 4.426133e-01| 3.096580e-04
SPREAD (A2): 5.278173e-01) 1.216346e-03
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Figure C.9: Generation 200 on Ais-H¥), and NSGA-II(b)

23



Appendix D. Problem ZDT4

Table D.7: ZDT4 problem with parameteas- 1.0,b =0.4,c = 0.6,d = 0.0

PROB=zdt4, A1I=NSGAIl, A2=AIS-HV

POPSIZE100, PFSIZE= 1000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 4.243026e00 -
HYPERVOLUME (Al): | 4.218502¢00 | 1.852282e-02
HYPERVOLUME (A2): | 4.181431e00 | 2.965293e-02
Inv-Gen-Dst (Al): 6.799886e-04| 8.813995e-04
Inv-Gen-Dst (A2): 1.287022e-03| 6.623777e-04
COV2SETS (A1A2): 3.742900e 02 | 2.757433e02
COV2SETS (AZAL): 1.759000e01 | 6.398517e-01
COV2SETS (PFAL): 1.458580e-03 | 1.131187a03
COV2SETS (PFA2): 5.003750e03 | 2.625216e03

SPREAD (Al): 3.025505e-01 2.326102e-02
SPREAD (A2): 4.640457e-01| 9.048357e-03
3
0.8 7+t§¥+
M”w
.6 - “*whwﬂ#
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07 i h‘*ﬁ%m
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Figure D.10: Generation 200 on Ais-H#), and NSGA-1I(b)
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Appendix E. Problem ZDT6

Table E.8: ZDT6 problem with parameters- 0.2, b =0.4,c=0.6,d = 0.4

PROB=zdt6, A1I=NSGAIl, A2=AIS-HV
POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)
HYPERVOLUME (Al):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):

SPREAD (Al):
SPREAD (A2):

3.681806e-01
3.479779e-01
3.662232e-01
4.907628e-04
1.107655e-04
0.000000e00
3.119400e-02
3.071790e03
0.000000e-00
2.455140e-01
1.682690e-01

2.363901e-03
4.861708e-05
6.094925e-05
2.752997e-06
0.000000e-00
3.995768e01
4.026863e02
0.000000e-00
4.993801e-04
2.354683e-04
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Figure E.11: Generation 200 on Ais-H¥), and NSGA-II(b)
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Appendix F. Problem KUR

Table F.9: KUR problem with parameteas- 1.0,b =0.4,c=0.0,d = 0.8

PROB=kur, A1=NSGAIl, A2=AIS-HV

POPSIZE100, PFSIZE= 1000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 4.038610e01 -
HYPERVOLUME (Al): | 4.005438e01 | 1.835585e-02
HYPERVOLUME (A2): | 4.015592e¢01 | 8.009187e-03
Inv-Gen-Dst (Al): 1.629555e-03| 5.685489e-05
Inv-Gen-Dst (A2): 1.259808e-03| 2.280523e-05
COV2SETS (A1A2): 4.190000e00 | 2.571750a00
COV2SETS (AZAL): 1.917000e-01 | 4.384187e00
COV2SETS (PFAL): 2.316300e02 | 3.525667e01
COV2SETS (PFA2): 9.240000e01 | 1.690207e-01
SPREAD (Al): 3.399824e-01| 3.880348e-04
SPREAD (A2): 2.489354e-01| 1.503382e-04
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Figure F.12: Generation 200 on Ais-H¥), and NSGA-1I(b)
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Appendix G. Problem SCH1

Table G.10: SCH1 problem with parametars 0.2,b=0.8,c=0.0,d = 0.0

PROB=schl, AENSGAII,

A2=AIS-HV

POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)
HYPERVOLUME (A1):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A?AL):
COV2SETS (PFAL):
COV2SETS (PFA2):
SPREAD (Al):
SPREAD (A2):

1.673083e01
1.666395e01
1.667902e-01
8.566620e-04
6.259442e-04
5.000000e-01
3.500000e-01
1.030000e00
7.800000e-01
2.848059e-01
1.124959e-01

3.756141e-03
6.385606e-04
4.678536€e-05
6.406047e-06
7.141428e-01
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Figure G.13: Generation 200 on Ais-H¥), and NSGA-II(b)
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Appendix H. Problem SCH2

Table H.11: SCH2 problem with parameters 0.6,b=0.6,c=0.0,d = 0.6

PROB=sch2, AENSGAII,
POPSIZE-100, PFSIZE= 1000, RUNS100

A2=AIS-HV

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)
HYPERVOLUME (A1):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):
SPREAD (Al):
SPREAD (A2):

2.606859e01
2.598037e01
2.600114e01
1.266999e-03
9.617711e-04
3.900000e-01
1.320000e-00
1.950000e00
1.250000e-00
9.707172e-01
9.529271e-01

4.319898e-03
1.003242e-03
8.120261e-05
2.013877e-05
6.147357e-01
1.340746e00

1.251998e00

8.645808e-01
1.542839e-04
1.520728e-05
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Figure H.14: Generation 200 on Ais-H#), and NSGA-1I(b)
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Appendix |. Problem BNH

Table 1.12: BNH problem with parametesis= 0.2,b=0.8,c = 1.0,d = 0.8

PROB=bnh, A1=NSGAIl, A2=AlIS-HV
POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)
HYPERVOLUME (Al):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):

SPREAD (Al):
SPREAD (A2):

6.411704e03
6.379973e03
6.389734e-03
2.068579e-02
1.568725e-02
1.520000e00
1.565000e-01
1.572200e02
2.544000e-01
3.959604e-01
3.222677e-01

1.819580e00
4.076710e-01
1.247548e-03
2.579401e-04
1.268700a-00
3.592701e00
2.875990e01
7.864248e-00
1.256399e-03
2.594123e-04
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Figure 1.15: Generation 200 on Ais-H{@), and NSGA-II(b)
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Appendix J. Problem SRN

Table J.13: SRN problem with parametars 1.0,b=0.2,c=0.2,d = 1.0

PROB=srn, A1=NSGAIl, A2=AIS-HV

POPSIZE100, PFSIZE= 1000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 3.703809e04 -
HYPERVOLUME (Al): | 3.671138e04 | 1.609865e01
HYPERVOLUME (A2): | 3.681206a04 | 3.998687&-00
Inv-Gen-Dst (Al): 4.003212e-02| 1.856587e-03
Inv-Gen-Dst (A2): 3.041670e-02| 3.686325e-04
COV2SETS (A1A2): 1.160000e00 | 1.036533a-00
COV2SETS (AZAL): 1.348000e-01 | 3.474133e00
COV2SETS (PFAL): 1.438800e02 | 2.573608e01
COV2SETS (PFA2): 2.937000e01 | 7.929256e-00

SPREAD (Al): 2.508401e-01| 3.914518e-04
SPREAD (A2): 1.190118e-01) 9.635186e-05
of i%++#ﬁ
100 +++#+++#++ﬁ++ )
-200 J%W#%‘*wh
(a) Ais-HV
o %\\M
100 | ‘%Wm“ﬁ
-150 H‘m“h#df
-200 oy .
(b) NSGA-II

Figure J.16: Generation 200 on Ais-H¥), and NSGA-II(b)
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Appendix K. Problem OSY

Table K.14: OSY problem with parameteas- 1.0,b = 0.8,c = 0.6,d = 0.6

PROB=0sy, AI=NSGAIl, A2=AIS-HV
POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

SPREAD (Al):
SPREAD (A2):

HYPERVOLUME (PF)
HYPERVOLUME (Al):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):

2.121310e04
2.090325e04
1.986941e04
1.270094e-01
2.090655e-01
5.675200e02
1.713000e01
6.410300a-02
5.463970e03
5.510363e-01
5.571633e-01

2.443592e 02
1.785109e03
8.061315e-02
1.647553e-01
8.568820e02
1.303507e-01
2.242667e02
7.502850e03
3.033283e-03
2.665801e-03
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Figure K.17: Generation 200 on Ais-H{&), and NSGA-II(b)
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Appendix L. Problem TNK

Table L.15: TNK problem with parameteas= 1.0,b = 0.2,c = 0.0,d = 0.8

PROB=tnk, A1=NSGAIl, A2=AIS-HV
POPSIZE-100, PFSIZE= 1000, RUNS100

INDICATOR

MEAN

Std. Dev.

HYPERVOLUME (PF)

Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):
SPREAD (Al):
SPREAD (A2):

HYPERVOLUME (A1):
HYPERVOLUME (A2):

5.335408e-01
5.273578e-01
5.296092e-01
2.870605e-04
3.477924e-04
1.648000e01
2.360000e-01
3.573000e02
2.929100e-02
7.239077e-01
7.843828e-01

8.032265e-04
5.341263e-04
5.937704e-05
2.503430e-04
4.290641e-00
5.734108e00
4.961965e01
4.547771e01
1.604295e-03
2.038829¢e-03
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Figure L.18: Generation 200 on Ais-H{&), and NSGA-II(b)
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Appendix M. Problem BNH4

Table M.16: BNH4 problem with parameteas- 1.0,b = 0.0,c = 0.0,d = 1.0

PROB=bnh4, AE=NSGAII, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 1.666199e02 -
HYPERVOLUME (Al): | 1.642451e02 | 1.365045e-01
HYPERVOLUME (A2): | 1.650376a02 | 6.789279e-02
Inv-Gen-Dst (Al): 1.208248e-03| 7.449092e-05
Inv-Gen-Dst (A2): 8.074322e-04| 3.771509e-05
COV2SETS (A1A2): 2.494000e01 | 5.408919e-00
COV2SETS (AZAL): 5.672000e 01 | 7.973807e00
COV2SETS (PFAL): 8.554600e02 | 7.874178e01
COV2SETS (PFA2): 5.345600e 02 | 4.548809e-01
SPREAD (Al): 3.629387e-01| 3.498537e-04
SPREAD (A2): 3.054108e-01| 2.902681e-04

aisshv  +

(a) Ais-HV

nsgall  +

[SISF- T WYY

(b) NSGA-II

Figure M.19: Generation 500 on Ais-H{&), and NSGA-I1I(b)
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Appendix N. Problem VNT1

Table N.17: VNT1 problem with parameteas= 0.0,b=1.0,c=1.0,d=0.8

PROB=vntl, A1=NSGAIl, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 3.915465e01 -
HYPERVOLUME (Al): | 3.843549e01 | 4.400205e-02
HYPERVOLUME (A2): | 3.846757a01 | 4.315937e-02
Inv-Gen-Dst (Al): 2.492565e-03| 9.407104e-05
Inv-Gen-Dst (A2): 2.443735e-03| 9.419610e-05

SPREAD (Al):
SPREAD (A2):

3.682286e-01
3.194453e-01

COV2SETS (A1A2): 4.490000e00 | 2.670187a00
COV2SETS (A2A1): 8.540000e-00 | 3.389454e00
COV2SETS (PFAL): 7.466000e01 | 1.849823e01
COV2SETS (PFA2): 4.618000e-01 | 2.083861e01

1.205947e-02
1.368506e-02

nsgall  +

(b) NSGA-II

Figure N.20: Generation 500 on Ais-H#), and NSGA-1I(b)
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Appendix O. Problem VNT2

Table O.18: VNT2 problem with parametexs- 0.0,b=0.4,c=0.8,d =0.8

PROB=vnt2, A1=NSGAIl, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 9.753846e-01 -
HYPERVOLUME (Al): | 9.713098e-01| 5.181028e-04
HYPERVOLUME (A2): | 9.725243e-01| 3.363723e-04
Inv-Gen-Dst (Al): 2.117062e-04| 1.616032e-05
Inv-Gen-Dst (A2): 7.047082e-04| 2.868213e-04
COV2SETS (A1A2): 1.009000e01 | 4.730951a00
COV2SETS (AZAL): 1.811000e-01 | 4.890593e00
COV2SETS (PFAL): 3.126100e02 | 4.518582e01
COV2SETS (PFA2): 1.468300a-02 | 4.346747e01
SPREAD (Al): 2.683721e-01| 2.784821e-04
SPREAD (A2): 2.620417e-01| 3.959834e-04

nsgall  +

(b) NSGA-II

Figure O.21: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix P. Problem VNT3

Table P.19: VNT3 problem with parameters- 0.6,b=0.2,c=0.2,d =0.8

PROB=vnt3, A1=NSGAIl, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 5.362486e00 -
HYPERVOLUME (Al): | 5.343830e00 | 1.001768e-03
HYPERVOLUME (A2): | 5.347744e00 | 9.577516e-04
Inv-Gen-Dst (Al): 7.165877e-04| 1.512673e-04
Inv-Gen-Dst (A2): 5.077640e-04| 3.849537e-05
COV2SETS (A1A2): 5.810000e00 | 3.022234e-00
COV2SETS (AZAL): 2.534000e 01 | 5.503126e00
COV2SETS (PFAL): 2.896800e02 | 4.698678e01
COV2SETS (PFA2): 9.728000e01 | 2.612014a01
SPREAD (Al): 6.957154e-01| 7.535019e-04
SPREAD (A2): 6.638902e-01| 6.407286e-04

M nsgall  +

(b) NSGA-II

Figure P.22: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix Q. Problem DTLZ1

Table Q.20: DTLZ1 problem with parameteas- 0.0,b=1.0,c=10,d=0.8

PROB=dtlz1, A1=NSGAII, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 1.456069e00 -
HYPERVOLUME (Al): | 1.42505600 | 3.987393e-02
HYPERVOLUME (A2): | 1.422801e00 | 1.218025e-02
Inv-Gen-Dst (Al): 1.216457e-03| 1.201047e-03
Inv-Gen-Dst (A2): 1.997958e-03| 5.495831e-04
COV2SETS (A1A2): 1.922010e-03 | 1.076029e03
COV2SETS (AZAL): 2.183000e02 | 1.080882e03
COV2SETS (PFAL): 3.723810e03 | 1.791160e04
COV2SETS (PFA2): 2.046786e04 | 1.006530e04
SPREAD (Al): 3.517348e-01| 7.443500e-03
SPREAD (A2): 4.163033e-01| 2.365465e-03

ais-hv  +

nsga-ll  +

(b) NSGA-II

Figure Q.23: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix R. Problem DTLZ2

Table R.21: DTLZ2 problem with parametexrs- 0.0,b=1.0,c¢=0.2,d=1.0

PROB=dtIz2, A1I=NSGAII, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 1.204409e00 -
HYPERVOLUME (Al): | 1.144841e00 | 4.590454e-03
HYPERVOLUME (A2): | 1.161533a00 | 8.947158e-03
Inv-Gen-Dst (Al): 1.230231e-03| 4.686928e-05
Inv-Gen-Dst (A2): 1.257585e-03| 6.905440e-05
COV2SETS (A1A2): 1.070000e00 | 1.274794a00
COV2SETS (AZAL): 1.221000e-01 | 4.554767e00
COV2SETS (PFAL): 8.351000e01 | 2.201794e01
COV2SETS (PFA2): 1.514000e-01 | 8.122832e-00
SPREAD (Al): 2.564649e-01| 2.455185e-04
SPREAD (A2): 2.055064e-01| 3.284170e-04

aisshv  +

nsgall  +

(b) NSGA-II

Figure R.24: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix S. Problem DTLZ3

Table S.22: DTLZ3 problem with parameters- 0.8,b = 0.6,c=0.8,d = 0.6

PROB=dtlz3, A1=NSGAII, A2=AIS-HV
POPSIZE-200, PFSIZE= 2000, RUNS100

INDICATOR

MEAN

Std. Dev.

SPREAD (Al):
SPREAD (A2):

HYPERVOLUME (PF)
HYPERVOLUME (Al):
HYPERVOLUME (A2):
Inv-Gen-Dst (Al):
Inv-Gen-Dst (A2):
COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):

3.100326e 05
3.100281e05
3.100302e-05
1.285379e-03
8.142901e-03
4.008970e-03
2.130000e00
2.408900e02
4.157050e04
3.529938e-01

8.583327e-01

2.691994e00
1.161351e01
6.793484e-05
4.594056e-03
3.367163e03
8.877674e00
2.803561e02
3.382124e04
7.582437e-02
1.190171e-01

aisshv  +

(a) Ais-HV

nsgall  +

(b) NSGA-II

Figure S.25: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix T. Problem DTLZ4

Table T.23: DTLZ4 problem with parameteas- 0.8,b =0.8,c=0.8,d = 0.2

PROB=dtlz4, A1=NSGAII, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 9.796691e-01 -
HYPERVOLUME (Al): | 9.239092e-01| 4.660974e-03
HYPERVOLUME (A2): | 9.171880e-01| 5.370789e-02
Inv-Gen-Dst (Al): 1.194994e-03| 4.561336e-05

Inv-Gen-Dst (A2):

COV2SETS (A1A2):
COV2SETS (A2A1):
COV2SETS (PFAL):
COV2SETS (PFA2):

SPREAD (Al):

3.289257e-03
1.410000e00
2.292000e-01
7.976000e01
1.917000e-01
2.746856e-01
1.924270e-01

3.309546e-03
1.667903a-00
1.185216e01
1.893416e01
1.508844e-01
4.038541e-04
8.777892e-04

SPREAD (A2):

aisshv  +

nsgall  +

o000 =
oNRa®mHN

(b) NSGA-II

Figure T.26: Generation 500 on Ais-H¥), and NSGA-II(b)
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Appendix U. Problem DTLZ7

Table U.24: DTLZ7 problem with parameteas= 0.0,b=1.0,c=10,d=0.4

PROB=dtlz7, A1I=NSGAII, A2=AIS-HV

POPSIZE200, PFSIZE= 2000, RUNS100

INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) | 2.130413e00 -
HYPERVOLUME (Al): | 2.045854e00 | 6.288492e-03
HYPERVOLUME (A2): | 2.058288a00 | 9.128645e-03
Inv-Gen-Dst (Al): 1.259613e-03| 7.820159e-05
Inv-Gen-Dst (A2): 1.334508e-03| 1.389308e-04
COV2SETS (A1A2): 3.210000e00 | 2.346465e-00
COV2SETS (AZAL): 2.769000e01 | 6.778931e00
COV2SETS (PFAL): 2.295600e02 | 4.502406e01
COV2SETS (PFA2): 4.558000e-01 | 2.256598e-01
SPREAD (Al): 5.607393e-01| 1.161393e-03
SPREAD (A2): 5.151642e-01| 1.216795e-03

aisshv  +

(a) Ais-HV

nsgall  +
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g
¥ et
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Figure U.27: Generation 500 on Ais-H#), and NSGA-1I(b)
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