Cryptology 2014

Instructor: Debrup Chakraborty (debrup(AT)

References :  [KL]  Introduction to Modern Cryptography by Jonathan Katz and Yehuda Lindell
                         [ST]   Cryptography: Theory and Practice, by Doughlas R. Stinson
                         [MOV] Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot and S. Vanstone. (Available online for free)

Classes:  Tuesdays and Thursdays 10:00 to 12:00

Grading: 40% on homeworks, 40% on tests and 20% on a project.

Homeworks: Homework 2 (due 20th March)
                          Homework 3 (due 25th April)

Important Dates:  Finalize project proposal by March 13
                                    Test 1 on March 25
                                    Test 2 on April 24
                                     Final project submission on April 29

Topics to be covered

       Perfect Secrecy:                             Definition of perfect secrecy, variants of the definition, One time pad, Shannon´s Theorem ( Read [KL] Chapter 2)

        Block ciphers:                                 Definition, Description of of DES and AES [ Read [ST] Chapter 3]
                                                                Key recovery attacks on block ciphers [Read  notes by Phil Rogaway]
                                                                Pseudorandom Functions and Pseudorandom Permutations, Security of Block Ciphers [ Read  notes by Phil Rogaway]
                                                                Software implementation of AES, the Intel AES-NI instructions.

      Symmetric Encryption:                     Syntax of symmetric encryption. Security notions. Block cipher modes of operation. Proof of security of CTR mode.
                                                                 [read chapter 3 of [ST] and  notes by Phil Rogaway]

      Message Authentication:                 Syntax of message authentication codes. Forgery attacks. Relationship of secure MACs with pseudorandom functions.
                                                                Universal, Almost universal and Almost Xor Universal hash families.
                                                                The Carter Wegman paradigm of MACs. Polynomial evaluation MACs
                                                                Block cipher based MACs: CMAC and PMAC     

     Cryptographic Hash Functions:       Preimage resistance, Second preimage resistance and collision resistance.
The random oracle model.
                                                              Generic algoritms for finding preimage, second preimage and collisions in the random oracle model.
                                                              Relation between the notions of Preimage resistance, Second preimage resistance and collision resistance.
                                                              Iterated hash functions. Constructing hash functions from a given compression function,  the Merkle-Damgard construction . [Read [ST] Chapter 4]

Authenticated encryption:              Syntax, Security Notions, Generic Composition, Authenticated encryption with associated data. GCM and OCB modes.

      Tweakable Encryption:                   Tweakable Block Ciphers, Tweakable Enciphering schemes, Disk encryption: Narrow block and wide block modes. XTS, EME, HCTR

      Public Key Encryption:                  Basic number theory. Diffie Hellman Key Exchange. CPA and CCA security of public key encryption. RSA and El Gamal encryption schemes
      Digital Signatures.