
Center for Research and Advanced Studies
of the National Polytechnic Institute of Mexico

Zacatenco Campus
Computer Science Department

Use of Gradient-Free Mathematical Programming
Techniques to Improve the Performance of
Multi-Objective Evolutionary Algorithms

by

Saúl Zapotecas Martínez

as the fulfillment of the requirement for the degree of

Ph.D. in Computer Science

Advisor:
Dr. Carlos A. Coello Coello

Mexico City June, 2013

Saúl Zapotecas Martínez: Use of Gradient-Free Mathematical
Programming Techniques to Improve the Performance of
Multi-Objective Evolutionary Algorithms. Ph.D. in Computer
Science. © June, 2013.

advisor: Dr. Carlos A. Coello Coello
location: Mexico City
date: June, 2013

Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco
Departamento de Computación

Uso de Técnicas de Programación Matemática que no
requieren gradientes para Mejorar el Desempeño de

Algoritmos Evolutivos Multi-Objetivo

Tesis que presenta

Saúl Zapotecas Martínez

Para Obtener el Grado de

Doctor en Ciencias en Computación

Director de Tesis:
Dr. Carlos A. Coello Coello

México, D.F. Junio, 2013

Saúl Zapotecas Martínez: Uso de Técnicas de Programación
Matemática que no requieren gradientes para Mejorar el
Desempeño de Algoritmos Evolutivos Multi-Objetivo. Doctor
en Ciencias en Computación. © Junio, 2013.

director de tesis: Dr. Carlos A. Coello Coello
lugar: México, D.F.
fecha: Junio, 2013

This thesis is dedicated to my parents and my sister.
Because family means nobody gets left behind, or forgotten.

To the memory of Pedro Zapotecas.

Abstract

In spite of the current widespread use of Multi-Objective Evolutionary
Algorithms (MOEAs) for solving Multi-objective Optimization Problems
(MOPs), their computational cost (measured in terms of fitness func-
tion evaluations performed) remains as one of their main limitations
when applied to real-world applications. In order to address this issue,
a variety of hybrid approaches combining mathematical programming
techniques with a MOEA have been proposed in the last few years.
In this way, while the MOEA explores the whole search space, mathe-
matical programming techniques exploit the promising regions given
by the same MOEA. Most of these hybrid approaches rely on mathe-
matical programming techniques based on gradients. Therefore, when
the functions are not differentiable, these mathematical programming
techniques become impractical, and then, other alternatives need to
be explored, such as the direct search methods, i. e., mathematical
programming methods that do not require gradient information.

In this thesis, we present different strategies to hybridize a popular
direct search method (the Nonlinear Simplex Search (NSS) algorithm)
with a MOEA. First, we present an extension of the NSS (which was
originally introduced for single-objective optimization) for dealing
with MOPs. The main goal of this study is to analyze and exploit
the properties of the NSS algorithm when it is used to approximate
solutions to the Pareto optimal set while maintaining a reasonably good
representation of the Pareto front. Based on experimental evidence,
we conclude that the NSS is a good alternative to be used as a local
search engine into a MOEA. Then, we take the ideas proposed in the
extension of the NSS for multi-objective optimization to be coupled as
a local search engine into different MOEAs. This gave rise to different
hybrid approaches which were validated using standard test problems
and performance measures taken from the specialized literature.

vii

Resumen

A pesar del actual uso extendido de los Algoritmos Evolutivos Multi-
objetivo (AEMOs) para la resolución de Problemas de Optimización
Multi-objetivo (POMs), su costo computacional (medido en térmi-
nos del número de evaluaciones de la función de aptitud) continúa
siendo una de sus principales limitaciones cuando son utilizados
en aplicaciones del mundo real. A fin de abordar este problema,
una variedad de enfoques híbridos combinando técnicas de progra-
mación matemática con un AEMO han sido propuestos recientes
años. De esta manera, mientras que el AEMO explora todo el espa-
cio de búsqueda, las técnicas de programación matemática explotan
las regiones prometedoras dadas por el mismo AEMO. La mayoría
de estos enfoques híbridos dependen de técnicas de programación
matemática basadas en gradientes. Por lo tanto, cuando las funciones
no son diferenciables, estas técnicas llegan a ser poco prácticas y por
tanto, deben explorarse otras alternativas, tales como los métodos de
búsqueda directa, es decir, métodos de programación matemática que
no requieren información del gradiente.

En esta tesis, se presentan diferentes estrategias para hibridizar un
popular método de búsqueda directa (el algoritmo de la búsqueda del
simplex no lineal (NSS)) con un AEMO. En primer lugar, presentamos
una extensión del algoritmo NSS (que fue originalmente propuesto
para optimización mono-objetivo) para lidiar con POMs. El objetivo
principal de este estudio es analizar y explotar las propiedades del
algoritmo NSS cuando es utilizado para aproximar soluciones al
conjunto de óptimos de Pareto mientras se mantiene una buena repre-
sentación del frente de Pareto. Con base en evidencia experimental,
concluimos que el algoritmo NSS es una buena alternativa para ser
utilizado como un motor de búsqueda local en un AEMO. Después,
tomamos las ideas propuestas en la extensión del algoritmo NSS
para optimización multi-objetivo para ser acoplado como un motor
de búsqueda local en diferentes AEMOs. Esto dio pie a diferentes
enfoques híbridos, los cuales fueron validados usando problemas de

ix

prueba y medidas de desempeño estándar tomados de la literatura
especializada.

x

Acknowledgments

First and foremost, I would like to thank sincerely my supervisor, Prof.
Carlos A. Coello Coello, for his guidance and support throughout
this thesis. Thanks for his patience and dedication in reviewing the
papers that I developed throughout this research work. Thanks for
showing me the way to do research.

I would also like to thank Dr. Luis Gerardo de la Fraga, Dr. Gregorio
Toscano Pulido, Dr. Carlos Eduardo Mariano Romero and Dr. Edgar
Emmanuel Vallejo Clemente, for serving as members on my thesis
committee. Their comments were very beneficial to the completion of
this manuscript.

I would like to thank Prof. Qingfu Zhang for his good advice during
my stay at the University of Essex, UK. Thanks also to Chixin Xiao
and Christina Anastasiou for their hospitality in Essex.

In my research stays in India and Chile, I would like to thank Dra.
Cristina Riff, Dra. Sanghamitra Bandyopadhyay and all my friends
that I met in those stays, thanks for their hospitality.

I would like to thank my friends of the EVOCINV group, Antonio
López, Alfredo Arias, Adriana Lara, Eduardo Vazquez. Thank you for
sharing your good ideas and knowledge during my research work.

I will always remember my friends with whom I lived pleasant
moments at the CINVESTAV: Cuauhtemoc Mancillas, William de la
Cruz, Edgar Ventura, Alejandro García, Arturo Yee, Lil María, Sandra
Díaz, and all students at Computer Science Department of CINVES-
TAV. Without forgetting all the professors and the administrative staff,
thanks for your support in these four years of research.

I want to thank my family, José Lauro, María Inés and Verónica for
their endless love, support and encouragement throughout my life.
Without them, my successes would not have taste of victory. I would
also like to thank Victor and Maru, for their unconditional support
during my stay in Mexico City.

My special gratitude to Adriana Menchaca, with whom I lived
beautiful moments in my stay at CINVESTAV, and who showed me
that life can be easy going, and that one can be truly happy.

xi

Finally, I acknowledge CONACyT scholarship support along these
four years.

The research work presented in this thesis was derived and par-
tially supported with funds from the CONACyT project entitled
“Escalabilidad y nuevos esquemas híbridos en optimización evolu-
tiva multiobjetivo” (Ref. 103570), whose Principal Investigator is Dr.
Carlos A. Coello Coello.

xii

Contributions

The different contributions that have been obtained during the
development of this thesis, are presented below.

Book Chapter

[1] A. López Jaimes, S. Zapotecas Martínez, and C. A. Coello
Coello, An Introduction to Multiobjective Optimization Techniques,
in Optimization in Polymer Processing (A. Gaspar-Cunha and
J. A. Covas, eds.), ch. 3, pp. 29–57, New York: Nova Science
Publishers, 2011. ISBN 978-1-61122-818-2.

International Conference Papers

[2] S. Zapotecas Martínez and C. A. Coello Coello, MOEA/D as-
sisted by RBF Networks for Expensive Multi-Objective Optimization
Problems, in Proceedings of the 15th annual conference on Genetic
and Evolutionary Computation (GECCO’2013), (Amsterdam, The
Neatherlands), ACM Press, July 2013, (To appear).

[3] S. Zapotecas Martínez and C. A. Coello Coello, Combining Sur-
rogate Models and Local Search for Dealing with Expensive Multi-
objective Optimization Problems, in 2013 IEEE Congress on Evolu-
tionary Computation (CEC’2013), (Cacún, México), pp. 2572–2579,
IEEE Press, June 2013.

[4] S. Zapotecas Martínez and C. A. Coello Coello, A Hybridization
of MOEA/D with the Nonlinear Simplex Search Algorithm, in 2013
IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making (MCDM’2013), (Singapore), pp. 48–55, IEEE
Press, April 2013.

xiii

[5] S. Zapotecas Martínez and C. A. Coello Coello, A Direct Local
Search Mechanism for Decomposition-based Multi-Objective Evolu-
tionary Algorithms, in 2012 IEEE Congress on Evolutionary Com-
putation (CEC’2012), (Brisbane, Australia), pp. 3431–3438, IEEE
Press, June 2012.

[6] S. Roy, S. Zapotecas Martínez, C. A. Coello Coello, and S. Sen-
gupta, A Multi-Objective Evolutionary Approach for Linear Antenna
Array Design and Synthesis, in 2012 IEEE Congress on Evolutionary
Computation (CEC’2012), (Brisbane, Australia), pp. 3423–3430,
IEEE Press, June 2012.

[7] S. Roy, S. Zapotecas Martínez, C. A. Coello Coello, and S. Sen-
gupta, Adaptive IIR System Identification using JADE, in Proceed-
ings of 2012 World Automation Congress (WAC 2012), (Puerto
Vallarta, México), pp. 1–6, TSI Enterprises, Inc., June 2012.

[8] S. Zapotecas Martínez and C. A. Coello Coello, A Multi-objective
Particle Swarm Optimizer Based on Decomposition, in Proceedings of
the 13th annual conference on Genetic and Evolutionary Computation
(GECCO’2011), (Dublin, Ireland), pp. 69–76, ACM Press, July
2011.

[9] S. Zapotecas Martínez and C. A. Coello Coello, Swarm Intelli-
gence Guided by Multi-objective Mathematical Programming Tech-
niques, in GECCO (Companion), (Dublin, Ireland), pp. 771–774,
ACM Press, July 2011.

[10] S. Zapotecas Martínez, A. Arias Montaño, and C. A. Coello
Coello, A Nonlinear Simplex Search Approach for Multi-Objective
Optimization, in 2011 IEEE Congress on Evolutionary Computation
(CEC’2011), (New Orleans, USA), pp. 2367–2374, IEEE Press,
June 2011.

[11] S. Zapotecas Martínez, E. G. Yáñez Oropeza, and C. A. Coello
Coello, Self-Adaptation Techniques Applied to Multi-Objective Evolu-
tionary Algorithms, in Learning and Intelligent Optimization, 5th In-
ternational Conference, LION 5 (C. A. Coello Coello, ed.), vol. 6683,
(Rome, Italy), pp. 567–581, Springer. Lecture Notes in Computer
Science, January 2011.

xiv

[12] S. Zapotecas Martínez and C. A. Coello Coello, A Memetic Al-
gorithm with Non Gradient-Based Local Search Assisted by a Meta-
Model, in Parallel Problem Solving from Nature–PPSN XI (R. Schae-
fer, C. Cotta, J. Kołodziej, and G. Rudolph, eds.), vol. 6238,
(Kraków, Poland), pp. 576–585, Springer, Lecture Notes in Com-
puter Science, September 2010.

[13] S. Zapotecas Martínez and C. A. Coello Coello, A Multi-
Objective Meta-Model Assisted Memetic Algorithm with Non
Gradient-Based Local Search, in Proceedings of the 12th annual con-
ference on Genetic and Evolutionary Computation (GECCO’2010),
(Portland, Oregon, USA), pp. 537–538, ACM Press, July 2010.
ISBN 978-1-4503-0072-8.

[14] S. Zapotecas Martínez and C. A. Coello Coello, A Novel Diver-
sification Strategy for Multi-Objective Evolutionary Algorithms, in
GECCO (Companion), (Portland, Oregon, USA), pp. 2031–2034,
ACM Press, July 2010. ISBN 978-1-4503-0073-5.

[15] S. Zapotecas Martínez and C. A. Coello Coello, An Archiving
Strategy Based on the Convex Hull of Individual Minima for MOEAs,
in 2010 IEEE Congress on Evolutionary Computation (CEC’2010),
(Barcelona, Spain), pp. 912–919, IEEE Press, July 2010.

Technical Reports

[16] S. Zapotecas Martínez and C. A. Coello Coello, MONSS: A
Multi-Objective Nonlinear Simplex Search Algorithm, Tech. Rep.
EVOCINV-01-2013, Evolutionary Computation Group at CIN-
VESTAV, Departamento de Computación, CINVESTAV-IPN,
México, February 2013.

[17] S. Zapotecas Martínez and C. A. Coello Coello, MOEA/D as-
sisted by RBF Networks for Expensive Multi-Objective Optimization
Problems, Tech. Rep. EVOCINV-02-2013, Evolutionary Compu-
tation Group at CINVESTAV, Departamento de Computación,
CINVESTAV-IPN, México, February 2013.

xv

Other Talks at Conferences

[18] S. Zapotecas Martínez and C. A. Coello Coello. Cooperative
Surrogate Models Improving Multi-objective Evolutionary Algorithms.
in INFORMS Annual Meeting 2012. (Phoenix, Arizona, USA),
October 2012.

[19] S. Zapotecas Martínez and C. A. Coello Coello. A Multi-
Objective Nonlinear Simplex Search. In International Conference on
Multiple Criteria Decision Making 2011 (MCDM’2011). (Jyväskylä,
Finland), June 2011.

xvi

Contents

1 introduction 1

1.1 Problem Statement 2

1.2 Our Proposal 3

1.3 General and Specific Goals of the Thesis 4

1.3.1 Main goal 4

1.3.2 Specific goals 4

1.4 Structure of the Document 4

2 background 7

2.1 Notions of Optimality 7

2.1.1 Optimality Criterion 9

2.2 Optimization Techniques 10

2.2.1 Mathematical Programming Techniques 10

2.2.2 Stochastic Techniques 11

2.3 Evolutionary Algorithms 12

2.4 Evolutionary Computation Paradigms 14

2.4.1 Evolution Strategies 14

2.4.2 Evolutionary Programming 15

2.4.3 Genetic Algorithms 16

2.4.4 Other Evolutionary Approaches 17

2.5 Memetic Algorithms 18

2.6 Advantages and Disadvantages of Evolutionary Algo-
rithms 20

3 multi-objective optimization 23

3.1 Optimality in Multi-Objective Optimization 25

3.2 Multi-Objective Mathematical Programming Tech-
niques 26

3.2.1 A Priori Preference Articulation 27

3.2.2 A Posteriori Preference Articulation 28

3.2.3 Interactive Preference Articulation 31

3.3 Multi-Objective Evolutionary Algorithms 32

3.3.1 MOEAs based on a population 33

3.3.2 MOEAs based on Pareto 34

3.3.3 MOEAs based on Decomposition 38

3.4 Performance Assessment 40

xvii

3.5 Test functions 42

4 multi-objective memetic algorithms based on

direct search methods 45

4.1 Multi-Objective Memetic Algorithms 46

4.2 MOMAs Based on Direct Search Methods 47

4.2.1 A Multi-objective GA-Simplex Hybrid Algo-
rithm 47

4.2.2 A Multi-objective Hybrid Particle Swarm Opti-
mization Algorithm 51

4.2.3 A Nonlinear Simplex Search Genetic Algo-
rithm 53

4.2.4 A Hybrid Non-dominated Sorting Differential
Evolutionary Algorithm 56

4.2.5 A Hybrid Multi-objective Evolutionary Algo-
rithm based on the S Metric 59

5 a nonlinear simplex search for multi-objec-
tive optimization 63

5.1 The Nonlinear Simplex Search 64

5.2 The Nonlinear Simplex Search for Multi-Objective Op-
timization 68

5.2.1 Decomposing MOPs 68

5.2.2 About the Nonlinear Simplex Search and
MOPs 69

5.2.3 The Multi-Objective Nonlinear Simplex
Search 71

5.3 Experimental Study 74

5.3.1 Test Problems 74

5.3.2 Performance Assessment 75

5.3.3 Parameters Settings 75

5.4 Numerical Results 77

5.5 Remarks 78

6 a multi-objective memetic algorithm based on

decomposition 83

6.1 The Multi-Objective Memetic Algorithm 84

6.1.1 General Framework 84

6.1.2 Local Search 86

6.2 Experimental Study 90

6.2.1 Test Problems 90

6.2.2 Performance Measures 91

xviii

6.2.3 Parameters Settings 91

6.3 Numerical Results 93

6.4 Remarks 95

7 an improved multi-objective memetic algo-
rithm based on decomposition 97

7.1 The Proposed Approach 98

7.1.1 General Framework 98

7.1.2 Local Search Mechanism 99

7.2 Experimental Results 106

7.2.1 Test Problems 106

7.2.2 Performance Measures 107

7.2.3 Parameters Settings 107

7.3 Numerical Results 109

7.3.1 Results for the ZDT test suite 109

7.3.2 Results for the DTLZ test suite 110

7.3.3 Results for WFG test suite 113

7.4 Remarks 114

8 combining surrogate models and local search

for multi-objective optimization 117

8.1 Radial Basis Function Networks 118

8.2 A MOEA based on Decomposition Assisted by RBF
Networks 120

8.2.1 General Framework 120

8.2.2 Initialization 120

8.2.3 Building the Model 122

8.2.4 Finding an Approximation to Pareto front
(PF) 125

8.2.5 Selecting Points to Evaluate 125

8.2.6 Updating the Population 127

8.3 The MOEA/D-RBF with Local Search 128

8.3.1 Local Search Mechanism 128

8.4 Experimental Results 134

8.4.1 Test Problems 134

8.4.2 Performance Assessment 135

8.4.3 Experimental Setup 135

8.5 Numerical Results 137

8.5.1 ZDT Test Problems 137

8.5.2 Airfoil Design Problem 138

8.6 Remarks 138

xix

9 conclusions and future work 141

9.1 Conclusions 141

9.2 Future Work 145

a test functions description 147

a.1 Classic Multi-objective Optimization Problems 147

a.2 Zitzler-Deb-Thiele Test Problems 150

a.3 Deb-Thiele-Laummans-Zitzler Test Problems 152

a.4 Walking-Fish-Group Test Problems 158

b airfoil shape optimization 163

b.1 Problem Statement 163

b.1.1 Geometry Parametrization 164

c pareto front approximations for zdt test

suite 167

d pareto front approximations for dtlz test

suite 171

e pareto front approximations for wfg test

suite 179

xx

List of Figures

Figure 2.1 A taxonomy of optimization techniques 10

Figure 3.1 Mapping the decision variable space Ω to the
objective space F. 24

Figure 3.2 Solution A dominates solution B, however, so-
lution A does not dominate solution C. 26

Figure 3.3 Illustration of the Penalty Boundary Intersection
(PBI) approach 30

Figure 4.1 The offspring population generated by the
multi-objective Genetic Algorithm (GA)-Simplex
Hybrid Algorithm 48

Figure 5.1 A 2-simplex 67

Figure 5.2 Reflection 67

Figure 5.3 Expansion 67

Figure 5.4 Inside and outside contraction 67

Figure 5.5 Shrinkage 67

Figure 5.6 Illustration of a well-distributed set of weight
vectors for a MOP with three objectives, five
decision variables and 66 weight vectors, i.e.
m =

⌊
|W|
n+1

⌋
= 11 partitions. The n-simplex

is constructed by six solutions that minimize
different problems defined by different weight
vectors contained in four partitions (C5,C8,C9
and C10). The search is focused on the direction
defined by the weight vector ws. 72

Figure 5.7 Convergence plot for Multi-objective Nonlinear
Simplex Search (MONSS) and Multi-Objective
Evolutionary Algorithm based on Decomposition
(MOEA/D) in the test problems DEB2, DTLZ5,
FON2, LAU, LIS and MUR. 80

Figure 5.8 Convergence plot for MONSS and MOEA/D
in the test problems REN1, REN2, VNT2 and
VNT3 81

xxi

Figure 8.1 Network representation of Kolmogorov’s theo-
rem 123

Figure 8.2 Association of weight vectors from W to Ws.
The vectors in blue represent the projection of
W set, while the vectors in red represent the
projection of Ws set. This association defines
the neighborhoods Bs(ws

1) to Bs(ws
5) 126

Figure B.1 PARametric SECtion (PARSEC) airfoil
parametrization. 164

Figure C.1 Comparison of the PF approximations ob-
tained by Multi-Objective Evolutionary Algo-
rithm based on Decomposition with Local Search
II (MOEA/D+LS-II), Multi-Objective Evolution-
ary Algorithm based on Decomposition with Lo-
cal Search (MOEA/D+LS) and MOEA/D for the
ZDT1 test problem. 167

Figure C.2 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the ZDT2 test problem. 168

Figure C.3 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the ZDT3 test problem. 168

Figure C.4 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the ZDT4 test problem. 168

Figure C.5 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the ZDT6 test problem. 169

Figure D.1 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ1 test problem. 172

Figure D.2 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ2 test problem. 173

Figure D.3 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ3 test problem. 174

xxii

Figure D.4 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ4 test problem. 175

Figure D.5 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ5 test problem. 176

Figure D.6 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ6 test problem. 177

Figure D.7 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the DTLZ7 test problem. 178

Figure E.1 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG1 test problem. 180

Figure E.2 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG2 test problem. 181

Figure E.3 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG3 test problem. 182

Figure E.4 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG4 test problem. 183

Figure E.5 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG5 test problem. 184

Figure E.6 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG6 test problem. 185

Figure E.7 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG7 test problem. 186

Figure E.8 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG8 test problem. 187

xxiii

Figure E.9 Comparison of the PF approximations ob-
tained by MOEA/D+LS-II, MOEA/D+LS and
MOEA/D for the WFG9 test problem. 188

xxiv

List of Tables

Table 1 Parameters for MONSS and MOEA/D 76

Table 2 Results of Hypervolume (IH) performance mea-
sure for MONSS and MOEA/D 78

Table 3 Results of Two Set Coverage (IC) performance
measure for MONSS and MOEA/D 79

Table 4 Parameters for MOEA/D+LS and
MOEA/D 92

Table 5 Results of IH for MOEA/D+LS and
MOEA/D 93

Table 6 Results of IC for MOEA/D+LS and
MOEA/D 94

Table 7 Parameters for MOEA/D, MOEA/D+LS and
MOEA/D+LS-II 108

Table 8 Comparison of results with respect to the IH
indicator for MOEA/D+LS-II, MOEA/D+LS
and MOEA/D. 111

Table 9 Comparison of results with respect to the
IC indicator for MOEA/D+LS-II compared to
MOEA/D+LS and MOEA/D 112

Table 10 Kernels for a Radial Basis Function (RBF) neural
network, where r = ||x − ci|| 119

Table 11 Results of the IH metric for Multi-Objective
Evolutionary Algorithm based on De-
composition assisted by Radial Basis
Functions (MOEA/D-RBF) with Local
Search (MOEA/D-RBF+LS), MOEA/D-RBF
and MOEA/D. 138

Table 12 Parameter ranges for modified PARSEC airfoil
representation 165

xxv

List of Algorithms

1 General scheme of an Evolutionary Algorithm (EA) 12

2 Evolution Strategy . 15

3 Evolutionary Programming (EP) 16

4 Simple Genetic Algorithm (GA) 17

5 General scheme of a Memetic Algorithm (MA) 19

6 General Framework of Non-dominated Sorting Genetic
Algorithm II (NSGA-II) . 36

7 General Framework of Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) . 39

8 General Framework of MOEA/D 44

9 The Multi-objective GA-Simplex Hybrid Algorithm . . 50

10 The Multi-objective Hybrid Particle Swarm Optimization
(PSO) Algorithm . 54

11 The Nonlinear Simplex Search Genetic Algorithm 57

12 The hybrid S-Metric Selection Evolutionary Multi-objective
Optimization Algorithm (SMS-EMOA) 61

13 update(W, S, I) . 73

14 The Multi-objective Nonlinear Simplex Search (MONSS)
algorithm . 74

15 The Multi-Objective Evolutionary Algorithm based on De-
composition with Local Search (MOEA/D+LS) 85

16 The Multi-Objective Evolutionary Algorithm based on De-
composition with Local Search II (MOEA/D+LS-II) 100

17 Use of Local Search for the MOEA/D+LS-II 101

18 General framework of MOEA/D-RBF 121

19 General framework of MOEA/D-RBF+LS 129

20 Use of Local Search . 130

xxvi

xxvii

Acronyms

ABC Artificial Bee Colony

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AEMO Algoritmo Evolutivo Multi-objetivo

AIS Artificial Immune System

ANOVA Analysis of variance

CDMOMA Cross Dominant Multi-Objective Memetic
Algorithm

CFD Computational Fluid Dynamics

CHIM Convex Hull of Individual Minima

CMODE Coevolutionary Multi-Objective Differential
Evolution

CPU Central Processing Unit

DE Differential Evolution

DM Decision Maker

DTLZ Deb-Thiele-Laumanns-Zitzler

EA Evolutionary Algorithm

EC Evolutionary Computation

EP Evolutionary Programming

ES Evolution Strategy

GA Genetic Algorithm

xxviii

IH Hypervolume

IC Two Set Coverage

KKT Karush-Kuhn-Tucker

M-PAES Memetic Pareto Archived Evolution Strategy

MA Memetic Algorithm

MADA Multi-Attribute Decision Analysis

MCDM Multi-Criteria Decision Making

MOEA/D+LS-II Multi-Objective Evolutionary Algorithm based
on Decomposition with Local Search II

MOEA/D+LS Multi-Objective Evolutionary Algorithm based
on Decomposition with Local Search

MOEA/D Multi-Objective Evolutionary Algorithm based
on Decomposition

MOEA Multi-Objective Evolutionary Algorithm

MOEA/D-EGO Multi-Objective Evolutionary Algorithm based
on Decomposition with Gaussian Process Model

MOEA/D-RBF Multi-Objective Evolutionary Algorithm based
on Decomposition assisted by Radial Basis
Functions

MOEA/D-RBF+LS MOEA/D-RBF with Local Search

MOGA Multi-Objective Genetic Algorithm

MOGLS Multi-Objective Genetic Local Search

MOMA Multi-Objective Memetic Algorithm

MONSS Multi-objective Nonlinear Simplex Search

MOP Multi-objective Optimization Problem

NBI Normal Boundary Intersection

xxix

NSDE Non-dominated Sorting Differential Evolution

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA Non-dominated Sorting Genetic Algorithm

NSS-GA Nonlinear Simplex Search Genetic Algorithm

NSS Nonlinear Simplex Search

OR Operations Research

PARSEC PARametric SECtion

PBI Penalty Boundary Intersection

PBM Polynomial-Based Mutation

PDMOSA Pareto Domination Multi-Objective Simulated
Annealing

PF Pareto front

PMA Pareto Memetic Algorithm

POM Problema de Optimización Multi-objetivo

PS Pareto optimal set

PSO Particle Swarm Optimization

RBF Radial Basis Function

SBX Simulated Binary Crossover

SMS-EMOA S-Metric Selection Evolutionary Multi-objective
Optimization Algorithm

SPEA Strength Pareto Evolutionary Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm 2

SS Scatter Search

SVR Support Vector Regresion

VEGA Vector Evaluated Genetic Algorithm

xxx

WFG Walking-Fish-Group

ZDT Zitzler-Deb-Thiele

xxxi

1
Introduction

In engineering and scientific applications, there exist problems that
involve the simultaneous optimization of several objectives. Usu-

ally, such objectives are conflicting such that no single solution is
simultaneously optimal with respect to all objectives. These types of
problems are known as Multi-objective Optimization Problems (MOPs).
In contrast to single-objective optimization (where a single optimal so-
lution is aimed for), in multi-objective optimization, a set of solutions
with different trade-offs among the objectives is usually achieved. The
method most commonly adopted in multi-objective optimization to
compare solutions is the well-known Pareto dominance relation [106].
Therefore, optimal solutions in multi-objective optimization, are called
Pareto optimal solutions and all of them constitute the so-called Pareto
optimal set (PS). The evaluation of solutions in PS using the objective
functions is collectively known as Pareto front (PF).

Since their origins, Multi-Criteria Decision Making (MCDM) tech-
niques have shown to be an effective tool for solving MOPs, at a
reasonably low computational cost. However, in real-world applica-
tions, there exist several MOPs for which MCDM techniques cannot
guarantee that the solution obtained is optimum. Furthermore, these
methods can be inefficient and sometimes even inapplicable for a
particular problem. For these more complex optimization problems,
the use of meta-heuristics is fully justified. Multi-Objective Evolution-
ary Algorithms (MOEAs) are meta-heuristics which, in recent years,
have become very popular because of their conceptual simplicity and
efficiency in these types of problems. For their nature (based on a
population), MOEAs allow to generate multiple elements of the PS

in a single run. Therefore, nowadays, MOEAs constitute one of the
most successful approaches for solving MOPs.

1

2 introduction

1.1 Problem Statement

Traditional mathematical programming methods for solving both
single- and multi-objective optimization problems have shown to be
an effective tool in many science and engineering problems. However,
this type of methods cannot guarantee that the solution obtained
is optimum in the most general optimization problem. In the spe-
cialized literature, there exist several mathematical programming
techniques available to solve MOPs, see for example [35, 58, 96, 138].
However, some researchers have identified several limitations of these
traditional mathematical programming approaches [13, 23, 42, 95],
including the fact that many of them generate a single nondomi-
nated solution per run, and that many others cannot properly handle
non-convex, or disconnected Pareto fronts.

The nature of MOEAs (based on a population) and their flexible
selection mechanisms have proved to be extremely useful and suc-
cessful for dealing with MOPs. MOEAs possess the advantage of not
requiring previous information of the problem as most traditional
mathematical programming methods. Therefore, they do not need
either an initial search point or the gradient information of a function
to approximate solutions to the PS. Instead of this, they have been
designed with two main goals in mind:

1. maximize the number of elements of the PS obtained, and

2. distribute such solutions as uniformly as possible along the PF.

However, MOEAs normally require a relatively high number of
objective function evaluations in order to produce a reasonably good
approximation to the PF of a MOP. This remains as one of their main
limitations when applied to real-world applications, particularly when
dealing with objective functions that are computationally expensive
to evaluate.

In order to address this issue, a variety of hybrid approaches com-
bining mathematical programming techniques with a MOEA have
been proposed. In this way, while the MOEA explores the whole
search space, mathematical programming techniques exploit the
promising regions given by the same MOEA. However, when the
gradient information of the functions is not available, mathematical
programming techniques become impractical, and then, we look for

1.2 our proposal 3

alternative search strategies to address this issue, such as the direct
search methods—i. e., mathematical programming methods that do
not require gradient information of the functions.

1.2 Our Proposal

In this thesis, we investigate different strategies to hybridize MOEAs
with a popular direct search method (the Nonlinear Simplex Search
(NSS) algorithm). The contributions presented here, follow the two
main goals mentioned in the previous section. The first contribution
presented in this thesis, consists of a Multi-objective Nonlinear Simplex
Search (MONSS) approach. This proposal turns out to be effective
and competitive when dealing with MOPs having moderate and low
dimensionality. Based on experimental evidence, we concluded that
the NSS is a good alternative to be used as a local search engine into
a MOEA. The design of local search mechanisms coupled to MOEAs
by using direct search methods and having a low computational cost
(in terms of the number of fitness function evaluations performed)
is an open research problem. Some attempts for the hybridization
between these two types of algorithms are presented in Chapter 4. In
order to investigate efficient manners of using direct search methods
to approximate solutions to the PS, in Chapter 6, we propose a Multi-
Objective Memetic Algorithm (MOMA) based on the NSS. Preliminary
results show that the proposed approach is, in general, a competitive
tool to deal with MOPs having moderate and high dimensionality in
decision variable space. Some weaknesses of this MOMA are noted
and addressed in Chapter 7, giving rise to an enhanced version
of the hybrid approach presented in Chapter 6. The use of a low
number of fitness function evaluations in MOEAs is an important
issue in multi-objective optimization, because there are several real-
world applications that are computationally expensive to solve. In
order to build a more efficient MOMA, in Chapter 8, we present a
hybridization between the NSS and a MOEA assisted by surrogate
models. Preliminary results show that the proposed approach is a
viable choice to deal with MOPs having different features, and the
applicability to real-world applications could speed up convergence
to the PF in comparison to conventional MOEAs.

4 introduction

1.3 General and Specific Goals of the Thesis

1.3.1 Main goal

The main goal of this research is to advance the state-of-the-art with
respect to the design of hybrid algorithms, which combine MOEAs
with non-gradient mathematical programing techniques.

1.3.2 Specific goals

• To study different direct search methods proposed in the math-
ematical programming literature, analyzing their main advan-
tages and disadvantages in terms of their possible coupling with
a MOEA.

• To study the state of the art regarding MOEAs, including their
foundations, main mechanisms, performance measures, opera-
tors, density estimators and their advantages and disadvantages.

• To design strategies that combine the properties of traditional
non-gradient mathematical programming methods with the
exploratory power of a MOEA.

• To validate the proposed strategies with respect to state-of-
the-art MOEAs using standard test problems and performance
measures reported in the specialized literature.

• Perform a detailed statistical study of the proposed strategies
in order to determine the parameters, to which they are most
sensitive.

1.4 Structure of the Document

This document is organized in nine chapters and two appendices.
The first three chapters (including this one) describe basic concepts
required to understand the contributions of this thesis work. The last
five chapters present the current contributions and their correspond-
ing conclusion. The document is organized as follows.

1.4 structure of the document 5

Chapter 2 presents the basic notions related to optimization and
evolutionary computation. The main goal of this chapter is to get
acquainted with the concepts, definitions and notations used in the
remainder of this document. In Chapter 3, we present a brief intro-
duction to MOPs. This chapter describes some mathematical and
evolutionary approaches for solving MOPs; additionally, some per-
formance measures and test problems to evaluate MOEAs are also
introduced. Chapter 4 presents the state of the art regarding hybrid
algorithms that combine direct search methods with MOEAs. The
first contribution of the thesis is presented Chapter 5. In this chapter
we preset the design and results of a novel Multi-objective Nonlinear
Simplex Search (MONSS) which is an extension of the NSS for multi-
objective optimization. In Chapter 6, we present a MOMA based on
the NSS. Preliminary results indicate that the proposed approach
is, in general, a competitive tool to deal with the MOPs adopted.
In Chapter 7, some weaknesses of the MOMA presented in Chap-
ter 6 are reported and addressed, giving rise to an enhanced version
of this hybrid approach. In order to build a more efficient MOMA,
in Chapter 8, we present a hybridization between the NSS and a
MOEA assisted by surrogate models. Preliminary results show that
the proposed approach is a viable choice to deal with MOPs having
different features. Such results lead us to believe that its applicability
to real-world applications could speed up convergence to the PF in
comparison to conventional MOEAs. In Chapter 9, we present the
conclusions obtained regarding our current contributions. Also, we
describe some possible paths for future research. In Appendix A, we
describe in detail, the standard test problems adopted to validate the
proposed algorithms presented in this thesis. Finally, Appendix B
describes an airfoil shape problem, which has been adopted to assess
the performance of the MOMA assisted by surrogate models which
is introduced in Chapter 8.

2
Background

This chapter presents some basic concepts related to optimization
and Evolutionary Computation (EC). The most important aim of

this chapter is that the reader familiarizes with the basic concepts, def-
initions and notations used in the remainder of this thesis. Section 2.1
provides the conceptual and theoretical basis for global optimization.
A classification of different mathematical programming methods for
solving nonlinear optimization problems is presented in Section 2.2.
Section 2.3 provides a brief description of evolutionary approaches
for solving optimization problems. Section 2.4 introduces the most
important paradigms available within EC. Section 2.5 presents a brief
description of memetic algorithms which is of interest in this work.
Finally, Section 2.6 describes the advantages and disadvantages of
using these bio-inspired approaches in the optimization field.

2.1 Notions of Optimality

In mathematics, optimization refers to the process of determining the
minimum or maximum point of a function by choosing systematically
the values of its corresponding decision variables within a certain
search space. To be more precise, a generic optimization problem 1

can be formally stated as follows.

Definition 2.1 (Optimization Problem)
Find the vector x which minimizes the function f(x) subject to x ∈ Ω,
where Ω ⊆ Rn is the feasible region which satisfies the p inequality
constraints:

gi(x) 6 0; i = 1. . . . ,p

and the q equality constraints:

hj(x) = 0; j = 1. . . . ,q

1 Without loss of generality, in this thesis we will assume minimization problems

7

8 background

where Ω defines the subspace of feasible solutions and f is commonly
called objective function. The feasible solution x? ∈ Ω that corresponds
to the minimum value of the objective function in all the search space
is called global optimum.

The hardness of an optimization problem is determined by the
different types of mathematical relationships among the objective
function, the constraints and the range of the decision variables.
To understand the complexity involved in solving an optimization
problem, the following definitions are introduced.

Definition 2.2 (Global Minimum)
Given a function f : Ω ⊆ Rn 7→ R, Ω 6= φ, for x? ∈ Ω the value
f? = f(x?) > −∞ is called global minimum, if and only if:

∀x ∈ Ω : f(x?) 6 f(x) (2.1)

where vector x? is a global minimum point

Definition 2.3 (Local Minimum)
Given a function f : Ω ⊆ Rn 7→ R, a solution xo ∈ Ω is called local
minimum point, if and only if:

∀x ∈ Ω : f(xo) 6 f(x), such as: ||x − xo|| < ε (2.2)

where ε > 0 and the value f(xo) is called local minimum.

Definition 2.4 (Convex Function)
A function f : Rn 7→ R is called convex, if for any two vectors x1, x2 ∈
Rn:

f(λx1 + (1− λ)x2) 6 λf(x1) + (1− λ)f(x2) (2.3)

where λ ∈ [0, 1].

In this way, if the objective function and all the constraints are
convex, it is possible to find in an exact manner the globally optimal
solution, and solve the problem up to a very large number of decision
variables. On the other hand, if the function is non-convex, the prob-
lem is much harder to solve and it becomes much more difficult to
locate the feasible region and, therefore to find the global optimum.

2.1 notions of optimality 9

2.1.1 Optimality Criterion

In the early 1950s, and in an independent way, Karush [70] as well
as Kuhn and Tucker [81] derived the optimality conditions for an
optimization problem. This laid the foundations for the development
of the optimization field. These conditions provide the necessary and
sufficient requirements that an optimal solution must satisfy. Formally,
the Karush-Kuhn-Tucker (KKT) conditions can be stated as follows.

Definition 2.5 (KKT Necessary Conditions)
Let f : Rn 7→ R be the objective function. Let gi : Rn 7→ R and
hj : Rn 7→ R be the inequality and the equality constraint func-
tions, respectively. The KKT conditions or KKT problem is defined
as finding the vector x?, and the constants ui (i = 1, . . . ,p) and vj
(j = 1, . . . ,q) that satisfy:

∇f(x?) −
∑p
i=1 ui∇gi(x

?) −
∑q
j=1 vj∇hj(x

?) = 0, subject to:
gi(x?) > 0, for all i = 1, . . . ,p
hj(x?) = 0, for all j = 1, . . . ,q

uigi(x?) = 0, for all i = 1, . . . ,p
ui > 0, for all i = 1, . . . ,p

(2.4)

In particular, if p = 0, i.e., without inequality constraints, these
KKT conditions turn into Lagrange conditions, and the KKT multipliers
are called Lagrange multipliers.

Although in some cases the necessary conditions are also suffi-
cient for optimality, in general, additional information is necessary.
Therefore, certain additional convexity assumptions are needed to
guarantee that the solution x? is optimal. These conditions are called
sufficient conditions and they are presented in the following theorem.

Theorem 1 (KKT Necessity Theorem)
Consider the nonlinear optimization problem described by defini-
tion 2.1. Let f,gi and hj be differentiable functions and x? be a feasible
solution to the optimization problem. Let I = {i|gi(x?) = 0}. Fur-
thermore, ∇gi(x?) for i ∈ I and ∇hj(x?) for j = 1, . . . ,q are linearly
independent. If x? is an optimal solution to the optimization problem,
then there exist vectors u? and v? such that x?, u? and v? solve the
KKT conditions given by equation (2.4).

10 background

2.2 Optimization Techniques

Over the years, a large number of mathematical programming tech-
niques for solving nonlinear optimization problems have been pro-
posed. However, it was after KKT’s work that a large number of non-
linear programming methods were developed for solving nonlinear
optimization problems. Comprehensive surveys of these mathematical
programming methods can be found in [3, 17, 25, 104, 111, 112].

The development of these optimization methods has been moti-
vated by different problems in the real world. Over the years, different
taxonomies for classifying optimization methods have been proposed
(see, for example, those presented in [25, 111]). For the purposes
of this thesis, we classify these methods in two different categories:
mathematical programming techniques and stochastic techniques, see Fig-
ure 2.1.

Optimization Algorithms

Direct search

Newton

Gradient Descent

Fletcher−Reeves

Quasi−Newton Methods
(DFP, BFGS)

Fibonacci

Golden Section

Hooke−Jeeves

Nelder−Mead

Powell

{
{ {Derivative−based

Mathematica Programming Techniques{
Simulated Annealing

Tabu Search

Hill Climber

{

Evolutionary Computation

Bio−inspiraded Algorithms

{Population−based

Stochastic Techniques

Figure 2.1.: A taxonomy of optimization techniques

2.2.1 Mathematical Programming Techniques

The classical or mathematical programming methods are determinis-
tic algorithms characterized by having specific rules to move from
one solution to another. These methods have been used for some
time and have been successfully applied in many problems in en-
gineering. Currently, there are different variations of these meth-

2.2 optimization techniques 11

ods [3, 17, 25, 104, 111, 112]. Based on their conceptual foundations,
these methods can be divided in two large groups: gradient and non-
gradient mathematical programing methods.

Gradient Techniques. These methods use information from the
derivatives of the function as their strategy to move from one
solution to another. In the Operations Research (OR) literature,
there exist several of these algorithms, which have been applied
both to one-dimensional problems and to multi-dimensional
optimization problems (e.g. Cauchy’s method [10] (or steep-
est descent), Newton’s method [103], Fletcher and Reeves’s
method [38] (or conjugate gradients), etc.).

Non-gradient Techniques. Non-gradient methods or direct search
methods, are techniques that do not require any information
of the derivatives of the function and constitute a good alter-
native when the function to be optimized is not differentiable.
Similar to previous methods, there exist algorithms for solv-
ing one-dimensional and multi-dimensional optimization prob-
lems (e.g. Hooke and Jeeves’s method [60], Nelder and Mead’s
method [102], Zangwill’s method [144], etc).

Unfortunately, none of these mathematical methods guarantees
convergence to the global optimum when dealing with the general
nonlinear optimization problem. In most cases, these methods rely on
an initial search point and, when dealing with multi-modal problems
(i.e., problems that have several local optima) most of these methods
get easily trapped in local optima and are unable to reach the global
optimum.

2.2.2 Stochastic Techniques

The non-classical or stochastic methods, are algorithms that usually
employ probabilistic transition rules. These methods include evolu-
tionary computation, which in recent years, has become very popular
especially when dealing with hard optimization problems. This type
of approaches, in comparison, are new and quite useful, because
they have certain properties that deterministic algorithms do not have.
These stochastic techniques possess certain advantages that traditional
methods do not have, and they do not require previous information

12 background

of the problem. Indeed, they do not need neither an initial search
point nor any gradient information as most traditional mathematical
programming methods. But not only evolutionary computation has
been used to deal with optimization problems; other stochastic algo-
rithms (see for example [31, 49, 71, 72, 122]) have also been found to
be useful to deal with complex optimization problems.

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are methods inspired on natural se-
lection (particularly, the “survival of the fittest” principle). EAs are
techniques based on the use of a population, i.e., they operate on
a set of solutions instead of operating on one solution at a time,
as traditional optimization methods. At each iteration of an EA, a
competitive selection mechanism that tends to preserve the fittest
solutions is applied. The solutions with the highest fitness values
have the highest probability of being recombined with other solutions
to mix information and form new solutions, which are expected to
be better than their predecessors. This process is repeated until a
termination condition is reached. The pseudo code of an evolutionary
algorithm is shown in Algorithm 1. The main components, procedures
and operators that must be specified in order to define a particular
EA are described below.

Algorithm 1: General scheme of an Evolutionary Algorithm (EA)

1 begin
2 t = 0;
3 Initialization: P(t) ∈ Iµ;
4 Evaluation: Φ(P(t));
5 while (ι(P(t)) 6= TRUE) do
6 Recombination: P ′(t) = r(P(t));
7 Mutation: P ′′(t) = m(P ′(t));
8 Evaluation: Φ(P ′′(t));
9 Selection: P(t+ 1) = s(P(t)∪ P ′′(t));

10 t = t+ 1;
11 end
12 end

2.3 evolutionary algorithms 13

Representation (encoding of individuals). To link a real world
problem with an EA, we need to use a particular representation
of the decision variables. There are two levels of representation
used in an EA: genotypic and phenotypic. The genotype is the
encoding adopted in the chromosome and its corresponding
genes. The phenotype is the result of decoding the values of the
chromosome into the decision variable space of the problem.

Fitness Function (objective function). The fitness of an individ-
ual is related to the objective function value and represents the
task to be solved by the evolutionary algorithm. The evaluation
function assigns a quality measure to each individual that al-
lows to compare it with respect to the other solutions in the
population.

Population. The population is the set of solutions adopted by the
EA to perform the search. The population is responsible for
maintaining diversity, so that the EA does not get stuck in local
optima. Thus, it is important that the initial population contains
solutions that are spread over all the search space.

Parent Selection Mechanism. This mechanism allows the best in-
dividuals within the population to become parents of the next
generation and guides the search towards solutions with a
higher fitness. An individual is selected as a Parent if it sur-
vives the selection process. Different types of selection schemes
are possible. For example: proportional, stochastic, deterministic or
based on tournaments.

Variation Operators (recombination and mutation). Their
function is to modify the way in which the parents are com-
bined to form the offspring. The crossover (or recombination
operator) uses two or more parents to generate one or two
offspring. The main principle behind recombination is to
produce an offspring that combines the selected parents to form
better individuals into the search space. The mutation operator
is applied to only one solution and slightly modifies the genetic
information of the offspring. The general idea of the mutation
operator is to allow jumps (or abruptly move) from one region
to another in the search space.

14 background

Survivor Selection Mechanism (replacement). This mechanism
helps the EA to distinguish among individuals based on their
fitness or quality, favoring those with the highest quality.

As the EAs are stochastic methods, there are no guarantees that
the best final solutions have reached the global optimum by the
time the stopping condition has been reached. Thus, the termination
condition is an important issue in EAs. If the optimization problem
has a known optimal solution, the EA should stop when the objective
function reaches the desired level of accuracy. If not, then the user
should determine the number of generations allowed, the maximum
allowable Central Processing Unit (CPU) time, the maximum number
of fitness evaluations, or some other similar criterion.

2.4 Evolutionary Computation Paradigms

In EC, there exist three main paradigms: i) Evolution Strategies (ESs),
ii) Evolutionary Programming (EP) and iii) Genetic Algorithms (GAs). In
the following, a brief description of the most important paradigms is
presented.

2.4.1 Evolution Strategies

ESs were proposed in 1965 by Rechenberg [113] and Schwefel [120]
in Germany. These techniques were originally developed to solve
hydrodynamic optimization problems having a high degree of com-
plexity. ESs not only evolve the decision variables of the problem but
also the parameters of the techniques (such mechanism is called self-
adaptation). This technique simulates the evolutionary process to an
individual level, and, therefore, recombination is possible although, it
is normally a secondary operator (i.e., less important than mutation).
The original ES proposal was not based on a population but only
on the use of one individual. However, population-based ESs were
introduced by Schwefel [121] a few years later. ESs normally adopt
one of two possible selection schemes:

i Plus selection (µ+ λ): in this case, the next population is gener-
ated from the union of parents and children, and

2.4 evolutionary computation paradigms 15

ii Comma selection (µ, λ): in this case, the next population is
generated only from the children.

Algorithm 2 shows an outline of a simple ES using an initial popula-
tion µ.

Algorithm 2: Evolution Strategy
Input: A number µ of individuals
Output: An evolved population P(t)

1 begin
2 t = 0;
3 Initialization: P(t) ∈ Iµ;
4 Evaluation: Φ(P(t));
5 while (ι(P(t)) 6= TRUE) do
6 Recombination: P ′(t) = r(P(t));
7 Mutation: P ′′(t) = m(P ′(t));
8 Evaluation: Φ(P ′′(t));
9 Selection:

P(t+ 1) =

{
s(P(t)∪ P ′′(t)) (µ+ λ)-selection

P ′′(t) (µ, λ)-selection

;

10 t = t+ 1;
11 end
12 end

2.4.2 Evolutionary Programming

EP was developed by Fogel in the mid-1960s. Fogel simulated the
natural evolution as a learning process, aiming to generate artificial
intelligence [41, 42].

The parent selection in EP is deterministic and every member of the
population creates exactly one offspring via mutation. The crossover
in EP is not used, as the members of the population are viewed as
part of a specific species rather than as members of the same species,
and different species are not allowed to recombine (as happens in
nature). After having created the offspring, each solution is evaluated
and a (µ+ λ)-selection is normally adopted. Therefore, each solution
participates with other solutions in a binary tournament assigning

16 background

a ”win” if one solution is better than its opponent. Finally, the µ
solutions with the greatest number of wins are retained to be the
parents of the next generation, see Algorithm 3.

Algorithm 3: Evolutionary Programming (EP)
Input: A number µ of individuals
Output: An evolved population P(t)

1 begin
2 t = 0;
3 Initialization: P(t) ∈ Iµ;
4 Evaluation: Φ(P(t));
5 while (ι(P(t)) 6= TRUE) do
6 Mutation: P ′(t) = m(P ′(t));
7 Evaluation: Φ(P ′(t));
8 Selection: P(t+ 1) = s(P(t)∪ P ′(t));
9 t = t+ 1;

10 end
11 end

2.4.3 Genetic Algorithms

GAs were originally called genetic “reproductive plans” and were de-
veloped in the early 1960s by Holland [59], aiming to solve machine
learning problems. This type of evolutionary algorithm is charac-
terized mainly by coding individuals (traditionally using a binary
string), and for having a probabilistic selection mechanism. Crossover
plays a major role in GAs, but a mutation operator is also adopted to
maintain good exploratory capabilities, see Algorithm 4. GAs work
at the genotypic level and normally do not adopt a self-adaptation
mechanism as ESs, although some proposals in that regard have been
studied in the specialized literature [20, 119]. Additionally, there is
another operator called elitism which plays a crucial role in GAs. This
operator retains the best individual produced at each generation, and
passes it intact (i.e. without being recombined or mutated) to the fol-
lowing generation. Rudolph [116] showed that a GA requires elitism
to converge to the optimum. For this reason, elitism is a mechanism
that has become standard in EAs.

2.4 evolutionary computation paradigms 17

Algorithm 4: Simple Genetic Algorithm (GA)
Input: A number µ of individuals
Output: A evolved population P(t)

1 begin
2 t = 0;
3 Initialization: P(t) ∈ Iµ;
4 while (ι(P(t)) 6= TRUE) do
5 Evaluation: Φ(P(t));
6 Selection: Pp(t) = s(P(t));
7 Recombination: Pr(t) = r(Pp(t));
8 Mutation: Pm(t) = m(Pr(t));
9 P(t+ 1) = Pm(t);

10 t = t+ 1;
11 end
12 end

Currently, there exist many variants of GAs, with different solution
encodings, as well as a variety of selection, crossover and mutation
operators [5]. Nevertheless, the characteristics of the so-called simple
GA are the use of binary representation, fitness proportional selection,
bit-flip mutation (an operator that is applied with a low probability),
and 1-point crossover (which is applied with a high probability) [52].

2.4.4 Other Evolutionary Approaches

In spite of the success of EAs, there are other bio-inspired ap-
proaches which are not included in the three main paradigms but
that, in the last few years, have been widely used to solve opti-
mization problems. They are: Artificial Immune Systems (AISs) [22],
Ant Colony Optimization (ACO) [30], Scatter Search (SS) [49], Artificial
Bee Colony (ABC) [69], Particle Swarm Optimization (PSO) [71] and
Differential Evolution (DE) [129], among others.

18 background

2.5 Memetic Algorithms

The term Memetic Algorithm (MA) was first introduced in 1989 by
Moscato [97]. The term “memetic” has its roots in the word “meme”
introduced by Dawkins in 1976 [21] to denote the unit of imitation in
cultural transmission. The essential idea behind MAs is the combina-
tion of local search refinement techniques with a population-based
strategy, such as evolutionary algorithms. In fact, for the purposes of
this work, we will assume that the population-based strategy adopted
by the MA is an evolutionary algorithm. The main difference between
genetic and memetic algorithms is the approach and view of the in-
formation’s transmission techniques. In GAs, the genetic information
carried by genes is usually transmitted intact to the offspring, whereas
in MAs, the base units are the so-called “memes” and they are typi-
cally adapted by the individual transmitting information. While GAs
are good at exploring the solution space from a set of candidate solu-
tions, MAs explore from a single point, allowing to exploit solutions
that are close to the optimal solutions. Some important decisions that
should be taken when designing MAs are the following:

a) In which moment of the evolutionary process should the local
search be performed?

b) How often should the local search be applied along the entire
evolutionary process?, and

c) From which solutions should the local search be started?

The combination of local improvement operators among the evo-
lutionary steps of an EA is essential to improve solutions that are
close from becoming optimal. This has been shown in several applica-
tion domains to bring improvements to the standard results achieved
by standalone GAs in terms of quality of the results and speed of
convergence. In general, there is no specific method to design a MA.
However, Algorithm 5 shows a general framework of what a MA
should contain.

2.5 memetic algorithms 19

Algorithm 5: General scheme of a Memetic Algorithm (MA)
Input: A number µ of individuals
Output: An evolved population P(t)

1 begin
2 t = 0;
3 Initialization: P(t) ∈ Iµ;
4 while (ι(P(t)) 6= TRUE) do
5 Evaluation: Φ(P(t));
6 Evolve: Q(t) = evo(P(t)) // using stochastic

operators;
7 Selection: R(t) ⊆ Q(t) // select a set of solutions

(R);
8 forall the rt ∈ R(t) do
9 Improve: rt = i(rt) // using a improvement

mechanism (i);
10 end
11 Selection: P(t+ 1) = s(P(t)∪Q(t)∪ R(t)) // next

generation;
12 t = t+ 1;
13 end
14 end

20 background

2.6 Advantages and Disadvantages of Evolu-
tionary Algorithms

EAs have as their primary advantage, that they are conceptually sim-
ple. We have provided description of different types of EAs. Each
algorithm consists of an initialization process, which may be a purely
random sampling of possible solutions, followed by the use of vari-
ation operators and selection in light of a performance index. EAs
can be applied to virtually any problem that can be formulated as an
optimization task. EAs require a data structure to represent solutions,
a performance index to evaluate solutions, and variation operators
to generate new solutions from old solutions (selection is also re-
quired but is less dependent on human preferences). Real-world
optimization problems often impose nonlinear constraints, involve
nonstationary conditions, incorporate noisy observations or random
processing, or include other components that do not conform well to
the prerrequisites of classic optimization techniques. Moreover, real-
world problems are often multi-modal, and gradient-based methods
rapidly converge to local optima (or perhaps saddle points) which
may yield insufficient performance. For these types of problems, EAs
have shown to be a good choice. An important aspect to consider is
that EAs offer a framework such that it is comparably easy to incor-
porate specific domain knowledge. For example, specific variation
operators may be known to be useful when applied to particular
representations. Actually, the search space can be exploited by using
either mathematical or stochastic methods (including memetic algo-
rithms). From a computational point of view, the evolutionary process
can be highly parallel. As distributed processing computers become
more readily available, there will be a corresponding increased poten-
tial for applying EAs to more complex problems. A solution can be
handled in parallel, whereas the selection mechanism (which requires
at least pairwise comparisons) requires serial processing. Traditional
methods of optimization are not robust to dynamic changes in the
environment and often require a complete restart in order to provide
a solution. In contrast, EAs can be used to adapt solutions to changing
circumstances. The population provides a basis for further improve-
ment and in most cases it is not necessary, nor desirable, to reinitialize

2.6 advantages and disadvantages of evolutionary algorithms 21

the population at random. Indeed, these adaption capabilities can be
advantageous when dealing with dynamic environments.

On the other hand, since EAs are general search algorithms, it can
be difficult to “fine tune” their parameters to work well on any specific
problem. This is, indeed, one of the main drawbacks of EAs, since this
fine tuning is normally done by hand. As already mentioned before,
the choice of the representation and the construction of the fitness
function depend directly on the problem at hand. A bad choice for any
of these can make the algorithm to perform poorly. Unfortunately, it
remains unknown how to make the best parameter choices, or how to
construct the best fitness function for a given a problem. Most of this
relies on trial and error, and often much thinking and testing needs
to be done before the algorithm performs reasonably well. Moreover,
in the specialized literature there are many different operators to
choose from (selection, crossover, and mutation methods, etc.), and
several parameters to set (population size, crossover and mutation
rates, etc.). Furthermore, premature convergence to a local optimum
may result from a wrong adverse configuration and not yield (a
point nearby) the global optimum. Finally, EAs do not guarantee
convergence towards an optimal solution in a finite amount of time.
In addition, the stochastic nature of EAs makes it hard to know if
they have reached the global optimum and convergence cannot, in
general, be guaranteed. Thus, it is advisable to run the EA several
times, each time starting with a different (random) initial population,
and perhaps using different parameter settings. The best solution
over all these runs can then be taken as the best approximation to the
optimum.

3
Multi-Objective Optimization

Multi-objective optimization (or multi-objective program-
ming), is the process of simultaneously optimizing a vector

function whose elements represent the objective functions subject
to certain domain constraints. These functions form a mathematical
description of performance criteria which are usually in conflict with
each other. In order to understand the type of problems that we are
interested on, the following definition is introduced.

Definition 3.1 (Multi-objective Optimization Problem)
Formally, a Multi-objective Optimization Problem (MOP) is defined as: Without loss of

generality, we
assume
minimization
problems.

Minimize: F(x) = (f1(x), . . . , fk(x))T (3.1)

subject to:

hi(x) = 0, i = 1, . . . ,p (3.2)
gj(x) 6 0, j = 1, . . . ,q (3.3)

where x = (x1, . . . , xn)T ∈ Rn is the vector of decision variables,
fi : Rn → R, i = 1, . . . ,k are the objective functions and hi,gj : Rn → R,
i = 1, . . . ,p, j = 1, . . . ,q are the constraint functions of the problem.
Equations (3.2) and (3.3) determine the feasible region Ω ⊆ Rn and
any decision vector x ∈ Ω defines a feasible solution of the MOP.
F : Ω → F is a function that maps the decision variable space Ω ⊆ Rn

into the objective space F ⊆ Rk, which contains all the possible values
of the functions, see Figure 3.1.

Note however that, the decision variables xi (i = 1, . . . ,n) can
be continuous or discrete—in this work we are only interested in
continuous domains which are contained on Rn. When the functions
gi and hi are not present, the above problem is called unconstrained
MOP. If all the objective functions and the constraint functions are
linear, the problem 3.1 is called a linear MOP. If at least one of the
functions is nonlinear, the problem is then called a nonlinear MOP. If

23

24 multi-objective optimization

W= ÎÂ{x }n

Decision Variable Space Objective Space

F

x1

x2

F= ÎÂ{y }k

f1

f2

f3

Figure 3.1.: Mapping the decision variable space Ω to the objective space F.

all the objective functions are convex, and the feasible region is also
convex, the problem is known as a convex MOP. In this study we are
interested in solving nonlinear unconstrained MOPs.

Solving a MOP is very different that solving a single-objective
optimization problem. In single-objective optimization, it is possible
to determine between any given pair of solutions if one is better
than the other by comparing the function values. As a result, we
usually obtain a single optimal solution (i. e., the global optimum).
On the other hand, in multi-objective optimization there does not exist
a straightforward method to determine if a solution is better than
another one. The method most commonly adopted in multi-objective
optimization to compare solutions is called Pareto dominance relation,
which was originally proposed by Edgeworth in 1881 [34], and later
generalized by Pareto in 1896 [106]. This relation establishes that the
aim when solving a MOP is to find the best possible trade-offs among
all the objectives. This leads to the generation of a set of solutions,
instead of only one (as happens in single-objective optimization).

Therefore, in multi-objective optimization, we aim to produce a
set of trade-off solutions representing the best possible compromises
among the objectives (i.e., solutions such that no objective can be im-
proved without worsening another). In order to describe the concept
of optimality in which we are interested on, the following concepts
are introduced [96].

3.1 optimality in multi-objective optimization 25

3.1 Optimality in Multi-Objective Optimiza-
tion

Definition 3.2 (Pareto dominance)
Let x, y ∈ Ω, we say that x dominates y (denoted by x ≺ y) if and only
if, fi(x) 6 fi(y) and fi(x) < fi(y) in at least one fi for all i = 1, . . . ,k,
see Figure 3.2.

Definition 3.3 (Pareto optimal)
Let x? ∈ Ω, we say that x? is a Pareto optimal solution, if there is no
other solution y ∈ Ω such that: y ≺ x?.

Definition 3.4 (Pareto optimal set)
The Pareto optimal set (PS) is defined by:

PS = {x ∈ Ω|x is a Pareto optimal solution}

Definition 3.5 (Pareto optimal front)
The Pareto front (PF) is defined by:

PF = {F(x) = (f1(x), . . . , fk(x))|x ∈ PS}

In general, it is not possible to find an analytical expression that
defines the PF of a MOP. Thus, the most common way to get the PF

is to compute a sufficient number of points in the feasible region, and
then filter out the nondominated vectors from them. The desirable
aim in multi-objective optimization, is to determine the PS from the
feasible region Ω, i. e., to find all the decision variables that satisfy
definition 3.3. Note however that in practice, not all the PS is normally
desirable (e.g., it may not be desirable to have different solutions that
map to the same values in objective function space) or achievable.
Therefore, we are interested in maximizing the number of elements
of the PS and maintaining a well-distributed set of solutions along
the PF.

26 multi-objective optimization

Pareto front

Nondominated Solutions

Dominated Solutions

A

B

C

f
2

f
1

Pareto dominance relation

Figure 3.2.: Solution A dominates solution B, however, solution A does not
dominate solution C.

3.2 Multi-Objective Mathematical Program-
ming Techniques

Multi-objective mathematical programming techniques as well as
Multi-Criteria Decision Making (MCDM) techniques, are commonly
classified based on how and when they incorporate preferences from
the Decision Maker (DM) into the search process. A very important
issue is the moment at which the DM is required to provide preference
information. Cohon and Marks [16] propose a classification, which
has been the most popular in the Operations Research (OR) community
for many years. This taxonomy is presented below.

A Priori Approaches. The DM defines the importance of the objec-
tives before starting the search.

A Posteriori Approaches. The optimizer produces nondominated
solutions and then the DM chooses the most preferred one(s)
according to his/her preferences.

Interactive approaches. The optimizer produces solutions and the
DM progressively provides preference information so that the
most preferred solutions can be found.

3.2 multi-objective mathematical programming techniques 27

However, other classifications are also possible, e. g., the one pre-
sented by Duckstein [33]. For the purposes of this thesis we shall
adopt the proposal made by Cohon and Marks, because their classi-
fication is focused on the problems of search and decision making.
In the following, we present a brief description of the most popular
MCDM techniques according to the above classification. Some of
these methods are referred to in this work.

3.2.1 A Priori Preference Articulation

Goal Programming. Charnes and Cooper [11] are credited with
the development of the goal programming method for a linear
model. In this method, the DM has to assign targets or goals
that wishes to achieve for each objective. These values are incor-
porated into the problem as additional constraints. The objective
function then tries to minimize the absolute deviations from the
targets to the objectives. The simplest form of this method may
be formulated as follows:

Minimize: g(x) =
k∑
i=1

|fi(x) − z?i |

subject to: x ∈ Ω,

(3.4)

where z?i denotes the target or goal set by the decision maker
for the ith objective function fi(x), and Ω represents the feasible
region. The criterion, then is to minimize the sum of the absolute
values of the differences between the target values and the
achieved ones.

Lexicographic Method. In this method, the objectives are ranked in
order of importance by the decision maker (from best to worst).
The optimum solution x? is then obtained by minimizing the
objective functions separately, starting with the most important
one and proceeding according to the order of importance of
the objectives. Additionally, the optimal value found of each
objective is added as a constraint for subsequent optimizations.
This way, it is preserved the optimal value of the most important
objectives. Only in the case of several optimal solutions in the
current objective, the rest of the objectives are considered. Let

28 multi-objective optimization

the subscripts of the objectives indicate not only the objective
function number, but also the priority of the objective. Thus,
f1(x) and fk(x) denote the most and least important objective
functions, respectively. Then, the first problem is formulated as:

Minimize: f1(x)
subject to: x ∈ Ω,

(3.5)

and its solution x?1 and f?1 = f(x
?
1) is obtained.

This procedure is repeated until all k objectives have been con-
sidered, or a single optimal solution is obtained for the current
objective. In the latter case, the solution found is the solution of
the original problem. In the former case, we have to continue
the optimization process with the problem given by

Minimize: fi(x)
subject to: x ∈ Ω,

fl(x) = f?l ; l = 1, . . . , i− 1.
(3.6)

If several optimal solutions were obtained in each optimization
subproblem, then the solution obtained, i.e., x?k, is taken as the
desired solution of the original problem. More details of this
method can be found in [96, 35].

3.2.2 A Posteriori Preference Articulation

Tchebycheff approach. This approach transforms the vector of
function values into a scalar optimization problem which is
in the form:

Minimize: g(x|w, z?) = min
16i6k

{wi|fi(x) − zi|} (3.7)

where x ∈ Ω, z? = (z1, . . . , zk)T , such that: zi = min{fi(x)|x ∈ Ω}

and w is a weight vector, i. e.,
∑k
i=1wi = 1 and wi > 0.

For each Pareto optimal point x? there exists a weighting vector
w such that x? is the optimal solution of (3.7) and each optimal
solution of (3.7) is a Pareto optimal solution of (3.1). Therefore,
one is able to obtain different Pareto optimal solutions by alter-
ing the weight vector w. One weakness of this approach is that

3.2 multi-objective mathematical programming techniques 29

its aggregation function is not smooth for a continuous MOP.
It is worth noticing that, in general, there exist many scalariza-
tion methods that transform the MOP into a single-objective
optimization problem, which can lead to a reasonably good
approximation of the entire Pareto front.

Normal Boundary Intersection. Das and Dennis [19] proposed
this novel method for generating evenly distributed Pareto op-
timal solutions. The main idea in the Normal Boundary Intersec-
tion (NBI) method, is to intersect the feasible objective region
with a normal to the convex combinations of the columns of the
pay-off matrix. For understanding this method let’s consider the
next definition.

Definition 3.6 (Convex Hull of Individual Minima)
Let x?i be the respective global minimizers of fi(x), i = 1, . . . ,k
over x ∈ Ω. Let F?

i = F(x?i), i = 1, . . . ,k. LetΦ be the k×kmatrix
whose ith column is F∗i − F∗, which is sometimes known as the
pay-off matrix. Then the set of points in Rk that are convex
combinations of F?

i − F?, i.e. {Φβ : β ∈ Rk,
∑k
i=1 βi = 1,βi > 0},

is referred to as the Convex Hull of Individual Minima (CHIM).

The set the attainable objective vectors, {F(x) : x ∈ Ω} is denoted
by F, thus Ω is mapped onto F by F. The space Rk which
contains F is referred to as the objective space. The boundary of
F is denoted by ∂F. The NBI method can be mathematically
formulated as follows.

Given a weighted vector β, Φβ represents a point in the CHIM.
Let n̂ denote the unit normal to the CHIM simplex towards the
origin; then Φβ+ tn̂ represents the set of points on that normal.
The point of intersection of the normal and the boundary of
F closest to the origin is the global solution of the following
problem:

Maximize: t

subject to: Φβ+ tn̂ = F(x),
x ∈ Ω

(3.8)

The vector Φβ+ tn̂ = F(x) ensures that the point x is actually
mapped by F to a point on the normal, while the remaining

30 multi-objective optimization

d1

d2

F(x)

z
l

w

f2

f1

Attainable Objective Set

Pareto Front

Figure 3.3.: Illustration of the Penalty Boundary Intersection (PBI) approach

constraints ensure feasibility of x in Ω. This approach considers
that the shadow minimum F? is in the origin. Otherwise, the
first set of constraints should be Φβ+ tn̂ = F(x) − F?.

As many scalarization methods, for various β, a number of
points on the boundary of F are obtained thus, effectively, con-
structing the Pareto surface.

Penalty Boundary Intersection Approach. The Penalty Boundary
Intersection (PBI) approach was proposed by Zhang and Li [155].The PBI approach is

based on the Das
and Dennis method

(the NBI method)

This approach uses a weight vector w and a penalty value θ for
minimizing both the distance to the utopian vector d1 and the
direction error to the weight vector d2 from the solution F(x),
see Fig. 3.3. The optimization problem is formulated as:

Minimize: g(x|w, z?) = d1 + θd2 (3.9)

where

d1 =
||(F(x) − z?)Tw||

||w||

and d2 =
∣∣∣∣∣∣(F(x) − z?) − d1 w

||w||

∣∣∣∣∣∣
as the Tchebycheff approach, x ∈ Ω, z? = (z1, . . . , zk)T , such that:
zi = min{fi(x)|x ∈ Ω} and w = (w1, . . . ,wk)T is a weight vector,
i. e.,
∑k
i=1wi = 1 and wi > 0.

3.2 multi-objective mathematical programming techniques 31

3.2.3 Interactive Preference Articulation

Method of Geoffrion-Dyer-Feinberg. The Geoffrion et al.
method [46] is an interactive algorithm based on the
maximization of a value function (utility function) using
a gradient-based mathematical programming method. The
value function is only implicitly known, but is assumed to
be differentiable and concave. The gradient-based method
employed is the Frank and Wolfe method [45], however, as
pointed out by the authors, another approach could be also
used in the interactive method. The Frank and Wolfe method
assumes that the feasible set, Ω ⊆ Rn, is compact and convex.
The direction-finding problem of the Frank and Wolfe method
is the following:

Maximize: ∇xU(F(xh)) · y
subject to: y ∈ Ω,

(3.10)

where U : Rk → R is the value function, xh is the current point,
and y is the new variable of the problem. Using the chain rule,
we obtain

∇xU(F(xh)) =
k∑
i=1

(
∂U

∂fi

)
∇xfi(xh). (3.11)

Dividing this equation by ∂U
∂f1

we obtain the following reformu-
lation of the Frank and Wolfe problem:

Maximize:

(
k∑
i=1

−mh
i∇xfi(xh)

)
· y

subject to: y ∈ Ω,

(3.12)

where mh
i = (∂U/∂fi)/(∂U/∂f1) for all i = 1, . . . ,k, i 6= 1 are the

marginal rates of substitution (or indifference trade-off) at xh

between objectives f1 and fi. The marginal rate of substitution
is the amount of loss on objective fi that the decision maker is
willing to tolerate in exchange of one unit of gain in objective
f1, while the values of the other objectives remain unchanged.

32 multi-objective optimization

Light Beam Search. The Light Beam Search method was proposed
by Jaszkiewicz and Slowinski [68], and is an iterative method
which combines the reference point idea and tools of Multi-
Attribute Decision Analysis (MADA). At each iteration, a finite
sample of nondominated points is generated. The sample is
composed of a current point called middle point, which is ob-
tained in the previous iteration, and J nondominated points
from its neighborhood. A local preference model in the form
of an outranking relation S is used to define the neighborhood
of the middle point. It is said that a outranks b (aSb), if a is
considered to be at least as good as b. The outranking relations
is defined by the DM, who specifies three preference thresholds
for each objective. They are 1) indifference threshold, 2) preference
threshold and 3) veto threshold. The DM has the possibility to scan
the inner area of the neighborhood along the objective function
trajectories between any two characteristic neighbors or between
a characteristic neighbor and the middle point.

3.3 Multi-Objective Evolutionary Algorithms

Traditional multi-objective programming methods are a small subset
of a large variety of methods—see for example [35, 58, 96, 138]—
available to solve MOPs. However, some researchers [13, 23, 42, 95]
have identified several limitations of traditional mathematical pro-
gramming approaches to solve MOPs. Some of them are the following:

1. It is necessary to run many times those algorithms to find several
elements of the Pareto optimal set.

2. Many of them require domain knowledge about the problem to
be solved.

3. Some of those algorithms are sensitive to the shape or continuity
of the Pareto front.

These complexities call for alternative approaches to deal with cer-
tain types of MOPs. Among these alternative approaches, we can
find Evolutionary Algorithms (EAs), which are stochastic search and
optimization methods that simulate the natural evolution process.

3.3 multi-objective evolutionary algorithms 33

In the late 1960s, Rosenberg [114] proposed the use of genetic algo-
rithms to solve MOPs. However, it was until 1984, when Schaffer [117]
introduced the first actual implementation of what it is now called a
Multi-Objective Evolutionary Algorithm (MOEA). Since then, many re-
searchers [15, 159, 27, 43, 61, 76, 155] have developed a wide variety of
MOEAs. MOEAs are particularly well-suited to solve MOPs because
they operate over a set of potential solutions (they are based on a
population). This feature allows them to generate several elements of
the Pareto optimal set (or a good approximation of them) in a single
run. Furthermore, MOEAs are less susceptible to the shape or conti-
nuity of the Pareto front than traditional mathematical programming
techniques, require little domain information and are relatively easy
to implement and use. As pointed out by different authors [161, 14],
finding an approximation to the PF is, by itself, a bi-objective problem
whose objectives are:

1. to minimize the distance of the generated solutions to the PF,
and

2. to maximize the diversity among the solutions in the Pareto
front approximation as much as possible.

Therefore, the fitness assignment scheme that we adopt in a MOEA
must consider these two objectives. Based on their selection mecha-
nism, MOEAs can be classified in different ways. In the following, we
present the most popular MOEAs developed over the years, some of
which are referred to in this thesis.

3.3.1 MOEAs based on a population

The nature of MOEAs (based on a population) and their flexible selec-
tion mechanisms have proved to be extremely useful and successful
for solving MOPs [14]. The two factors that make the use of a popula-
tion in MOEAs very practical are: 1) the simultaneous operation on
multiple solutions transforms the search for optimal solutions into a
cooperative process and hence increases the convergence speed. 2) the
Pareto dominance scheme used by most MOEAs makes it possible to
tackle the problems as well as to assess candidate solutions to such
problems without requiring the aggregation of noncommensurable
objectives.

34 multi-objective optimization

Vector Evaluated Genetic Algorithm. The Vector Evaluated Ge-
netic Algorithm (VEGA) is the first actual implementation of a
multi-objective evolutionary optimizer which was introduced by
Schaffer in 1985 [118]. VEGA is an extension of the well-known
GENESIS [53] program. This evolutionary approach operates
by dividing the population of solutions into N equally sized
subpopulations at every generation. Each subpopulation is de-
signed to separately optimize only one of the N objectives. In
other words, the selection of the fittest individuals in each sub-
population is based on a single objective of the problem. After
performing selection, individuals are shuffled and then they
are recombined and mutated. The main problem in VEGA is
the selection procedure, which can hardly produce compromise
solutions among all the objectives. Most of the solutions found
by VEGA are in the extreme parts of the Pareto front.

3.3.2 MOEAs based on Pareto

Multi-Objective Genetic Algorithm. Fonseca and Fleming [43]
proposed the Multi-Objective Genetic Algorithm (MOGA) which
is based on the ranking scheme proposed by Goldberg [52].
This algorithm ranks the population based on nondominance.
Thus, the rank of an individual xi at generation t is equal to the
number of solutions, p(xi, t), by which it is dominated, namely
rank(xi, t) = 1+ p(xi, t). Then, fitness is computed using, for
example: fitness = 1

rank(xi,t) , so that all nondominated solutions
get the same fitness and all dominated individuals get a fitness
value that decreases proportionally to the number of solutions
that dominate it.

Non-dominated Sorting Genetic Algorithm. Goldberg’s rank-
ing scheme was implemented by Srinivas and Deb [128] in a
more straightforward way. The Non-dominated Sorting Genetic
Algorithm (NSGA) ranks the population in different nondom-
inated layers or fronts with respect to nondominance. The
first front (the best ranked) is composed by the nondominated
individuals of the current population. The second front is the
set composed of the nondominated individuals excluding
individuals in the first rank. In general, each front is computed

3.3 multi-objective evolutionary algorithms 35

only using the unranked individuals in the population. An
improved version of the NSGA algorithm, called Non-dominated
Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb
et al. [27]. The NSGA-II builds a population of competing
individuals, ranks and sorts each individual according to its
nondomination level, it applies evolutionary operators to create
a new offspring pool, and then combines the parents and
offspring before partitioning the new combined pool into fronts.
For each ranking level, a crowding distance is estimated by
calculating the sum of the Euclidean distances between the two
neighboring solutions from either side of the solution along
each of the objectives.

Once the nodomination rank and the crowding distance is cal-
culated, the next population is stated by using the crowded-
comparison operator (≺n). The crowded-comparison operator
guides the selection process at the various stages of the algori-
thm toward a uniformly spread-out PS. Assuming that every
individual in the population has two attributes: 1) nondomina-
tion rank (irank) and 2) crowding distance (idistance), the partial
order ≺n is defined as:

i ≺n j : if (irank < jrank)or
((irank = jrank) and (idistance > jdistance))

(3.13)

That is, between two solutions with differing nondomination
ranks, it is preferred the solution with the lower (better) rank.
Otherwise, if both solutions belong to the same front, then the
solution that is located in a less crowded region is preferred.
Algorithm 6 presents the outline of the NSGA-II, which (in
the last decade) has been the most popular MOEA, and it is
frequently adopted to compare the performance of newly intro-
duced MOEAs.

Strength Pareto Evolutionary Algorithm. The Strength Pareto
Evolutionary Algorithm (SPEA) was introduced by Zitzler and
Thiele [161]. This evolutionary approach integrates some suc-
cessful mechanisms from other MOEAs, namely, a secondary
population (external archive) and the use of Pareto dominance

36 multi-objective optimization

Algorithm 6: General Framework of NSGA-II
Input:
N: the population size;
Tmax: the maximum number of generations;
Output:
A: the final approximation to the Pareto optimal front;

1 begin
2 t = 0;
3 Generate a random population Pt of size N;
4 Evaluate the population Pt;
5 while t < Tmax do
6 Generate the offspring population Qt by using binary

tournament and genetic operators (crossover and
mutation);

7 Evaluate the offspring population Qt;
8 Rt = Pt ∪Qt;
9 Rank Rt by using nondominated sorting to define F;

10 // F = (F1,F2, . . .), all nondominated fronts of Rt

11 Pt+1 = ∅ and i = 1;
12 while (|Pt+1|+ |Fi| 6 N) do
13 Assign crowding distance to each front Fi;
14 Pt+1 = Pt+1 ∪Fi;
15 i = i+ 1;
16 end
17 Sort Fi by using the crowded-comparison operator;
18 Pt+1 = Pt+1 ∪Fi[1 : (N− |Pt+1|)];
19 t = t+ 1;
20 end
21 A = Pt;
22 end

ranking. SPEA uses an external archive containing nondomi-
nated solutions previously found. At each generation, nondomi-
nated individuals are copied to the external nondominated set.
In SPEA, the fitness of each individual in the primary popula-
tion is computed using the individuals of the external archive.
First, for each individual in this external set, a strength value

3.3 multi-objective evolutionary algorithms 37

is computed. The strength, S(i), of individual i is determined
by S(i) = n

N+1
, where n is the number of solutions dominated

by i, and N is the size of the archive. Finally, the fitness of each
individual in the primary population is equal to the sum of
the strengths of all the external members that dominate it. Zit-
zler et al. introduced a revised version of SPEA called Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [159]. SPEA2 has three
main differences with respect to its predecessor: 1) it incorpo-
rates a fine-grained fitness assignment strategy which takes into
account, for each individual, the number of individuals that
dominate it and the number of individuals to which it domi-
nates; 2) it uses a nearest neighbor density estimation technique
which guides the search more efficiently, and it has an enhanced
archive truncation method that guarantees the preservation of
boundary solutions. The outline of the SPEA2 is shown in Algo-
rithm 7.

Let’s consider Pt and Pt as the external archive and the pop-
ulation at generation t, respectively. Each individual i in the
external archive Pt and the population Pt is assigned a strength
value S(i), representing the number of solutions it dominates:
S(i) = |j|j ∈ Pt + Pt ∧ i ≺ j|, where | · | denotes the cardinality
of a set, + stands for multi-set union and the symbol ≺ corre-
sponds to the Pareto dominance relation. On the basis the S
values, the raw fitness R(i) of an individual i is calculated by:

R(i) =
∑

j∈P∪P,j≺i

S(j)

SPEA2 incorporates additional density information to discrim-
inate between individuals having identical raw fitness values.
The density estimation technique used in SPEA2 is an adapta-
tion of the k-th nearest neighbor method, and it is calculated
by:

D(i) =
1

σki + 2

where, k =
√

|N|+ |N|, and σki denotes the distance from i to its
k-th nearest neighbor in Pt + Pt. Finally, the fitness value F(i) of
an individual i is calculated by:

F(i) = R(i) +D(i) (3.14)

38 multi-objective optimization

During environmental selection, the first step is to copy all non-
dominated individuals. If the nondominated front fits exactly
into the archive (|Pt+1| = N) the environmental selection step is
completed. Otherwise, there can be two situations: Either the
archive is too small (|Pt+1| < N) or too large (|Pt+1| > N). In the
first case, the best N− |Pt+1| dominated individuals in the previ-
ous archive and population are copied to the new archive. In the
second case, when the size of the current nondominated (multi)
set exceeds N, an archive truncation procedure is invoked which
iteratively removes individuals from Pt+1 until |Pt+1| = N.

3.3.3 MOEAs based on Decomposition

MOEA based on Decomposition. The Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) was introduced by
Zhang and Li [155]. MOEA/D explicitly decomposes the MOP
into scalar optimization subproblems. It is well-known that a
Pareto optimal solution to a MOP, under certain conditions,
could be an optimal solution of a scalar optimization problem
in which the objective is an aggregation of all the functions fi’s.
Therefore, an approximation of the Pareto optimal front can
be decomposed into a number of scalar objective optimization
subproblems. This is a basic idea behind many traditional math-
ematical programming methods for approximating the Pareto
optimal front. Several methods for constructing aggregation
functions can be found in [35, 96, 138]. This basic idea of decom-
position is used by MOEA/D, and it solves these subproblems
simultaneously by evolving a population of solutions. At each
generation, the population is composed of the best solution
found so far (i.e. since the start of the run of the algorithm)
for each subproblem. The neighborhood relations among these
subproblems are defined based on the distances between their
aggregation coefficient vectors. The optimal solutions to two
neighboring subproblems should be very similar. Each sub-
problem (i.e., each scalar aggregation function) is optimized
in MOEA/D by using information only from its neighboring
subproblems. To obtain a good representation of the Pareto

3.3 multi-objective evolutionary algorithms 39

Algorithm 7: General Framework of SPEA2

Input:
N: the population size;
N: the archive size;
Tmax: the maximum number of generations;
Output:
A: the final approximation to the Pareto optimal front.

1 begin
2 t = 0;
3 Generate a random population Pt of size N;
4 Pt = ∅; // the external archive

5 while (t < Tmax) do
6 Calculate the fitness values of individuals in Pt and Pt;
7 Copy all nondominated individuals in Pt and Pt to Pt+1.

If size of Pt+1 exceeds N then reduce Pt+1 by means of
the truncation operator, otherwise if size of Pt+1 is less
than N then fill Pt+1 with dominated individuals in Pt
and Pt;

8 if (t+ 1 < Tmax) then
9 Perform binary tournament selection with

replacement on Pt+1 in order to fill the mating pool;
10 Apply recombination and mutation operators to the

mating pool and set Pt+1 to the resulting population.;
11 end
12 t = t+ 1;
13 end
14 Set A as the set of decision vectors represented by the

nondominated individuals in Pt;
15 end

optimal front, a set of evenly spread weighting vectors needs to
be previously generated.

Considering N as the number of scalar optimization subprob-
lems and W = {w1, . . . , wN} as the set of weighting vectors
which defines such subproblems, MOEA/D finds the best so-
lution to each subproblem along the evolutionary process. As-
suming the Tchebycheff approach (3.7), the fitness function of

40 multi-objective optimization

the ith subproblem is stated by g(x|wi, z). MOEA/D defines a
neighborhood of each weighting vector wi as a set of its closest
weighting vectors in W. Therefore, the neighborhood of the ith

subproblem consists of all the subproblems with the weighting
vectors from the neighborhood of wi and it is denoted by B(wi).
The genetic operators (mutation and crossover) in MOEA/D are
performed between pair of individuals in each neighborhood
B(wi). At each generation, MOEA/D maintains:

1. A population P = {x1, . . . , xN} of N points, where xi ∈ Ω is
the current solution to the ith subproblem;

2. FV1, . . . , FVN, where FV i is the F-value of xi, i.e., FV i =

F(xi) for each i = 1, . . . ,N;

3. an external archive EP, which is used to store the nondom-
inated solutions found during the search.

In contrast to NSGA-II and SPEA2 which use density estima-
tors (crowding distance and neighboring solutions, respectively),
MOEA/D uses the well-distributed set of weight vectors W for
guiding the search, and therefore, multiple solutions along the
PF are maintained. With that, the diversity in the population of
MOEA/D is implicitly maintained. For an easy interpretation of
MOEA/D, it is outlined in Algorithm 8, in page 44. Nowadays,
several authors have taken the idea behind MOEA/D for devel-
oping current state-of-the-art MOEAs based on decomposition,
see for example those presented in [107, 98, 149].

3.4 Performance Assessment

As pointed before, since their origins, MOEAs have attempted to sat-
isfy the two main goals of multi-objective optimization: 1) minimize
the distance of the generated solutions to the PF, and 2) maximize
the diversity among the solutions in the Pareto front approximation
as much as possible. Therefore, to assess the performance of a MOEA,
the two above issues should be considered. In order to allow a quanti-
tative comparison of results among the different algorithms presented
here, we adopted the performance measures that are briefly described
next.

3.4 performance assessment 41

Hypervolume. The Hypervolume (IH) performance measure was pro-
posed by Zitzler [160]. This performance measure is Pareto
compliant [162] and quantifies both convergence and spread of
nondominated solutions along the PF. The hypervolume cor-
responds to the non-overlapped volume of all the hypercubes
formed by a reference point r (given by the user) and each solu-
tion p in the Pareto front approximation. The IH performance
measure (also known as S-metric) can be defined as follows.

Definition 3.7 (Hypervolume)
Let P be a Pareto front approximation given by an algorithm.
The IH performance measure of P is calculated as:

IH(P) = Λ

⋃
p∈P

{x|p ≺ x ≺ r}

 (3.15)

where Λ denotes the Lebesgue measure and r ∈ Rk denotes a
reference vector being dominated by all valid candidate solu-
tions.

A high IH value, indicates that the approximation P is close to
PF and has a good spread towards the extreme portions of the
PF.

Two Set Coverage. The Two Set Coverage (IC) metric was proposed
by Zitzler et al. [158]. This performance measure compares a
set of non-dominated solutions A with respect to another set
B, using Pareto dominance. The IC metric is mathematically
defined as follows:

Definition 3.8 (Two Set Coverage)
Let A and B be two sets of decision variables. The function IC
maps the ordered pair (A,B) to the interval [0, 1], according to:

IC(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(3.16)

where � defines the Pareto dominance relation.

The value IC(A,B) = 1 means that all solutions in B are dom-
inated by or are equal to the solutions in A. The opposite,

42 multi-objective optimization

IC(A,B) = 0, represents the situation when none of the solu-
tions in B are covered by the set A. Note that both IC(A,B) and
IC(B,A) have to be considered, since IC(A,B) is not necessarily
equal to 1− IC(B,A). Nonetheless, we can say that A is better
than B, if and only if, IC(A,B) = 1 and IC(B,A) = 0.

3.5 Test functions

In order to challenge the search capabilities of the MOEAs proposed in
this thesis, a set of multi-objective test functions were adopted. In the
specialized literature, there are several artificial test problems to eval-
uate the abilities of a MOEA—see for example [158, 28, 27, 63, 154].
These test functions encompass specific features, such as: multi-
modality, non-convexity and discontinuity. Some test problems have
a disconnected and/or asymmetric PF in two and three objective
functions. Such features are known to generally cause several dif-
ficulties to most MOEAs to reach all the regions in the PF. In the
following, we briefly describe the test suite that we have adopted for
the purposes of this thesis.

Classic test problems. We have adopted nine test problems from
different authors such as: Deb [24], Fonseca and Fleming [44],
Laumanns [84], Lis and Eiben [87], Murata and Ishibuchi [101],
Valenzuela and Uresti [135], Viennet et al. [137]. These problems
are characterized by using a low number of decision variables
and they are considered here as classic MOPs, since they were
proposed before 2000. The mathematical description of these
test problems is presented in Appendix A.1.

Zitzler-Deb-Thiele test suite. Zitzler et al. [158] proposed a set of
test functions which are known as the Zitzler-Deb-Thiele (ZDT)
test suite. In our study, we adopt five bi-objective MOPs (ZDT5

is not adopted because it is a discrete problem) from this test
suite. The description of the ZDT test problems is presented in
Appendix A.2.

Deb-Thiele-Laumanns-Zitzler test suite. Deb et al. [28, 29] pro-
posed a set of test functions for testing and comparing MOEAs.
This set of problems, known as the Deb-Thiele-Laumanns-Zitzler

3.5 test functions 43

(DTLZ) test suite, attempts to define generic multi-objective test
problems that are scalable to a user-defined number of objectives.
An increase in dimensionality of the objective space also causes
a large portion of a randomly generated initial population to be
nondominated to each other, thereby reducing the effect of the
selection operator in a MOEA. In our study, we have adopted
the seven unconstrained MOPs (DTLZ1–DTLZ7) from this test
suite. The mathematical formulation of these problems is shown
in Appendix A.3.

Walking-Fish-Group test suite. Huband et al. [63] proposed a set
of test functions which are known as the Walking-Fish-Group
(WFG) test suite. These MOPs are generalized to be scaled in
the number of objective functions. In each problem, a set of
sequential transformations to the vector of decision variables
is applied. This strategy is used to increase the difficulty of
the problem. Therefore, the WFG test suite constitutes a set of
difficult test problems to solve, in comparison with both the
ZDT and DTLZ test suites. The description of the nine WFG
test problems is presented in Appendix A.4.

44 multi-objective optimization

Algorithm 8: General Framework of MOEA/D
Input:
a stopping criterion;
N: the number of the subproblems considered in MOEA/D;
W: a well-distributed set of weighting vectors {w1, . . . , wN};
T : the number of weight vectors in the neighborhood of each
weighting vector.
Output:
EP: the nondominated solutions found during the search;
P: the final population found by MOEA/D.

1 begin
2 Step 1. Initialization:
3 EP = ∅;
4 Generate an initial population P = {x1, . . . , xN} randomly;
5 FV i = F(xi);
6 B(wi) = {wi1 , . . . , wiT } where wi1 , . . . , wiT are the T closest

weighting vectors to wi, for each i = 1, . . . ,N;
7 z = (+∞, . . . ,+∞)T ;
8 while stopping criterion is not satisfied do
9 Step 2. Update: (the next population)

10 for xi ∈ P do
11 Reproduction: Randomly select two indexes k, l

from B(wi), and then generate a new solution y from
xk and xl by using genetic operators.

12 Mutation: Apply a mutation operator on y to
produce y ′.

13 Update of z: For each j = 1, . . . ,k, if zj < fj(x), then
set zj = fj(y ′).

14 Update of Neighboring Solutions: For each index
j ∈ B(wi), if g(y ′|wj, z) 6 g(xi|wj, z), then set xj = y ′

and FV j = F(y ′).
15 Update of EP: Remove from EP all the vectors

dominated by F(y ′). Add F(y ′) to EP if no vectors in
EP dominate F(y ′).

16 end
17 end
18 end

4
Multi-Objective Memetic

Algorithms Based on Direct Search

Methods

Mathematical programming techniques for solving optimiza-
tion problems have shown to be an effective tool in many

domains, at a reasonably low computational cost. However, as we
discussed in Chapters 2 and 3 (Sections 2.6 in page 20 and 3.3 in
page 32), they have several limitations and therefore, their use is
limited to certain types of problems. Over the years, Evolutionary
Algorithms (EAs) have been found to offer several advantages in com-
parison with traditional programming methods, including generality
(they require little domain information to work) and ease of use. How-
ever, they are normally computationally expensive (in terms of the
number of objective function evaluations required to obtain optimal
solutions), which limits their use in some real-world applications.
The characteristics of these two types of approaches have motivated
the idea of combining them. Algorithms that combine Multi-Objective
Evolutionary Algorithms (MOEAs) with an improvement mechanism
(normally, a local search engine) are called Multi-Objective Memetic
Algorithms (MOMAs) [100]. Here, we are interested in developing new
MOMAs that combine direct search methods—i. e., mathematical pro-
gramming methods that do not require gradient information of the
functions—with MOEAs.

In the following, we review state-of-the-art MOMAs based on math-
ematical programming techniques. Particularly, we place special em-
phasis on the hybridization of MOEAs with direct search methods
which is the main focus of this thesis.

45

46 multi-objective memetic algorithms based on direct search methods

4.1 Multi-Objective Memetic Algorithms

Hybridization of MOEAs with local search algorithms has been inves-
tigated for more than one decade [75]. Some of the first MOMAs for
dealing on discrete domains were presented in [65, 66], including the
Multi-Objective Genetic Local Search (MOGLS) approach, and the Pareto
Memetic Algorithm (PMA) presented in [67]. These two approaches
use scalarization functions to approximate solutions to the Pareto
front (PF). Another proposal employing Pareto ranking selection was
called Memetic Pareto Archived Evolution Strategy (M-PAES) [73]. Also,
in [100], the authors proposed a local search procedure with a gener-
alized replacement rule based on the dominance relation. In [9], the
Cross Dominant Multi-Objective Memetic Algorithm (CDMOMA) was
proposed as an adaptation of the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II), and two local search engines: a multi-objective
implementation of Rosenbrock’s algorithm [115], which performs
very small movements, and Pareto Domination Multi-Objective Simu-
lated Annealing (PDMOSA) [130], which performs a more global ex-
ploration. A memetic version of a Coevolutionary Multi-Objective Dif-
ferential Evolution (CMODE) was proposed in [125] and was named
CMODE-MEM. Most of this mentioned work has been proposed
for combinatorial problems. For the continuous case—i. e., continu-
ous objectives defined on a continuous domain—the first attempts
started, to the author’s best knowledge, with the hybrid algorithm
presented in [50], where a neighborhood search was applied to the
NSGA-II. This is a very simple scheme and the authors found that
the added computational work had a severe impact on the efficiency
of the algorithm. Since then, a significant amount of work related
to the development of hybrid algorithms to deal with continuous
problems has been explored by several researchers, see for exam-
ple [12, 47, 51, 62, 78, 79, 83, 88]. The above mentioned hybrid al-
gorithms use mathematical programming techniques as their local
search procedures and such procedures are applied during the evolu-
tionary process of a MOEA. However, several authors have used some
traditional mathematical programming techniques in different ways
to guide the search of MOEAs, see for example [98, 107, 147, 149, 155].
The main goal of such hybridizations is to improve the performance of
MOEAs, by accelerating the convergence to the Pareto optimal set (PS)
and maintaining a good representation of the PF. In our study, we

4.2 momas based on direct search methods 47

are interested in developing MOMAs that incorporate direct search
methods as a local search mechanism in the evolutionary process of a
MOEA.

In the last few years, the development of MOEAs hybridized with
direct search methods has attracted the attention of several researchers.
In the following, we present some of these hybrid approaches that
have reported improvements with respect to the original MOEA
adopted.

4.2 MOMAs Based on Direct Search Methods

4.2.1 A Multi-objective GA-Simplex Hybrid Algorithm

Koduru et al. [78] introduced a hybrid Genetic Algorithm (GA) us-
ing fuzzy dominance and the Nonlinear Simplex Search (NSS) algo-
rithm [102]. The simplex search algorithm is used for improving
solutions in the population of a GA. The proposed memetic approach
is employed to estimate the parameters of a gene regulatory network
for flowering time control in rice. In order to understand the fuzzy
dominance relation, the following definitions are introduced. Assum-
ing minimization problems with n decision variables and considering
Ω ⊂ Rn as the feasible solution space, fuzzy i-dominance is defined
as follows.

Definition 4.1
Given a monotonically nondecreasing function µdomi : Ω→ [0, 1], i =
{1, . . . ,n} such that µdomi (0) = 0, solution u ∈ Ω is said to i-dominate
solution v ∈ Ω, if and only if fi(u) < fi(v). This relationship will
be denoted as u ≺Fi v. If u ≺Fi v, the degree of fuzzy i-dominance is
equal to µdomi (fi(v) − fi(u)) ≡ µdomi (u ≺Fi v). Fuzzy dominance can
be regarded as a fuzzy relationship u ≺Fi v between u and v [94].

Definition 4.2
Solution u ∈ Ω is said to fuzzy dominate solution v ∈ Ω if and
only if ∀i ∈ {1, . . . ,k}, u ≺Fi v. This relationship will be denoted as
u ≺F v. The degree of fuzzy dominance can be defined by invoking
the concept of fuzzy intersection [94]. If u ≺F v, the degree of fuzzy
dominance µdom(u ≺F v) is obtained by computing the intersection
of the fuzzy relationships u ≺Fi v for each i. The fuzzy intersection

48 multi-objective memetic algorithms based on direct search methods

operation is carried out using a family of functions called t-norms,
denoted by

⋂
. Hence,

µdom(u ≺F v) =
k⋂
i=1

µdomi (u ≺ v) (4.1)

where k is the number of objective functions.

Population Pt

Population Pt+1

crossover
+

mutation

simplex

n+1 solutionsN-(n+1) solutions

Figure 4.1.: The offspring population generated by the multi-objective GA-
Simplex Hybrid Algorithm

Definition 4.3
Given a population of solutions P ⊂ Ω, a solution v ∈ P is said to
be fuzzy dominated in P if and only if it is fuzzy dominated by any
other solution u ∈ P. In this case, the degree of fuzzy dominance can
be computed by performing a union operation over every possible
µdom(u ≺F v), carried out using t-co norms, that are denoted by

⋃
.

Hence the degree of fuzzy dominance of a solution v ∈ P in the set P
is given by,

µdom(P ≺F v) =
⋃
u∈P

µdom(u ≺F v) (4.2)

In order to calculate the fuzzy dominance relationship between
two solution vectors, trapezoidal membership functions are used.
Therefore,

µdomi (u ≺Fi v) =

0 if fi(v) − fi(u) < 0,
fi(v)−fi(u)

pi
if 0 6 fi(v) − fi(u) < pi,

1 otherwise.

(4.3)

4.2 momas based on direct search methods 49

where pi determines the length of the linear region of the trapezoid
for the objective function fi. The t-norm and t-co norms are defined
as x ∩ y = xy and x ∪ y = x+ y− xy. Both are standard forms of
operators [94].

At each generation of the MOMA, the fuzzy dominances of all
solutions in the current population Pt are calculated according to
the equation (4.3). Then, the fuzzy dominances of the population
are stored as a two dimensional array, where each entry is a fuzzy
dominance relationship between two solution vectors. The hybrid
algorithm obtains a part of the offspring population Pt+1 by using the
genetic operators of the GA and the rest is stated by performing the
NSS, see Figure 4.1. Thus, the first part of the population is obtained
by evolving a set B of N− (n+ 1) solutions chosen randomly from
the population Pt, where N denotes the population size and n the
number of decision variables of the MOP. The subpopulation B is
evolved performing genetic operators (crossover and mutation) and
the fuzzy dominance relation is used as a measure of fitness during
the selection into the GA. The resulting offspring population Q1
is inserted as part of the next population Pt+1. The second part of
the population is generated by performing the NSS algorithm. The
simplex is built by selecting a sample set S of n+ 1 solutions from
the current population Pt and then, the centroid c of the sample S
is calculated. Any solution u ∈ S at a distance ||c − u|| > ρsimplex is
rejected and replaced with another one taken in a random way from
the population Pt, where ρsimplex represents the radius parameter
of the simplex and || · || denotes the Euclidean norm. This process is
repeated until either all the sample solutions fit within the radius
ρsimplex, or the total replacements exceed rmax. After selecting the
initial vertices of the simplex, the NSS algorithm is performed during
α times. To each solution in the simplex, the fuzzy dominance is
calculated considering the solutions of the simplex and the vertices
are sorted according to fuzzy dominance relation. From the solutions
obtained by the NSS algorithm, a set Q2 of the best n+ 1 solutions
(according to the fuzzy dominance relation) are selected and they are
inserted into the next population Pt+1. The evolutionary process of
the MOMA is carried out by Tmax generations. Algorithm 9 shows
the general framework of the multi-objective GA-Simplex hybrid
algorithm. The authors suggested the use of α = 10 as the maximum
number of iterations for the NSS algorithm.

50 multi-objective memetic algorithms based on direct search methods

The coefficients for the reflection, expansion and contraction move-
ments of the NSS were defined as: ρ = 1,χ = 1.5 and γ = 0.5,
respectively. The NSS algorithm was performed without using the
shrinkage step. The hybrid approach was tested using a population
size of N = 100 and it was was compared against a well-known state-
of-the art MOEA, the Strength Pareto Evolutionary Algorithm (SPEA).
A more detailed description of this algorithm can be found in [78].

Algorithm 9: The Multi-objective GA-Simplex Hybrid Algori-
thm

Input:
N: the population size;
Tmax: the maximum number of generations;
Output:
P: the final approximation to the Pareto front (PF);

1 begin
2 t = 0;
3 Generate a random population Pt of size N;
4 Evaluate the population Pt;
5 while t < Tmax do
6 // Selecting the solutions for performing the

evolutionary process;
7 B = xi ∈ Pt such that: xi is randomly chosen from Pt

and |Pt| = N− (n+ 1);
8 Q1 = Mutation(Crossover(B)); // Apply genetic

operators

9 S = xi ∈ Pt such that: |S| = n+ 1; // Defining the

simplex

10 for j = 0 to j < α do
11 Perform NSS using the initial simplex S;
12 end
13 Define Q2 as the best n+ 1 solutions (according to fuzzy

dominance) found by the simplex search;
14 Pt+1 = Q1 ∪Q2;
15 t = t+ 1;
16 end
17 return Pt
18 end

4.2 momas based on direct search methods 51

4.2.2 A Multi-objective Hybrid Particle Swarm Optimiza-
tion Algorithm

Koduru et al. [79] hybridized a Particle Swarm Optimization (PSO)
algorithm [71] with the NSS method for dealing with Multi-objective
Optimization Problems (MOPs). In this approach, the simplex search is
used as a local search engine in order to find nondominated solutions
in the neighborhood defined by the solution to be improved. The
bio-inspired technique evolves a set of solutions P (called swarm)
to approximate solutions to the PF. Each particle xi in the swarm
possesses a flight velocity which is initially set in zero. The swarm is
evolved by updating both the velocity vt+1i and the position of each
particle xt+1i according to the following equations:

vt+1i = w(vti + c1r1(xpb,i − xtt) + c2r2(xgb,i − xti)) (4.4)

and the new particle position is updated according to the equa-
tion [71]:

xt+1i = xti + vt+1i (4.5)

where w > 0 represents the constriction coefficient, c1, c2 > 0 are the
constraints on the velocity, r1, r2 are two random variables having
uniform distribution in the range (0, 1). vi, xpb,i and xgb,i represent
the velocity, the personal best and the global best position for the ith

particle, respectively.
Since at the beginning, a particle does not have a previous position,

the best personal position is initialized with the same position as
the particle, i. e., xpb,i = xi. To avoid getting stuck in a local mini-
mum a turbulence factor is implemented into the velocity update
(Equation (4.4)), which is similar to a mutation operator in GAs. The
modified update equation is given by:

vt+1i = w(vti + c1r1(xpb,i− xtt)+ c2r2(xgb,i− xti))+ exp(−δt) ·u (4.6)

where δ is the turbulence coefficient and u is a uniformly distributed
random number in [−1, 1]. The negative exponential term assures
that the turbulence in the velocities is higher at the initial generations
which promotes more exploration. Later on, the behavior will be more
exploitative.

52 multi-objective memetic algorithms based on direct search methods

The nondominated solutions found along the evolutionary process
are stored in an external archive denoted as A. This set of nondomi-
nated solutions is updated along the evolutionary process by selecting
the best N solutions from the union between the current population
P and the external archive A, according to the fuzzy dominance re-
lation. In a previous implementation of the fuzzy dominance [78],
the membership functions µdomi (·) employed to compute the fuzzy
i-dominances were defined to be zero for negative arguments. There-
fore, whenever fi(u) > fi(v), the degree of fuzzy dominance u ≺Fi v
is necessarily zero. In this memetic approach, nonzero values are
allowed. The membership functions used are trapezoidal, yielding
nonzero values whenever their arguments are to the right of a thresh-
old ε. Mathematically, the memberships µdomi (u ≺F v) are defined as:

µdomi (δfi) =

0, δfi 6 −ε
δfi
δi

, −ε < δfi < δi − ε

1, δfi > δi − ε

(4.7)

where δfi = fi(v) − fi(u). Given a population of solutions P ⊂ Ω, a
solution v ∈ P is said to be fuzzy dominated in P if and only if it
is fuzzy dominated by any other solution u ∈ S. In this way, each
solution can be assigned a single measure to reflect the amount it
dominates others in a population. Better solutions within a set will
have a lower fuzzy dominance value, although, unlike in [78] non-
dominated solution may not necessarily be assigned zero values. In
order to compare multiple solutions having similar fuzzy dominance
values, the crowding distance of NSGA-II is used [27].

Considering a MOP with n decision variables, the set of solutions
P is divided into separate clusters, where each cluster consists of
proximally located solutions and it is generated by using a variant
of the k-means algorithm [90]. The clusters are disjoint, with n+ 1

solutions each. Each cluster defines the simplex from which, NSS
is performed. At each iteration of the local search procedure, NSS
performs l movements (reflection, expansion or contraction) into the
simplex before finishing. The solutions found by NSS are employed
to update both the swarm P and the external archive A by using the
fuzzy dominance relation. Algorithm 10 shows the general framework
of the multi-objective hybrid PSO algorithm.

4.2 momas based on direct search methods 53

The authors suggested the use of k = 9 as the number of centers
for the k-means algorithm, l = 2 for the number of movements
(reflection, expansion or contraction) into the simplex. The simplex
search was tested using ρ = 1,χ = 1.5 and γ = 0.5 for the reflection,
expansion and contraction, respectively. NSS was executed omitting
the use of the shrinkage transformation. The population size was
set to N = 100 and the external archive was limited to 100 as the
maximum number of particles. The proposed hybrid algorithm was
tested by solving artificial test functions and a molecular genetic
model plant problem having between 3 and 10 decision variables
and two objective functions. For a more detailed description of this
algorithm see [79].

4.2.3 A Nonlinear Simplex Search Genetic Algorithm

Zapotecas and Coello [146] presented a hybridization between the
well-known NSGA-II and the NSS algorithm. The proposed Nonlinear
Simplex Search Genetic Algorithm (NSS-GA) combines the explorative
power of NSGA-II with the exploitative power of the NSS algorithm,
which acts as a local search engine. The general framework of the
proposed MOMA is shown in Algorithm 11. NSS-GA evolves a popu-
lation Pt by using the genetic operators of the NSGA-II (Simulated Bi-
nary Crossover (SBX) and Polynomial-Based Mutation (PBM)) and then,
the local search mechanism is performed. The general idea of the local
search procedure is to intensify the search towards better solutions for
each objective function and the maximum bungle (sometimes called
knee) of the PF. The main goal of the NSS is to obtain the set Λ,
which is defined as:

Λ = λ1 ∪ λ2 ∪ · · · λk ∪Υ

where λi is a set of the best solutions found for the i-th objective func-
tion of the MOP. Υ is a set of the best solutions found by minimizing
an aggregating function which approximates solutions to the knee of
the PF.

The local search mechanism is performed each n
2 generations, where

n denotes the number of decision variables of the MOP. Initially, the
local search focuses on minimizing separately the objective functions
fi’s of the MOP. Once the separate functions are minimized, an

54 multi-objective memetic algorithms based on direct search methods

Algorithm 10: The Multi-objective Hybrid PSO Algorithm
Input:
Tmax: the maximum number of generations;
Output:
A: the final approximation to the Pareto front (PF);

1 begin
2 t = 0;
3 Generate a set of particles Pt of size N // using an uniform

distribution;
4 Initialize all velocities vti , to zero;
5 while t < tmax do
6 Evaluate the set of particles Pt;
7 Evaluate the fuzzy dominance in the population Pt

according to Equation (4.7);
8 Update the archive A;
9 Update each particle xi ∈ Pt including its personal best

and global best;
10 Randomly initialize k cluster centers;
11 Assign each particle xi to a cluster using the k-means

algorithm;
12 For each cluster apply the simplex search algorithm.;
13 Update the velocities vt+1i according to Equation (4.6);
14 Update the positions xi ∈ Pt according to Equation (4.5);
15 t = t+ 1;
16 end
17 return Pt
18 end

aggregating function is used for approximating solutions to the knee
of the PF. The initial search point from which the local search starts
is defined according to the next rules:

• Minimizing separate functions. In the population P, the individ-
ual x∆ ∈ P? is chosen such that:

x∆ = xl|xl = min
∀xl∈P?

{fi(xl)}

4.2 momas based on direct search methods 55

where P? is a set of nondominated solutions within the pop-
ulation P. In other words, the selected individual is the best
nondominated solution for the objective fi.

• Minimizing the aggregating function. The individual x∆ ∈ P? is
chosen such that it minimizes:

G(x∆) =
k∑
i=1

|zi − fi(x∆)|
|zi|

(4.8)

where z? = (z?i , . . . z
?
k)
T is the utopian vector defined by the

minimum values f∗i of the k objective functions until the cur-
rent generation. In this way, the local search minimizes the
aggregating function defined by:

g(x) = ED(F(x), z?) (4.9)

where ED(·) is the Euclidean distance between the vector of
objective functions F(x) and the utopian vector z?.

The selected solution x∆ is called “simplex-head”, which is the first
vertex of the n-simplex. The remaining n vertices are created in two
phases:

Reducing the Search Domain. A sample of s solutions which min-
imize the objective function to be optimized is identified, and
then, the average (m) and standard deviation (σ) of these deci-
sion variables is computed. Based on that information, the new
search space is defined as:

Lbound = m − σ

Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower
and upper bounds of the new search space, respectively. In this
work, the authors propose to use s = 0.20×N, where N is the
population size of the evolutionary algorithm—i.e. 20% of the
population size.

Building the Vertices. Once the new search domain has been de-
fined, the remaining vertices are determined by using either the
Halton [54] or the Hammersley [55] sequence (each has a 50%
probability of being selected) in the new bounds Lbound and
Ubound, previously defined.

56 multi-objective memetic algorithms based on direct search methods

Once the simplex is defined, the NSS algorithm is executed during
a determined number of iterations, and it is stopped according to
the following stopping criteria. The local search is stopped if: 1) it
does not generate a better solution after n + 1 iterations, or 2) if
after performing 2(n + 1) iterations, the convergence is less than
ε. Considering Λ as the set of solutions found by the local search
mechanism, the gained knowledge is introduced to the population
of the NSGA-II by using the crowding comparison operator [27] over
the union of the population P and Λ.

The simplex was controlled using ρ = 1,χ = 2 and γ = 0.5 for
the reflection, expansion and contraction coefficients, respectively.
The shrinkage step is not employed in this approach. The threshold
for the convergence in the simplex search was set to: ε = 1× 10−3.
The hybrid algorithm was tested over artificial test functions having
between 10 and 30 decision variables, and two and three objective
functions. A more detailed description of this hybrid algorithm can
be found in [146].

4.2.4 A Hybrid Non-dominated Sorting Differential Evo-
lutionary Algorithm

Zhong et al. [157] hybridized the NSS algorithm with Differential
Evolution (DE) [129]. The proposal of Zhong et al. adopts NSS as
its local search engine in order to obtain nondominated solutions
during the evolutionary process according to the Pareto dominance
relation. The sorting strategy adopted in this approach, involves the
evaluation of the fitness function of each solution, and the dominance
relation among the individuals in the population is defined according
to their fitness cost. Thought the search, the nondominated solutions
are stored in a separate set A which, at the end of the search, will
constitute an approximation of the PS.

At each iteration t, DE generates an offspring population Qt by
evolving each solution xi of the current population Pt. The DE/best/2

strategy is employed in order to generate the trial vector vi:

vi = xbesti + F · (xr0 − xr1) + F · (xr2 − xr3) (4.10)

where xr0 , xr1 , xr2 and xr3 are different solutions taken of Pt. xbesti is a
solution randomly chosen from the set of nondominated solutions A.

4.2 momas based on direct search methods 57

Algorithm 11: The Nonlinear Simplex Search Genetic Algorithm
Input:
tmax: the maximum number of generations;
Output:
P: the final approximation to the Pareto front;

1 begin
2 t = 0;
3 Randomly initialize a population Pt of size N;
4 Evaluate the fitness of each individual in Pt;
5 while t < tmax do
6 Qt = Mutation(Crossover(B)); // Apply genetic

operators of NSGA-II

7 Rt = Pt ∪Qt;
8 Assign to P∗ the N better individuals from Rt //

According to crowding comparison operation;
9 if (t mod n

2 = 0) then
10 Get Λ set by minimizing each function of the MOP

and the aggregating function (equation (4.9)) by
using the NSS algorithm.

11 R∗t = P
∗
t ∪Λ;

12 Assign to Pt+1 the N better individuals from R∗t //
According to crowding comparison operation;

13 else
14 Pt+1 = P

∗;
15 end
16 t = t+ 1;
17 end
18 return Pt
19 end

The trial vector vi is then used for generating the new solution x ′i by
using the binary crossover:

x ′i(j) =

{
vi(j) if r < CR
xi(j) otherwise

(4.11)

58 multi-objective memetic algorithms based on direct search methods

where r is a random number having uniform distribution, j = 1, . . . ,n
is the jth parameter of each vector and CR represents the crossover
ratio.

After the whole offspring population Qt is generated, the nondom-
inated sorting of Pt ∪Qt is used for obtaining the set of N solutions
(N is the number of solutions in Pt) for the next population Pt+1.

In the local search procedure, the simplex S is built by selecting
randomly a nondominated solution from A, the other n vertices of the
simplex (where n is the number of decision variables) are randomly
chosen from the current population Pt. If the population Pt cannot
provide enough points to compose the simplex, other points are
selected from A. After the simplex is built, the vertices of the simplex
are stored by using nondominated sorting, in analogous way as in
the Non-dominated Sorting Differential Evolution (NSDE) algorithm [2].
The movements in the simplex are performed according to the NSS
algorithm. However, for the comparison among the solutions, the
dominance relation is used instead of a function cost. The shrinkage
step is performed if either inside or outside contractions fail; in this
case, all the vertices into the transformed simplex S are sorted to
obtain the solutions which are nondominated. Considering m as the
number of the nondominated solutions in the simplex. The shrinkage
step is performed according to next the description.

If m > 1, there exist different converging directions, which could
help to maintain the diversity of the solutions. Then, new simplexes
S1,S2, . . . ,Sm, which adopt a nondominated solution each, as respec-
tive guiding point, are generated. The new simplexes are stored within
a bounded array. If the total number simplexes exceeds the storing
space of the array, no more new simplexes are accepted. Then, these
simplexes iterate to shrink to the PF. If m 6 1 or S ∈ S1, . . . ,Sm, the
nondominated point m must be set correspondingly, in the simplex
Sm as the guiding point x1. The vertices in the simplex are relocated
according to:

vi = x1 + σ(xi − x1), i = 2, . . . ,n+ 1,

where σ is the shrinkage coefficient. The new simplex uses
x1, v2, . . . , vn+1 as vertices to form the new simplex.

The Euclidean distance among the centroid and the vertices of the
simplex is used for assessing the convergence at each simplex. After
the convergence has taken place in all simplexes of the array, the

4.2 momas based on direct search methods 59

nondominated solutions found by NSS are introduced into the pop-
ulation of the evolutionary algorithm according to a nondominated
sorting strategy, in an analogous way as in NSDE.

The authors suggested a population size of N = 20× k×n where
n and k represent the number of decision variables and the number
of objective functions of the MOP, respectively. The DE/best/2/bin
strategy was used with a crossover ratio CR = 0.8 and a weighting
factor F = 0.5. The NSS algorithm was performed using ρ = 1,χ = 2,
γ = 0.5 and σ = 0.5 for the reflection, expansion, contraction and
shrinkage movements, respectively. The Euclidean distance criterion
to assess the convergence was set as 1× 10−12. For a more detailed
description of this MOMA, the interested reader is referred to [157].

4.2.5 A Hybrid Multi-objective Evolutionary Algorithm
based on the S Metric

Koch et al. [77] introduced a hybrid algorithm which combines the
exploratory properties of the S-Metric Selection Evolutionary Multi-
objective Optimization Algorithm (SMS-EMOA) [6] with the exploitative
power of the Hooke and Jeeves algorithm [60] which is used as a local
search engine. SMS-EMOA optimizes a set of solutions according to
the S-metric or Hypervolume indicator [160], which measures the size
of the space dominated by the population. This performance measure
is integrated into the selection operator of SMS-EMOA which aims
for maximization of the S-metric and thereby guides the population
to the PF. A (µ+ 1) (or steady-state) selection scheme is applied. At
each generation, SMS-EMOA discards the individual that contributes
least to the S-metric value of the population. The invoked variation
operators are not specific for the SMS-EMOA but taken from the
literature, namely PBM and SBX with the same parametrization as
NSGA-II [27]. At each iteration the Hooke and Jeeves algorithm per-
forms an exploratory move along the coordinate axes. Afterwards,
the vectors of the last exploratory moves are combined to a projected
direction that can accelerate the descent of the search vector. When
the exploratory moves lead to no improvement in any coordinate
direction, step sizes are reduced by a factor η. The search terminates
after a number of predefined function evaluations or, alternatively,
when the step size falls below a constant value ε > 0.

60 multi-objective memetic algorithms based on direct search methods

The Hooke and Jeeves was conceived for minimizing single-
objective optimization problems, therefore, its use to deal with MOPs
is not possible without modifications. Koch et al. adopted a scalar
function by using the weighting sum approach developed in [26]. Be-
sides, the proposed MOMA introduces a probability function pls(t)
for extending the idea presented by Sindhya et al. [123] who lin-
early oscillate the probability for starting local search. The probability
function adopted in this work is given by:

pls(t) =
pmax ·Φ(t mod (αµ))

Φ(αµ− 1)
(4.12)

where parameter µ is the population size of the MOEA and α ∈ (0, 1]
is a small constant value—in the experiments the authors suggested
to use α = 0.05. The probability function oscillates with period α · µ
and is linear decreasing in each period. The auxiliary function Φ
determines the type of reduction, i.e. linear, quadratic or logarithmic,
and has to be defined by the user. Algorithm 12 shows the general
framework of the proposed hybrid SMS-EMOA.

Koch et al. hybridized also the SMS-EMOA with other mathemati-
cal programming techniques. The multi-objective Newton method [39]
and the step descent method [40] are hybridized with the SMS-EMOA.
Koch et al. emphasize the importance of the used probability function
pls that controls the frequency of local search during the optimiza-
tion process. Three different functions using equation (4.12) and a
constant probability pls were adopted. The hybrid approaches use
equation (4.12) to obtain a value of α = 0.5 as it was proposed by
Sindhya et al. [123] and the next functions were used.

1. pls(t) with Φ(x) = x (in equation (4.12))

2. pls(t) with Φ(x) = x2 (in equation (4.12))

3. pls(t) with Φ(x) = log(x) (in equation (4.12))

4. pls(t) with Φ(x) = 0.01

Each hybridization with the above probability functions was tested
on the Zitzler-Deb-Thiele (ZDT) test suite. The hybrid SMS-EMOA is
started with a population size of N = 100. The SBX recombination
and the PBM mutation operator, were employed. The authors re-
ported that the hybrid algorithm using the multi-objective Newton

4.2 momas based on direct search methods 61

Algorithm 12: The hybrid SMS-EMOA
Input:
Tmax: The maximum number of generations;
Output:
A: The final approximation to the Pareto front (PF);

1 begin
2 t = 0;
3 Generate a population Pt of size N; // using uniform

distribution

4 Evaluate the population Pt;
5 while t < Tmax do
6 Select µ parents of Pt;
7 Create population Qt with λ offspring;
8 for i=1 to λ do
9 Choose random variable r ∈ [0, 1];

10 if r 6 pls(t) then
11 Local search for Qt[i];
12 end
13 end
14 Evaluate λ offspring;
15 Create population Pt+1 out of Pt and Qt;
16 t = t+ 1;
17 end
18 end

method achieved better results than those obtained by both the hybrid
SMS-EMOA using Hooke and Jeeves algorithm, and the one using
the step descent method. More details of this hybridization can be
found in [77].

5
A Nonlinear Simplex Search for

Multi-Objective Optimization

The development of multi-objective mathematical programming
techniques has been a very active area of research for many years,

giving rise to a wide variety of approaches [35, 96, 99, 138]. Recently,
several powerful approaches that rely on gradient information, have
been proposed. For example, Fliege et al. [39] proposed an extension
of Newton’s method [103] for unconstrained multi-objective optimiza-
tion. Fischer and Shukla [37] introduced an algorithm based on the
Levenberg and Marquardt method [85, 91] to solve nonlinear un-
constrained Multi-objective Optimization Problems (MOPs). These and
other gradient-based methods (see e. g. [7, 89]) have taken advantage
of using gradient information of the functions to generate Pareto opti-
mal solutions of a MOP. However, when the gradient of the functions
is not available, the use of these methods becomes impractical, and it
is necessary to look for alternative approaches.

An alternative is to use methods that do not require the gradient
information of the functions—the well-known direct search methods.
However, the use of such methods in a multi-objective optimization
context has been scarce. Nevertheless, as we have seen in Chap-
ter 4, some researchers have used them as local search operators in
Multi-Objective Evolutionary Algorithms (MOEAs). To the authors’ best
knowledge, no method is currently available to approximate multiple
solutions to the Pareto optimal set (PS) (maintaining a good distribu-
tion of the Pareto front (PF)) using direct search methods that are not
based on metaheuristics. The main reason for the shortage in such
strategies, is that it is not efficient to approximate different solutions
the the PS maintaining a good representation of the PF, by using
such mathematical programming techniques.

As a preliminary study, in this thesis, we present an extension of
a popular direct search method—the well-known Nelder and Mead
algorithm [102] (which was originally proposed for single-objective

63

64 a nonlinear simplex search for multi-objective optimization

optimization)—for dealing with MOPs. The proposed approach is
based on the decomposition of a MOP into several single-objective
scalarization functions, in which each function consists of the aggre-
gation of all the (original) objective functions fi’s. With that, multiple
solutions of the PS are achieved by solving each optimization prob-
lem. Each optimization problem is solved by deforming a geometric
shape called simplex according to the movements described by Nelder
and Mead’s algorithm.

The main goal of this study is to analyze and exploit the properties
of Nelder and Mead’s algorithm when it is used to approximate solu-
tions to the PS while maintaining a reasonably good representation of
the PF. In the following section, we describe in detail, the Nelder and
Mead method in which, our proposed multi-objective direct search
method is based.

5.1 The Nonlinear Simplex Search

Nelder and Mead’s method [102] (also known as the Nonlinear Sim-
plex Search (NSS)), is an algorithm based on the simplex algorithm of
Spendley et al. [126], which was introduced for minimizing nonlinear
and multi-dimensional unconstrained functions. While Spendley et
al.’s algorithm uses regular simplexes, Nelder and Mead’s method
generalizes the procedure to change the shape and size of the sim-
plex. Therefore, the convergence towards a minimum value at each
iteration of the NSS method is conducted by four main movements
in a geometric shape called simplex. The following definitions are of
relevance to the remainder of this algorithm.

Definition 5.1 (n-simplex)
A simplex or n-simplex is a convex hull of a set of n + 1 affinely
independent points ∆i (i = 1, . . . ,n+ 1), in some Euclidean space of
dimension n.

If the vertices of the simplex are all mutually equidistant, then
the simplex is said to be regular. Thus, in two dimensions, a regular
simplex is an equilateral triangle, while in three dimensions a regular
simplex is a regular tetrahedron.

5.1 the nonlinear simplex search 65

Definition 5.2 (Degenerated simplex)
A simplex is called nondegenerated, if and only if, the vectors in the
simplex denote a linearly independent set. Otherwise, the simplex is
called degenerated, and then, the simplex will be defined in a lower
dimension than n.

The NSS expands or focuses the search adaptively on the basis of
the topography of the fitness landscape. The full algorithm is defined
stating four scalar parameters to control the movements performed in
the simplex: reflection (ρ), expansion (χ), contraction (γ) and shrink-
age (σ). According to Nelder and Mead, these parameters should
satisfy:

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1

Actually, there is no method that can be used to establish this set
of parameters. However, the nearly universal choices used in Nelder
and Mead’s method are [102]:

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2

At each iteration of the NSS algorithm, the n + 1 vertices ∆i’s
of the simplex represent solutions which are evaluated and sorted
according to: f(∆1) 6 f(∆2) 6 . . . 6 f(∆n+1). Let’s consider ∆ =

{∆1,∆2, . . . ,∆n+1} as the simplex with the vertices sorted according to
the function value. Then, the transformations performed by the NSS
into the simplex are defined as:

1. Reflection: xr = (1+ ρ)xc − ρ∆n+1 (see Figure 5.2).

2. Expansion: xe = (1+ ργ)xc − ρχ∆n+1 (see Figure 5.3).

3. Contraction:

a) Outside: xoc = (1+ ργ)xc − ργ∆n+1.

b) Inside: xic = (1− γ)xc + γ∆n+1 (see Figure 5.4).

4. Shrinkage: Each vertex of the simplex is transformed by the
geometric shrinkage defined by: ∆i = ∆1 + σ(∆i − ∆1), i =

2, . . . ,n+ 1, and the new vertices are evaluated (see Figure 5.5).

66 a nonlinear simplex search for multi-objective optimization

where xc = 1
n

∑n
i=1∆i is the centroid of the n best points (all vertices

except for ∆n+1), ∆1 and ∆n+1 are the best and the worst solutions
identified within the simplex, respectively.

At each iteration, the simplex is modified by one of the above
movements, according to the following rules:

1. If f(∆1) 6 f(xr) 6 f(∆n), then ∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then ∆n+1 = xe,

otherwise ∆n+1 = xr.
3. If f(∆n) 6 f(xr) < f(∆n+1) and f(xoc) 6 f(xr),

then ∆n+1 = xoc, otherwise perform a shrinkage.
4. If f(xr) > f(∆n+1) and f(xic) < f(∆n+1),

then ∆n+1 = xic, otherwise perform a shrinkage.

Until now, we have presented in detail the description of Nelder
and Mead’s algorithm. The next section is dedicated to explain in de-
tail, the proposed Nonlinear Simplex Search (NSS) for multi-objective
optimization.

5.1 the nonlinear simplex search 67

Figure 5.1.: A 2-simplex

x
r

x
c

Figure 5.2.: Reflection

x
r

x
e

x
c

Figure 5.3.: Expansion

x
r

x
e

x
oc

x
c

x
ic

Figure 5.4.: Inside and outside con-
traction Figure 5.5.: Shrinkage

68 a nonlinear simplex search for multi-objective optimization

5.2 The Nonlinear Simplex Search for Multi-
Objective Optimization

5.2.1 Decomposing MOPs

There are several approaches for transforming a MOP into a single-
objective optimization problem. Most of these approaches use a
weight vector for defining their search directions. In this way, and un-
der certain assumptions (e.g., the minimum is unique, the weighting
coefficients are positive, etc.), a Pareto optimal solution is achieved
by solving such optimization problem. In Chapter 3 (Section 3.2.2),
we presented some methods of the wide variety of approaches that
transform a MOP in a single-objective optimization problem (an ex-
tensive review of such methods can be found in [35, 96, 99, 138]).
Among these methods, probably the two most widely used are the
Tchebycheff and the Weighted Sum approaches. However, as previously
discussed in [19, 155], the approaches based on boundary intersection
possess certain advantages over those based on either Tchebycheff or
the Weighted Sum. In this thesis, we shall adopt the Penalty Boundary
Intersection (PBI) approach as our method to transform a MOP intoPBI method belongs

to the approaches
based on boundary

intersection.

a single-objective optimization problem. The description of the PBI
approach was presented in Chapter 3 (Section 3.2.2 in page 28). How-
ever, in order to remember the optimization problem to which the
PBI approach refers, we present the mathematical formulation which
is stated as:

Minimize: g(x|w, z?) = d1 + θd2 (5.1)

such that:

d1 =
||(F(x) − z?)Tw||

||w||

and d2 =
∣∣∣∣∣∣(F(x) − z?) − d1 w

||w||

∣∣∣∣∣∣
where x ∈ Rn, θ is the penalty value, z? = (z?1, . . . , z

?
k)
T is the utopian

vector, i.e., z?i = min{fi(x)|x ∈ Ω},∀i = 1, . . . ,k, and w is a weight
vector, such that wi > 0 for all i = 1, . . . ,k and

∑k
i=1wi = 1.

Therefore, if the weight vectors are well distributed, an appropriate
representation of the PF could be reached by solving the different

5.2 the nonlinear simplex search for multi-objective optimization 69

scalarization problems [155]. Such weight vectors define then, the
search direction in the optimization process. This strategy of decom-
position is employed by the multi-objective direct search algorithm
presented in this Chapter.

5.2.2 About the Nonlinear Simplex Search and MOPs

Mathematical programming techniques are known to have several
limitations compared to Evolutionary Algorithms (EAs). As mentioned
before, many mathematical programming methods were designed to
deal with convex functions and a number of them require gradient in-
formation. Being a direct search method, Nelder and Mead’s method
has the advantage of not requiring gradient information. Instead, the
NSS algorithm aims at obtaining a better solution by deforming a
simplex shape along the search process. Nonetheless, Nelder and
Mead’s method has an important disadvantage: convergence towards
an optimal value can fail when the simplexes elongate indefinitely
and their shape goes to infinity in the space of simplex shapes (as,
e.g, in McKinnon’s functions [93]). For this family of functions and
others having similar features, a more appropriate strategy needs
to be adopted (e.g., adjusting the control parameters, constructing
the simplex in a different way, modifying the movements into the
simplex, etc.). In recent years, several attempts to improve the NSS
method have been reported in the specialized literature, see for ex-
ample [4, 8, 110, 133]. However, due to its inherent nature (based on
heuristic movements), several of these variants of the NSS algorithm
normally produce additional problems, and in some cases, they fail
in more cases than the original algorithm.

In addition to any changes to the NSS algorithm itself, it is also
possible to propose different strategies for constructing the simplex,
and several researchers have reported work in that direction, see
e. g. [12, 146]. The construction of the simplex plays an important
role in the performance of the NSS algorithm. For example, to use a
degenerated simplex (i. e., a simplex defined in lower dimensionality
than the number of decision variables) in the minimization process, is
inappropriate. The reason is that in such case, the search is restricted
to find an optimal solution in lower dimensionality, which avoids
achieving this optimal solution if it is not allocated in the same

70 a nonlinear simplex search for multi-objective optimization

dimensionality of the simplex [82]. However, the use of a degenerated
simplex could, at least, obtain local minima, in the dimensionality
defined by the simplex.

In most real-world MOPs, the features of the PS are unknown.
When a Pareto optimal solution is found, the property that exists
when using a degenerated simplex in the search could be exploited.
With that, multiple efficient solutions will be found in the same
dimension if they exist. Since in our case the search is directed by
a well-distributed set of weight vectors, each of which defines a
scalarization problem, and we assume that each subproblem is solved
throughout the search, then, the simplex could be constructed using
such solutions. In this way, multiple trade-off solutions are achieved
while the search eventually converges to the region in which the PS

is contained.
The convergence towards a better point given in the Nelder and

Mead algorithm is achieved at most in n+ 1 iterations (at least in
convex problems with low dimensionality) [82]. Thus, for solving each
subproblem (of the decomposition) a considerable number of function
evaluations could be required. On the other hand, the execution of the
shrinkage step in the NSS algorithm could become inefficient. This
can be caused by two main facts:

1. Once the simplex is transformed by the shrinkage step, the
new vertices need to be evaluated. Thus, when the dimension-
ality of the MOP is high, the number of the objective function
evaluations could significantly increase,

2. Since the shrinkage step reduces the simplex volume, the search
is then restricted to a small portion of the search space. There-
fore, the risk to collapse the search in a specific region of the
search space is increased. Whereupon, the diversity of solutions
along the PF could be reduced, which is a disadvantage for the
Decision Maker (DM) in a multi-objective optimization context.

Therefore, an appropriate strategy for approximating the PS and
maintaining a good representation of the PF needs to be adopted.

We have taken into account the above observations to design an ef-
fective NSS approach for solving unconstrained MOPs. The proposed
direct search multi-objective optimization method is described in the
following section.

5.2 the nonlinear simplex search for multi-objective optimization 71

5.2.3 The Multi-Objective Nonlinear Simplex Search

The Multi-objective Nonlinear Simplex Search (MONSS) algorithm pro-
posed here, decomposes a MOP into several single-objective scalar-
ization subproblems by using the PBI approach. Therefore, in order
to obtain a good representation of the PF, a well-distributed set of
weight vectors W = {w1, . . . , wN} needs to be previously defined. In
this thesis, the method used by Zhang and Li [155] is adopted for that
sake. However, other methods can be also used—see e. g. [18, 141].

At the beginning, a set of N vectors S = {x1, . . . , xN}, having a
uniform distribution, is randomly initialized. Each vector xi ∈ S rep-
resents a solution for the ith subproblem defined by the ith weight
vector wi ∈W. In this way, different subproblems are simultaneously
solved by the MONSS algorithm and the set of solutions S will consti-
tute an approximation of the PS lengthwise of the search process. In
order to find different solutions along the PF, the search is directed
towards different non-overlapping regions (or partitions) Ci’s from
the set of weight vectorsW, such that, each Ci defines a neighborhood.
That is, let C = {C1, . . . ,Cm} be a set of partitions from W, then, the
claim is the following:

m⋂
i=1

Ci = ∅ and
m⋃
i=1

Ci =W (5.2)

and all the weight vectors wc ∈ Ci are contiguous among themselves.
The NSS algorithm is focused on minimizing a subproblem defined

by a weight vector ws which is randomly chosen from Ci. In order
to save the objective function evaluations, the shrinkage step is omit-
ted in the proposed approach. The n-simplex (∆) used by the NSS
algorithm, is defined as:

∆ = {xs, x1, . . . , xn} (5.3)

such that: xs ∈ S is a minimum of g(xs|ws, z?) for any ws ∈W. xj ∈ S

represents the jth solution that minimizes the subproblems defined
by the n nearest weight vectors of ws, where j = 1, . . . ,n and n

represents the number of decision variables of the MOP.
After any movement made by the NSS algorithm, it is common

that the new obtained solution (xn), leaves the search space. In order

72 a nonlinear simplex search for multi-objective optimization

The n-simplex

Search Direction ()ws

1

1

1

0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Figure 5.6.: Illustration of a well-distributed set of weight vectors for a MOP
with three objectives, five decision variables and 66 weight vec-
tors, i.e. m =

⌊
|W|
n+1

⌋
= 11 partitions. The n-simplex is con-

structed by six solutions that minimize different problems de-
fined by different weight vectors contained in four partitions
(C5,C8,C9 and C10). The search is focused on the direction
defined by the weight vector ws.

to deal with this problem, as in [146] we bias the boundaries in a
deterministic way. Therefore, the ith bound of the new solution xn is
re-established as follows:

xin =

{
xilb, if xin < xilb
xiub, if xin > xiub

(5.4)

where xilb and xiub are, respectively, the lower and upper bounds in
the ith component of the search space.

To speed up convergence to the PS, the search is relaxed at each
iteration by changing the direction vector for any other direction
ŵs ∈ Ci. In this way, an agile search into the partition Ci is performed
avoiding a collapse of the search in the same direction ws. Here, we

define m =

⌊
|W|

n+ 1

⌋
partitions of the set W, guaranteeing at least

5.2 the nonlinear simplex search for multi-objective optimization 73

Algorithm 13: update(W, S, I)
Input:
W: a well-distributed set of weight vectors;
I: the intensification set;
S: the current approximation to the PF;
Output:
R: a new approximation to the PF;

1 begin
2 T = S∪ I;
3 R = ∅;
4 forall the wi ∈W do
5 R = R∪ {x?|min

x?∈T
g(x?|wi, z?)};

6 T = T \ {x?};
7 end
8 return R;
9 end

n+ 1 iterations of the NSS algorithm for each partition, which can be
constructed using a naive modification of the well-known k-means
algorithm [90].

One iteration of the MONSS algorithm is carried out when the NSS
iterates n+ 1 times in each defined partition Ci. Therefore, at each
iteration, the proposed algorithm performs |W| function evaluations.
All of the new solutions found in the search process are stored in a
pool called intensification set denoted as I. At the end of each iteration,
the set of solutions S is updated using both the intensification set I
and the weight set W, as shown in Algorithm 13.

In this way, the NSS minimizes each subproblem, generating new
search trajectories among the solutions of the simplex, while the
updating mechanism replaces the misguided paths by selecting the
best solutions according to the PBI approach, simulating the Path
Relinking method [48]. In Figure 5.6, we show a possible partition of
the weight set W for a MOP with three objective functions and five
decision variables, i.e., defining an n-simplex with six vertices. For an
easy interpretation of the proposed MONSS, Algorithm 14 describes
the complete methodology to deal with MOPs using the Nelder and
Mead algorithm.

74 a nonlinear simplex search for multi-objective optimization

Algorithm 14: The Multi-objective Nonlinear Simplex Search
(MONSS) algorithm

Input:
W: a well-distributed set of weight vectors;
maxit: a maximum number of iterations;
Output:
S: an approximation to the PF;

1 begin
2 t = 0;
3 Generate initial solutions: Generate a set St = {x1, . . . , xN}

of N random solutions;
4 Generate partitions: Generate m =

|W|
n+1 partitions

C = {C1, . . . ,Cm} from W (where n is the number of
decision variables), such that: Equation (5.2) is satisfied;

5 while t < maxit do
6 for i = 0 to m do
7 Randomly choose ws ∈ Ci;
8 Apply Nonlinear Simplex Search algorithm:

a) Build the n-simplex: Construct the n-simplex from St,
such that: Equation (5.3) is satisfied.

b) Apply the NSS method: Execute the NSS algorithm
during n+ 1 iterations. At each iteration:

* Repair the bounds according to Equation (5.4).

* Relax the search changing the search direction ws
for any other ŵs ∈ Ci.

* Each new solution generated by any movements of the NSS
algorithm is stored in the intensification set I.

9 end
10 Update the leading set: Update the set S using

Algorithm 13. That is: St+1 = update(W, St, I);
11 t = t+ 1;
12 end
13 return St;
14 end

5.3 Experimental Study

5.3.1 Test Problems

In order to assess the performance of the proposed MONSS algo-
rithm, we compare its results with respect to those obtained by a

5.3 experimental study 75

state-of-the-art MOEA, the well-known Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D), which has shown a good
performance compared to other MOEAs, see [155]. Similar to MONSS,
MOEA/D decomposes a MOP into several scalarization problems.
However, instead of using mathematical programming techniques,
MOEA/D uses genetic operators to approximate the PF.

In our experiments, we adopted ten MOPs with two and three
objectives, whose PFs have different characteristics including convex-
ity, concavity and disconnections. The adopted test problems corre-
spond to the nine MOPs defined as classic problems in Appendix A.1
and the DTLZ5 test problem taken from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite (see Appendix A.3).

5.3.2 Performance Assessment

In order to assess the performance of our proposed MONSS algorithm,
we compared it with respect to MOEA/D using the Hypervolume (IH)
and the Two Set Coverage (IC) performance measures. The character-
istics of such performance measures were presented in Chapter 3,
and we refer to section 3.4 for a more detailed description of these
performance indicators.

5.3.3 Parameters Settings

As indicated before, we compared the results obtained by our pro-
posed MONSS with respect to those obtained by MOEA/D [155]. The
weight vectors for the algorithms were generated as in [155], i.e., the
setting of N and W = {w1, . . . , wN} is controlled by a parameter H.
More precisely, w1, . . . , wN are all the weight vectors in which each
individual weight takes a value from{

0

H
,
1

H
, . . . ,

H

H

}
Therefore, the number of such vectors in W is given by:

N = Ck−1H+k−1.

where k is the number of objective functions.

76 a nonlinear simplex search for multi-objective optimization

For all the MOPs, MONSS and MOEA/D were tested with H = 99

for MOP with two objectives, i.e. 100 weight vectors, and H = 23

for MOPs with three objectives, i.e. 300 weight vectors. For a fair
comparison, both approaches used the same scalarization function in
the decomposition approach, in this case the PBI method.

For each MOP, 30 independent runs were performed with each
algorithm. The parameters for both algorithms are summarized in
Table 7, where Nsol represents the number of initial solutions (100

for bi-objective problems and 300 for three-objective problems). Nit
represents the maximum number of iterations, which was set to 40 for
all test problems. Therefore, both algorithms performed 4, 000 (for the
bi-objective problems) and 12, 000 (for the three-objective problems)
function evaluations for each problem. For the proposed MONSS,
ρ,χ and γ represent the control parameters for the reflection, expan-
sion and contraction movements of the NSS algorithm, respectively.
For MOEA/D, the parameters Tn,ηc,ηm,Pc and Pm represent the
neighborhood size, crossover index, mutation index, crossover rate
and mutation rate, respectively. Finally, the parameter θ, represents
the penalty value used in the PBI approach for both MONSS and
MOEA/D.

Parameter MONSS MOEA/D

Nsol 100/300 100/300

Nit 40 40

Tn – 30

Pc – 1

Pm – 1/n

ρ 1 –
χ 2 –
γ 1/2 –
θ 5 5

Table 1.: Parameters for MONSS and MOEA/D

For each MOP, the algorithms were evaluated using the two perfor-
mance measures previously defined: (IH and IC). The results obtained
are summarized in Tables 2 and 3. Each table displays both the average
and the standard deviation (σ) of each performance measure for each
MOP. The reference vectors used for computing the IH performance
measure are shown in Table 2. These vectors are established near to
the individual minima for each MOP, i.e., close to the extremes of
the PF. With that, a good measure of approximation and distribu-
tion is reported when the algorithms converge along the PF. In the

5.4 numerical results 77

case of the statistics for the IC comparing pairs of algorithms (i.e.,
IC(A,B)), they were obtained as average values of the comparison
of all the independent runs from the first algorithm with respect to
all the independent runs from the second algorithm. For an easier
interpretation, the best results are presented in boldface for each
performance measure and test problem adopted.

5.4 Numerical Results

Tables 2 and 3 show the results obtained for the Hypervolume (IH) and
the Two Set Coverage (IC) performance measures, respectively. From
this table, it can be seen that the results obtained by our proposed
MONSS outperform those obtained by MOEA/D in most of the test
problems adopted. This means that the proposed approach achieved
a better convergence and spread of solutions along the PF. The
exception was VNT2, where MOEA/D obtained a better value in the
IH indicator. However, given the small difference obtained in this
performance measure, we consider that MONSS was not significantly
outperformed by MOEA/D in this case.

Regarding the IC performance measure, our proposed MONSS
obtained better results when compared against those produced by
MOEA/D in most of the test problems adopted. This means that the
solutions obtained by MONSS dominated a higher ratio of solutions
produced by MOEA/D. However, MOEA/D was better for DTLZ5

and REN1, although the ratio of solutions dominated by MOEA/D
was not significantly high in these cases. Although the IC performance
measure is better for MOEA/D in these two problems, it is worth
noting that our proposed approach reached better results in the IH
performance measure. The reason for that is that IH also measures
the spread of solutions along the PF, and our approach was better in
that regard for DTLZ5 and REN1.

Figures 5.7 and 5.8 show the hypervolume values at each iteration
of the two algorithms compared. From these plots, it is possible to
see that the performance of both algorithms (MONSS and MOEA/D)
was similar in most cases. However, there were also some cases in
which our proposed MONSS reached the PF faster than MOEA/D.
This illustrates the effectiveness of our proposed approach for solving

78 a nonlinear simplex search for multi-objective optimization

MOP
MONSS MOEA/D
average average Reference vector (r)

(σ) (σ)

DEB2

0.981552 0.969845 (1.1,1.1)T

(0.004504) (0.049164)

DTLZ5

0.429676 0.426429 (1.1,1.1,1.1)T

(0.000917) (0.001175)

FON2

0.542006 0.539159 (1.1,1.1)T

(0.001476) (0.001406)

LAU
13.934542 13.868946 (4.1,4.1)T

(0.008218) (0.029341)

LIS
0.309713 0.259479 (1,1)T

(0.007686) (0.009430)

MUR
3.141629 3.140806 (4.1,4.1)T

(0.003791) (0.001290)

REN1

3.612650 3.596241 (37.1,1.1)T

(0.000958) (0.019682)

REN2

18.925039 18.918943 (−1.9,2.1)T

(0.016614) (0.023277)

VNT2

2.11357 2.114601 (4.5,−16.0,−11.5)T

(0.003068) (0.002688)

VNT3

11.685911 11.599974 (8.5,17.5,0.5)T

(0.013195) (0.018481)

Table 2.: Results of IH performance measure for MONSS and MOEA/D

unconstrained nonlinear MOPs with low and moderate dimensional-
ity.

5.5 Remarks

We have proposed a new method based on the use of mathematical
programming techniques for approximating solutions along the PF

of a MOP. The proposed approach was, in principle, designed for
dealing with unconstrained, and unimodal multi-objective optimiza-
tion problems having low and moderate dimensionality (2, 3 and 12

decision variables).
Our experimental study indicates that our proposed MONSS out-

performs a powerful state-of-the-art multi-objective evolutionary algo-
rithm (MOEA/D) regarding convergence in most of the test problems
adopted. The number of objective function evaluations in these test
problems was restricted to 4,000 for the bi-objective problems and to
12,000 for the three-objective problems. The good results obtained by
our proposed approach with this relatively low number of objective
function evaluations suggest that it can be a good choice for dealing

5.5 remarks 79

MOP

IC(MONSS,
MOEA/D)

IC(MOEA/D,
MONSS)

average average

(σ) (σ)

DEB2

0.190446 0.146296

(0.053016) (0.035893)

DTLZ5

0.21025 0.311705
(0.019020) (0.051739)

FON2

0.354962 0.116333

(0.090241) (0.030275)

LAU
0.072572 0.056333

(0.060321) (0.028459)

LIS
0.340798 0.097992

(0.124927) (0.045691)

MUR
0.147827 0.092632

(0.058459) (0.011971)

REN1

0.105443 0.146599
(0.053141) (0.042929)

REN2

0.026274 0.013468

(0.022809) (0.006563)

VNT2

0.080900 0.057426

(0.014464) (0.011687)

VNT3

0.029109 0.000501

(0.012831) (0.001278)

Table 3.: Results of IC performance measure for MONSS and MOEA/D

with expensive MOPs having similar characteristics of the problems
adopted here.

The main motivation for the algorithm presented in this chapter, has
been to show that it is possible to design a competitive multi-objective
optimization algorithm using only direct search methods, and without
relying on metaheuristic search mechanisms. It is, however, also clear
to us that our proposed approach has some disadvantages with
respect to multi-objective metaheuristics. The main ones have to
do with the difficulties of the NSS method for moving in highly
accidented search spaces. It is possible, however, to improve the
performance of our proposed approach in such cases by varying
the step sizes (i.e., the control parameters ρ,χ and γ) until finding
a suitable region of the search space in which the NSS movements
can be properly conducted. This is, however, an issue that deserves
further research.

Motivated by the limitations of the proposed approach presented
here, in the next chapter, we attempt to hybridize it with a MOEA.
Our main motivation for such hybridization is that it can be applied to
MOPs of higher dimensionality and having highly accidented search

80 a nonlinear simplex search for multi-objective optimization

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

A) Hypervolume convergence for DEB2 problem B) Hypervolume convergence for DTLZ5 problem

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

C) Hypervolume convergence for FON2 problem D) Hypervolume convergence for LAU problem

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

E) Hypervolume convergence for LIS problem F) Hypervolume convergence for MUR problem

Figure 5.7.: Convergence plot for MONSS and MOEA/D in the test prob-
lems DEB2, DTLZ5, FON2, LAU, LIS and MUR.

spaces. The idea of such hybridization is to use a MOEA to locate the
promising regions of the search space and then adopt our MONSS
algorithm to exploit such regions in an efficient manner. We hypoth-
esized that this sort of Multi-Objective Memetic Algorithm (MOMA)

5.5 remarks 81

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

A) Hypervolume convergence for REN1 problem B) Hypervolume convergence for REN2 problem

 2.05

 2.06

 2.07

 2.08

 2.09

 2.1

 2.11

 2.12

 2.13

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

 10.9

 11

 11.1

 11.2

 11.3

 11.4

 11.5

 11.6

 11.7

 11.8

 11.9

 5 10 15 20 25 30 35 40

MONSS

MOEA/D

C) Hypervolume convergence for VNT2 problem D) Hypervolume convergence for VNT3 problem

Figure 5.8.: Convergence plot for MONSS and MOEA/D in the test prob-
lems REN1, REN2, VNT2 and VNT3

could be a powerful tool for solving complex and computationally
expensive MOPs in an efficient and effective manner.

6
A Multi-objective Memetic

Algorithm Based on Decomposition

In the previous chapter, we presented a preliminary study about the
capabilities of the Nonlinear Simplex Search (NSS) to solve Multi-

objective Optimization Problems (MOPs). The search strategy employed
by the proposed Multi-objective Nonlinear Simplex Search (MONSS)
proved to be effective on the test functions adopted. The good perfor-
mance of MONSS was shown not only on benchmark functions, but
also on expensive optimization problems, see [145]. Since MONSS is
based on the NSS, it inherits its search properties.Therefore, the search
performed by MONSS could become inefficient and, in some cases,
impractical, when dealing with more complex MOPs, for example
those having high dimensionality, high multi-modality or discon-
nected Pareto fronts (PFs). This has naturally motivated the idea to
hybridize the proposed MONSS with a Multi-Objective Evolutionary
Algorithm (MOEA).

In this Chapter, we precisely focus on the design of a Multi-Objective
Memetic Algorithm (MOMA) that combines the search properties of
MONSS with the exploratory power of a MOEA. In the proposed
approach presented here, the multi-objective direct search method
acts as a local search procedure, whose goal is to improve the search
performed by the MOEA. Because of its nature, the proposed local
search mechanism can be easily coupled to any other decomposition-
based MOEA, for example those presented in [98, 107, 149]. In the
following sections we present in detail the proposed MOMA.

83

84 a multi-objective memetic algorithm based on decomposition

6.1 The Multi-Objective Memetic Algorithm

6.1.1 General Framework

The proposed Multi-Objective Evolutionary Algorithm based on De-
composition with Local Search (MOEA/D+LS) adopts the well-
known Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [155] as its baseline algorithm. The local search engine is
based on the MONSS framework. However, in order to couple it to
MOEA/D and to improve the search, some modifications have been
introduced. In this way, the MOEA/D+LS, explores the global search
space using MOEA/D, while the local search mechanism exploits
promising regions given by the same MOEA/D. Both MOEA/D and
MONSS are algorithms that decompose a MOP into several single-
objective scalarization problems. Thus, the proposed MOEA/D+LS
also decomposes a MOP into several single-objective optimization
problems. Such optimization problems are defined by a set of weight
vectors. If the weight vectors are evenly distributed, a good repre-
sentation of the PF could be reached. Therefore, before starting the
search, a well-distributed set of weight vectors needs to be generated.

As indicated before, in this thesis, we employ the Penalty Boundary
Intersection (PBI) approach to transform a MOP into a single-objective
optimization problem, which consists in minimizing:The full description

of the PBI approach
was presented in

Chapter 3
(Section 3.2.2)

Minimize: g(x|w, z?) = d1 + θd2 (6.1)

such that:

d1 =
||(F(x) − z?)Tw||

||w||

and d2 =
∣∣∣∣∣∣(F(x) − z?) − d1 w

||w||

∣∣∣∣∣∣
where x ∈ Ω ⊂ Rn, θ is the penalty value and z? = (z?1, . . . , z

?
k)
T is the

utopian vector, i.e., z?i = min{fi(x)|x ∈ Ω},∀i = 1, . . . ,k.
At each iteration, MOEA/D+LS performs one iteration of

MOEA/D (see Algorithm 8). After that, the offspring population pro-
duced by MOEA/D is improved by using the local search procedure.
In Algorithm 15, we present the general framework of MOEA/D+LS
while the local search mechanism adopted for MOEA/D+LS is de-
scribed in detail in the next section.

6.1 the multi-objective memetic algorithm 85

Algorithm 15: The Multi-Objective Evolutionary Algorithm based
on Decomposition with Local Search (MOEA/D+LS)

Input:
a stopping criterion;
N: the number of the subproblems considered in MOEA/D+LS;
W: a well-distributed set of weighting vectors {w1, . . . , wN};
T : the neighborhood size of each weight vector;
Rls: the maximum number of solutions to be replaced by the local search;
Ar: the action range for the local search.
Output:
P: the final population found by MOEA/D+LS.

1 begin
2 Step 1. Initialization:
3 Generate an initial population P = {x1, . . . , xN} randomly;
4 FVi = F(xi); B(wi) = {wi1 , . . . , wiT } where wi1 , . . . , wiT are the T

closest weighting vectors to wi, for each i = 1, . . . ,N;
z = (+∞, . . . ,+∞)T ;

5 Step 2. The Memetic Algorithm:
6 while stopping criterion is not satisfied do
7 Step 2.1) MOEA/D iteration: Perform Step 2 of the MOEA/D

framework for obtaining P (the next population), see Algorithm 8.
8 Step 2.2) The Local Search Mechanism:
9 if the percentage of nondominated solutions in P is less than 50% then

10 Step 2.2.1) Selection Mechanism: Select a solution from P as
the initial search solution (pini) according to Section 6.1.2.1;

11 Step 2.2.2) Build the Simplex: Build the simplex according to
Section 6.1.2.2;

12 Step 2.2.3) Search Direction: Select the search direction for the
nonlinear simplex search according to Section 6.1.2.3;

13 Step 2.2.4) Deform the Simplex: Perform any movement
(reflection, contraction or expansion) for obtaining pnew
according to Nelder and Mead’s algorithm (see Section 5.1);

14 Step 2.2.5) Update the population: Update the population P
using the new solution pnew according to the rules presented
in Section 6.1.2.5;

15 Step 2.2.6) Stopping Criterion: If the stopping criterion is
satisfied then stop the search. Otherwise go to Step 2.2.1 or
Step 2.2.3 according to the rules detailed in Section 6.1.2.6;

16 end
17 end
18 return P;

19 end

86 a multi-objective memetic algorithm based on decomposition

6.1.2 Local Search

MOEA/D+LS exploits the promising neighborhoods of the nondomi-
nated solutions found by MOEA/D. In the following description, let
P be the set of solutions found by MOEA/D in any generation. We
assume that if a solution p ∈ P is nondominated, there exists another
nondominated solution q ∈ Ω such that ||p − q|| < δ for any small
δ ∈ R+. In other words, the probability that q is nondominated with
respect to p in the neighborhood defined by δ is equal to one, which
implies that q is also nondominated.

The local search mechanism presented here takes into account
this property to obtain new nondominated solutions departing from
nondominated solutions located in the current population P. Let’s
consider that MOEA/D solves the set of subproblems along the search
process. If all solutions in P are nondominated, we assume that the
minimum value to each subproblem has been achieved and then, the
execution of the local search might no longer be necessary.

The degrees of freedom of the local search depend of the process
used for building the simplex, which (as we will see later on) adopts
solutions from the current population. Considering that at the end
of the evolutionary process the population converges to a particu-
lar region of the search space (the place where the nondominated
solutions are contained), the performance of the local search engine
should be better when the diversity in the population is higher, i. e..,
when having a low number of nondominated solutions. Thus, in this
algorithm, the local search procedure is applied when the percentage
of nondominated solutions in P is less than a certain percentage (we
used 50% in this thesis). In the following sections, we will detail the lo-
cal search steps included in the outlined description of our proposed
MOEA/D+LS presented in Algorithm 15.

6.1.2.1 Selection Mechanism

Let P? ⊆ P be the set of nondominated solutions found by MOEA/D
in any generation. Assuming that all the nondominated solutions
in P? are equally efficient, the solution pini which starts the local
search is randomly taken from P?. Solution pini represents not only
the initial search point, but also the simplex head from which the
simplex will be built.

6.1 the multi-objective memetic algorithm 87

6.1.2.2 Building the Simplex

Let wini be the weight vector that defines the subproblem for which
the initial search solution pini is minimum. Let S(wini) be the neigh-
borhood of the n closest weight vectors to wini (where n is the number
of decision variables of the MOP). Then, the simplex employed by the
local search is defined as:

∆ = {pini, p1, . . . , pn}

which is built in two different ways by using a probability Ps, accord-
ing to the two following strategies: Since the

dimensionality of
the simplex depends
of the number of
decision variables of
the MOP, the
population size of
the MOEA needs to
be larger than the
number of decision
variables.

i. Neighboring solutions: The remaining n solutions pi ∈ P (i =

1, . . . ,n) are chosen, such that, pi minimizes each subproblem
defined by each weight vector in S(wini). This is the same strat-
egy employed for constructing the simplex used in MONSS, see
Chapter 5.

ii. Sample solutions: The remaining n solutions pi ∈ Ω (i = 1, . . . ,n)
are generated by using a low-discrepancy sequence. The Ham-
mersley sequence [55] is adopted in this work, to generate a
well-distributed sampling of solutions in a determined search
space. As in [146], we use a strategy based on the genetic anal-
ysis of a sample from the current population for reducing the
search space. However, here, we compute the average (m) and
standard deviation (σ) of the chromosomes (solutions) that min-
imize each subproblem defined by the weight vectors in S(wini).
In this way, the new bounds are defined by:

Lbound = m − σ

Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower
and upper bounds of the new search space, respectively.

Once the search space has been reduced, the n remaining so-
lutions are generated by means of the Hammersley sequence
using as bounds Lbound and Ubound.

Here, we use Ps = 0.3 as the probability that the construction of the
simplex using sample solutions is chosen. Otherwise, the construction
using neighboring solutions is employed.

88 a multi-objective memetic algorithm based on decomposition

6.1.2.3 Defining the Search Direction

Let B(wini) be the neighborhood of the T closest weight vectors to
wini, such that wini defines the subproblem for which the initial
search solution pini is minimum. Let D(wini) be the Ar closest weight
vectors to wini.

The nonlinear simplex search focuses on minimizing a subproblem
defined by the weight vector wobj, which is defined according to the
following rules:

i. The farthest weight vector in B(wini) to wini, if it is the first
iteration of the local search,

ii. otherwise, a random weight vector taken from D(wini) is em-
ployed.

It is noteworthy that (in ii) the search is relaxed defining as our
action range the Ar weight vectors closest to wini. The idea of relax-
ing the search is taken from the MONSS framework. However, the
neighborhood D(wini) is used instead of a partition as in MONSS.
Here, we used Ar = 5 as the size of the action range for the local
search.

6.1.2.4 Deforming the Simplex

At each iteration of the local search, the n+ 1 vertices of the simplex
∆ are sorted according to their value for the subproblem that it tries to
minimize (the best value is the first element). In this way, a movement
into the simplex is performed for generating the new solution pnew.
The movements are calculated according to the equations provided
by Nelder and Mead in [102] (see Section 5.1), however, in order to
save objective function evaluations and to avoid the search collapses,
the shrinkage step is omitted. Each movement is controlled by three
scalar parameters: reflection (ρ), expansion (χ) and contraction (γ).

The NSS algorithm was conceived to deal with unbounded prob-
lems. When dealing with bounded variables, the created solutions can
be located outside the allowable bounds after any movement of the

6.1 the multi-objective memetic algorithm 89

NSS algorithm. In order to deal with this, we bias the new solution if
any component of pnew lies outside the bounds according to:

p(j)
new =

L(j)
bound , if p(j)

new < L(j)
bound

U(j)
bound , if p(j)

new > U(j)
bound

p(j)
new , otherwise.

(6.2)

where L(j)
bound and U(j)

bound are the lower and upper bounds of the jth

parameter of pnew, respectively.

6.1.2.5 Updating the Population

The information provided by the local search engine is introduced
to MOEA/D using a Lamarckian evolution scheme [139]. However,
since we are dealing with MOPs, the new solution generated by the
local search mechanism could be better than more than one solution
in the current population. For this, we adopt the following mechanism
in which some solutions from the population could be replaced:

Let P be the current population reported by the MOEA. Let pnew
be the solution generated by any movement of the simplex search. Let
B(wobj) and W = {w1, . . . , wN} be the neighborhood of the T closest
weight vectors to wobj, and the well-distributed set of all weight
vectors, respectively. We define

Q =

{
B(wobj) , if r < δ
W otherwise

where r is a random number having uniform distribution. In this
work, we use δ = 0.9.

The current population P is updated by replacing at most Rls solu-
tions from P such that, g(pnew|wi, z) < g(xi|wi, z), where wi ∈ Q and
xi ∈ P, such that xi minimizes the subproblem defined by wi.

Note that the loss of diversity is avoided by replacing a maximum
number of solutions from P, instead of all the solutions that minimize
the subproblems defined by the complete neighborhood Q, as in
MOEA/D. In our study, we set Rls = 15 as the maximum number of
solution to replace.

90 a multi-objective memetic algorithm based on decomposition

6.1.2.6 Stopping Criterion

A maximum number of fitness function evaluations Els is adopted as
our stopping criterion. If the nonlinear simplex search overcomes this
maximum number of evaluations, the simplex search is stopped and
the evolutionary process of MOEA/D continues. However, the search
could be inefficient if the simplex has been deformed so that it has
collapsed into a region where there are local minima. According to
Lagarias et al. [82] the simplex search finds a better solution in at most
n+ 1 iterations (at least in convex functions with low dimensionality).
where n is the number of decision variables of the MOP. Thus, we
have considered this observation and adopt a stopping criterion for
reconstructing the simplex by using another nondominated solution
from P as simplex head. Therefore, if the simplex search does not find
a minimum value in n+ 1 iterations, we reset the search by going to
Step 2.2.1. Otherwise, we perform other movement into the simplex
using a new search direction, i.e., by going to Step 2.2.3.

6.2 Experimental Study

6.2.1 Test Problems

In order to assess the performance of our proposed memetic algo-
rithm, we compare its results with respect to those obtained by the
original MOEA/D [155]. We adopted 12 test problems whose PF have
different characteristics including convexity, concavity, disconnections
and multi-modality. In the following, we describe the test suites that
we have adopted.

• Zitzler-Deb-Thiele (ZDT) test suite [158]. The five bio-objective
MOPs (except for ZDT5, which is a discrete problem) were
adopted. We used 30 decision variables for ZDT1 to ZDT3,
while ZDT4 and ZDT6 were tested using 10 decision variables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [28, 29]. The seven
unconstrained MOPs were adopted. DTLZ1 was tested using
7 decision variables. For DTLZ2 to DTLZ6, we employed 12

decision variables, while DTLZ7 was tested using 22 decision

6.2 experimental study 91

variables. The algorithms were tested by using three objective
functions for each MOP.

The mathematical description of these two test suites can be seen
in Appendices A.2 and A.3, respectively.

6.2.2 Performance Measures

In order to assess the performance of our proposed MOEA/D+LS,
we compared it with respect to the original MOEA/D using the
Hypervolume (IH) and the Two Set Coverage (IC) performance measures.
The characteristics of such performance measures were presented in
Chapter 3, and we refer to section 3.4 for a more detailed description
of these performance indicators.

6.2.3 Parameters Settings

As indicated before, we compared our proposed MOEA/D+LS with
respect to MOEA/D (using the PBI approach). The weight vectors
for the algorithms were generated as in [155], i.e., the setting of N
and W = {w1, . . . , wN} is controlled by a parameter H. More precisely,
w1, . . . , wN are all the weight vectors in which each individual weight
takes a value from {

0

H
,
1

H
, . . . ,

H

H

}
Therefore, the number of such vectors in W is given by:

N = Ck−1H+k−1.

where k is the number of objective functions.
Both MOEA/D+LS and MOEA/D, were tested with H = 99 for the

bi-objective problems, i.e. 100 weight vectors. H = 23 was used for the
three-objective problems, i.e. 300 weight vectors. For a fair comparison,
the set of weight vectors was the same for both algorithms.

For each MOP, 30 independent runs were performed with each
algorithm. The parameters for both algorithms are summarized in
Table 4, where N represents the number of initial solutions (100

for bi-objective problems and 300 for three-objective problems). Nit
represents the maximum number of iterations, which was set to 100

92 a multi-objective memetic algorithm based on decomposition

for all test problems. Therefore, both algorithms performed 10,000 (for
the bi-objective problems) and 30,000 (for the three-objective problems)
fitness function evaluations for each problem. For MOEA/D+LS, ρ,χ
and γ represent the control parameters for the reflection, expansion
and contraction movements of the NSS, respectively. The parameters
Tn,ηc,ηm,Pc and Pm represent the neighborhood size, crossover index
(for Simulated Binary Crossover (SBX)), mutation index (for Polynomial-
Based Mutation (PBM)), crossover rate and mutation rate, respectively.
Ar,Rls and Els represent the action range, the number of solutions to
be replaced and the maximum number of fitness function evaluations
employed by the local search mechanism, respectively.

Finally, the parameter θ, represents the penalty value used in the
PBI approach for both MOEA/D+LS and MOEA/D.

Parameter MOEA/D+LS MOEA/D

N 100/300 100/300

Nit 100 100

Tn 20 20

ηc 20 20

ηm 20 20

Pc 1 1

Pm 1/n 1/n

α 1 –
β 2 –
γ 1/2 –
Ar 5 –
Rls 15 –
Els 300 –
θ 5 5

Table 4.: Parameters for MOEA/D+LS and MOEA/D

For each MOP, the algorithms were evaluated using the two perfor-
mance measures described in section 3.4 (i.e., the Hypervolume (IH)
and Two Set Coverage (IC) indicators). The results obtained are sum-
marized in Tables 5 and 6. These tables display both the average
and the standard deviation (σ) of each performance measure for each
MOP. The reference vectors used for computing the IH performance
measure are shown in Table 5. These vectors are established close
to the individual minima for each MOP, i.e., close to the extremes
of the PF. With that, a good measure of approximation and spread
is reported when the algorithms converge along the PF. In the case
of the statistics for the IC performance measure comparing pairs of
algorithms—i.e. IC(A,B), they were obtained as average values of the

6.3 numerical results 93

comparison of all the independent runs from the first algorithm with
respect to all the independent runs from the second algorithm. For
an easier interpretation, the best results are presented in boldface for
each performance measure and test problem adopted.

MOP
MOEA/D+LS MOEA/D

reference vector raverage average

(σ) (σ)

ZDT1

0.819246 0.751315

(1.1,1.1)T
(0.038088) (0.033339)

ZDT2

0.384962 0.210410

(1.1,1.1)T
(0.151212) (0.080132)

ZDT3

0.995692 0.990212

(1.1,1.1)T
(0.158499) (0.089499)

ZDT4

0.169257 0.600217
(1.1,1.1)T

(0.212639) (0.138989)

ZDT6

0.462559 0.425904

(1.1,1.1)T
(0.050484) (0.010630)

DTLZ1

0.316904 0.317249
(0.7,0.7,0.7)T

(0.001091) (0.000957)

DTLZ2

0.768621 0.768696
(1.1,1.1,1.1)T

(0.000466) (0.000644)

DTLZ3

0.221197 0.383622
(1.1,1.1,1.1)T

(0.282045) (0.245603)

DTLZ4

0.768966 0.768935

(1.1,1.1,1.1)T
(0.000664) (0.000645)

DTLZ5

0.426307 0.426115

(1.1,1.1,1.1)T
(0.000167) (0.000675)

DTLZ6

0.426345 0.000228

(1.1,1.1,1.1)T
(0.000714) (0.001226)

DTLZ7

1.922224 1.916040

(1.1,1.1,6.1)T
(0.012057) (0.016969)

Table 5.: Results of IH for MOEA/D+LS and MOEA/D

6.3 Numerical Results

As indicated before, the results obtained by the proposed
MOEA/D+LS were compared against those produced by the origi-
nal MOEA/D. According to the results presented in Tables 5 and 6,
MOEA/D+LS had a better performance than MOEA/D in most of
the MOPs adopted. These tables provide a quantitative assessment of
the performance of MOEA/D+LS in terms of the IH and IC indicators.
That means that the solutions obtained by MOEA/D+LS achieved
a better approximation to the PF than those solutions obtained by

94 a multi-objective memetic algorithm based on decomposition

MOP

IC(MOEA/D+LS, IC(MOEA/D,
MOEA/D) MOEA/D+LS)
average average

(σ) (σ)

ZDT1

0.893657 0.004889

(0.122230) (0.011666)

ZDT2

0.432435 0.001333

(0.149436) (0.007180)

ZDT3

0.667901 0.690476
(0.021117) (0.093046)

ZDT4

0.000000 1.000000
(0.000000) (0.000000)

ZDT6

0.170720 0.867949
(0.028694) (0.036735)

DTLZ1

0.155326 0.126444

(0.165805) (0.093361)

DTLZ2

0.120572 0.150281
(0.028892) (0.031948)

DTLZ3

0.469164 0.227174

(0.376265) (0.260595)

DTLZ4

0.178360 0.077111

(0.033641) (0.019450)

DTLZ5

0.033682 0.031905

(0.022515) (0.022034)

DTLZ6

1.000000 0.000000

(0.000000) (0.000000)

DTLZ7

0.122837 0.108987

(0.021196) (0.016292)

Table 6.: Results of IC for MOEA/D+LS and MOEA/D

MOEA/D when a low number of fitness function evaluations was
adopted.

However, for ZDT4, DTLZ1, DTLZ2 and DTLZ3, the IH indica-
tor showed that the local search did not improve the performance of
MOEA/D. In contrast, for DTLZ2, MOEA/D was not significantly bet-
ter than the memetic algorithm, and for the case of ZDT4, DTLZ1 and
DTLZ3, MOEA/D+LS was significantly outperformed by MOEA/D.
The poor performance of MOEA/D+LS for these problems (ZDT4,
DTLZ1 and DTLZ3) is attributed to their high multi-frontality. For
a more detailed description of these problems see Appendices A.2
and A.3. The effectiveness of MONSS when dealing with unimodal
optimization problems having low dimensionality has been shown in
Chapter 5. Here, we have designed a local search mechanism based
on the MONSS framework for dealing with MOPs with higher dimen-
sionality (in decision variable space). However, when dealing with
multi-frontal MOPs, the convergence of the simplex search consider-
ably slows down and may even fail.

6.4 remarks 95

Regarding the IC performance measure, MOEA/D+LS obtained
better results than those produced by MOEA/D in the majority of
the test problems adopted. This means that the solutions obtained by
MOEA/D+LS dominated a higher portion of the solutions produced
by MOEA/D. However, MOEA/D was better for ZDT3, ZDT4, ZDT6

and DTLZ2, although the ratio of solutions dominated by MOEA/D
was not significantly high for DTLZ2. Although the IC performance
measure benefits MOEA/D in ZDT3 and ZDT6, it is worth noting
that our proposed MOMA reached better results regarding the IH
performance measure in those problems. IH not only measures the
convergence but also the maximum spread of solutions along the PF,
which is the reason why our MOEA/D+LS obtained better results
regarding this performance measure. High multi-frontality, however,
remains as a limitation of our proposed approach. This can be ex-
emplified in ZDT4, in which our proposed approach was clearly
outperformed by the original MOEA/D with respect to the two per-
formance measures adopted in our study.

6.4 Remarks

In this Chapter, we have presented a hybridization of MOEA/D with
a NSS algorithm, in which the former acts as the global search engine,
and the latter works as a local search engine. The local search mecha-
nism is based on the MONSS framework, which adopts a decomposi-
tion approach similar to the one used in MOEA/D. Therefore, its use
could be easily coupled within other decomposition-based MOEAs,
such as those reported in [107, 98, 149]. Our proposed MOEA/D+LS,
was found to be competitive with respect to the original MOEA/D
over a set of test functions taken from the specialized literature, when
performing 10,000 and 30,000 fitness function evaluations, for prob-
lems having two and three objectives, respectively. The use of a low
number of fitness function evaluations in MOEAs is an important
issue in multi-objective optimization, because there are several real-
world problems that are computationally expensive to solve. We
consider that the strategy employed to hybridize the MONSS frame-
work with MOEA/D was, in general, appropriate for dealing with
the MOPs adopted here.

96 a multi-objective memetic algorithm based on decomposition

In the next Chapter, we focus on improving the local search mecha-
nism adopted here. We hypothesized that the use of an appropriate
simplex and a good hybridization strategy could be a powerful com-
bination for solving complex and computationally expensive MOPs
(see for example [63, 155]). Given the nature of the methods used
here (they do not require gradient information), the use of this hybrid
approach could be an efficient alternative when dealing with some
real-world applications for which the gradient information is not
available. This is the reason why hybridizing non-gradient mathemat-
ical programing methods with MOEAs is an important research area
that is worth exploring.

7
An Improved Multi-objective

Memetic Algorithm Based on

Decomposition

In the previous Chapter, we presented a Multi-Objective Memetic
Algorithm (MOMA) which hybridized the Multi-objective Nonlin-

ear Simplex Search (MONSS) approach with the well-known Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D).
The resulting Multi-Objective Evolutionary Algorithm based on Decompo-
sition with Local Search (MOEA/D+LS) was found to be a competitive
algorithm, and in some cases, it turned out to be significantly better
than the original MOEA/D on the test problems adopted. In the
design of MOMAs, some important decisions should be considered,
such as:

1. When should the local search be performed?

2. What search direction should be taken? and

3. How should the knowledge of the local search mechanism be intro-
duced into the evolutionary algorithm?

The good performance of a MOMA depends mainly on giving
appropriate answers to these questions.

MOEA/D+LS performs the local search procedure after each it-
eration of MOEA/D, if and only if, the percentage of nondomi-
nated solutions in the population is less than 50%. The use of this
strategy, answers the first question posed above. MOEA/D+LS de-
composes a Multi-objective Optimization Problem (MOP) into several
single-objective optimization problems. Such problems are defined
by a well-distributed set of weight vectors. The local search used by
MOEA/D+LS, directs the search towards different neighborhoods of
the whole set of weight vectors. In this way, the second question is

97

98 an improved multi-objective memetic algorithm based on decomposition

solved. The third question is answered by updating the solutions in
the population that solve the problems defined by the neighborhood
of weight vectors.

In this Chapter, we investigate an alternative strategy for hybridiz-
ing the Nonlinear Simplex Search (NSS) with the MOEA/D. Similar to
MOEA/D+LS, the MOMA presented in this chapter, incorporates the
Nelder and Mead method [102] as a local search engine into the well-
known MOEA/D [155]. However, in order to improve the local search,
some modifications have been introduced. Such modifications attend
the three above questions in different ways, as done by MOEA/D+LS.
With that, an improved version of MOEA/D+LS presented in the
previous chapter, is introduced. In the following, we present in detail
the components of the improved MOEA/D+LS.

7.1 The Proposed Approach

7.1.1 General Framework

As indicated before, the MOMA presented here, adopts
MOEA/D [155] as its baseline algorithm. The local search mecha-
nism is based on Nelder and Mead’s method [102]. In this way, the
proposed Multi-Objective Evolutionary Algorithm based on Decomposi-
tion with Local Search II (MOEA/D+LS-II) explores the global search
space using MOEA/D, while the local search engine exploits the
promising regions provided by MOEA/D.

Similar to MOEA/D+LS, MOEA/D+LS-II decomposes a MOP
into several single-objective optimization problems. Such optimiza-
tion problems are defined by a set of weight vectors. If the weight
vectors are evenly distributed, a good representation of the Pareto
front (PF) could be reached. Therefore, before starting the search, a
well-distributed set of weight vectors needs to be generated. Here, we
employ the Penalty Boundary Intersection (PBI) approach to transform
a MOP into a single-objective optimization problem, which consists
in minimizing:See Section 3.2.2 for

a more detailed
description of the

PBI approach
Minimize: g(x|w, z?) = d1 + θd2 (7.1)

7.1 the proposed approach 99

such that:

d1 =
||(F(x) − z?)Tw||

||w||

and d2 =
∣∣∣∣∣∣(F(x) − z?) − d1 w

||w||

∣∣∣∣∣∣
where x ∈ Ω ⊂ Rn, θ is the penalty value and z? = (z?1, . . . , z

?
k)
T is the

utopian vector, i.e., z?i = min{fi(x)|x ∈ Ω}, ∀i = 1, . . . ,k.
At each iteration, MOEA/D+LS-II performs an iteration of

MOEA/D (see Algorithm 8). After that, the offspring population
produced by MOEA/D is then improved by using the local search
procedure. For a better understanding of the proposed approach,
Algorithm 16 presents the general framework of the proposed
MOEA/D+LS-II. Step 3 refers to the complete local search mech-
anism which is performed after each iteration of MOEA/D. In the
following sections, we describe in detail the components of the im-
proved local search mechanism.

7.1.2 Local Search Mechanism

MOEA/D+LS-II exploits the promising neighborhood of the solutions
found by MOEA/D at each generation. As it was mentioned before,
MOEA/D+LS-II uses Nelder and Mead’s method as a local search
engine for continuous search spaces, in order to improve the solu-
tions provided by MOEA/D. In contrast to MOEA/D+LS, the local
search mechanism of MOEA/D+LS-II approximates solutions to the
extremes and the maximun bulge (sometimes called knee) of the PF.
Instead of using the neighborhoods as MOEA/D+LS does. The NSS
is employed for minimizing a subproblem defined by a weighting
vector using the PBI approach. In the following, we present in detail
the components of our local search engine outlined in Algorithms 16

and 17.

100 an improved multi-objective memetic algorithm based on decomposition

Algorithm 16: The Multi-Objective Evolutionary Algorithm based
on Decomposition with Local Search II (MOEA/D+LS-II)

Input:
a stopping criterion;
N: the number of the subproblems considered in
MOEA/D+LS-II;
W: a well-distributed set of weighting vectors {w1, . . . , wN};
T : the neighborhood size of each weight vector;
St: the similarity threshold for the local search;
Els: the maximum number of evaluations for the local search.
Output:
P: the final population found by MOEA/D+LS-II.

1 begin
2 Step 1. Initialization:
3 Generate an initial population P = {x1, . . . , xN} randomly; FVi = F(xi);

B(wi) = {wi1 , . . . , wiT } where wi1 , . . . , wiT are the T closest weighting
vectors to wi, for each i = 1, . . . ,N; z = (+∞, . . . ,+∞)T ;

4 Step 2. The Memetic Algorithm:
5 while stopping criterion is not satisfied do
6 Step 2.1. MOEA/D iteration: Perform Step 2 of the MOEA/D

framework for obtaining P (the next population), see Algorithm 8.
7 Step 3. The Local Search Mechanism:
8 for j = 1, . . . ,k+ 1 do
9 Step 3.1. Defining the Search Direction:.

10 if j < k then
11 // Search towards the extremes of the PF

12 ws = ej, where ej is the jth canonical basis in Rk and k is
the number of objective functions.

13 else
14 // Search towards the maximum bulge of the PF

15 ws = (1/k, . . . , 1/k)
16 end
17 Step 3.2. Selecting initial solution: Select the initial solution

for the local search according to Section 7.1.2.2.
18 Step 3.3. Local Search: Apply nonlinear simplex search

according to Algorithm 17.
19 end
20 end
21 return P;

22 end

7.1 the proposed approach 101

Algorithm 17: Use of Local Search for the MOEA/D+LS-II
Input:
a stopping criterion;
P: the current population of the MOEA/D+LS-II;
St: the similarity threshold for the local search;
Els: the maximum number of evaluations for the local search.
Output:
P: the updated population P.

1 begin
2 Step 1. Checking Similarity: Obtain the similarity (Sls) between pini

and the previous initial solution (p ′ini) for the local search—see
Section 8.3.1.3;

3 if there are enough resources and St < Sls then
4 Step 2. Building the Simplex: Build the initial simplex for the

nonlinear simplex search—see Section 8.3.1.4;
5 Step 3. Deforming the Simplex: Perform any movement

(reflection, contraction or expansion) for obtaining pnew according
to Nelder and Mead’s method—see Section 8.3.1.5;

6 Step 4. Updating the Population: Update the population P using
the new solution pnew according to the rules presented in
Section 8.3.1.6.

7 Step 5. Stopping Criterion: If the stopping criterion is satisfied
then stop the local search. Otherwise, go to Step 3—see
Section 8.3.1.7.

8 end
9 return P; // The updated population P

10 end

7.1.2.1 Defining the Search Direction

In contrast to the strategy employed by MOEA/D+LS, the local search
mechanism proposed here, approximates solutions to the PF in two
different stages:

1. Initially, the search is directed to the extremes of the PF. There-
fore, the weight vectors that define the subproblems that ap-
proximate solutions (when they are solved) to the extremes
are defined by the canonical basis in Rk—i.e., the search direc-
tion that approximates solutions to the jth extreme of the PF is
defined by the weighting vector: Assuming the use of

the PBI approach.
ws = ej

102 an improved multi-objective memetic algorithm based on decomposition

where ej is the jth canonical vector in Rk and j = 1, . . . ,k (where
k is the number of objective functions).

2. Once the solutions lying at the extremes of the PF have been
approximated, the local search is focused on minimizing the
subproblem that approximates the solutions lying on the knee
of the PF. Therefore, the search direction is now defined by the
weight vector:

ws = (1/k, . . . , 1/k)T

where k is the number of objective functions.

Considering the use of the PBI approach, the penalty value θ is set
as θ = 5 for approximating solutions to the extremes, whereas for the
knee, a value θ = 10 is employed.

7.1.2.2 Selecting Initial Solution

Let P be the set of solutions found by MOEA/D at any generation.
Let ws be the weighting vector that defines the search direction for
the NSS. The solution pini which starts the search is defined by:

pini = x ∈ P, such that minimizes: g(x|ws, z?)

Solution pini represents not only the initial search point, but also the
simplex head from which the simplex will be built.

7.1.2.3 Checking Similarity

The NSS explores the neighborhood of the solution pini ∈ P. Since
the simplex search is applied after each iteration of MOEA/D, most
of the time, the initial solution pini does not change its position from
one generation to another. For this reason, the proposed local search
mechanism stores a record (p ′ini) of the last position from which the
nonlinear simplex search starts. At the beginning of the execution
of MOEA/D+LS-II, the initial position record is set as empty, that is:
p ′ini = ∅. Once the simplex search is performed, the initial solution
is stored in the historical record, i.e., p ′ini = pini. In this way, for the
next call of the local search, a previous comparison of similarity is
performed. That is, the local search will be performed, if and only if,

7.1 the proposed approach 103

||pini − p ′ini|| > St, where St represents the similarity threshold. Since
in the first iteration of the simplex search there is no previous record
of the initial solution, the simplex search is automatically performed.
Both the updating of the historical record and the similarity operator
are performed for each initial solution pini which minimizes the
subproblem defined by ws. In our study, we adopted a similarity
threshold St = 0.001.

This strategy to employ the local search is the main difference
with respect to MOEA/D+LS, where local search is applied when the
population has less than 50% of nondominated solutions.

7.1.2.4 Building the Simplex

Let wini be the weighting vector that defines the subproblem for
which the initial search point pini is minimum. Let S(wini) be the
neighborhood of the n closest weighting vectors to wini (where n
is the number of decision variables of the MOP). Then, the simplex
defined as:

∆ = {pini, p1, . . . , pn}

is built in two different ways, depending on the direction on which
the simplex search is focused.

i. For the extremes of the PF: The remaining n solutions pi ∈ Ω
(i = 1, . . . ,n) are generated by using a low-discrepancy sequence.
In this work, we adopted the Hammersley sequence [55] to gen-
erate a well-distributed sampling of solutions in a determined
search space. In an analogous way to MOEA/D+LS, we use
a strategy based on the genetic analysis of a sample from the
current population for reducing the search space. Therefore, we
compute the average (m) and standard deviation (σ) of the chro-
mosomes (solutions) that minimize each subproblem defined by
the weight vectors in S(wini). In this way, the new bounds are
defined by:

Lbound = m − σ

Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower
and upper bounds of the new search space, respectively. Once
the search space has been reduced, the n remaining solutions
are generated by means of the Hammersley sequence using as
bounds Lbound and Ubound.

104 an improved multi-objective memetic algorithm based on decomposition

ii. For the knee of the PF: The remaining n solutions pi ∈ P (i =
1, . . . ,n) are chosen, such that, pi minimizes each subproblem
defined by each weighting vector in S(wini). This is the same
strategy employed in MONSS for constructing the simplex.

Note however that, since the dimensionality of the simplex depends
of the number of decision variables of the MOP, the population size
of MOEA/D+LS-II needs to be larger than the number of decision
variables.

7.1.2.5 Deforming the Simplex

Let ws be the weighting vector that defines the search direction for the
local search. Let ∆ be the simplex defined by the above description.
NSS will be focused on minimizing the subproblem defined by the
weighting vector ws. At each iteration of the nonlinear simplex search,
the n + 1 vertices of the simplex ∆ are sorted according to their
value for the subproblem that it tries to minimize (the best value
is the first element). In this way, a movement into the simplex is
performed for generating the new solution pnew. The movements
are calculated according to the equations provided by Nelder and
Mead, see Section 5.1. However, the shrinkage step is omitted. Each
movement is controlled by three scalar parameters: reflection (ρ),
expansion (χ) and contraction (γ).

NSS was conceived for unbounded problems. When dealing with
bounded variables, the created solutions can be located outside the
allowable bounds after some movements of the simplex search. In
order to deal with this, we bias the new solution if any component of
pnew lies outside the bounds according to:

p(j)
new =

L(j)
bound , if p(j)

new < L(j)
bound

U(j)
bound , if p(j)

new > U(j)
bound

p(j)
new , otherwise.

(7.2)

where L(j)
bound and U(j)

bound are the lower and upper bounds of the jth

parameter of pnew, respectively. This is the same strategy employed
by MOEA/D+LS.

7.1 the proposed approach 105

7.1.2.6 Updating the Population

The information provided by the local search mechanism is intro-
duced into the population of MOEA/D. Since we are dealing with
MOPs, the new solution generated by any movement of the NSS
could be better than more than one solution in the current population.
Thus, we adopt the following mechanism in which more than one
solution from the population could be replaced.

Let P be the current population reported by the MOEA/D+LS-II.
Let pnew be the solution generated by any movement of the NSS. Let
B(ws) and W = {w1, . . . , wN} be the neighborhood of the T closest
weighting vectors to ws, and the well-distributed set of all weight
vectors, respectively. We define

Q =

{
B(ws) , if r < δ
W otherwise

where r is a random number having uniform distribution. In this
work, we use δ = 0.5.

The current population P is updated by replacing at most Rls solu-
tions from P such that, g(pnew|wi, z) < g(xi|wi, z), where wi ∈ Q and
xi ∈ P, such that xi minimizes the subproblem defined by wi.

In this way, the loss of diversity is avoided by replacing a maxi-
mum number of solutions from P, instead of all the solutions that
minimize the subproblems defined by the complete neighborhood Q.
In our study, we set Rls = 15 as the maximum number of solution to
replace. This strategy of updating also differs to the one proposed
by MOEA/D+LS, where we only considered the neighborhood of
solutions from which the local search is directed.

7.1.2.7 Stopping Criterion

The local search mechanism encompasses the search of solutions
towards both the extremes and the knee of the PF. This mechanism
is limited to a maximum number of fitness function evaluations
defined by Els. In this way, the proposed local search has the following
stopping criteria:

1. If the nonlinear simplex search overcomes the maximum num-
ber of evaluations (Els), the simplex search is stopped and the
evolutionary process of MOEA/D continues by going to Step 2
of Algorithm 8.

106 an improved multi-objective memetic algorithm based on decomposition

2. The search could be inefficient if the simplex has been deformed
so that it has collapsed into a region in which there are no local
minima. According to Lagarias et al. [82] the simplex search
finds a better solution in at most n+ 1 iterations (at least in
convex functions with low dimensionality). Therefore, if the
simplex search does not find a better value for the subproblem
defined by ws in n+ 1 iterations, we stop the search and con-
tinue with the next direction defined by going to Step 3.1 of
Algorithm 16. Otherwise, we perform other movement into the
simplex by going to Step 3 of Algorithm 17.

7.2 Experimental Results

7.2.1 Test Problems

In order to assess the performance of our proposed memetic al-
gorithm, we compare its results with respect to those obtained by
the original MOEA/D [155] and the proposed MOEA/D+LS. We
adopted 21 test problems whose PFs have different characteristics
including convexity, concavity, disconnections and multi-modality. In
the following, we describe the test suites that we have adopted.

• Zitzler-Deb-Thiele (ZDT) test suite [158]. The five bio-objective
MOPs (except for ZDT5, which is a discrete problem) were
adopted. We used 30 decision variables for ZDT1 to ZDT3,
while ZDT4 and ZDT6 were tested using 10 decision variables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [28, 29]. The seven
unconstrained MOPs were adopted. DTLZ1 was tested using
7 decision variables. For DTLZ2 to DTLZ6, we employed 12

decision variables, while DTLZ7 was tested using 22 decision
variables. For all problems we tested the algorithms using three
objective functions for each MOP.

• Walking-Fish-Group (WFG) test suite [63]. The nine MOPs from
this test suite were adopted. We used k = 4 for the position re-
lated parameters and l = 20 for the distance related parameters—
i.e., 24 decision variables (as it was suggested by Huband et
al. [63])—adopting three objective functions for each MOP.

7.2 experimental results 107

The mathematical description of these three test suites can be found
in Appendices A.2, A.3 and A.4, respectively.

7.2.2 Performance Measures

To assess the performance of our proposed MOEA/D+LS-II and the
other two Multi-Objective Evolutionary Algorithms (MOEAs) (i.e., the
original MOEA/D and MOEA/D+LS) on the test problems adopted,
the Hypervolume (IH) indicator was employed. This performance mea-
sure is Pareto compliant [162], and quantifies both approximation and
maximum spread of nondominated solutions along the PF. In order to
compare the quality of solutions between two sets of non-dominated
solutions, the Two Set Coverage (IC) indicator was employed.

For a more detailed description of the adopted performance mea-
sures, the interested reader is referred to Section 3.4.

7.2.3 Parameters Settings

We compared the results obtained by our proposed MOEA/D+LS-II
with respect to those obtained by MOEA/D and MOEA/D+LS (us-
ing the PBI approach). The weight vectors for the algorithms were
generated as in [155], i.e., the setting of N and W = {w1, . . . , wN} is
controlled by a parameter H. More precisely, w1, . . . , wN are all the
weight vectors in which each individual weight takes a value from{

0

H
,
1

H
, . . . ,

H

H

}
Therefore, the number of such vectors in W is given by:

N = Ck−1H+k−1.

where k is the number of objective functions.
Both MOEA/D+LS and MOEA/D, were tested with H = 99 for the

bi-objective problems, i.e., 100 weight vectors. H = 23 was used for
the three-objective problems, i.e., 300 weight vectors. For a fair com-
parison, the set of weight vectors was the same for both algorithms.

For each MOP, 30 independent runs were performed with each
algorithm. The parameters for the algorithms are summarized in
Table 7, where N represents the number of initial solutions (100 for

108 an improved multi-objective memetic algorithm based on decomposition

bi-objective problems and 300 for three-objective problems). Nit rep-
resents the maximum number of iterations, which was set to 100 for
all test problems. Therefore, both algorithms performed 10,000 (for
the bi-objective problems) and 30,000 (for the three-objective prob-
lems) fitness function evaluations for each problem. The parameters
Tn,ηc,ηm,Pc and Pm represent the neighborhood size, crossover index
(for Simulated Binary Crossover (SBX)), mutation index (for Polynomial-
Based Mutation (PBM)), crossover rate and mutation rate, respectively.
For MOEA/D+LS-II and MOEA/D+LS, ρ,χ and γ represent the con-
trol parameters for the reflection, expansion and contraction move-
ments of the NSS, respectively. Rls and Els represent the number of
solutions to be replaced and the maximum number of fitness func-
tion evaluations employed by the local search engine, respectively.
Ar and St, represent the action range and the similarity threshold
employed by the local search for MOEA/D+LS and MOEA/D+LS-II,
respectively. Finally, the parameter θ, represents the penalty value
used in the PBI approach for the three approaches compared herein.

Parameter MOEA/D MOEA/D+LS MOEA/D+LS-II

N 100/300 100/300 100/300

Nit 100 100 100

Tn 20 20 20

ηc 20 20 20

ηm 20 20 20

Pc 1 1 1

Pm 1/n 1/n 1/n

α – 1 1

β – 2 2

γ – 1/2 1/2

Rls – 15 15

Els – 300 300

Ar – 5 –
St – – 0.001

θ 5 5 5

Table 7.: Parameters for MOEA/D, MOEA/D+LS and MOEA/D+LS-II

For each MOP, the algorithms were evaluated using the IH and
IC indicators. The results of such indicators are summarized in Ta-
bles 8 and 9, respectively. These tables display both the average and
the standard deviation (σ) of each performance measure for each
MOP. The reference vectors used for computing the IH performance
measure are shown in Table 8. These vectors are established close
to the individual minima for each MOP, i.e., close to the extremes
of the PF. With that, a good measure of approximation and spread

7.3 numerical results 109

is reported when the algorithms converge along the PF. In the case
of the statistics for the IC performance measure comparing pairs of
algorithms (i. e.IC(A,B)), they were obtained as average values of the
comparison of all the independent runs from the first algorithm with
respect to all the independent runs from the second algorithm. For
an easier interpretation, the best results are presented in boldface for
each performance measure and test problem adopted.

7.3 Numerical Results

As indicated before, the results obtained by the proposed
MOEA/D+LS-II were compared against those produced by the orig-
inal MOEA/D and MOEA/D+LS. In the following, we present the
results obtained by MOEA/D+LS-II, MOEA/D+LS and MOEA/D
for the ZDT, DTLZ and WFG test suites. The results for each test
suite, are presented in a separate way for an easier understanding.

7.3.1 Results for the ZDT test suite

Hypervolume (IH) Performance Measure. According to Table 8, the
proposed MOEA/D+LS-II obtained better results in terms of
the IH indicator than those obtained by both MOEA/D and
MOEA/D+LS in most of the ZDT test problems. That means
that the solutions obtained by MOEA/D+LS-II achieved a better
approximation of the true PF than those solutions obtained by
both MOEA/D+LS and MOEA/D. The exceptions were ZDT2

and ZDT4, where MOEA/D+LS and MOEA/D obtained better
results than those achieved by MOEA/D+LS-II, respectively.
Note however, that MOEA/D+LS was not significantly better
than MOEA/D+LS-II for ZDT2.

In general, the performance of MOEA/D+LS-II and
MOEA/D+LS was very similar for the ZDT test suite. The
proposed MOMAs (i.e. MOEA/D+LS-II and MOEA/D+LS)
outperformed the original MOEA/D in most of the ZDT test
problems. However, for ZDT4, the IH indicator showed that
the local search did not improve the performance of MOEA/D,
i.e., the proposed MOMAs did not outperform the original

110 an improved multi-objective memetic algorithm based on decomposition

MOEA/D. We attributed the poor performance of these hybrid
algorithms to the high multi-frontality that ZDT4 has.

Two Set Coverage (IC) Performance Measure. According to Table 9,
MOEA/D+LS-II obtained better results (in terms of the IC indi-
cator) than those produced by MOEA/D+LS and MOEA/D in
the majority of the ZDT test problems. This means that the solu-
tions obtained by MOEA/D+LS-II dominated a higher portion
of the solutions produced by MOEA/D+LS and MOEA/D, re-
spectively. However, as we can see, MOEA/D was significantly
better in ZDT4.

7.3.2 Results for the DTLZ test suite

Hypervolume (IH) Performance Measure. According to Table 8, the
proposed MOEA/D+LS-II obtained better results in terms of
the IH indicator than those obtained by both MOEA/D and
MOEA/D+LS in most of the DTLZ test problems. Therefore,
the solutions obtained by MOEA/D+LS-II achieved a better
approximation of the PF than those solutions obtained by
both MOEA/D+LS and MOEA/D. The exceptions were DTLZ1,
DTLZ3 and DTLZ4, where MOEA/D+LS and MOEA/D ob-
tained better results than those achieved by MOEA/D+LS-II,
respectively. Note however, that for DTLZ4, MOEA/D+LS was
not significantly better than MOEA/D+LS-II.

In general, the performance of MOEA/D+LS-II and
MOEA/D+LS was very similar for the DTLZ test suite.
The proposed MOMAs outperformed the original MOEA/D
in most of the DTLZ test problems. Although, for DTLZ1 and
DTLZ3, the IH indicator showed that the local search mecha-
nisms employed by both MOEA/D+LS and MOEA/D+LS-II
did not improve the performance of the original MOEA/D. The
poor performance of these MOMAs for DTLZ1 and DTLZ3 is
attributed to the high multi-frontality that these problems have.

Two Set Coverage (IC) Performance Measure. According to Table 9,
MOEA/D+LS-II obtained a better IC value than the one
achieved by MOEA/D+LS and MOEA/D, in most of the DTLZ

7.3 numerical results 111

MOP
MOEA/D+LS-II MOEA/D+LS MOEA/D

reference vector raverage average average

(σ) (σ) (σ)

ZDT1

0.842309 0.819246 0.751315

(1.1,1.1)T
(0.009087) (0.038088) (0.033339)

ZDT2

0.363225 0.384962 0.210410

(1.1,1.1)T
(0.133365) (0.151212) (0.080132)

ZDT3

1.055714 0.995692 0.990212

(1.1,1.1)T
(0.230182) (0.158499) (0.089499)

ZDT4

0.185765 0.169257 0.600217
(1.1,1.1)T

(0.156602) (0.212639) (0.138989)

ZDT6

0.462714 0.462559 0.425904

(1.1,1.1)T
(0.022012) (0.050484) (0.010630)

DTLZ1

0.317083 0.316904 0.317249
(0.7,0.7,0.7)T

(0.001075) (0.001091) (0.000957)

DTLZ2

0.768727 0.768621 0.768696

(1.1,1.1,1.1)T
(0.000594) (0.000466) (0.000644)

DTLZ3

0.128942 0.221197 0.383622
(1.1,1.1,1.1)T

(0.219193) (0.282045) (0.245603)

DTLZ4

0.768122 0.768966 0.768935

(1.1,1.1,1.1)T
(0.000574) (0.000664) (0.000645)

DTLZ5

0.426492 0.426307 0.426115

(1.1,1.1,1.1)T
(0.000114) (0.000167) (0.000675)

DTLZ6

0.426416 0.426345 0.000228

(1.1,1.1,1.1)T
(0.000254) (0.000714) (0.001226)

DTLZ7

1.929710 1.922224 1.916040

(1.1,1.1,6.1)T
(0.162598) (0.012057) (0.016969)

WFG1

16.510348 15.921475 14.964720

(3,4,4)T
(0.202859) (0.955856) (1.030077)

WFG2

8.882838 8.973534 8.996212
(2,2,4)T

(0.822917) (0.857198) (0.964342)

WFG3

40.721010 39.594021 39.740488

(4,3,6)T
(0.745928) (0.987888) (1.120458)

WFG4

68.763272 69.193123 69.160679

(3,5,7)T
(0.993944) (1.001366) (0.877216)

WFG5

65.825280 66.050850 65.818947

(3,5,7)T
(0.525636) (0.727933) (0.828483)

WFG6

66.323221 64.694658 65.712844

(3,5,7)T
(0.364806) (2.015885) (1.167871)

WFG7

67.179656 66.844937 66.490864

(3,5,7)T
(0.141568) (1.478663) (1.388620)

WFG8

62.988349 62.880565 62.742809

(3,5,7)T
(0.229227) (1.148814) (1.249541)

WFG9

64.601092 62.835454 63.019018

(3,5,7)T
(0.437234) (2.171200) (1.486697)

Table 8.: Comparison of results with respect to the IH indicator for
MOEA/D+LS-II, MOEA/D+LS and MOEA/D.

test problems. This means that the solutions obtained by
MOEA/D+LS-II dominated to more of the solutions generated
by the other MOEAs with respect to which it was compared.
Although MOEA/D+LS obtained better results for DTLZ3 and

112 an improved multi-objective memetic algorithm based on decomposition

MOP
IC(MOEA/D+LS-II, IC(MOEA/D+LS, IC(MOEA/D+LS-II, IC(MOEA/D,

MOEA/D+LS) MOEA/D+LS-II) MOEA/D) MOEA/D+LS-II)
average average average average

(σ) (σ) (σ) (σ)

ZDT1

0.488783 0.187745 0.857230 0.020588

(0.242740) (0.115837) (0.112002) (0.027799)

ZDT2

0.139349 0.069892 0.324347 0.092473

(0.080375) (0.083325) (0.154109) (0.073905)

ZDT3

0.641866 0.066667 0.910252 0.011667

(0.360988) (0.092721) (0.120419) (0.030092)

ZDT4

0.604067 0.286458 0.005000 0.903125
(0.448448) (0.363906) (0.026926) (0.096606)

ZDT6

0.182720 0.075877 0.703818 0.142105

(0.259879) (0.288685) (0.167528) (0.124614)

DTLZ1

0.128864 0.090123 0.088727 0.118519
(0.134213) (0.060379) (0.118301) (0.072457)

DTLZ2

0.138093 0.134011 0.136058 0.133446

(0.023027) (0.022464) (0.028879) (0.026424)

DTLZ3

0.339699 0.574434 0.130119 0.778317
(0.411232) (0.394037) (0.317745) (0.311620)

DTLZ4

0.131181 0.131203 0.199246 0.156701

(0.027343) (0.026156) (0.028263) (0.030018)

DTLZ5

0.059061 0.051323 0.040094 0.029101

(0.029332) (0.030307) (0.019201) (0.026901)

DTLZ6

0.046298 0.024510 1.000000 0.000000

(0.029818) (0.029493) (0.000000) (0.000000)

DTLZ7

0.176586 0.095659 0.174799 0.088217

(0.032866) (0.017961) (0.028298) (0.017506)

WFG1

0.063529 0.340676 0.000264 0.553730
(0.136050) (0.225264) (0.000990) (0.100654)

WFG2

0.595429 0.035220 0.659266 0.010482

(0.284197) (0.083130) (0.270807) (0.038371)

WFG3

0.149590 0.061418 0.136721 0.077163

(0.108504) (0.053089) (0.115116) (0.050562)

WFG4

0.298331 0.245455 0.276878 0.250399

(0.161050) (0.150202) (0.147371) (0.117450)

WFG5

0.597973 0.022591 0.659285 0.018009

(0.114974) (0.021742) (0.127168) (0.020085)

WFG6

0.450379 0.153476 0.320391 0.198039

(0.229348) (0.155554) (0.138133) (0.139328)

WFG7

0.261405 0.280901 0.308449 0.234595

(0.108373) (0.118356) (0.107897) (0.096892)

WFG8

0.297450 0.229609 0.306217 0.210615

(0.142725) (0.112690) (0.142979) (0.092903)

WFG9

0.499652 0.142812 0.485352 0.126540

(0.243981) (0.158706) (0.213164) (0.110188)

Table 9.: Comparison of results with respect to the IC indicator for
MOEA/D+LS-II compared to MOEA/D+LS and MOEA/D

DTLZ5, it was not significantly better than MOEA/D+LS-II. On
the other hand, MOEA/D, in fact, was better for the DTLZ1 and
DTLZ3 test problems, which are multi-frontal.

7.3 numerical results 113

7.3.3 Results for WFG test suite

Hypervolume (IH) Performance Measure. According to Table 8, the
proposed MOEA/D+LS-II obtained better results in terms of
the IH indicator than those obtained by both MOEA/D and
MOEA/D+LS in most of the WFG test problems. That means
that the solutions obtained by MOEA/D+LS-II achieved a
better approximation of the PF than those solutions obtained
by both MOEA/D+LS and MOEA/D. The exceptions were
WFG2, WFG4 and WFG5, where MOEA/D+LS and MOEA/D
obtained better results than those achieved by MOEA/D+LS-II.
Note however, that for WFG4 and WFG5, MOEA/D+LS was not
significantly better than MOEA/D+LS-II. On the other hand,
for WFG2, the IH indicator showed that the local search mech-
anisms employed by both MOEA/D+LS and MOEA/D+LS-II
did not improve the performance of the original MOEA/D.
The multi-modality of WFG2 (presented in the last function of
the MOP) has an influence on the performance of the MOMAs
for this problem. It is worth noting, however, that MOEA/D
was not significantly better than the proposed MOMAs for this
specific problem.

In general, MOEA/D+LS-II showed its robustness outperform-
ing both MOEA/D+LS and the original MOEA/D in most of
the WFG test problems, which are considered more difficult
to solve [63]. In some cases, such as WFG1, WFG3, WFG6,
WFG7 and WFG9, the improved version of MOEA/D+LS, i.e.,
MOEA/D+LS-II, was significantly better than MOEA/D+LS.

Two Set Coverage (IC) Performance Measure. According to Table 9,
MOEA/D+LS-II obtained a better IC value than the one
achieved by MOEA/D+LS and MOEA/D, in most of the WFG
test problems. This means that the solutions obtained by
MOEA/D+LS-II dominated to more of the solutions generated
by the other MOEAs with respect to which it was compared.
Although MOEA/D+LS and MOEA/D obtained better results
for WFG1 and WFG7, it is worth noting that MOEA/D+LS-II
reached better results regarding the IH performance measure in
those problems. IH not only measures the convergence but also
the maximum spread of solutions along the PF, which is the

114 an improved multi-objective memetic algorithm based on decomposition

reason why MOEA/D+LS-II obtained better results regarding
the IH performance measure for these problems.

Finally, in order to appreciate the results obtained by each
algorithm compared here, Appendix A.2, A.3 and A.4, show
the plots of the final approximations to the PF obtained by the
MOEA/D, the MOEA/D+LS and MOEA/D+LS-II.

7.4 Remarks

We have proposed an improved version of MOEA/D+LS. The pro-
posed approach hybridizes the well-known MOEA/D with the NSS
algorithm. The mathematical programming method works as a local
search engine and it is employed to approximate solutions to the
extremes and the maximum bulge of the PF. Our preliminary results
indicate that the proposed local search mechanism incorporated to
MOEA/D, gives robustness and better performance when it is com-
pared with respect to the original MOEA/D and MOEA/D+LS, over
the set of 21 test problem adopted in this work. The proposed MOMA
was found to be competitive with respect to the original MOEA/D
and the MOEA/D+LS when performing 10,000 and 30,000 fitness
function evaluations, for problems having two and three objectives,
respectively. We consider that the strategy employed to hybridize
Nelder and Mead’s method with MOEA/D was appropriate for deal-
ing with the MOPs adopted here. However, we also confirmed that
multi-frontality is the main obstacle to accelerate converge to the
PF in the proposed MOEA/D+LS-II. Because of its nature, the pro-
posed local search mechanism could be easily coupled within other
decomposition-based MOEAs, such as those reported in [98, 107, 149].

As indicated before, the use of a low number of fitness function
evaluations in MOEAs is an important issue in multi-objective op-
timization, because there are several real-world applications that
are computationally expensive to solve. In the last few years, the
use of MOEAs assisted by surrogate models has been one of
the most common techniques adopted to solve complex problems,
see e. g. [36, 74, 105, 147, 156]. However, the prediction error of such
models often directs the search towards regions in which no Pareto
optimal solutions are found. This naturally motivates the idea of
incorporating procedures to refine the solutions provided by surro-

7.4 remarks 115

gate models, such as adopting local search mechanisms. In the next
Chapter, we focus on coupling the proposed local search mechanism
into a MOEA assisted by surrogate models. We hypothesized that an
appropriate combination of the explorative power of a MOEA assisted
by surrogate models with the exploitative power of a local search
engine, could improve the performance of a MOEA when performing
a low number of fitness function evaluations.

8
Combining Surrogate Models and

Local Search for Multi-objective

Optimization

Mmulti-objective evolutionary algorithms have been success-
fully adopted to solve Multi-objective Optimization Problems

(MOPs) in a wide variety of engineering and scientific problems [14].
However, in real-world applications is common to find objective func-
tions which are very expensive to evaluate (in terms of computational
time). This has considerably limited the use of evolutionary techni-
ques to these types of problems. In recent years, several researchers
have developed different strategies for reducing the computational
time (measured in terms of the number of fitness function evalua-
tions) that a Multi-Objective Evolutionary Algorithm (MOEA) requires
to solve a determined problem. From such strategies, the use of sur-
rogate models has been one of the most common techniques adopted
to solve complex problems. In the specialized literature, several au-
thors have reported the use of surrogate models to deal with MOPs,
see e. g. [36, 64, 74, 105, 147, 156] among others. However, the high
modality and dimensionality of some problems, often constitute ma-
jor obstacles for surrogate models. Therefore, if a surrogate model
is not able to shape the region in which the Pareto optimal set (PS) is
contained, the search could be misinformed and converge to wrong
regions. This has motivated the idea of incorporating procedures to re-
fine the solutions provided by surrogate models, such as local search
mechanisms. In general, the use of local search mechanisms based on
mathematical programming methods combined with MOEAs assisted
by surrogate models has been scarcely explored in the specialized
literature.

In 2009, Georgopoulou and Giannakoglou [47] proposed a Multi-
Objective Memetic Algorithm (MOMA) assisted by Radial Basis Func-
tions (RBFs). The local search mechanism uses a function which cor-

117

118 combining surrogate models and local search for multi-objective optimization

responds to an ascent method that incorporates gradient values pro-
vided by the surrogate model. Recently, Zapotecas and Coello [148]
proposed a MOMA assisted by Support Vector Regresion (SVR) [136].
The local search mechanism is directed by several scalarization func-
tions, which are solved using the Hooke and Jeeves algorithm [60].
The local search mechanism is assisted by SVR and the improved
solutions are incorporated into the current population of the MOEA
by using Pareto ranking.

The two above approaches assist their local search procedures
with surrogate models. Therefore, even though these approaches use
refinement mechanisms, the prediction error may misguide the local
search. In Chapters 6 and 7, we showed the effectiveness of the Nelder
and Mead method [102] when it was used as a local search engine
into a MOEA. In this Chapter, we introduce a MOEA assisted by RBF
networks adopting as refinement mechanism, a modified version of
the local search procedure presented in Chapter 7. We hypothesized
that an appropriate combination between exploration and exploitation
could improve the performance of a MOEA when performing a low
number of fitness function evaluations. In the next section, we present
the foundations of RBFs which are important for understanding the
proposed approach.

8.1 Radial Basis Function Networks

Radial Basis Function (RBF) networks are a feed-forward kind of neural
network, which are commonly represented with three layers: an input
layer with n nodes, a hidden layer with h nonlinear RBFs (or neurons),
and an output node ϕ. The function value in a RBF depends on the
distance from each point x to the origin, i.e. g(x) = g(||x||). This
function value can be generalized to distances from some other point
cj, commonly called center of the basis function, that is:

g(x, cj) = g(||x − cj||)

The output ϕ : Rn 7→ R of the network is defined as:

ϕ(x) =
h∑
j=1

wjg(||x − cj||), z = 1, . . . ,k (8.1)

8.1 radial basis function networks 119

where h is the number of neurons in the hidden layer, cj is the center
vector for the jth neuron, and wj’s are the weights of the linear output
neuron. In its basic form, all inputs are connected to each hidden
neuron. The norm is typically taken to be the Euclidean distance and
the basis function g or kernel is taken to be Gaussian, although other
basis functions are also possible (see for example those shown in
Table 10).

Kernel Description
Cubic g(r) = r3

Thin Plate Spline g(r) = r2 ln(r)
Gaussian g(r,σ) = exp(−r2/2σ2)
Multi-quadratic g(r,σ) =

√
r2 + σ2

Inverse multi-quadratic g(r,σ) =
√
r2 + σ2

Table 10.: Kernels for a RBF neural network, where r = ||x − ci||

RBF networks can be used to interpolate a function f : Rn 7→ R

when the values of that function are known on a finite number of
points: f(xi) = yi, i = 1 . . . ,N. Taking into account the h centers cj’s
(j = 1, . . . ,h) and evaluating the values of the basis functions at the
points xi, i.e., φij = g(||cj − xi||,σj) the weights can be solved from the
equation:

φ11 φ12 . . . φ1m
φ21 φ22 . . . φ2m

...
φN1 φN2 . . . φNm

w1
w2
...
wm

 =

y1
y2
...
yN

 (8.2)

Therefore, the weights wi’s can be solved by simple linear algebra,
using the least squares method, that is:

w = (ΦTΦ)−1ΦTy (8.3)

The parameter σj of the kernels (Gaussian, multi-quadratic and
inverse multi-quadratic) determines the amplitude of each basis func-
tion and it can be adjusted to improve the model accuracy.

Until now, we have presented the theoretical foundations of RBF
networks. In the next section, we shall present, the detailed description
of the proposed MOEA assisted by RBF networks.

120 combining surrogate models and local search for multi-objective optimization

8.2 A MOEA based on Decomposition As-
sisted by RBF Networks

8.2.1 General Framework

The proposed Multi-Objective Evolutionary Algorithm based on De-
composition assisted by Radial Basis Functions (MOEA/D-RBF) decom-
poses the MOP (3.1) into N single-objective optimization prob-
lems. MOEA/D-RBF uses a well-distributed set of N weight vectors
W = {w1, . . . , wN} to define a set of single-objective optimization
subproblems. Here, we employ the Penalty Boundary Intersection (PBI)
approach to transform a MOP into a single-objective optimization
problem, which consists in minimizing:See Section 3.2.2 for

a more detailed
description of the

PBI approach
Minimize: g(x|w, z?) = d1 + θd2 (8.4)

such that:

d1 =
||(F(x) − z?)Tw||

||w||

and d2 =
∣∣∣∣∣∣(F(x) − z?) − d1 w

||w||

∣∣∣∣∣∣
where x ∈ Ω ⊂ Rn, θ is the penalty value and z? = (z?1, . . . , z

?
k)
T is the

utopian vector, i.e., z?i = min{fi(x)|x ∈ Ω},∀i = 1, . . . ,k.
Each subproblem is solved by the Multi-Objective Evolutionary Al-

gorithm based on Decomposition (MOEA/D), which is assisted by a sur-
rogate model based on RBF networks. For a better understanding
of this approach, Algorithm 18 shows the general framework of the
proposed MOEA/D-RBF. In the following sections, we describe in
detail the components of the MOEA/D-RBF which are outlined in
Algorithm 18.

8.2.2 Initialization

Initially, a training set Tset = {xi, . . . , xNt} of Nt well-spread solutions
is generated. For this task, we employed the Latin hypercube sampling
method [92]. The set of solutions Tset is evaluated by using the real
fitness function. The number of current fitness function evaluations

8.2 a moea based on decomposition assisted by rbf networks 121

Algorithm 18: General framework of MOEA/D-RBF
Input:
W = {wi, . . . , wN}: a well-distributed set of weight vectors.
Nt: the number of points in the initial training set.
Emax: the maximum number of evaluations allowed in MOEA/D-RBF.
Output:
A: an approximation to the Pareto front (PF).

1 begin
2 Initialization: Generate a set Tset = {x1, . . . , xNt } of Nt points such that

xi ∈ Ω (i = 1, . . . Nt), by using an experimental design method.
Evaluate the F-functions values of these points. Set A as the set of
nondominated solutions found in Tset. Set neval = Nt. Generate a
population P̂ = {x1, . . . , xN} of N individuals such that xi ∈ Ω
(i = 1, . . . N), by using an experimental design method.
stopping_criterion = FALSE. For details of this step see Section 8.2.2.

3 while (stopping_criterion == FALSE) do
4 Model Building: Using the F-function values of the points in Tset,

build the predictive surrogate model by using different RBF
networks. Calculate the weights for each RBF network according to
its training error in Tset. For details of this step see Section 8.2.3.

5 Evaluate P̂: Evaluate the population P̂ using the surrogate model.
6 Find an approximation to PF: By using MOEA/D, the surrogate

model and the population P̂, obtain P̂? = {x̂i, . . . , x̂Nt }, where P̂? is
an approximation to PF, see Section 8.2.4.

7 Select points for updating Tset: By using the selection scheme,
select a set of solutions from P̂? to be evaluated and included in the
training set Tset. Update A using the selected solutions. For each
evaluated solution, set neval = neval + 1. If neval < Emax then
stopping_criterion = TRUE. For a detailed description of this step
see Section 8.2.5.

8 Update population P̂: Update the population P̂ according to the
updating scheme, see Section 8.2.6.

9 end
10 return A;
11 end

neval is initially set as neval = Nt. MOEA/D-RBF uses an external
archive A to store the nondominated solutions found so far in the evo-
lutionary process. This archive is initialized with the nondominated
solutions found in Tset. At the beginning, a population P̂ = {xi, . . . , xN}
of N solutions is generated by employing the Latin hypercube sam-
pling method. The stopping criterion considered in MOEA/D-RBF is

122 combining surrogate models and local search for multi-objective optimization

the number of fitness function evaluations and, therefore, the stopping
criterion is initially set as false, i.e. stopping_criterion = FALSE.

8.2.3 Building the Model

As previously indicated, we use a surrogate model based on RBF
networks. In order to improve the prediction of the surrogate model,
the Gaussian, the multi-quadratic and the inverse multi-quadratic
kernels are used in a cooperative way for obtaining the approximated
value of a solution. In the following sections, we describe the necessary
components for building the surrogate model.

8.2.3.1 Hidden Nodes

The hidden nodes in an RBF network play an important role in the
performance of the RBF network. In general, there is no method avail-
able for estimating the number of hidden nodes in an RBF network.
However, it has been suggested in [56, 57, 86, 127] that Kolmogorov’s
theorem [80] concerning the realization of arbitrary multivariate func-
tions, provides theoretical support for neural networks that implement
such functions.

Theorem 2 (Kolmogorov [80])
A continuous real-valued function defined as f : [0, 1]n 7→ R, n > 2,
can be represented in the form:

f(x1, . . . , xn) =
2n+1∑
j=1

gj

(
n∑
i=1

φij(xi)

)
(8.5)

where the gj’s are properly chosen continuous functions of one vari-
able, and the φij’s are continuous monotonically increasing functions
independent of f.

The basic idea in Kolmogorov’s theorem is captured in the network
architecture of Figure 8.1, where a universal transformation M maps
Rn into several uni-dimensional transformations. The theorem states
that one can express a continuous multivariate function on a compact
set in terms of sums and compositions of a finite number of single
variable functions.

Motivated by this idea, the surrogate model built here, uses 2n+ 1

hidden nodes (where n is the number of decision variables of the

8.2 a moea based on decomposition assisted by rbf networks 123

x1

x2

xn g2n+1

g2

g1

P f

Figure 8.1.: Network representation of Kolmogorov’s theorem

MOP). Considering Tset as the training set of Nt solutions used by the
surrogate model, the centers of the 2n+ 1 basis functions are defined
by using the well-known k-means algorithm [90] on the training set
Tset (with k = 2n+ 1). This criterion establishes that the cardinality
of Tset should be greater than 2n+ 1, i.e., 2n+ 1 < Nt.

8.2.3.2 Building the surrogate model

The high modality and dimensionality of some functions, often pro-
duce problems to surrogate models. When the surrogate model is not
able to properly shape the region of the search space in which the
PS is located, then the search may be biased towards inappropriate
regions. In order to improve the function prediction, MOEA/D-RBF
uses different kernels for building different RBF networks. Each RBF
network provides different shape of the search space and all of them
provide information to predict the value of an arbitrary solution. Here,
three different kernels are adopted: Gaussian, multi-quadratic and
inverse multi-quadratic; these kernels are chosen because they possess
the parameter σwhich can be adjusted to improve the model accuracy,
see Table 10. Note however that other types of kernels can also be
adopted, although the use of more kernels could significantly increase
the training time. In the following description, we consider the case
with one single output node, i.e. with a single function. Note however,
that this model can be generalized for more than one function.

Let Tset = {x1, . . . , xNt} be the set of Nt solutions evaluated with the
real fitness function. Let h be the number of hidden nodes (or basis
functions) considered in the RBF network. Let cj and σj (j = 1, . . . ,m)
be the center and the amplitude of each basis function, respectively.

124 combining surrogate models and local search for multi-objective optimization

The training of the RBF network for a determined kernel K consists
in finding the weight vector w = (w1, . . . ,wm)T such that it solves
equation (8.3). Each parameter σj of each basis function is initially
defined by the standard deviation of the solutions contained in each
cluster obtained by the k-means algorithm (with mean cj).

Once the weight vector w is obtained, the model accuracy is im-
proved by adjusting the vector of parameters σ = (σ1, . . . ,σm)T . Since
the value of the adopted kernel depends of σj, from equation (8.2),
the training error on the training set Tset, can be written as:

ψ(σ) = ||Φw − y|| (8.6)

where y = (y1, . . . ,yNt)T is the vector of the real function values for
each solution xi ∈ Tset, i.e., yi = f(xi). Φ is the matrix which contains
the evaluations of each point xi ∈ Tset for each basis function, i.e.,
φij = g(||cj − xi||,σj), for i = 1, . . . ,Nt and j = 1, . . . ,h.

The parameters σj are then adjusted by using the Differential Evolu-
tion (DE) algorithm [129], whose objective is to minimize the training
error defined in equation (8.6). Once the σj parameters are adjusted,
the prediction function for a determined kernel K of a solution x ∈ Ω
can be calculated by:

ϕ̂K(x) =
h∑
j=1

wj · g(||x − cj||,σj) (8.7)

8.2.3.3 Cooperative surrogate models and Function Prediction

Once the three RBF networks are built, each of them using the three
above mentioned kernels, the prediction of the function is carried
out. Let ϕGK(x),ϕMK(x) and ϕIMK(x) be the predicted value given by
RBF networks using the Gaussian, multi-quadratic and inverse multi-
quadratic kernel, respectively. These three RBF networks cooperate by
providing information of the search space that they model. Therefore,
the function prediction f̂ for an arbitrary x ∈ Ω is defined by:

f̂(x) = λ1 ·ϕGK(x) + λ2 ·ϕMK(x) + λ3 ·ϕIMK(x) (8.8)

where Λ = (λ1, λ2, λ3)T is a weight vector, i.e. λi > 0 and
∑3
i=1 λi = 1.

Therefore, the weight for each predicted value needs to be calculated.

8.2 a moea based on decomposition assisted by rbf networks 125

Let Tset be the knowledge set for training the different RBF net-
works. The weight vector Λ is then calculated by:

λi =
αi

|Tset|
, i = 1, 2, 3 (8.9)

where αi is the number of solutions in Tset with the lowest prediction
error for the ith RBF network (Gaussian, multi-quadratic and inverse
multi-quadratic, respectively).

8.2.4 Finding an Approximation to PF

MOEA/D-RBF approximates solutions to the PF by using the well-
known MOEA/D [155] (see Algorithm 8). The search is conducted
by the set of weight vectors W = {w1, . . . , wN}. MOEA/D searches
the solutions to each scalar problem defined by each weight vector
wi ∈W. The evolutionary process of MOEA/D is performed during
a determined number of generations by employing the prediction
function defined in equation (8.8). The final population denoted as P̂?

is then reported as an approximation to PF.

8.2.5 Selecting Points to Evaluate

Let W = {w1, . . . , wN} be the well-distributed set of weight vectors
used by MOEA/D. Let P̂? be the approximation to PF obtained by
MOEA/D. Let Ws = {ws

1, . . . , ws
Ns

} be a well-distributed set of weight
vectors, such that |Ws| < |W|. For each ws

i ∈Ws, we define Bs(ws
i) =

{w1, . . . , wNa}, such that w1, . . . , wNa ∈W are the Na = b NNs c closest
weight vectors from W to ws

i . With that, an association of weight
vectors from W to Ws is defined. This association defines a set of
neighborhoods Bs(ws

i) which are distributed along the whole set of
weight vectors W, see Figure 8.2. Once the neighborhoods Bs(ws

i)

have been defined, a set of solutions is selected to be included in the
training set Tset, according to the next description.

8.2.5.1 Selecting Points to be Evaluated using the Real Fitness Function

A set S = {x1, . . . , wNs} of Ns solutions taken from P̂ is chosen to
be evaluated using the real fitness function. Each solution in S is

126 combining surrogate models and local search for multi-objective optimization

w
s

1

w
s

5

w
s

2

w
s

3

w
s

4

w
s

1
Bs()

w
s

5
Bs()

Figure 8.2.: Association of weight vectors from W to Ws. The vectors in
blue represent the projection of W set, while the vectors in red
represent the projection of Ws set. This association defines the
neighborhoods Bs(ws1) to Bs(ws5)

selected such that it minimizes the problem defined by a weight
vector wj ∈ Bs(ws

i), where i = 1, . . . ,Ns and j = 1, . . . Na.
At each call of the selection procedure, the weight vector wj is se-

lected by sweeping the set of weight vectors in Bs(ws
i) in a cyclic way,

i.e., once the last weight vector is selected, the next one is picked
up from the beginning. Since the neighborhoods Bs(ws

i) are dis-
tributed along the whole weight set W, the selection of solutions
in each neighborhood should obtain spread solutions along the PF.
No solution in S should be duplicated. If this is the case, the re-
peated solution should be removed from S. For each new evalu-
ated solution, we set neval = neval + 1, if neval > Emax then we set
stopping_criterion = TRUE, where neval and Emax are the current
and the maximum number of fitness function evaluations, respec-
tively.

8.2.5.2 Updating the Training Set and the External Archive

The maximum number of solutions in the training set Tset is defined
by the parameter Nt. The updating of Tset is carried out by defining a
well-distributed set of Nt weight vectors Wt = {wt

1, . . . , wt
Nt

}. There-
fore, the best Nt different solutions from T = {Tset ∪ S}, such that they

8.2 a moea based on decomposition assisted by rbf networks 127

minimize the subproblems defined by each weight vector wt
i ∈ Wt,

are used to update Tset. If after updating the training set, any solution
sj ∈ S was not selected to be included in Tset, then, it is added by
replacing the closest solution (in the objective space) in Ts. With this,
all solutions in S are included in Tset and the model can be improved
even if it has been previously misinformed.

The external archive A contains the nodominated solutions found
along the search. For each sj ∈ S, the external archive is updated by
removing from A all the solutions dominated by sj, and then, sj is
stored in A if no solutions in A dominate si.

8.2.6 Updating the Population

Once the external archive is updated, the population P̂ is also updated
for the next iteration of MOEA/D. Considering the external archive
A as the set of nondominated solutions found by MOEA/D-RBF, the
population P̂ of N solutions is updated according to the following
description.

Let m and σ be the average and standard deviation of the solutions
contained in A. Then, new bounds in the search space are defined
according to:

Lbound = m − σ

Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower and
upper bounds of the new search space, respectively.

Once the new bounds have been defined, a well-distributed set Q
of N− |A| solutions is generated by means of the Latin hypercube
sampling method [92] in the new search space. The population P̂ is
then redefined by the union of Q and A, that is P̂ = {Q∪A}.

The effectiveness of the proposed MOEA/D-RBF has been shown
in [151]. In the next section, we present a hybridization between the
proposed MOEA/D-RBF and the Nelder and Mead method (also
known as Nonlinear Simplex Search (NSS)), which is the main aim in
this chapter.

128 combining surrogate models and local search for multi-objective optimization

8.3 The MOEA/D-RBF with Local Search

The proposed MOEA/D-RBF with Local Search (MOEA/D-RBF+LS) de-
composes the MOP (3.1) into N single-objective optimization prob-
lems. MOEA/D-RBF uses a well-distributed set of N weight vectors
W = {w1, . . . , wN} to define a set of single-objective optimization sub-
problems by using the PBI approach. Each subproblem is solved bySee Section 3.2.2 for

a more detailed
description of the

PBI approach

MOEA/D, which is assisted by RBF networks. After each iteration of
MOEA/D, the local search procedure is applied. Algorithm 19 shows
the general framework of the proposed MOEA/D-RBF+LS. In the
following sections, we describe in detail the proposed local search
mechanism adopted by MOEA/D-RBF+LS.

8.3.1 Local Search Mechanism

As indicated before, the local search mechanism adopted by
MOEA/D-RBF+LS is based on the Nelder and Mead algorithm [102].
The effectiveness of NSS as a local search mechanism in MOEAs has
been shown by several authors, see e. g. [78, 79, 146, 145, 150, 152, 157].
Here, we adopt the local search mechanism employed by the Multi-
Objective Evolutionary Algorithm based on Decomposition with Local
Search II (MOEA/D+LS-II) which was presented in Chapter 7. How-
ever, in order to be coupled with the proposed MOEA/D-RBF, some
modification have been introduced. The local search procedure is
performed after each iteration of MOEA/D-RBF (see Step 7 of Algo-
rithm 19). With that, the solutions in the training set are refined and
the function prediction for the next iteration of MOEA/D-RBF could
be improved. In the following, we present in detail the components
of the local search engine outlined in Algorithms 19 and 20.

8.3.1.1 Defining the Population Pls
At the beginning, a new population Pls ofNls individuals is defined in
order to direct the local search. Let Wls and Tset be a well-distributed
set of weight vectors and the training set, respectively. Pls is stated by
choosing different solutions xt ∈ Tset such that they minimize:

g(xt|wi, z?), for each wls
i ∈Wls

8.3 the moea/d-rbf with local search 129

Algorithm 19: General framework of MOEA/D-RBF+LS
Input:
W = {wi, . . . , wN}: a well-distributed set of weight vectors.
Nt: the number of points in the initial training set.
Emax: the maximum number of evaluations allowed in MOEA/D-RBF+LS.
Output:
A: an approximation to the PF.

1 begin
2 Step 1. Initialization: Generate a set Tset = {x1, . . . , xNt } of Nt points

such that xi ∈ Ω (i = 1, . . . Nt), by using an experimental design
method. Evaluate the F-functions values of these points. Set A as the set
of nondominated solutions found in Tset. Set neval = Nt. Generate a
population P̂ = {x1, . . . , xN} of N individuals such that xi ∈ Ω
(i = 1, . . . N), by using an experimental design method.
stopping_criterion = FALSE.

3 while (stopping_criterion == FALSE) do
4 Step 2. Model Building: See section 8.2.3.
5 Step 3. Evaluate P̂: Evaluate the population P̂ using the surrogate

model.
6 Step 4. Find an approximation to PF: By using MOEA/D, the

surrogate model and the population P̂, obtain the approximation P̂
to PF. See section 8.2.4.

7 Step 5. Select points for updating Tset: See section 8.2.5.
8 Step 6. Update population P̂: See section 8.2.6.
9 Step 7. Local Search: Apply nonlinear simplex search by using

the training set Tset, see section 8.3.1 and Algorithm 20.
10 end
11 return A;

12 end

The cardinality of Wset should be much less that the cardinality
of the weight set W (which directs the search of MOEA/D-RBF+LS),
i.e., |Wls| << |W|. With that, a small portion of search directions are
considered by the local search engine, in order to obtain well-spread
solutions along the PF.

8.3.1.2 Defining the Search Direction and the Initial Solution

The proposed local search mechanism, approximates solutions to
the maximun bulge (sometimes called knee) of the PF. Therefore,
the local search is focused on minimizing the subproblem that

130 combining surrogate models and local search for multi-objective optimization

Algorithm 20: Use of Local Search
Input:
a stopping criterion;
Tset: the training set used by MOEA/D-RBF+LS.
Wls = {wi, . . . , wN}: a well-distributed set of weight vectors for the local
search.
St: the similarity threshold for the local search;
Els: the maximum number of evaluations for the local search.
Output:
Tset: the updated training set Tset.

1 begin
2 Step 1. Defining the Population Pls: Using the weight set Wls and

the training set Tset, define the population Pls from which the local
search is performed, see Section 8.3.1.1;

3 Step 2 Defining the Search Direction and the Initial Solution:
Define the search direction and the initial solutions from which the local
search starts, according to Section 8.3.1.2

4 Step 3. Checking Similarity: Obtain the similarity (Sls) between pini
and the previous initial solution (p ′ini) for the local search, see
Section 8.3.1.3;

5 if there are enough resources and St < Sls then
6 Step 4. Building the Simplex: Build the initial simplex for the

nonlinear simplex search, see Section 8.3.1.4;
7 Step 5. Deforming the Simplex: Perform any movement (reflection,

contraction or expansion) for obtaining pnew according to Nelder
and Mead’s method, see Section 8.3.1.5;

8 Step 6. Updating the Population and the External Archive:
Update the population Pls and the external archive A using the new
solution pnew according to the rules presented in Section 8.3.1.6.

9 Step 7. Stopping Criterion: If the stopping criterion is satisfied
then stop the local search and go to Step 7. Otherwise, go to Step 4,
see Section 8.3.1.7.

10 end
11 Step 8. Updating the Training Set: Update the training set Tset

according to the updating scheme, see Section 8.3.1.8.
12 end

approximates the solutions lying on the knee of the PF. Thus, the
search direction is defined by the weighting vector:

ws = (1/k, . . . , 1/k)T

where k is the number of objective functions. Considering the use
of the PBI approach, the penalty value θ is set to θ = 10.

8.3 the moea/d-rbf with local search 131

Let A be the set of nondominated solutions found during the search
of MOEA/D-RBF+LS. Let ws be the weighting vector that defines the
search direction for the nonlinear simplex search. The solution pini
which starts the search is defined by:

pini = x ∈ A, such that minimizes: g(x|ws, z?)

Solution pini represents not only the initial search point, but also the
simplex head from which the simplex will be built.

8.3.1.3 Checking Similarity

The NSS explores the neighborhood of the solution pini ∈ A. Since
the simplex search is applied after each iteration of the MOEA/D,
most of the time, the initial solution pini does not change its position
from one generation to another. For this reason, the proposed local
search mechanism stores a record (p ′ini) of the last position from
which the nonlinear simplex search starts. At the beginning of the
execution of MOEA/D-RBF+LS, the initial position record is set as
empty, that is: p ′ini = ∅. Once the simplex search is performed, the
initial solution is stored in the historical record, i.e., p ′ini = pini. In
this way, for the next call of the local search, a previous comparison
of similarity is performed. That is, the local search will be applied,
if and only if, ||pini − p ′ini|| > Sls, where Sls represents the similarity
threshold. Both the updating of the historical record and the similarity
operator are performed for each initial solution pini which minimizes
the subproblem defined by ws. This is the same strategy used by
MOEA/D+LS-II in Chapter 7. However, here, we adopted a similarity
threshold St = 0.01.

8.3.1.4 Building the Simplex

Let A be the set of nondominated solutions found during the search
of MOEA/D-RBF+LS. Then, the simplex ∆ is built in three different
ways, depending of the cardinality of A.

i. |A| = 1: Set σ = (0.01, . . . , 0.01)T and the simplex is defined as:

∆ = {a,∆2, . . . ,∆n+1}

where a ∈ A ⊂ Ω and the remaining n vertices ∆i ∈ Ω

(i = 1, . . . ,n) are generated by using a low-discrepancy sequence.

132 combining surrogate models and local search for multi-objective optimization

In our study, we adopted the Hammersley sequence [55] to gen-
erate a well-distributed sampling of solutions in a determined
search space. The search space is defined by:

Lbound = a − σ

Ubound = a + σ

In this way, the vertices are generated by means of the Hammer-
sley sequence using as bounds Lbound and Ubound.

ii. 1 < |A| < (n+ 1): The simplex is defined by using all solutions
in A and the remaining l = (n+ 1) − |A| solutions are generated
by using the Hammersley sequence. However, the bounds are
defined as:

Lbound = m − σ

Ubound = m + σ

where (m) and (σ) are the average and the standard devia-
tion of the solutions contained in A, respectively. Lbound and
Ubound are the lower and upper bounds of the new search space,
respectively.

iii. |A| > (n+ 1): In this case, the simplex is built by choosing in a
random way, n+ 1 solutions taken from A.

8.3.1.5 Deforming the Simplex

Let ws be the weight vector that defines the search direction for
the NSS. Let ∆ be the simplex defined by the above description.
The simplex search will be focused on minimizing the subproblem
defined by the weighting vector ws. At each iteration of the simplex
search, the n+ 1 vertices of the simplex ∆ are sorted according to
their value for the subproblem that it tries to minimize (the best
value is the first element). In this way, a movement into the simplex
is performed for generating the new solution pnew. The movements
are calculated according to the equations provided by Nelder and
Mead, see Section 5.1. Each movement is controlled by three scalar
parameters: reflection (ρ), expansion (χ) and contraction (γ).

The NSS was conceived for unbounded problems. When dealing
with bounded variables, the created solutions can be located outside
the allowable bounds after some movements of the NSS. In order to

8.3 the moea/d-rbf with local search 133

deal with this, we bias the new solution if any component of pnew
lies outside the bounds according to:

p(j)
new =

L(j)
bound , if p(j)

new < L(j)
bound

U(j)
bound , if p(j)

new > U(j)
bound

p(j)
new , otherwise.

(8.10)

where L(j)
bound and U(j)

bound are the lower and upper bounds of the jth

parameter of pnew, respectively.

8.3.1.6 Updating the Population and the External Archive

The information provided by the local search mechanism is intro-
duced into the population Pls. Since we are dealing with MOPs, the
new solution generated by any movement of the simplex search could
be better than more than one solution in the current population. Thus,
we adopt the following mechanism in which more than one solution
from the population could be replaced.

Let pnew be the solution generated by any movement of the NSS.
Let B(ws) and Wls be the neighborhood of the T closest weighting
vectors to ws, and the well-distributed set of all weighting vectors,
respectively. We define:

Q =

{
B(ws) , if r < δ
W otherwise

where r is a random number having a uniform distribution. In this
work, we use δ = 0.5.

The population Pls is updated by replacing at most Rls solutions
from Pls such that, g(pnew|wi, z) < g(xi|wi, z), where wi ∈ Q and Function g(x|wi, z)

represents the
scalarization
function defined by
the PBI approach,
see Section 3.2.2.

xi ∈ Pls, such that xi minimizes the subproblem defined by wi. In
our study, we set Rls = 15 as the maximum number of solutions to
replace.

The external archive A contains the nodominated solutions found
during the search of MOEA/D-RBF+LS. For each new solution pnew,
the external archive is updated by removing from A all the solutions
dominated by pnew, and then, pnew is stored in A if no solutions in A
dominate pnew.

134 combining surrogate models and local search for multi-objective optimization

8.3.1.7 Stopping Criterion

The local search procedure is limited to a maximum number of fitness
function evaluations defined by Els. In this way, the proposed local
search has the following stopping criteria:

1. If the nonlinear simplex search overcomes the maximum number
of evaluations (Els) or there are not enough resources for continu-
ing the search of MOEA/D-RBF+LS, the local search is stopped.

2. The search could be inefficient if the simplex has been deformed
so that it has collapsed into a region in which there are no local
minima. According to Lagarias et al. [82] the simplex search
finds a better solution in at most n+ 1 iterations (at least in
convex functions with low dimensionality). Therefore, if the
simplex search does not find a better value for the subproblem
defined by ws in n+ 1 iterations, we stop the search. Otherwise,
we perform another movement into the simplex by going to
Step 3 of Algorithm 20.

8.3.1.8 Updating the Training Set

The knowledge obtained by the local search is introduced to
MOEA/D-RBF+LS by updating the training set Tset. The maximum
number of solutions in the training set Tset is defined by the parameter
Nt. The updating of Tset is carried out by defining a well-distributed
set of Nt weight vectors Wt = {wt

1, . . . , wt
Nt

}. Therefore, the best Nt
different solutions from T = {Tset ∪A}, such that they minimize the
subproblems defined by each weight vector wt

i ∈ Wt, are used to
update Tset. With this, the nondominated solutions found by the local
search are included in Tset and the model can be improved even if it
has been previously misinformed.

8.4 Experimental Results

8.4.1 Test Problems

The effectiveness of MOEA/D-RBF has been shown in [151], where it
was compared with respect to two state-of-the-art MOEAs: the Multi-
Objective Evolutionary Algorithm based on Decomposition with Gaussian

8.4 experimental results 135

Process Model (MOEA/D-EGO) [156] and the original MOEA/D [155].
Here, we limit the comparative study of MOEA/D-RBF+LS to be
performed with respect to MOEA/D-RBF and the original MOEA/D.

Therefore, in order to assess the performance of the proposed
MOEA/D-RBF+LS, we compare its results with respect to those ob-
tained by MOEA/D-RBF and the original MOEA/D. We adopted
five test problems whose PFs have different characteristics including
convexity, concavity, disconnections and multi-modality. Thus, the
Zitzler-Deb-Thiele (ZDT) test suite [158] (except for ZDT5, which is a
binary problem) is adopted (see Appendix A.2). We used 30 decision
variables for problems from ZDT1 to ZDT3, while ZDT4 and ZDT6

were tested using 10 decision variables, as suggested in [158]. Besides,
we adopt a real-world problem related to the airfoil design problem
(for a more detailed description of the case study tackled here, see
Appendix B).

8.4.2 Performance Assessment

To assess the performance of the proposed MOEA/D-RBF+LS and
MOEA/D-RBF on the test problems adopted, the Hypervolume (IH) in-
dicator was employed [160]. This performance measure is Pareto com-
pliant [162], and quantifies both approximation and maximum spread
of nondominated solutions along the PF. A high IH value, indicates
that the approximation P is close to PF and has a good spread towards
the extreme portions of the PF. The interested reader is referred to sec-
tion 3.4 for a more detailed description of this performance measure.

8.4.3 Experimental Setup

As indicated before, the proposed approach is compared with respect
to MOEA/D-RBF and the original MOEA/D. For each MOP, 30 in-
dependent runs were performed with each algorithm. Each algorithm
was restricted to 1,000 fitness function evaluations. For the airfoil
design problem, the search was restricted to 5,000 fitness function
evaluations.

The parameters used for MOEA/D, which is employed by
MOEA/D-RBF and MOEA/D-RBF+LS, were set as in [155]. This is
because there is empirical evidence that indicates that these are the

136 combining surrogate models and local search for multi-objective optimization

most appropriate parameters for solving the ZDT test suite, see [155].
The weight vectors for the algorithms were generated as in [155], i.e.,
the setting of N and W = {w1, . . . , wN} is controlled by a parameter H.
More precisely, w1, . . . , wN are all the weight vectors in which each
individual weight takes a value from:{

0

H
,
1

H
, . . . ,

H

H

}
Therefore, the number of such vectors in W is given by N = Ck−1H+k−1,
where k is the number of objective functions (for the test problems
adopted, k = 2). For MOEA/D-RBF and MOEA/D-RBF+LS, the set
W was defined with H = 299, i.e., 300 weight vectors. The set Wt

was generated with H = 10n− 1. Therefore, Nt = 10n weight vectors
(which define the cardinality of the training set), where n is the
number of decision variables of the MOP. The set Ws uses H = 9, i.e.,
Ns = 10 weight vectors. Note that these values of the parameters are
the ones used by MOEA/D-RBF in [151].

For the local search, the set Wls was generated using H = 99;
therefore, Nls = 100. The NSS was performed using ρ = 1,χ = 2 and
γ = 1/2, for the reflection, expansion and contraction, respectively.
The maximum number of solutions to be replaced was set to Rls = 15
and the maximum number of fitness function evaluations was set to
Els = 2(n+ 1). Finally, the similarity threshold was set to St = 0.01.
The execution of the algorithms was carried out on a computer with
a 2.66GHz processor and 4GB in RAM.

As indicated before, the algorithms were evaluated using the IH per-
formance measure. The results obtained are summarized in Table 11.
This table displays both the average and the standard deviation (σ)
of the IH indicator for each MOP, respectively. The reference vector r
used for computing IH, for each MOP, is shown in Table 11. For an
easier interpretation, the best results are presented in boldface for
each test problem adopted.

8.5 numerical results 137

8.5 Numerical Results

8.5.1 ZDT Test Problems

Table 11 shows the results obtained for the IH indicator when the
algorithms were tested on the ZDT test problems. From this table
it is possible to see that the two MOEAs assisted by surrogate mod-
els (i. e., MOEA/D-RBF and MOEA/D-RBF+LS), obtained better re-
sults than those achieved by the original MOEA/D in most of the
ZDT problems. The exception was ZDT4, where MOEA/D obtained
a better IH value. The poor performance of the MOEAs assisted
by surrogate models is attributed to the high multi-frontality that
ZDT4 has, which evidently confuses the surrogate approaches. This
table shows also that MOEA/D-RBF+LS obtained a better approxi-
mation to PF than the one achieved by MOEA/D-RBF in most of the
ZDT test problems. The exception was ZDT1 where MOEA/D-RBF
was better than MOEA/D-RBF+LS. However, MOEA/D-RBF was
not significantly better than MOEA/D-RBF+LS. The performance of
MOEA/D-RBF+LS and MOEA/D-RBF was very similar for ZDT1

and ZDT2. The differences were more significant for ZDT3, ZDT4 and
ZDT6. These last problems have special features that deteriorate the
good performance of surrogate models. ZDT3 is a problem whose PF

consists of several noncontiguous convex parts. ZDT4 is multi-modal
problem, which causes difficulties to model the search space in a
suitable way. ZDT6 has two difficulties caused by the nonuniformity
of the search space: first, the Pareto optimal solutions are nonuni-
formly distributed along the PF; second, the density of the solutions
is lower near the PF and gets higher as we move away from the PF.
These features evidently present a major obstacle to the surrogate
model employed by MOEA/D-RBF. However, the use of local search
for these problems, improved the performance of MOEA/D-RBF. In
fact, MOEA/D-RBF+LS obtained better approximations to the PF for
these MOPs, and in some cases, such as in ZDT4 and ZDT6, it was
significantly better.

138 combining surrogate models and local search for multi-objective optimization

8.5.2 Airfoil Design Problem

For this particular problem, the features of the PF are unknown.
According to the results presented in Table 11, we can see that
MOEA/D-RBF+LS obtained better IH values than those reached by
MOEA/D-RBF. This means that our proposed MOEA/D-RBF+LS ob-
tained a better approximation and spread of solutions along the PF

than MOEA/D-RBF.
The original MOEA/D employed, on average, 5,050 seconds to

achieve the convergence with 5,000 fitness function evaluations.
MOEA/D-RBF and MOEA/D-RBF+LS employed, on average, be-
tween 1,900 and 2,000 seconds to achieve a value in the IH indicator
similar to the one reported by MOEA/D in Table 11.Therefore, we ar-
gue that our proposed MOEA/D-RBF+LS is a good choice for dealing
with computationally expensive MOPs.

MOP
MOEA/D-RBF+LS MOEA/D-RBF MOEA/D

Reference vector raverage average average

(σ) (σ) (σ)

ZDT1

0.868197 0.870908 0.000000

(1.1,1.1)T
(0.002837) (0.000371) (0.000000)

ZDT2

0.536389 0.536265 0.000000

(1.1,1.1)T
(0.004921) (0.000593) (0.000000)

ZDT3

0.876380 0.837894 0.009974

(1.1,1.1)T
(0.102611) (0.179280) (0.029880)

ZDT4

12.441923 5.739229 76.593009
(30.0,30.0)T

(30.715277) (30.906695) (108.237963)

ZDT6

96.299610 95.313012 44.984399

(10,10)T
(0.761493) (1.271933) (8.783998)

MOPRW
2.6818676e-07 2.493786e-07 2.149916e-07 (0.007610,
(6.417924e-09) (6.483342e-09) (2.446593e-08) 0.005236)T

Table 11.: Results of the IH metric for MOEA/D-RBF+LS, MOEA/D-RBF
and MOEA/D.

8.6 Remarks

The effectiveness of MOEA/D-RBF was tested in [151], where
it was compared with respect to the original MOEA/D and a
current state-of-the-art MOEA assisted by surrogate models (the
MOEA/D-EGO [156]). Here, we have introduced an extension of
MOEA/D-RBF which includes a local search mechanism in order to

8.6 remarks 139

improve the convergence to the PF, when a low number of fitness
function evaluations is used. The local search mechanism adopted
by MOEA/D-RBF+LS, is the result of previous studies presented in
Chapter 7. However, in order to be coupled with MOEA/D-RBF, some
modification were introduced. The resulting MOEA/D-RBF+LS was
able to improve the convergence of MOEA/D-RBF, when the search
was limited to a low number of fitness function evaluations. We also
validated our proposed approach with a real-world computation-
ally expensive MOP: an airfoil design problem. The obtained results
have shown that MOEA/D-RBF+LS is a viable choice to deal with
MOPs having different features, and the applicability to real-world
applications could speed up convergence to the PF in comparison to
conventional MOEAs.

9
Conclusions and Future Work

In this thesis, we have presented the contributions developed so
far for improving Multi-Objective Evolutionary Algorithms (MOEAs)

by using direct search methods. Such contributions follow two main
directions:

1. to reduce the number of fitness function evaluations, and

2. to maintain a good representation of the Pareto front (PF).

In our study, we adopted a popular direct search method reported
in the specialized literature, the Nelder and Mead algorithm, also
known as Nonlinear Simplex Search (NSS). Throughout this thesis, we
showed the capabilities of NSS when is used for dealing with Multi-
objective Optimization Problems (MOPs). Furthermore, we introduced
distinct strategies to hybridize the NSS with different MOEAs. In the
following, we present the final remarks observed in this study.

9.1 Conclusions

Multi-objective Nonlinear Simplex Search (MONSS). Among the direct
search methods, NSS is one of the most popular methods for
solving optimization problems reported in the specialized litera-
ture. Unlike modern optimization methods, NSS can converge
to a non-stationary point unless the problem satisfies stronger
conditions than are necessary for modern methods [109, 93].
However, in order to improve the performance of the NSS, sev-
eral modifications have been introduced since the late 1970s, see
e. g. [143, 142, 133, 132]. Because of its nature, which is based
on movements over a set of solutions (called simplex), NSS has
became a viable option to be hybridized with population-based
search strategies, such as the Evolutionary Algorithm (EA). In the
last decade, many researchers have reported hybrid approaches

141

142 conclusions and future work

that combine NSS with EA for solving single-objective optimiza-
tion problems. This has motivated the idea of using the NSS in
a multi-objective context.

In Chapter 5, we introduced an extension of the NSS for multi-
objective optimization. The proposed MONSS decomposes a
MOP into several single-objective optimization problems. There-
fore, MONSS uses the directions given by a weighted vector
(which defines a scalar optimization problem) to approximate
solutions to the Pareto optimal set (PS) by modifying a simplex
shape according to the NSS method. Different from standard
implementations of NSS, the proposed strategies implemented
in our study, did not perform the shrinkage step. With that, a
considerable number of fitness function evaluations was saved.
Experimental results showed that the proposed strategy was
effective when dealing with MOPs having low and moderate
dimensionality in decision variable space. The effectiveness of
MONSS was tested with several test problems taken from the
specialized literature, and its performance was compared with
respect to a state-of-the-art MOEA. Considering that the NSS
was conceived to deal with single-objective optimization, and
based on the results presented in Chapter 5, we conclude that
the proposed MONSS satisfies our original research goal.

Multi-Objective Evolutionary Algorithm based on Decomposition with Lo-
cal Search (MOEA/D+LS). In Chapter 6, we presented a hy-
bridization of the Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) with the NSS algorithm, in which
the former acts as the global search engine, and the latter works
as a local search engine. The local search mechanism used
by MOEA/D+LS is based on the MONSS framework, which
adopts a decomposition approach similar to the one used in
MOEA/D. Therefore, its use could be easily coupled within
other decomposition-based MOEAs, such as those reported
in [98, 107, 149]. Our proposed MOEA/D+LS, was found to
be competitive with respect to the original MOEA/D over
the Zitzler-Deb-Thiele (ZDT) and Deb-Thiele-Laumanns-Zitzler
(DTLZ) test suites, which were adopted in our comparative
study. We consider that the strategy employed to hybridize the
MONSS framework with MOEA/D was, in general, appropriate

9.1 conclusions 143

for dealing with the MOPs adopted here. However, in order to
improve this Multi-Objective Memetic Algorithm (MOMA), some
issues could be better addressed.

Multi-Objective Evolutionary Algorithm based on Decomposition with Lo-
cal Search II (MOEA/D+LS-II). In Chapter 8, we introduced an
enhanced version of MOEA/D+LS. Similar to MOEA/D+LS,
MOEA/D+LS-II decomposes a MOP into single-objective opti-
mization problems. Therefore, in order to achieve a good repre-
sentation of the PF, the search is directed by a well-distributed
set of weight vector. MOEA/D+LS-II incorporates the NSS al-
gorithm as a local search engine into the well-known MOEA/D,
as in MOEA/D+LS. However, in order to improve the local
search, some modifications were introduced. The proposed
MOEA/D+LS-II directs the search towards the extremes and
the maximum bulge (sometimes called knee) of the PF, in con-
trast to MOEA/D+LS which directs the search towards different
neighborhoods of the whole set of weight vectors. Besides, the
selection mechanism (from which the local search starts) used
in MOEA/D+LS was also modified. MOEA/D+LS-II incorpo-
rates a new mechanism base on similarity of solutions to decide
when the local search should be applied. The performance of
MOEA/D+LS-II was tested over the ZDT, DTLZ and Walking-
Fish-Group (WFG) test suites, which consist on several problems
with different features in their PF. Our preliminary results indi-
cate that the proposed mechanisms incorporated to MOEA/D,
give robustness and better performance when it is compared
with respect to the original MOEA/D and MOEA/D+LS. We
also confirmed that multi-frontality is the main obstacle to ac-
celerate convergence to the PF in our proposed MOMAs, i. e.,
the MOEA/D+LS and MOEA/D+LS-II.

Multi-Objective Evolutionary Algorithm based on Decomposition assisted
by Radial Basis Functions (MOEA/D-RBF). The use of a low num-
ber of fitness function evaluations in MOEAs is an important
issue in multi-objective optimization, because there are several
real-world applications that are computationally expensive to
solve. In the last few years, the use of MOEAs assisted by sur-
rogate models has been one of the most common techniques
adopted to solve complex problems, see e. g. [36, 74, 105, 147,

144 conclusions and future work

156]. However, the prediction error of such models often directs
the search towards regions in which no Pareto optimal solutions
are found. In Chapter 8, we introduced an algorithm based on
the well-known MOEA/D which is assisted by Radial Basis Func-
tion (RBF) networks. The resulting MOEA/D-RBF uses different
kernels in order to have different shapes of the fitness landscape.
With that, each RBF network provides information which is
used to improve the value of the objective function. According
to the results presented in [151], our proposed MOEA/D-RBF
was able to outperform both to the original MOEA/D and
to the Multi-Objective Evolutionary Algorithm based on Decompo-
sition with Gaussian Process Model (MOEA/D-EGO) [156] when
performing a low number of fitness function evaluations. The
good performance of the proposed MOEA/D-RBF was tested
not only with respect to standard test problems, but also with a
real-world application (an airfoil design problem). Although the
design of MOEAs assisted by surrogate models is not the main
aim in this thesis, we have also contributed to the state of the
art regarding these evolutionary techniques.

MOEA/D-RBF with Local Search (MOEA/D-RBF+LS). The high modal-
ity and dimensionality of some problems, often constitute major
obstacles for surrogate models. If a surrogate model is not able
to shape the region in which the PS is contained, the search
could be misinformed and converge to wrong regions. This has
motivated the idea of incorporating procedures to refine the
solutions provided by surrogate models, such as local search
mechanisms. In general, the use of local search mechanisms
based on mathematical programming methods combined with
MOEAs assisted by surrogate models has been scarcely explored
in the specialized literature. As a final contribution of this thesis,
in Chapter 8, we introduced a MOEA assisted by RBF networks
which are adopted as its refinement mechanism, a modified ver-
sion of the local search procedure presented in Chapter 7. The
proposed MOEA/D-RBF+LS was able to improve the conver-
gence of MOEA/D-RBF, when the search was limited to a low
number of fitness function evaluations. We also validated our
proposed approach with a real-world computationally expen-
sive MOP: an airfoil design problem presented in Appendix B.

9.2 future work 145

The obtained results have shown that MOEA/D-RBF+LS is a vi-
able choice to deal with MOPs having different features, and the
applicability to real-world applications could speed up conver-
gence to the PF in comparison to conventional MOEA. However,
here we confirmed that the multi-modality of MOPs confuses
both the surrogate model and the local search procedure that
we designed.

In general, the performance of the MOMAs presented in this thesis,
showed improvements with respect to the baseline MOEA adopted.
Each hybrid approach was widely tested over several MOPs taken
from the specialized literature. It is important to note that the conclu-
sions provided in this chapter, are restricted to the set of functions
adopted, since by the No Free Lunch Theorem [140], general con-
clusions about the behavior of our proposed algorithms can not be
possibly drawn. However, given the robustness shown by the pro-
posed MOMAs in the large number of MOPs adopted, we expect a
good performance when applied to solve other MOPs with similar
features to the one adopted here. Note however, that multi-modal
problems are the Achilles’ heel of the hybrid approaches presented
herein.

9.2 Future Work

As part of our future work, we are interested in designing other
mechanism that helps us decide whether the local search engine will
be triggered or not. The exploration of different strategies for con-
structing the simplex continues to be a good path for future research.
We hypothesized that the use of an appropriate simplex and a good
hybridization strategy could be a powerful combination for solving
complex and computationally expensive MOPs (as for example those
presented in [154]). One of the most difficult task to address, is to
extend our proposed hybrid approaches to deal with constrained
MOPs using for example, the Complex method [112] or any variants
of the NSS algorithm. The modifications done to the NSS algorithm
reported in the specialized literature, have shown better performance
than the original NSS algorithm. This motivates the idea to adopt
these modified approaches in order to be hybridized with MOEAs.
Self-adaption techniques applied to MOEAs is a current area of re-

146 conclusions and future work

search, see e. g. [153, 1, 134]. These mechanisms provide to MOEAs,
suitable parameters to speed up converge in the evolutionary pro-
cess. Inspired on this techniques, it is possible to explore different
mechanisms for adjusting, in dynamic way, the control parameters
during the search of the NSS algorithm. On the other hand, inves-
tigating different stopping criteria for the local search mechanism
and hybridizing the local search engines proposed in this thesis with
other decomposition-based MOEAs, is also a task to address. Finally,
in order to better support the validity of results, a more elaborated
study regarding statistical analysis using a witness test such as either
Wilcoxon test, T-test or an Analysis of variance (ANOVA), is task left
for future work.

In this thesis, we adopted the NSS algorithm to improve the per-
formance of MOEAs. However, in the specialized literature there are
other many direct search methods that could achieve better results
than the one reported in this work. Therefore, the use of other direct
search methods such as: the Hooke and Jeeves algorithm [60], the
conjugate directions of Powell [108] or the Zangwill method [144],
among many others, remains as an open research area.

A
Test Functions Description

A.1 Classic Multi-objective Optimization Prob-
lems

DEB2. The test function DEB2 was proposed by Deb in [24]. This
test function has a disconnected and non-convex PF and consists
in minimizing:

f1(x) = x1
f2(x) = g(x) · h(x) (DEB2)

such that:
g(x) = 1+ 10x2

h(x) = 1−

(
f1(x)
g(x)

)2
−
f1(x)
g(x)

× sin (12πf1(x))

where xi ∈ [0, 1].

FON2. The test function FON2 was introduced by Fonseca and
Fleming in [44]. This problem has a connected and non-convex
PF and consists in minimizing:

f1(x) = 1− exp
(
−
∑n
i=1

(
xi −

1√
n

)2)
f2(x) = 1− exp

(
−
∑n
i=1

(
xi +

1√
n

)2) (FON2)

where n = 3 and xi ∈ [−4, 4].

LAU. The test function LAU was proposed by Laummans [84].
This problem has a connected and convex PF and consists in
minimizing:

f1(x) = x21 + x
2
2

f2(x) = (x1 + 2)
2 − x22

(LAU)

147

148 test functions description

where xi ∈ [−50, 50].

LIS. The test function LIS was introduced by Lis and Eiben in [87].
This problem has a connected and non-convex PS and consists
in minimizing:

f1(x) = 8

√
x21 + x

2
2

f2(x) = 4

√
(x1 − 0.5)2 + (x2 − 0.5)2

(LIS)

where xi ∈ [−5, 10].

MUR. The test function MUR was proposed by Murata and
Ishibuchi in [101]. This test function has a connected and convex
PF and consists in minimizing:

f1(x) = 2
√
x1

f2(x) = x1(1+ x2) + 5
(MUR)

where x1 ∈ [1, 4] and x2 ∈ [1, 2].

REN1. The test function REN1 was introduced by Valenzuela and
Uresti in [135]. This problem has a connected and non-convex
PF and consists in minimizing:

f1(x) =
1

x21 + x
2
2 + 1

f2(x) = x21 + 3x
2
2 + 1

(REN1)

where xi ∈ [−3, 3].

REN2. The test function REN2 was introduced by Valenzuela and
Uresti in [135]. This problem has a connected and non-convex
PF and consists in minimizing:

f1(x) = x1 + x2 + 1

f2(x) = x21 + 2x
2
2 − 1

(REN2)

where xi ∈ [−3, 3].

A.1 classic multi-objective optimization problems 149

VNT2. The test function VNT2 was proposed by Viennet et al.
in [137]. This test function has a connected and non-convex PF.
The problem consists in minimizing:

f1(x) =
(x1 − 2)

2

2
+

(x2 + 1)
2

13
+ 3

f2(x) =
(x1 + x2 − 3)

2

36
+

(−x1 + x2 + 2)
2

8
− 17

f3(x) =
(x1 + 2x2 − 1)

2

175
+

(2x2 − x1)
2

17
− 13

(VNT2)

where xi ∈ [−4, 4].

VNT3. The test function VNT3 was proposed by Viennet et al.
in [137]. This test function has a connected and non-convex
PF. The problem consists in minimizing:

f1(x) = 0.5(x21 + x
2
2) + sin(x21 + x

2
2)

f2(x) =
(3x1 − 2x2 + 4)

2

8
+

(x1 − x2 + 1)
2

27
+ 15

f3(x) =
1

(x21 + x
2
2 + 1)

− 1.1 exp(−x21 − x
2
2)

(VNT3)

where xi ∈ [−3, 3].

150 test functions description

A.2 Zitzler-Deb-Thiele Test Problems

ZDT1. The test function ZDT1 has a convex PF and consists in
minimizing:

f1(x) = x1
f2(x) = g(x) · h(f1(x),g(x))

(ZDT1)

such as:
g(x) = 1+ 9

(n−1)

n∑
i=2

xi

h(f1(x),g(x)) = 1−
√
f1(x)
g(x)

where n = 30, and xi ∈ [0, 1]. The PF is formed with g(x) = 1,
i.e., xj = 0 for all j = 2, . . . ,n.

ZDT2. The test function ZDT2 is the non-convex counterpart to
(ZDT1) and consists in minimizing:

f1(x) = x1
f2(x) = g(x) · h(f1(x),g(x))

(ZDT2)

such as:
g(x) = 1+ 9

(n−1)

n∑
i=2

xi

h(f1(x),g(x)) = 1−
(
f1(x)
g(x)

)2
where n = 30, and xi ∈ [0, 1]. The PF is formed with g(x) = 1,
i.e., xj = 0 for all j = 2, . . . ,n.

ZDT3. The test function ZDT3 represents the discreteness feature;
its PF consists of several noncontiguous convex part and it
consists in minimizing:

f1(x) = x1
f2(x) = g(x) · h(f1(x),g(x))

(ZDT3)

such as:

g(x) = 1+ 9
(n−1)

n∑
i=2

xi

h(f1(x),g(x)) = 1−
√
f1(x)
g(x) −

(
f1(x)
g(x)

)
sin(10πf1(x))

A.2 zitzler-deb-thiele test problems 151

where n = 30, and xi ∈ [0, 1]. The tPF is formed with g(x) = 1,
i.e., xj = 0 for all j = 2, . . . ,n. The introduction of the sine
function in h causes discontinuity in the PF. However, there is
no discontinuity in the parameter space (i.e. in the PS).

ZDT4. This test function contains 219 local Pareto fronts and, there-
fore, it tests for the EA’s ability to deal with multimodality; it
consists in minimizing:

f1(x) = x1
f2(x) = g(x) · h(f1(x),g(x))

(ZDT4)

such as:

g(x) = 1+ 10(n− 1) +
n∑
i=2

(x2i − 10 cos(4πxi))

h(f1(x),g(x)) = 1−
√
f1(x)
g(x)

where n = 10, x1 ∈ [0, 1], and x2, . . . , xn ∈ [−5, 5]. The PF is
formed with g(x) = 1, i.e., xj = 0 for all j = 2, . . . ,n, the best
local Pareto front with g(x) = 1.25. Note that not all local Pareto
sets are distinguishable in the objective space.

ZDT6. This test function includes two difficulties caused by the
nonuniformity of the search space: first, the Pareto optimal so-
lutions are nonuniformly distributed along the PF; second, the
density of the solutions is lower near the PF and gets higher as
we move away from the front. This problem consists in minimiz-
ing:

f1(x) = 1− exp(−4x1) · sin6(6πx1)
f2(x) = g(x) · h(f1(x),g(x))

(ZDT6)

such as:

g(x) = 1+ 9

(
1

(n−1)

n∑
i=2

xi

)0.25

h(f1(x),g(x)) = 1−
(
f1(x)
g(x)

)2
where n = 10, and xi ∈ [0, 1]. The PF is formed with g(x) = 1,
i.e., xj = 0 for all j = 2, . . . ,n, and has a non-convex shape.

152 test functions description

A.3 Deb-Thiele-Laummans-Zitzler Test Prob-
lems

DTLZ1. As a simple test problem, DTLZ1 constitutes a m-objective
problem with a linear PF. This problem consists in minimizing:

f1(x) = 1
2(1+ g(xm))x1x2 · · · xm−1

f2(x) = 1
2(1+ g(xm))(1− xm−1) · · · x1x2
...

fm−1(x) = 1
2(1+ g(xm))(1− x2)x1

fm(x) = 1
2(1+ g(xm))(1− x1)

(DTLZ1)

such as:

g(xm) = 100

[
|xm|+

∑
xi∈xm

(xi − 0.5)2 − cos (20π(xi − 0.5))

]

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

The Pareto optimal solutions correspond to xm = 0.5 and the
objective function values lie on the linear hyperplane:

∑m
i=1 f

?
i =

0.5. A value of k = 5 is suggested. In the above problem, the
total number of variables is n = m+ k− 1. The difficulty in this
problem is to converge to the hyper-plane. The search space
contains (11k − 1) local Pareto fronts, each of which can attract
a MOEA.

The problem can be made more difficult by using other difficult
multimodal g functions (using a larger k) and/or replacing xi
by nonlinear mapping xi = Ni(yi) and treating yi as decision
variables. For a scale-up study, we suggest testing a MOEA with
different values of m, perhaps in the range m ∈ [2, 10]. It is
interesting to note that for m > 3 cases all the Pareto optimal
solutions on a three-dimensional plot involving fm and any two
other objectives will lie on or below the above hyper-plane.

A.3 deb-thiele-laummans-zitzler test problems 153

DTLZ2. This test problem has a spherical PF, and consists in
minimizing:

f1(x) = (1+ g(xm)) cos
(
x1
π
2

)
· · · cos

(
xm−2

π
2

)
cos
(
xm−1

π
2

)
f2(x) = (1+ g(xm)) cos

(
x1
π
2

)
· · · cos

(
xm−2

π
2

)
sin
(
xm−1

π
2

)
f3(x) = (1+ g(xm)) cos

(
x1
π
2

)
· · · sin

(
xm−2

π
2

)
...

fm−1(x) = (1+ g(xm)) cos
(
x1
π
2

)
sin
(
x2
π
2

)
fm(x) = (1+ g(xm)) sin

(
x1
π
2

)
(DTLZ2)

such that:
g(xm) =

∑
xi∈xm

(xi − 0.5)2

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

The Pareto optimal solutions correspond to xm = 0.5, and all
objective function values must satisfy the equation

∑m
i=1 f

2
i = 1.

It is recommended to use k = |xm| = 10. The total number of
variables is n = m+ k− 1.

This function can also be used to investigate a MOEA’s ability to
scale up its performance with a large number of objectives. Like
in (DTLZ1), for m > 3, the Pareto optimal solutions must lie
inside the first quadrant of the unit sphere in a three-objective
plot with fm as one of the axes. To make the problem more
difficult, each variable xi (for i = 1, . . . ,m− 1) can be replaced
by the mean value of p variables: xi = 1

p

∑p
k=(i−1)p+1

xk.

DTLZ3. This test problem is defined in the same way as (DTLZ2),
except for a new g function. This introduces many local Pareto
fronts, to which a MOEA can get attracted. This problem con-
sists in minimizing:

f1(x) = (1+ g(xm)) cos
(
x1
π
2

)
· · · cos

(
xm−2

π
2

)
cos
(
xm−1

π
2

)
f2(x) = (1+ g(xm)) cos

(
x1
π
2

)
· · · cos

(
xm−2

π
2

)
sin
(
xm−1

π
2

)
f3(x) = (1+ g(xm)) cos

(
x1
π
2

)
· · · sin

(
xm−2

π
2

)
...

fm−1(x) = (1+ g(xm)) cos
(
x1
π
2

)
sin
(
x2
π
2

)
fm(x) = (1+ g(xm)) sin

(
x1
π
2

)

154 test functions description

(DTLZ3)

such that:

g(xm) = 100

[
|xm|+

∑
xi∈xm

(xi − 0.5)2 − cos (20π(xi − 0.5))

]

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

It is suggested that k = |xm| = 10. There are a total of n =M+

k− 1 decision variables in this problem. The above g function
introduces (3k − 1) local Pareto fronts, and only one PF. All
local Pareto fronts are parallel to the PF and a MOEA can get
stuck at any of these local Pareto fronts, before converging to
the PF (at g? = 0). The PF corresponds to xm = 0.5. The next
local Pareto front is at g? = 1.

DTLZ4. This problem is a variation of (DTLZ2) with a modified
meta-variable mapping xi 7→ xαi (α > 0), and it consists in
minimizing:

f1(x) = (1+ g(xm)) cos
(
xα1

π
2

)
· · · cos

(
xαm−2

π
2

)
cos
(
xαm−1

π
2

)
f2(x) = (1+ g(xm)) cos

(
xα1

π
2

)
· · · cos

(
xαm−2

π
2

)
sin
(
xαm−1

π
2

)
f3(x) = (1+ g(xm)) cos

(
xα1

π
2

)
· · · sin

(
xαm−2

π
2

)
...

fm−1(x) = (1+ g(xm)) cos
(
xα1

π
2

)
sin
(
xα2

π
2

)
fm(x) = (1+ g(xm)) sin

(
xα1

π
2

)
(DTLZ4)

such as:
g(xm) =

∑
xi∈xm

(xi − 0.5)2

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

This problem investigates a MOEA’s ability to maintain a good
distribution of solutions as they tend to find only the extremes of
the PF. It is suggested the use of both α = 100 and k = 10. There
are a total of n = m+ k− 1 decision variables in this problem.

A.3 deb-thiele-laummans-zitzler test problems 155

The above modification allows a dense set of solutions to exist
near the fm − f1 plane. It is interesting to note that although the
search space has a variable density of solutions, the classical
weighted-sum approaches or other directional methods may not
have any added difficulty in solving these problems compared
to (DTLZ2). Since MOEAs attempt to find multiple and well-
distributed optimal Pareto solutions in one simulation run, these
problems may hinder MOEAs to achieve a well-distributed set
of solutions.

DTLZ5. This test problem uses a mapping of the parameter θi
employed in the sine and cosine functions of (DTLZ2). Then,
the test problem DTLZ5 is defined as minimizing:

f1(x) = (1+ g(xm)) cos (θ1) · · · cos (θm−2) cos (θm−1)

f2(x) = (1+ g(xm)) cos (θ1) · · · cos (θm−2) sin (θm−1)

f3(x) = (1+ g(xm)) cos (θ1) · · · sin (θm−2)
...

fm−1(x) = (1+ g(xm)) cos (θ1) sin (θ2)

fm(x) = (1+ g(xm)) sin (θ1)

(DTLZ5)

such that:

θ1 = x1
π
2

θi = π
4(1+g(xm))(1+ 2g(xm)xi), for i = 2, 3, . . . ,m− 1

g(xm) =
∑
xi∈xm

(xi − 0.5)2

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

The g function with k = |xm| = 10 variables is suggested. As
before, there are n = m+k−1 decision variables in this problem.
The PF corresponds to xm = 0.5. This problem tests a MOEA’s
ability to converge to a degenerated curve and also allows an
easier way to visually show (just by plotting fm with any other
objective function) the performance of a MOEA. Since there is a
natural bias for solutions close to this Pareto curve, this problem
may be easy for an algorithm to solve.

156 test functions description

DTLZ6. The above test problem can be made harder by doing a
similar modification to the g function in (DTLZ5) as done in
(DTLZ3). This test problem consists in minimizing:

f1(x) = (1+ g(xm)) cos (θ1) · · · cos (θm−2) cos (θm−1)

f2(x) = (1+ g(xm)) cos (θ1) · · · cos (θm−2) sin (θm−1)

f3(x) = (1+ g(xm)) cos (θ1) · · · sin (θm−2)
...

fm−1(x) = (1+ g(xm)) cos (θ1) sin (θ2)

fm(x) = (1+ g(xm)) sin (θ1)

(DTLZ6)

such that:

θ1 = x1
π
2

θi = π
4(1+g(xm))(1+ 2g(xm)xi), for i = 2, 3, . . . ,m− 1

g(xm) =
∑
xi∈xm

x0.1
i

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

The size of x| vector is chosen as 10 and the total number of
variables is identical as in (DTLZ5). In this problem, the PS

possesses the same characteristics as (DTLZ5). However, the
difficulty to reach optimal solutions is augmented. The above
modification of the g function makes that MOEAs have difficul-
ties to converge to the PF as in (DTLZ5). In this case, MOEAs
tend to find a dominated surface instead of the curve that corre-
sponds to the PF.

DTLZ7. This problem consists in minimizing:

f1(x) = x1
f2(x) = x2

...
fm−1(x) = xm−1

fm(x) = (1+ g(xm))h(f1, f2, . . . , fm−1,g)

(DTLZ7)

such that:
g(xm) = 1+

9

|xm|

∑
xi∈xm

xi

A.3 deb-thiele-laummans-zitzler test problems 157

h(f1, f2, . . . , fm−1,g) = m−

m−1∑
i=1

[
fi
1+ g

(1+ sin(3πfi))
]

where m is the number of objective functions, xm represents the
last k variables of the decision vector x, and xi ∈ [0, 1] for all
i = 1, . . . ,n (where n is the number of decision variables).

This test problem has 2m−1 disconnected Pareto optimal regions
in the search space. The functional g requires k = |xm| decision
variables and the total number of variables is n = m+ k− 1.
It is suggested the use k = 20. The Pareto optimal solutions
correspond to xm = 0. This problem tests an algorithm’s ability
to maintain subpopulations in different Pareto optimal regions.

158 test functions description

A.4 Walking-Fish-Group Test Problems

The WFG test problems [63] apply a set of sequential transformations
to the vector of decision variables. Each transformation adds a charac-
teristic to the MOP. The transformations used in WFG test problems
to define the shape of the PF are:

linear1(x1, · · · ,xM−1) =

M−1∏
i=1

xi

linearm=2:M−1(x1, · · · ,xM−1) =

(
M−m∏
i=1

xi

)
(1−xM−m−1)

linearM(x1, · · · ,xM−1) = 1−x1

convex1(x1, · · · ,xM−1) =

M−1∏
i=1

(
1− cos

(π
2
xi

))

convexm=2:M−1(x1, · · · ,xM−1) =

(
M−m∏
i=1

(
1− cos

(π
2
xi

)))(
1− sin

(π
2
xM−m+1

))
convex1(x1, · · · ,xM−1) = 1− sin

(π
2
x1

)
concave1(x1, · · · ,xM−1) =

M−1∏
i=1

sin
(π
2
xi

)

concavem=2:M−1(x1, · · · ,xM−1) =

(
M−m∏
i=1

sin
(π
2
xi

))
cos
(π
2
xM−m+1

)
concave1(x1, · · · ,xM−1) = cos

(π
2
x1

)
mixedM(x1, · · · ,xM−1) =

(
1−x1−

cos(2Aπx1+π/2)
2Aπ

)α
discM(x1, · · · ,xM−1) = 1−xα1 cos2(Axβ1π)

A.4 walking-fish-group test problems 159

According to Huband et al. [63], it is possible to add more charac-
teristics to increase the difficulty to the problem. Such characteristics
are presented below:

b_poly(y,α) = yα

b_flat(y,A,B,C) = A+ min(0, by−Bc)A(B−y)

B

−min(0, bC−yc) (1−A)(y−C)

1−C

b_param(y,u(y ′),A,B,C) = yB+(C−B)(A−(1−2u(y′))|b0.5−u(y′)+A|)

s_linear(y,A) =
|y−A|

|bA−yc+A|

s_decept(y,A,B,C) = 1+(|y−A|−B)(
by−A+Bc(1−C+ A−B

B)

A−B
+

bA+B−yc(1−C+ 1−A−B
B)

1−A−B
+
1

B

)

s_multi(y,A,B,C) =

(
1+ cos

(
(4A+ 2)π

(
0.5−

|y−C|

2(bC−yc+C)

))
+4B

(
|y−C|

2(bC−yc+C)

)2)
/(b+ 2)

r_sum(y, w) =

|y|∑
i=1
w1yi

|y|∑
i=1
wi

r_nonsep(y,A) =

|y|∑
j=1

(
yj+

A−2∑
k=0

|yj−y1+(j+k)mod|y||

)
|y|
A d

A
2 e
(
1+ 2A− 2dA2 e

)

Considering the above transformations, the nine WFG test problems
are described below.

WFG1. This problem is separable and unimodal, but it has a flat re-
gion and is strongly biased toward small values of the variables,
which makes it very difficult for some MOEAs. The problem
consists in minimizing:

fm=1:M−1(x) = xM + Smconvexm (x1, · · · , xM−1)

fM(x) = xM + SmmixedM (x1, · · · , xM−1)
(WFG1)

160 test functions description

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)],

[2((i− 1)k/(M− 1)+ 1), · · · ,2ik/(M− 1)])

yM = r_sum
(
[y ′k+1, · · · ,y ′n], [2(k+ 1), · · · ,2n]

)
y ′i=1:n = b_poly

(
y ′′i ,0.02

)
y ′′i=1:k = y ′′′i

y ′′i=k+1:n = b_flat
(
y ′′′i ,0.8,0.75,0.85

)
y ′′′i=1:k = zi,[0,1]

y ′′′i=k+1:n = s_linear
(
zi,[0,1],0.35

)

WFG2. This problem is unseparable and multimodal. WFG2 con-
sists in minimizing:

fm=1:M−1(x) = xM + Smconvexm (x1, · · · , xM−1)

fM(x) = xM + SmdiscM (x1, · · · , xM−1)
(WFG2)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′k+l/2], [1, · · · ,1]

)
y ′i=1:k = y ′′i

y ′i=k+1:k+l/2 = r_nonsep
(
[y ′′k+2(i−k)−1,y ′′k+2(i−k)],2

)
y ′′i=1:k = zi,[0,1]

y ′′i=k+1:n = s_linear
(
zi,[0,1],0.35

)

WFG3. This problem is unseparable but unimodal. It has a degen-
erated PF (the dimensionality of the PF is M− 2). The problem
consists in minimizing:

fm=1:M(x) = xM + Smlinearm (x1, · · · , xM−1) (WFG3)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′k+l/2], [1, · · · ,1]

)
y ′i=1:k = y ′′i

y ′i=k+1:k+l/2 = r_nonsep
(
[y ′′k+2(i−k)−1,y ′′k+2(i−k)],2

)
y ′′i=1:k = zi,[0,1]

y ′′i=k+1:n = s_linear
(
zi,[0,1],0.35

)

A.4 walking-fish-group test problems 161

WFG4. This problem is separable, but highly multimodal. This,
and the rest of the problems from this benchmark have concave
PFs. The problem consists in minimizing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG4)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′n], [1, · · · ,1]

)
y ′′i=1:n = s_linear

(
zi,[0,1],30,10,0.35

)
WFG5. This is a deceptive problem and separable. The problem

consists in minimizing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG5)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′n], [1, · · · ,1]

)
y ′′i=1:n = s_decept

(
zi,[0,1],0.35,0.001,0.05

)
WFG6. This problem is unseparable and consists in minimizing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG6)

where:

yi=1:M−1 = r_nonsep
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)],k/(M− 1)

)
yM = r_nonsep

(
[y ′k+1, · · · ,y ′n], l

)
y ′i=1:k = zi,[0,1]

y ′i=k+1:n = s_linear
(
zi,[0,1],0.35

)

WFG7. This problem is also separable and unimodal. The problem
consists in minimizing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG7)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′n], [1, · · · ,1]

)
y ′i=1:k = y ′′i

y ′i=k+1:n = s_linear
(
y ′′i ,0.35

)
y ′′i=k+1:n = b_param(zi,[0,1], r_sum([zi+1,[0,1], . . . ,zn,[0,1]],

[1, . . . ,1]),0.98/49.98,0.02,50)

162 test functions description

WFG8. This problem is also unseparable and consists in minimiz-
ing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG8)

where:

yi=1:M−1 = r_sum
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)], [1, · · · ,1]

)
yM = r_sum

(
[y ′k+1, · · · ,y ′n], [1, · · · ,1]

)
y ′i=1:k = y ′′i

y ′i=k+1:n = s_linear
(
y ′′i ,0.35

)
y ′′i=k+1:n = zi,[0,1]

y ′′i=k+1:n = b_param(zi,[0,1], r_sum([zi+1,[0,1], . . . ,zn,[0,1]],

[1, . . . ,1]),0.98/49.98,0.02,50)

WFG9. This problem is also unseparable and consists in minimiz-
ing:

fm=1:M(x) = xM + Smconcavem (x1, · · · , xM−1) (WFG9)

where:

yi=1:M−1 = r_nonsep
(
[y ′(i−1)k/(M−1)+1, · · · ,y ′ik/(M−1)],k/(M− 1)

)
yM = r_nonsep

(
[y ′k+1, · · · ,y ′n], l

)
y ′i=1:k = s_decept

(
y ′′i ,0.35,0.001,0.05

)
y ′i=k+1:n = s_multi(y ′′i ,30,95,0.35)

y ′′i=k+1:n = b_param(zi,[0,1], r_sum([zi+1,[0,1], . . . ,zn,[0,1]],

[1, . . . ,1]),0.98/49.98,0.02,50)

B
Airfoil Shape Optimization

In aeronautics, aerodynamics plays an important role in any aircraft
design problem. Therefore, aerodynamic shape optimization is a
crucial task and has been extensively studied and developed. In
this design area, designers are frequently faced with the problem of
considering not only a single design objective, but several of them, i.e.,
the designer needs to solve a multi-objective optimization problem.

In recent years, Multi-Objective Evolutionary Algorithms (MOEAs)
have gained popularity as an optimization method in aeronautics,
mainly because of their simplicity, their ease of use and their suitabil-
ity to be coupled to specialized numerical simulation tools. However,
the whole optimization process becomes costly in terms of compu-
tational time, mainly because many high-fidelity Computational Fluid
Dynamics (CFD) simulations are needed. One option to alleviate this
condition, is to design mechanisms for reducing this computational
cost by exploiting the properties that, mathematical programming
techniques possess.

Our case study consists of the multi-objective optimization of an
airfoil shape problem adapted from [131] (called here MOPRW). This
problem corresponds to the airfoil shape optimization of a standard-
class glider, aiming to obtain an optimum performance for a sailplane.

B.1 Problem Statement

Two conflicting objective functions are defined in terms of a sailplane
average weight and operating conditions [131]. They are defined as:

i) Minimize : CD/CL
s.t.CL = 0.63,Re = 2.04 · 106,M = 0.12

ii) Minimize : CD/C
3/2
L

s.t.CL = 1.05,Re = 1.29 · 106,M = 0.08

(MOPRW)

163

164 airfoil shape optimization

where CD/CL and CD/C
3/2
L correspond to the inverse of the glider’s

gliding ratio and sink rate, respectively. Both are important perfor-
mance measures for this aerodynamic optimization problem. CD and
CL are the drag and lift coefficients.

The aim is to maximize the gliding ratio (CL/CD) for objective (i),
while minimizing the sink rate in objective (ii). Each of these objectives
is evaluated at different prescribed flight conditions, given in terms of
Mach and Reynolds numbers. The aim of solving this Multi-objective
Optimization Problem (MOP) is to find a better airfoil shape, which
improves a reference design.

B.1.1 Geometry Parametrization

In the present case study, the PARametric SECtion (PARSEC) airfoil
representation [124] was adopted. Fig. B.1 illustrates the 11 basic pa-
rameters used for this representation: rle leading edge radius, Xup/Xlo
location of maximum thickness for upper/lower surfaces, Zup/Zlo
maximum thickness for upper/lower surfaces, Zxxup/Zxxlo curvature
for upper/lower surfaces, at maximum thickness locations, Zte trail-
ing edge coordinate, ∆Zte trailing edge thickness, αte trailing edge
direction, and βte trailing edge wedge angle.

For the present case study, the modified PARSEC geometry rep-
resentation adopted allows us to define independently the leading
edge radius, both for upper and lower surfaces. Thus, a total of 12

variables are used. Their allowable ranges are defined in Table 12.

Figure B.1.: PARSEC airfoil parametrization.

B.1 problem statement 165

Table 12.: Parameter ranges for modified PARSEC airfoil representation

Design Variable Lower Bound Upper Bound
rleup 0.0085 0.0126

rlelo 0.0020 0.0040

αte 7.0000 10.0000

βte 10.0000 14.0000

Zte -0.0060 -0.0030

∆Zte 0.0025 0.0050

Xup 0.4100 0.4600

Zup 0.1100 0.1300

Zxxup -0.9000 -0.7000

Xlo 0.2000 0.2600

Zlo -0.0230 -0.0150

Zxxlo 0.0500 0.2000

The PARSEC airfoil geometry representation uses a linear combi-
nation of shape functions for defining the upper and lower surfaces.
These linear combinations are given by:

Zupper =

6∑
n=1

anx
n−1
2 , Zlower =

6∑
n=1

bnx
n−1
2 (B.1)

In the above equations, the coefficients an, and bn are determined
as functions of the 12 described geometric parameters, by solving
two systems of linear equations, one for each surface. It is important
to note that the geometric parameters rleup/rlelo, Xup/Xlo, Zup/Zlo,
Zxxup/Zxxlo, Zte, ∆Zte, αte, and βte are the actual design variables
in the optimization process, and that the coefficients an, bn serve
as intermediate variables for interpolating the airfoil’s coordinates,
which are used by the CFD solver (we used the Xfoil CFD code [32])
for its discretization process.

C
Pareto Front Approximations for

ZDT Test Suite

In this appendix, we show the plots of the final approximations to the
Pareto front (PF) obtained by the Multi-Objective Evolutionary Algori-
thm based on Decomposition (MOEA/D), the Multi-Objective Evolution-
ary Algorithm based on Decomposition with Local Search (MOEA/D+LS)
and the Multi-Objective Evolutionary Algorithm based on Decomposition
with Local Search II (MOEA/D+LS-II). For an easy comparison, Fig-
ures C.1–C.5 present the plots of the nondominated solutions found
by the different algorithms for each Zitzler-Deb-Thiele (ZDT) test prob-
lem. Each plot corresponds to the run with the value nearest to the
mean value of the Hypervolume (IH) performance measure reported
in Chapter 7 (see Table 8) for each test problem. According to the
comparative study presented in Chapter 7, the plots reported here,
show the performance of the different algorithms, when they are
restricted to perform 10,000 fitness function evaluations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

A) MOEA/D+LS-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

B) MOEA/D+LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

C) MOEA/D

Figure C.1.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
ZDT1 test problem.

167

168 pareto front approximations for zdt test suite

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

A) MOEA/D+LS-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

B) MOEA/D+LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

C) MOEA/D

Figure C.2.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
ZDT2 test problem.

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f 2

f
1

A) MOEA/D+LS-II

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f 2

f
1

B) MOEA/D+LS

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f 2

f
1

C) MOEA/D

Figure C.3.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
ZDT3 test problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

A) MOEA/D+LS-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

B) MOEA/D+LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

f 2

f
1

C) MOEA/D

Figure C.4.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
ZDT4 test problem.

pareto front approximations for zdt test suite 169

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 2

f
1

A) MOEA/D+LS-II

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 2

f
1

B) MOEA/D+LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 2

f
1

C) MOEA/D

Figure C.5.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
ZDT6 test problem.

D
Pareto Front Approximations for

DTLZ Test Suite

In this appendix, we show the plots of the final approximations to the
Pareto front (PF) obtained by the Multi-Objective Evolutionary Algori-
thm based on Decomposition (MOEA/D), the Multi-Objective Evolution-
ary Algorithm based on Decomposition with Local Search (MOEA/D+LS)
and the Multi-Objective Evolutionary Algorithm based on Decomposition
with Local Search II (MOEA/D+LS-II). For an easy comparison of re-
sults, Figures D.1–D.7 present the plots of the nondominated solu-
tions found by the different algorithms for each Deb-Thiele-Laumanns-
Zitzler (DTLZ) test problem. Each plot corresponds to the run with the
value nearest to the mean value of the Hypervolume (IH) performance
measure reported in Chapter 7 (see Table 8) for each test problem. In
order to appreciate the results of each algorithm in a better way, the
PF approximations are presented in two different perspectives. First,
we show the PF face of the obtained solutions and then, a rotation
of these set of solutions is shown. The plots reported here, show the
performance of the different algorithms, when they are restricted to
perform 30,000 fitness function evaluations.

171

172 pareto front approximations for dtlz test suite

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ1 test problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ1 test problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ1 test problem

Figure D.1.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ1 test problem.

pareto front approximations for dtlz test suite 173

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ2 test problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ2 test problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ2 test problem

Figure D.2.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ2 test problem.

174 pareto front approximations for dtlz test suite

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ3 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0

 0.5

 1

 1.5

 2

 2.5

 0

 0.5

 1

 1.5

 2

 2.5

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 0

 0.5

 1

 1.5

 2

 2.5

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ3 test problem

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ3 test problem

Figure D.3.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ3 test problem.

pareto front approximations for dtlz test suite 175

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ4 test problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ4 test problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ4 test problem

Figure D.4.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ4 test problem.

176 pareto front approximations for dtlz test suite

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ5 test problem

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0 0.1
 0.2 0.3

 0.4 0.5 0.6
 0.7 0.8

 0.9 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ5 test problem

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ5 test problem

Figure D.5.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ5 test problem.

pareto front approximations for dtlz test suite 177

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ6 test problem

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

f
1

f
2

f
3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ6 test problem

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 0.5

 1

 1.5

 2

 2.5

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 0.5

 1

 1.5

 2

 2.5

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ6 test problem

Figure D.6.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ6 test problem.

178 pareto front approximations for dtlz test suite

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

f
3

f
1

f
2

f
3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1

 0.2 0.3
 0.4 0.5 0.6

 0.7 0.8
 0.9 1

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the DTLZ7 test problem

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

f
3

f
1

f
2

f
3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the DTLZ7 test problem

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

f
3

f
1

f
2

f
3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the DTLZ7 test problem

Figure D.7.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
DTLZ7 test problem.

E
Pareto Front Approximations for

WFG Test Suite

In this appendix, we show the plots of the final approximations to the
Pareto front (PF) obtained by the Multi-Objective Evolutionary Algori-
thm based on Decomposition (MOEA/D), the Multi-Objective Evolution-
ary Algorithm based on Decomposition with Local Search (MOEA/D+LS)
and the Multi-Objective Evolutionary Algorithm based on Decomposition
with Local Search II (MOEA/D+LS-II). For an easy comparison of re-
sults, Figures D.1–D.7 present the plots of the nondominated solutions
found by the different algorithms for each Walking-Fish-Group (WFG)
test problem. Each plot corresponds to the run with the value near-
est to the mean value of the Hypervolume (IH) performance measure
reported in Chapter 7 (see Table 8) for each test problem. In order
to appreciate the results of each algorithm in a better way, the PF

approximations are presented in two different perspectives. First, we
show the PF face of the obtained solutions and then, a rotation of
these set of solutions is shown. The plots reported here, show the
performance of the different algorithms, when they are restricted to
perform 30,000 fitness function evaluations.

179

180 pareto front approximations for wfg test suite

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG1 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG1 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

−1

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG1 test problem

Figure E.1.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG1 test problem.

pareto front approximations for wfg test suite 181

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0
 0.2

 0.4
 0.6

 0.8
 1
 1.2

 1.4
 1.6

 1.8
 2 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG2 test problem

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0
 0.2

 0.4
 0.6

 0.8
 1
 1.2

 1.4
 1.6

 1.8
 2 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG2 test problem

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0
 0.2

 0.4
 0.6

 0.8
 1
 1.2

 1.4
 1.6

 1.8
 2 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG2 test problem

Figure E.2.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG2 test problem.

182 pareto front approximations for wfg test suite

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3
 0 0.5 1 1.5 2 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG3 test problem

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3
 0 0.5 1 1.5 2 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG3 test problem

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5

 3
 0 0.5 1 1.5 2 2.5

 0

 1

 2

 3

 4

 5

 6

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG3 test problem

Figure E.3.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG3 test problem.

pareto front approximations for wfg test suite 183

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG4 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG4 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG4 test problem

Figure E.4.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG4 test problem.

184 pareto front approximations for wfg test suite

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG5 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG5 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG5 test problem

Figure E.5.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG5 test problem.

pareto front approximations for wfg test suite 185

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG6 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG6 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG6 test problem

Figure E.6.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG6 test problem.

186 pareto front approximations for wfg test suite

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG7 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG7 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG7 test problem

Figure E.7.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG7 test problem.

pareto front approximations for wfg test suite 187

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG8 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG8 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG8 test problem

Figure E.8.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG8 test problem.

188 pareto front approximations for wfg test suite

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

A) PF approximation obtained by MOEA/D+LS-II for the WFG9 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

B) PF approximation obtained by MOEA/D+LS for the WFG9 test problem

 0

 0.5

 1

 1.5

 2

 2.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

 0

 0.5

 1

 1.5

 2

 2.5 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0

 1

 2

 3

 4

 5

 6

 7

f
3

f
1

f
2

f
3

C) PF approximation obtained by MOEA/D for the WFG9 test problem

Figure E.9.: Comparison of the PF approximations obtained by
MOEA/D+LS-II, MOEA/D+LS and MOEA/D for the
WFG9 test problem.

Bibliography

[1] Hussein A. Abbass. The Self-Adaptive Pareto Differential
Evolution Algorithm. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 831–836, Piscataway, New Jersey,
May 2002. IEEE Service Center.

[2] Rakesh Angira and B. V. Babu. Non-dominated Sorting Differ-
ential Evolution (NSDE): An Extension of Differential Evolu-
tion for Multi-objective Optimization. In Bhanu Prasad, editor,
Proceedings of the 2nd Indian International Conference on Artificial
Intelligence (IICAI), pages 1428–1443, 2005.

[3] Andreas Antoniou and Wu-Sheng Lu. Practical Optimization:
Algorithms and Engineering Applications. Springer, 2007.

[4] Árpád Bűrmen, Janez Puhan, and Tadej Tuma. Grid Restrained
Nelder-Mead Algorithm. Computational Optimization and Appli-
cations, 34:359–375, July 2006.

[5] Thomas Bäck, D. B. Fogel, and Z. Michalewicz. Evolutionary Al-
gorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Institute of Physics Publishing
and Oxford University Press, 1997.

[6] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-
emoa: Multiobjective selection based on dominated hypervol-
ume. European Journal of Operational Research, 181(3):1653–1669,
2007.

[7] Martin Brown and R. E. Smith. Directed multi-objective opti-
mization. International Journal of Computers, Systems and Signals,
6(1):3–17, 2005.

[8] David Byatt. A Convergent Variants of the Nelder-Mead Algo-
rithm. Master’s thesis, University of Canterbury, 2000.

189

190 Bibliography

[9] A. Caponio and F. Neri. Integrating cross-dominance adap-
tion in multi-objective memetic algorithms. In C.-K. Goh, Y.-S.
Ong, and K. C. Tan, editors, Multi-Objective Memetic Algorithms,
pages 325–351. Springer, Studies in Computational Intelligence
, Vol. 171, 2009.

[10] Augustin-Louis Cauchy. Méthode générale pour la résolu-
tion des systèmes d’équations simultanées. Compte Rendu des
S’eances de L’Acad’emie des Sciences XXV, S’erie A(25):536–538,
October 1847.

[11] Abraham Charnes and William Wager Cooper. Management
Models and Industrial Applications of Linear Programming, vol-
ume 1. John Wiley & Sons Inc, New York, December 1961.

[12] Rachid Chelouah and Patrick Siarry. Genetic and Nelder-Mead
algorithms hybridized for a more accurate global optimiza-
tion of continuous multiminima functions. European Journal of
Operational Research, 148(2):335–348, July 2003.

[13] Carlos A. Coello Coello. A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization Techniques.
Knowledge and Information Systems. An International Journal,
1(3):269–308, Agosto 1999.

[14] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van
Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective
Problems. Springer, New York, second edition, September 2007.
ISBN 978-0-387-33254-3.

[15] Carlos A. Coello Coello and Gregorio Toscano Pulido. Multiob-
jective Optimization using a Micro-Genetic Algorithm. In Lee
Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-
Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram
Pezeshk, Max H. Garzon, and Edmund Burke, editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2001), pages 274–282, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

[16] J. L. Cohon and D. H. Marks. A review and evaluation of mul-
tiobjective programming techniques. Water Resources Research,
11(2):208–220, 1975.

Bibliography 191

[17] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. In-
troduction to Derivative-Free Optimization. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2009.

[18] I. Das. Nonlinear Multicriteria Optimization and Robust Optimal-
ity. PhD thesis, Rice University, Houston, Texas, 1997.

[19] I. Das and J. E. Dennis. Normal-boundary intersection: a new
method for generating Pareto optimal points in multicriteria
optimization problems. SIAM Journal on Optimization, 8(3):631–
657, 1998.

[20] Lawrence Davis. Adapting operator probabilities in genetic
algorithms. In Proceedings of the Third International Conference on
Genetic Algorithms, pages 61–69, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

[21] Richard Dawkins. The Selfish Gene. Oxford University Press,
1990.

[22] Leandro Nunes de Castro and Jonathan Timmis. Artifi-
cial Immune Systems: A New Computational Intelligence Approach.
Springer, 2002.

[23] Kalyanmoy Deb. Evolutionary Algorithms for Multi-Criterion
Optimization in Engineering Design. In Kaisa Miettinen,
Marko M. Mäkelä, Pekka Neittaanmäki, and Jacques Periaux,
editors, Evolutionary Algorithms in Engineering and Computer Sci-
ence, chapter 8, pages 135–161. John Wiley & Sons, Ltd, Chich-
ester, Reino Unido, 1999.

[24] Kalyanmoy Deb. Multi-Objective Genetic Algorithms: Problem
Difficulties and Construction of Test Problems. Evolutionary
Computation, 7(3):205–230, Fall 1999.

[25] Kalyanmoy Deb. Optimization for Engineering Design: Algorithms
and Examples. Prentice-Hall of India Pvt. Ltd, 2002.

[26] Kalyanmoy Deb and Tushar Goel. A hybrid multi-objective
evolutionary approach to engineering shape design. In Proceed-
ings of the First International Conference on Evolutionary Multi-
Criterion Optimization, EMO ’01, pages 385–399, London, UK,
UK, 2001. Springer-Verlag.

192 Bibliography

[27] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyari-
van. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–
II. IEEE Transactions on Evolutionary Computation, 6(2):182–197,
April 2002.

[28] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart
Zitzler. Scalable Test Problems for Evolutionary Multi-Objective
Optimization. Technical Report 112, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland, 2001.

[29] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart
Zitzler. Scalable Multi-Objective Optimization Test Problems.
In Congress on Evolutionary Computation (CEC’2002), volume 1,
pages 825–830, Piscataway, New Jersey, May 2002. IEEE Service
Center.

[30] Marco Dorigo and Gianni Di Caro. The ant colony optimiza-
tion meta-heuristic. In New ideas in optimization, pages 11–32.
McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999.

[31] Marco Dorigo and Thomas Stützle. Ant Colony Optimization.
Bradford Company, Scituate, MA, USA, 2004.

[32] Mark Drela. XFOIL: An Analysis and Design System for Low
Reynolds Number Aerodynamics. In Conference on Low Reynolds
Number Aerodynamics, University Of Notre Dame, IN, June 1989.

[33] Lucien Duckstein. Multiobjective optimization in structural
design: The model choice problem. In K. M. Ragsdell E. Atrek, R.
H. Gallagher and O. C. Zienkiewicz, editors, New Directions in
Optimum Structural Design, pages 459–481. John Wiley & Sons,
Inc., 1984.

[34] Francis Ysidro Edgeworth. Mathematical Psychics: An Essay on
the Application of Mathematics to the Moral Sciences. C. Kegan
Paul and Co., London, 1881.

[35] Matthias Ehrgott. Multicriteria Optimization. Springer, Berlin,
2nd edition edition, June 2005.

Bibliography 193

[36] Michael T. M. Emmerich, Kyriakos Giannakoglou, and Boris
Naujoks. Single- and multiobjective evolutionary optimization
assisted by gaussian random field metamodels. IEEE Transac-
tions on Evolutionary Computation, 10(4):421–439, 2006.

[37] Andreas Fischer and Pradyumn Kumar Shukla. A levenberg-
marquardt algorithm for unconstrained multicriteria optimiza-
tion. Oper. Res. Lett., 36(5):643–646, 2008.

[38] R. Fletcher and C. M. Reeves. Function minimization by con-
jugate gradients. The Computer Journal, 7(2):149–154, February
1964.

[39] J. Fliege, L. M. Graña Drummond, and B. F. Svaiter. Newton’s
method for multiobjective optimization. SIAM J. on Optimiza-
tion, 20(2):602–626, May 2009.

[40] J. Fliege and B. Fux Svaiter. Steepest descent methods for
multicriteria optimization. Mathematical Methods of Operations
Research, 51(3):479–494, 2000.

[41] Lawrence J. Fogel. Artificial Intelligence through Simulated Evo-
lution. Forty Years of Evolutionary Programming. John Wiley &
Sons, Inc., Nueva York, 1966.

[42] Lawrence J. Fogel. Intelligence through simulated evolution: forty
years of evolutionary programming. John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[43] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms
for Multiobjective Optimization: Formulation, Discussion and
Generalization. In Stephanie Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms, pages 416–
423, San Mateo, California, 1993. University of Illinois at Urbana-
Champaign, Morgan Kauffman Publishers.

[44] Carlos M. Fonseca and Peter J. Fleming. Multiobjective Genetic
Algorithms Made Easy: Selection, Sharing, and Mating Restric-
tion. In Proceedings of the First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications,
pages 42–52, Sheffield, UK, September 1995. IEE.

194 Bibliography

[45] M. Frank and P. Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics Quarterly, 3(1–2):95–110, 1956.

[46] A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An interactive
approach for multi-criterion optimization, with an application
to the operation of an academic department. Managment Science,
19:357–368, December 1972.

[47] Chariklia A. Georgopoulou and Kyriakos C. Giannakoglou. A
multi-objective metamodel-assisted memetic algorithm with
strengthbased local refinement. Engineering Optimization,
41(10):909–923, 2009.

[48] Fred Glover. Tabu search and adaptive memory programing –
Advances, applications and challenges. In Interfaces in Computer
Science and Operations Research, pages 1–75. Kluwer Academic
Publishers, 1996.

[49] Fred Glover, Miguel Laguna, and Rafael Martí. Fundamentals
of scatter search and path relinking. Control and Cybernetics,
39:653–684, 2000.

[50] T. Goel and K. Deb. Hybrid Methods for Multi-Objective Evo-
lutionary Algorithms. In Lipo Wang, Kay Chen Tan, Takeshi
Furuhashi, Jong-Hwan Kim, and Xin Yao, editors, Proceedings of
the 4th Asia-Pacific Conference on Simulated Evolution and Learn-
ing (SEAL’02), volume 1, pages 188–192, Orchid Country Club,
Singapore, November 2002. Nanyang Technical University.

[51] C. K. Goh, Y. S. Ong, K. C. Tan, and E. J. Teoh. An Investigation
on Evolutionary Gradient Search for Multi-Objective Optimiza-
tion. In 2008 Congress on Evolutionary Computation (CEC’2008),
pages 3742–3747, Hong Kong, June 2008. IEEE Service Center.

[52] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1989.

[53] John J. Grefenstette. Genesis: A system for using genetic search
procedures. In Proceedings of the 1984 Conference on Intelligent
Systems and Machines, pages 161–165, 1984.

Bibliography 195

[54] J. H. Halton. On the efficiency of certain quasi-random se-
quences of points in evaluating multi-dimensional integrals.
Numerische Mathematik, 2:84–90, December 1960.

[55] J. M. Hammersley. Monte-Carlo methods for solving multi-
variable problems. Annals of the New York Academy of Science,
86:844–874, 1960.

[56] Robert Hecht-Nielsen. Kolmogorov’s mapping neural network
existence theorem. In Proceedings of IEEE First Annual Inter-
national Conference on Neural Networks, volume 3, pages 11–14,
1987.

[57] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley, Red-
wood City, CA, 1990.

[58] Claus Hillermeier. Nonlinear Multiobjective Optimization: A Gen-
eralized Homotopy Approach. Birkhäuser Basel, 2000.

[59] John H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan, 1975.

[60] Robert Hooke and T. A. Jeeves. “direct search” solution of
numerical and statistical problems. J. ACM, 8(2):212–229, 1961.

[61] Jeffrey Horn and Nicholas Nafpliotis. Multiobjective Optimiza-
tion using the Niched Pareto Genetic Algorithm. Technical
Report IlliGAl Report 93005, University of Illinois at Urbana-
Champaign, Urbana, Illinois, EE. UU., 1993.

[62] Xiaolin Hu, Zhangcan Huang, and Zhongfan Wang. Hybridiza-
tion of the Multi-Objective Evolutionary Algorithms and the
Gradient-based Algorithms. In Proceedings of the 2003 Congress
on Evolutionary Computation (CEC’2003), volume 2, pages 870–
877, Canberra, Australia, December 2003. IEEE Press.

[63] Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While.
A Review of Multiobjective Test Problems and a Scalable Test
Problem Toolkit. IEEE Transactions on Evolutionary Computation,
10(5):477–506, October 2006.

196 Bibliography

[64] Amitay Isaacs, Tapabrata Ray, and Warren Smith. An evo-
lutionary algorithm with spatially distributed surrogates for
multiobjective optimization. In ACAL, pages 257–268, 2007.

[65] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Ge-
netic Local Search Algorithm. In Toshio Fukuda and Takeshi
Furuhashi, editors, Proceedings of the 1996 International Confer-
ence on Evolutionary Computation, pages 119–124, Nagoya, Japan,
1996. IEEE.

[66] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Ge-
netic Local Search Algorithm and Its Application to Flowshop
Scheduling. IEEE Transactions on Systems, Man and Cybernetics—
Part C: Applications and Reviews, 28(3):392–403, August 1998.

[67] A. Jaszkiewicz. Do Multiple-Objective Metaheuristics Deliver
on Their Promises? a Computational Experiment on the Set-
Covering Problem. IEEE Transactions on Evolutionary Computa-
tion, 7(2):133–143, April 2003.

[68] Andrzej Jaszkiewicz and Roman Slowinski. The ‘Light Beam
Search’ approach -an overview of methodology and applica-
tions. European Journal of Operational Research, 113(2):300–314,
1999.

[69] Dervis Karaboga. An Idea Based on Honey Bee Swarm for Nu-
merical Optimization. Technical Report TR06, Erciyes Univer-
sity, Engineering Faculty, Computer Engineering Department,
2005.

[70] W. Karush. Minima of functions of several variables with in-
equalities as side conditions. Master’s thesis, Department of
Mathematics, University of Chicago, 1939.

[71] James Kennedy and Russell C. Eberhart. Particle swarm opti-
mization. In Proceedings of the IEEE International Conference on
Neural Networks, pages 1942–1948, 1995.

[72] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

Bibliography 197

[73] J. Knowles and D. Corne. M-PAES: A Memetic Algorithm for
Multiobjective Optimization. In 2000 Congress on Evolutionary
Computation, volume 1, pages 325–332, Piscataway, New Jersey,
July 2000. IEEE Service Center.

[74] Joshua Knowles. Parego: A hybrid algorithm with on-line
landscape approximation for expensive multiobjective optimiza-
tion problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, January 2006.

[75] Joshua D. Knowles. Local-Search and Hybrid Evolutionary Algo-
rithms for Pareto Optimization. PhD thesis, The University of
Reading, Department of Computer Science, Reading, UK, Jan-
uary 2002.

[76] Joshua D. Knowles and David W. Corne. The Pareto Archived
Evolution Strategy: A New Baseline Algorithm for Multiobjec-
tive Optimisation. In 1999 Congress on Evolutionary Computation,
pages 98–105, Washington, D.C., Julio 1999. IEEE Service Center.

[77] Patrick Koch, Oliver Kramer, Günter Rudolph, and Nicola
Beume. On the hybridization of sms-emoa and local search
for continuous multiobjective optimization. In Proceedings of the
11th Annual conference on Genetic and evolutionary computation,
GECCO ’09, pages 603–610, New York, NY, USA, 2009. ACM.

[78] Praveen Koduru, Sanjoy Das, Stephen Welch, and Judith L.
Roe. Fuzzy Dominance Based Multi-objective GA-Simplex Hy-
brid Algorithms Applied to Gene Network Models. In Kalyan-
moy Deb et al., editor, Genetic and Evolutionary Computation–
GECCO 2004. Proceedings of the Genetic and Evolutionary Com-
putation Conference. Part I, pages 356–367, Seattle, Washington,
USA, June 2004. Springer-Verlag, Lecture Notes in Computer
Science Vol. 3102.

[79] Praveen Koduru, Sanjoy Das, and Stephen M. Welch. Multi-
Objective Hybrid PSO Using ε-Fuzzy Dominance. In Dirk
Thierens, editor, 2007 Genetic and Evolutionary Computation Con-
ference (GECCO’2007), volume 1, pages 853–860, London, UK,
July 2007. ACM Press.

198 Bibliography

[80] A. K. Kolmogorov. On the representation of continuous func-
tions of several variables by superposition of continuous func-
tions of one variable and addition. Doklady Akademii Nauk SSSR,
114:369–373, 1957.

[81] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In
J. Neyman, editor, Proceedings of the Second Berkeley Symposium,
pages 481–492. University of California Press, 1951.

[82] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright.
Convergence properties of the Nelder–Mead simplex method in
low dimensions. SIAM Journal of Optimization, 9:112–147, 1998.

[83] Adriana Lara, Gustavo Sanchez, Carlos A. Coello Coello, and
Oliver Schütze. HCS: A New Local Search Strategy for Memetic
Multi-Objective Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation, 14(1):112–132, February 2010.

[84] Marco Laumanns, Günter Rudolph, and Hans-Paul Schwefel.
A Spatial Predator-Prey Approach to Multi-Objective Optimiza-
tion: A Preliminary Study. In A. E. Eiben, M. Schoenauer, and
H.-P. Schwefel, editors, Parallel Problem Solving From Nature —
PPSN V, pages 241–249, Amsterdam, Holland, 1998. Springer-
Verlag.

[85] K. Levenberg. A method for the solution of certain non-linear
problems in least squares. Quart. J. Appl. Maths., II(2):164–168,
1944.

[86] R. P Lippmann. An introduction to computing with neural
nets. IEEE Magazine on Accoustics, Signal, and Speech Processing,
4:4–22, April 1987.

[87] Joanna Lis and A. E. Eiben. A Multi-Sexual Genetic Algorithm
for Multiobjective Optimization. In Toshio Fukuda and Takeshi
Furuhashi, editors, Proceedings of the 1996 International Confer-
ence on Evolutionary Computation, pages 59–64, Nagoya, Japan,
1996. IEEE.

[88] Changtong Luo and Bo Yu. Low Dimensional Simplex
Evolution–A Hybrid Heuristic for Global Optimization. In

Bibliography 199

Eighth ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, volume 2, pages 470–474, 2007.

[89] M. Luque, Jian-Bo Yang, and B. Wong. Project method for
multiobjective optimization based on gradient projection and
reference points. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 39(4):864 –879, july 2009.

[90] J. B. MacQueen. Some Methods for Classification and Analysis
of Multivariate Observations. In Proceedings of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[91] Donald W. Marquardt. An Algorithm for Least-Squares Es-
timation of Nonlinear Parameters. SIAM Journal on Applied
Mathematics, 11(2):431–441, 1963.

[92] M. D. McKay, R. J. Beckman, and W. J. Conover. A compar-
ison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[93] K. I. M. McKinnon. Convergence of the Nelder–Mead Simplex
Method to a Nonstationary Point. SIAM Journal on Optimization,
9(1):148–158, 1998.

[94] J.M. Mendel. Fuzzy logic systems for engineering: a tutorial.
Proceedings of the IEEE, 83(3):345 –377, mar 1995.

[95] Zbigniew Michalewicz and David B. Fogel. How to Solve It:
Modern Heuristics. Springer, Berlin, 2000.

[96] Kaisa Miettinen. Nonlinear Multiobjective Optimization, vol-
ume 12 of International Series in Operations Research and Man-
agement Science. Kluwer Academic Publishers, Dordrecht, 1999.

[97] Pablo Moscato. On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms.
Technical Report Caltech Concurrent Computation Program,
Report. 826, California Institute of Technology, Pasadena, Cali-
fornia, USA, 1989.

200 Bibliography

[98] Noura Al Moubayed, Andrei Petrovski, and John A. W. McCall.
A novel smart multi-objective particle swarm optimisation using
decomposition. In PPSN (2), pages 1–10, 2010.

[99] H. Mukai. Algorithms for Multicriterion Optimization. IEEE
Transactions on Automatic Control, 25(2):177–186, 1980.

[100] T. Murata, S. Kaige, and H. Ishibuchi. Generalization of Dom-
inance Relation-Based Replacement Rules for Memetic EMO
Algorithms. In Erick Cantú-Paz et al., editor, Genetic and Evo-
lutionary Computation—GECCO 2003. Proceedings, Part I, pages
1234–1245. Springer. Lecture Notes in Computer Science Vol.
2723, July 2003.

[101] Tadahiko Murata and Hisao Ishibuchi. MOGA: Multi-Objective
Genetic Algorithms. In Proceedings of the 2nd IEEE International
Conference on Evolutionary Computing, pages 289–294, Perth,
Australia, November 1995.

[102] J. A. Nelder and R. Mead. A Simplex Method for Function
Minimization. The Computer Journal, 7:308–313, 1965.

[103] I. Newton. De analysi per aequationes numero terminorum infinitas.
1669.

[104] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, 2000.

[105] Yew S. Ong, Prasanth B. Nair, and Andrew J. Keane. Evolution-
ary optimization of computationally expensive problems via
surrogate modeling. AIAA Journal, 41(4):687–696, 2003.

[106] Vilfredo Pareto. Cours d’Economie Politique . F. Rouge, Lausanne,
1896.

[107] Wei Peng and Qingfu Zhang. A decomposition-based multi-
objective particle swarm optimization algorithm for continu-
ous optimization problems. In IEEE International Conference on
Granular Computing, 2008. GrC 2008, pages 534 –537, 2008.

[108] Michael J. D. Powell. An efficient method for finding the min-
imum of a function of several variables without calculating
derivatives. The Computer Journal, 7:155–162, 1964.

Bibliography 201

[109] Michael J. D. Powell. On search directions for minimization
algorithms. Mathematical Programming, 4:193–201, 1973.

[110] M. K. Rahman. An intelligent moving object optimization al-
gorithm for design problems with mixed variables, mixed con-
straints and multiple objectives. Structural and Multidisciplinary
Optimization, 32(1):40–58, July 2006.

[111] Singiresu S. Rao. Engineering Optimization. John Wiley & Sons
Inc., 3rd edition, 1996.

[112] A. Ravindran, K. M. Ragsdell, and G. V. Reklaitis. Engineering
Optimization: Methods and Applications. John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2006.

[113] I. Rechenberg. Cybernetic solution path of an experimental
problem. In Royal Aircraft Establishment Translation No. 1122, B.
F. Toms, Trans. Ministry of Aviation, Royal Aircraft Establish-
ment, Farnborough Hants, August 1965.

[114] R. S. Rosenberg. Simulation of genetic populations with biochemi-
cal properties. PhD thesis, University of Michigan, Ann Arbor,
Michigan, EE. UU., 1967.

[115] H.H. Rosenbrock. An automatic method for finding the greatest
or least value of a function. The Computer Journal, 3(3):175–184,
1960.

[116] Günter Rudolph. Convergence analysis of canonical genetic
algorithms. IEEE Transactions on Neural Networks, 5(1):96–101,
January 1994.

[117] J. David Schaffer. Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University,
1984.

[118] J. David Schaffer and John J. Grefenstette. Multiobjective Learn-
ing via Genetic Algorithms. In Proceedings of the 9th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-85), pages
593–595, Los Angeles, California, 1985. AAAI.

[119] J. David Schaffer and Amy Morishima. An adaptive crossover
distribution mechanism for genetic algorithms. In Proceedings of

202 Bibliography

the Second International Conference on Genetic Algorithms and their
application, pages 36–40, Mahwah, NJ, USA, 1987. Lawrence
Erlbaum Associates, Inc.

[120] Hans-Paul Schwefel. Kybernetische Evolution als Strategie der
Experimentellen Forschung in der Stromungstechnik. PhD thesis,
Technical University of Berlin, 1965.

[121] Hans-Paul Schwefel. Numerical Optimization of Computer Models.
John Wiley & Sons, Inc., New York, NY, USA, 1981.

[122] Hamed Shah-Hosseini. The intelligent water drops algorithm:
a nature-inspired swarm-based optimization algorithm. Inter-
national Journal of Bio-Inspired Computation, 1:71–79, 2009.

[123] Karthik Sindhya, Kalyanmoy Deb, and Kaisa Miettinen. A Local
Search Based Evolutionary Multi-objective Optimization Ap-
proach for Fast and Accurate Convergence. In Günter Rudolph,
Thomas Jansen, Simon Lucas, Carlo Poloni, and Nicola Beume,
editors, Parallel Problem Solving from Nature–PPSN X, pages 815–
824. Springer. Lecture Notes in Computer Science Vol. 5199,
Dortmund, Germ., September 2008.

[124] Helmut Sobieczky. Parametric Airfoils and Wings. In K. Fuji and
G. S. Dulikravich, editors, Notes on Numerical Fluid Mechanics,
Vol.. 68, pages 71–88, Wiesbaden, 1998. Vieweg Verlag.

[125] O. Soliman, L. T. Bui, and H. Abbass. A memetic coevolution-
ary multi-objective diffierential evolution algorithm. In C.-K.
Goh, Y.-S. Ong, and K. C. Tan, editors, Multi-Objective Memetic
Algorithms, pages 325–351. Springer, Studies in Computational
Intelligence , Vol. 171, 2009.

[126] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential Ap-
plication of Simplex Designs in Optimization and Evolutionary
Operation. Technometrics, 4(4):441–461, November 1962.

[127] David A. Sprecher. A universal mapping for kolmogorov’s
superposition theorem. Neural Netw., 6(8):1089–1094, January
1993.

Bibliography 203

[128] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization
Using Nondominated Sorting in Genetic Algorithms. Evolu-
tionary Computation, 2(3):221–248, Fall 1994.

[129] Rainer M. Storn and Kenneth V. Price. Differential Evolution
- a simple and efficient adaptive scheme for global optimiza-
tion over continuous spaces. Technical Report TR-95-012, ICSI,
Berkeley, CA, March 1995.

[130] B. Suman. Study of simulated annealing based algorithms for
multiobjective optimization of a constrained problem. Comput-
ers & Chemical Engineering, 28:1849–1871, 2004.

[131] András Szöllös, Miroslav Smíd, and Jaroslav Hájek. Aerody-
namic optimization via multi-objective micro-genetic algorithm
with range adaptation, knowledge-based reinitialization, crowd-
ing and epsilon-dominance. Advances in Engineering Software,
40(6):419–430, 2009.

[132] Virginia Joanne Torczon. Multi-Directional Search: A Direct
Search Algorithm for Parallel Machines. PhD thesis, Rice Uni-
versity, Houston, Texas, USA, May 1989.

[133] Mohamed B. Trabia and Xiao Bin Lu. A Fuzzy Adaptive Simplex
Search Optimization Algorithm. Journal of Mechanical Design,
123:216–225, 2001.

[134] Heike Trautmann, Uwe Ligges, Jörn Mehnen, and Mike Preuss.
A Convergence Criterion for Multiobjective Evolutionary Al-
gorithms Based on Systematic Statistical Testing. In Günter
Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and
Nicola Beume, editors, Parallel Problem Solving from Nature–
PPSN X, pages 825–836. Springer. Lecture Notes in Computer
Science Vol. 5199, Dortmund, Germany, September 2008.

[135] Manuel Valenzuela-Rendón and Eduardo Uresti-Charre. A
Non-Generational Genetic Algorithm for Multiobjective Opti-
mization. In Thomas Bäck, editor, Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms, pages 658–665, San
Mateo, California, July 1997. Michigan State University, Morgan
Kaufmann Publishers.

204 Bibliography

[136] Vladimir Vapnik, Steven E. Golowich, and Alex Smola. Support
vector method for function approximation, regression estima-
tion, and signal processing. In Advances in Neural Information
Processing Systems 9, pages 281–287. MIT Press, 1997.

[137] Rémy Viennet, Christian Fontiex, and Ivan Marc. Multicriteria
Optimization Using a Genetic Algorithm for Determining a
Pareto Set. International Journal of Systems Science, 27(2):255–260,
1996.

[138] Philippe Vincke. Multicriteria Decision-Aid. John Wiley & Sons,
New York, 1992.

[139] L. Darrell Whitley, V. Scott Gordon, and Keith E. Mathias.
Lamarckian Evolution, The Baldwin Effect and Function Op-
timization. In Proceedings of the International Conference on Evo-
lutionary Computation. The Third Conference on Parallel Problem
Solving from Nature: Parallel Problem Solving from Nature, PPSN
III, pages 6–15, London, UK, 1994. Springer-Verlag.

[140] D.H. Wolpert and W.G. Macready. No free lunch theorems
for optimization. Evolutionary Computation, IEEE Transactions
on, 1(1):67–82, 1997.

[141] Yan yan Tana, Yong chang Jiaoa, Hong Lib, and Xin kuan
Wanga. Moea/d + uniform design: A new version of moea/d
for optimization problems with many objectives. Computers &
Operations Research, 2012.

[142] Wen Ci Yu. The convergent property of the simplex evolutionary
technique. Scientia Sinica, Zhongguo Kexue:69–77, 1979.

[143] Wen Ci Yu. Positive basis and a class of direct search techniques.
Scientia Sinica, Zhongguo Kexue:53–68, 1979.

[144] W. I. Zangwill. Minimizing a Function Without Calculating
Derivatives. The Computer Journal, 10(3):293–296, November
1967.

[145] Saúl Zapotecas Martínez, Alfredo Arias Montaño, and Carlos A.
Coello Coello. A Nonlinear Simplex Search Approach for Multi-
Objective Optimization. In 2011 IEEE Congress on Evolutionary

Bibliography 205

Computation (CEC’2011), pages 2367–2374, New Orleans, USA,
June 2011. IEEE Press.

[146] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A Pro-
posal to Hybridize Multi-Objective Evolutionary Algorithms
with Non-Gradient Mathematical Programming Techniques. In
Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni,
and Nicola Beume, editors, Parallel Problem Solving from Nature–
PPSN X, volume 5199, pages 837–846. Springer. Lecture Notes
in Computer Science, Dortmund, Germany, September 2008.

[147] Saúl Zapotecas Martínez and Carlos A. Coello Coello. An
Archiving Strategy Based on the Convex Hull of Individual
Minima for MOEAs. In 2010 IEEE Congress on Evolutionary
Computation (CEC’2010), pages 912–919, Barcelona, España, July
2010. IEEE Press.

[148] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A
Memetic Algorithm with Non Gradient-Based Local Search
Assisted by a Meta-Model. In Robert Schaefer, Carlos Cotta,
Joanna Kołodziej, and Günter Rudolph, editors, Parallel Prob-
lem Solving from Nature–PPSN XI, volume 6238, pages 576–585,
Kraków, Poland, September 2010. Springer, Lecture Notes in
Computer Science.

[149] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A Multi-
objective Particle Swarm Optimizer Based on Decomposition. In
Proceedings of the 13th annual conference on Genetic and Evolution-
ary Computation (GECCO’2011), pages 69–76, Dublin, Ireland,
July 2011. ACM Press.

[150] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A Di-
rect Local Search Mechanism for Decomposition-based Multi-
Objective Evolutionary Algorithms. In 2012 IEEE Congress
on Evolutionary Computation (CEC’2012), pages 3431–3438, Bris-
bane, Australia, June 2012. IEEE Press.

[151] Saúl Zapotecas Martínez and Carlos A. Coello Coello. MOEA/D
assisted by RBF Networks for Expensive Multi-Objective Opti-
mization Problems. Technical Report EVOCINV-02-2013, Evolu-
tionary Computation Group at CINVESTAV, Departamento de
Computación, CINVESTAV-IPN, México, February 2013.

206 Bibliography

[152] Saúl Zapotecas Martínez and Carlos A. Coello Coello. MONSS:
A Multi-Objective Nonlinear Simplex Search Algorithm.
Technical Report EVOCINV-01-2013, Evolutionary Computa-
tion Group at CINVESTAV, Departamento de Computación,
CINVESTAV-IPN, México, February 2013.

[153] Saúl Zapotecas Martínez, Edgar G. Yáñez Oropeza, and Car-
los A. Coello Coello. Self-Adaptation Techniques Applied to
Multi-Objective Evolutionary Algorithms. In Carlos A. Coello
Coello, editor, Learning and Intelligent Optimization, 5th Interna-
tional Conference, LION 5, volume 6683, pages 567–581, Rome,
Italy, January 2011. Springer. Lecture Notes in Computer Sci-
ence.

[154] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and
S. Tiwari. Multiobjective optimization test instances for the cec
2009 special session and competition. Technical Report CES-
487, University of Essex and Nanyang Technological University,
2008.

[155] Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolu-
tionary Algorithm Based on Decomposition. IEEE Transactions
on Evolutionary Computation, 11(6):712–731, December 2007.

[156] Qingfu Zhang, Wudong Liu, E. Tsang, and B. Virginas. Expen-
sive Multiobjective Optimization by MOEA/D with Gaussian
Process Model. Evolutionary Computation, IEEE Transactions on,
14(3):456 –474, june 2010.

[157] Xiang Zhong, Wenhui Fan, Jinbiao Lin, and Zuozhi Zhao. Hy-
brid non-dominated sorting differential evolutionary algorithm
with nelder-mead. In Intelligent Systems (GCIS), 2010 Second
WRI Global Congress on, volume 1, pages 306 –311, December
2010.

[158] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison
of Multiobjective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation, 8(2):173–195, Summer 2000.

[159] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm. In

Bibliography 207

K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fog-
arty, editors, EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems,
pages 95–100, Athens, Greece, 2001.

[160] Eckart Zitzler and Lothar Thiele. Multiobjective Optimization
Using Evolutionary Algorithms – A Comparative Case Study.
In A. E. Eiben, editor, Parallel Problem Solving from Nature V,
pages 292–301, Amsterdam, September 1998. Springer-Verlag.

[161] Eckart Zitzler and Lothar Thiele. Multiobjective Evolution-
ary Algorithms: A Comparative Case Study and the Strength
Pareto Approach. IEEE Transactions on Evolutionary Computa-
tion, 3(4):257–271, Noviembre 1999.

[162] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fon-
seca, and Viviane Grunert da Fonseca. Performance Assessment
of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132, April
2003.

	Dedication
	Abstract
	Resumen
	Acknowledgments
	Contributions
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Our Proposal
	1.3 General and Specific Goals of the Thesis
	1.3.1 Main goal
	1.3.2 Specific goals

	1.4 Structure of the Document

	2 Background
	2.1 Notions of Optimality
	2.1.1 Optimality Criterion

	2.2 Optimization Techniques
	2.2.1 Mathematical Programming Techniques
	2.2.2 Stochastic Techniques

	2.3 Evolutionary Algorithms
	2.4 Evolutionary Computation Paradigms
	2.4.1 Evolution Strategies
	2.4.2 Evolutionary Programming
	2.4.3 Genetic Algorithms
	2.4.4 Other Evolutionary Approaches

	2.5 Memetic Algorithms
	2.6 Advantages and Disadvantages of Evolutionary Algorithms

	3 Multi-Objective Optimization
	3.1 Optimality in Multi-Objective Optimization
	3.2 Multi-Objective Mathematical Programming Techniques
	3.2.1 A Priori Preference Articulation
	3.2.2 A Posteriori Preference Articulation
	3.2.3 Interactive Preference Articulation

	3.3 Multi-Objective Evolutionary Algorithms
	3.3.1 MOEAs based on a population
	3.3.2 MOEAs based on Pareto
	3.3.3 MOEAs based on Decomposition

	3.4 Performance Assessment
	3.5 Test functions

	4 Multi-Objective Memetic Algorithms Based on Direct Search Methods
	4.1 Multi-Objective Memetic Algorithms
	4.2 MOMAs Based on Direct Search Methods
	4.2.1 A Multi-objective GA-Simplex Hybrid Algorithm
	4.2.2 A Multi-objective Hybrid Particle Swarm Optimization Algorithm
	4.2.3 A Nonlinear Simplex Search Genetic Algorithm
	4.2.4 A Hybrid Non-dominated Sorting Differential Evolutionary Algorithm
	4.2.5 A Hybrid Multi-objective Evolutionary Algorithm based on the S Metric

	5 A Nonlinear Simplex Search for Multi-Objective Optimization
	5.1 The Nonlinear Simplex Search
	5.2 The Nonlinear Simplex Search for Multi-Objective Optimization
	5.2.1 Decomposing MOPs
	5.2.2 About the Nonlinear Simplex Search and MOPs
	5.2.3 The Multi-Objective Nonlinear Simplex Search

	5.3 Experimental Study
	5.3.1 Test Problems
	5.3.2 Performance Assessment
	5.3.3 Parameters Settings

	5.4 Numerical Results
	5.5 Remarks

	6 A Multi-objective Memetic Algorithm Based on Decomposition
	6.1 The Multi-Objective Memetic Algorithm
	6.1.1 General Framework
	6.1.2 Local Search

	6.2 Experimental Study
	6.2.1 Test Problems
	6.2.2 Performance Measures
	6.2.3 Parameters Settings

	6.3 Numerical Results
	6.4 Remarks

	7 An Improved Multi-objective Memetic Algorithm Based on Decomposition
	7.1 The Proposed Approach
	7.1.1 General Framework
	7.1.2 Local Search Mechanism

	7.2 Experimental Results
	7.2.1 Test Problems
	7.2.2 Performance Measures
	7.2.3 Parameters Settings

	7.3 Numerical Results
	7.3.1 Results for the ZDT test suite
	7.3.2 Results for the DTLZ test suite
	7.3.3 Results for WFG test suite

	7.4 Remarks

	8 Combining Surrogate Models and Local Search for Multi-objective Optimization
	8.1 Radial Basis Function Networks
	8.2 A MOEA based on Decomposition Assisted by RBF Networks
	8.2.1 General Framework
	8.2.2 Initialization
	8.2.3 Building the Model
	8.2.4 Finding an Approximation to PF
	8.2.5 Selecting Points to Evaluate
	8.2.6 Updating the Population

	8.3 The MOEA/D-RBF with Local Search
	8.3.1 Local Search Mechanism

	8.4 Experimental Results
	8.4.1 Test Problems
	8.4.2 Performance Assessment
	8.4.3 Experimental Setup

	8.5 Numerical Results
	8.5.1 ZDT Test Problems
	8.5.2 Airfoil Design Problem

	8.6 Remarks

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	A Test Functions Description
	A.1 Classic Multi-objective Optimization Problems
	A.2 Zitzler-Deb-Thiele Test Problems
	A.3 Deb-Thiele-Laummans-Zitzler Test Problems
	A.4 Walking-Fish-Group Test Problems

	B Airfoil Shape Optimization
	B.1 Problem Statement
	B.1.1 Geometry Parametrization

	C Pareto Front Approximations for ZDT Test Suite
	D Pareto Front Approximations for DTLZ Test Suite
	E Pareto Front Approximations for WFG Test Suite

