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Abstract. This paper proposes a blockcipher mode of operation,
HCTR, which is a length-preserving encryption mode. HCTR turns an
n-bit blockcipher into a tweakable blockcipher that supports arbitrary
variable input length which is no less than n bits. The tweak length of
HCTR is fixed and can be zero. We prove that HCTR is a strong tweak-
able pseudorandom permutation (�sprp), when the underlying blockcipher
is a strong pseudorandom permutation (sprp). HCTR is shown to be a
very efficient mode of operation when some pre-computations are taken
into consideration. Arbitrary variable input length brings much flexibility
in various application environments. HCTR can be used in disk sector
encryption, and other length-preserving encryptions, especially for the
message that is not multiple of n bits.

Keywords: Blockcipher, tweakable blockcipher, disk sector encryption,
modes of operation, symmetric encryption.

1 Introduction

Basic encryption modes, such as CBC [27], increase the message length. But
in many scenarios, we need a length-preserving encryption (enciphering). For
example, in networking application, some packet format was not defined for
cryptographic purposes, and can not be altered. So when we want add privacy
features, we can not even lengthen one bit. The other example is disk sector
encryption. A disk is partitioned into fixed-length sectors. The sector-level en-
cryption is a low-level encryption. The encryption device knows nothing about
the information of files or directories. It encrypts or decrypts sectors when they
arrive. Suppose the plaintext at the sector location of T is P , and the encryp-
tion algorithm is ˜E, then the ciphertext stored in this sector is C = ˜ET

K(M),
where K is the secret key. Of course we can not expand the message length, so
|M | = | ˜ET

K(M)|. That is why we need the concept of tweakable blockcipher in
disk sector encryption. The sector location T is call tweak, which is also called
associated data in [15, 13].
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In the above example the message length is not always fixed and the same as,
but usually much longer than, that of well known blockciphers such as DES (64
bits) or AES (128 bits) [6]. For example the sector length is typically 512 bytes.
So we need wide-block-length enciphering modes based on blockciphers. When
we have a wide-block-length enciphering mode, we can easily put the tweak into
it using the method in [11] or [8], to get a tweakable enciphering mode.

This paper proposes a tweakable enciphering mode, or an arbitrary-variable-
input-length tweakable blockcipher. We name it HCTR, for it makes use of a
special universal hash function and the CTR mode. If the underlying blockcipher
is E : {0, 1}k × {0, 1}n → {0, 1}n, then our mode supports arbitrary variable
length of at lest n bits, using a (k+n)-bit key and m blockcipher calls to encipher
m blocks plaintext. The length of tweak in HCTR is fixed and can be zero. When
it is zero, HCTR becomes an enciphering mode, or a arbitrary-variable-input-
length blockcipher.

Our HCTR mode is a hash-encipher-hash construction, part of the middle
layer uses the CTR encryption mode. HCTR is similar to the XCB mode [13],
and also can be viewed as a generalization to the basic construction of s̃prp
in [11]. The ABL mode [15] and the XCB mode [13] are unbalanced Feistel
constructions using universal hash functions as their components. They also
support variable input length, but the secret key is very long (4 keys in ABL
and 5 keys in XCB) and have to be generated from a main key. The CMC
mode [8] and the EME mode [9] are modes without using any universal hash
functions. But they only support the message that is multiple of a block. HCTR
has great advantage among these modes.

The attack-model is an adaptive chosen plaintext/ciphertext attack: an ad-
versary can choose a tweak T , a plaintext P and get a ciphertext C = ˜ET

K(P ); or
choose a tweak T , a ciphertext C and get a plaintext P = ( ˜ET

K)−1(C). The cur-
rent query can base on previous answers. We prove that HCTR is a strong secure
tweakable blockcipher (s̃prp), which is defined as the one indistinguishable from
the independently random permutations indexed by the tweak T . If HCTR is
used in disk sector encryption, the effect is that each sector is encrypted with a
different random permutation independently. This kind of tweakable blockcipher
is under standardization [19] by the IEEE Security in Storage Working Group.
Our proof method adopts the game-play technique [2, 26], which was first used
in [10].

We give basic definitions in Section 2. Specification of HCTR is in Section 3.
Section 4 discusses some insure modifications and compares HCTR with other
modes. The concrete security bound is given in Section 5.

1.1 Related Work

Constructions of large-block-size blockciphers from small-block-size blockciphers
can date back to the pioneering work of Luby and Rackoff [12]. They showed that
three rounds of the Feistel structure turns n-bit to n-bit random functions into
a 2n-bit secure blockcipher, and four rounds into a strong secure one. Naor and
Reingold [18] showed that two rounds Feistel construction with initial and final
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strong universal invertible hash functions is enough to construct a strong secure
blockcipher. In [17], they further used this hash-encipher-hash construction to get
a mode of operation, but the hash function is quiet complex. Patel etc. further
discussed the function of universal hash functions in the Feistel construction
[20]. Bellare and Rogaway [1] used a special pseudorandom function and a special
encryption mode to construct a variable-input-length cipher. Patel etc. [21] made
some efficiency improvement to this scheme and the other unbalanced Feistel
construction by using universal hash functions.

The constructions of tweakable blockciphers from scratch involve HPC [24]
and Mercy [5] (although it has been broken by Fluhrer [7]).

Tweakable blockcipher is not only a suitable model for disk sector encryption
and useful in length-preserving encryption, but also a good starting point to do
design problem [11]. Following this thought, Rogaway [22] made refinement to
modes OCB [23] and PMAC [3] using tweakable blockciphers.

2 Basic Definitions

BLOCKCIPHERS AND TWEAKABLE BLOCKCIPHERS. A blockcipher is a function E :
K × M → M where EK(·) = E(K, ·) is a length-preserving permutation for
all K ∈ K. K �= φ is a key space and M �= φ is a message space. A tweakable
blockcipher is a function ˜E : K × T × M → M where ˜ET

K(·) = ˜EK(T, ·) =
˜E(K, T, ·) is a length-preserving permutation for all K ∈ K and T ∈ T . T is a
tweak space.

We write s
R←− S to denote choosing a random element s from a set S by

uniform distribution. Let Perm(M) be the set of all length-preserving permuta-
tions on M. When M = {0, 1}n, we denote it as Perm(n). Let PermT (M) be
the set of all mappings from T to Perm(M). PermT (M) can also be viewed as
the set of all blockciphers E : T × M → M. If π̃

R←− PermT (M), then for every
T ∈ T , π̃T (·) = π̃(T, ·) is a random permutation. When M = {0, 1}n, we denote
it as PermT (n).

An adversary is a (randomized) algorithm with access to one or more oracles
which are written as superscripts. Without loss of generality, we assume that
adversaries never ask trivial queries whose answers are already known. For ex-
ample, an adversary never repeats a query and never asks ( ˜EK)−1(T, C) after
receiving C as an answer to ˜EK(T, M), and so forth. Let Aρ ⇒ 1 be the event
that adversary A with oracle ρ outputs the bit 1.

p̃rp AND s̃prp. A tweakable blockcipher ˜E : K × T × M → M is a (strong)
pseudorandom tweakable permutation (p̃rp or s̃prp), if it is indistinguishable
from a random tweakable permutation π̃

R←− PermT (M). More specifically, if
the advantage function

Adv�prp
�E

(A) = Pr[K R←− K : A
�EK(·,·) ⇒ 1]

− Pr[π̃ R←− PermT (M) : A�π(·,·) ⇒ 1]
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is sufficiently small for any A with reasonable resources, then ˜E is said to be a
pseudorandom tweakable permutation (p̃rp), or a secure tweakable blockcipher,
or secure against chosen plaintext attack. If the advantage function

Adv�sprp
�E

(A) = Pr[K R←− K : A
�EK(·,·),�E−1

K (·,·) ⇒ 1]

− Pr[π̃ R←− PermT (M) : A�π(·,·),�π−1(·,·) ⇒ 1]

is sufficiently small for any A with reasonable resources, then ˜E is said to be a
strong pseudorandom tweakable permutation (s̃prp), or a strong secure tweakable
blockcipher, or secure against chosen ciphertext attack.

prp AND sprp. When the tweak space T = φ, the tweakable blockcipher becomes
the blockcipher. A blockcipher E : K × M → M is a (strong) pseudorandom
permutation (prp or sprp), if it is indistinguishable from a random permutation
π

R←− Perm(M). p̃rp and s̃prp correspond to prp and sprp respectively.

3 Specification of HCTR

3.1 Notations

A string is a finite sequence of symbols, each symbol being 0 or 1. A block is a
string of fixed length. The blockcipher and multiplication of the finite field are
operations over blocks. Let {0, 1}∗ be the set of all strings. If X, Y ∈ {0, 1}∗, then
X ||Y is their concatenation. If X ∈ {0, 1}∗, then the bit-length of X , denoted as
|X |, is the number of bits in X . |X | = 0 if and only if X is the empty string ε. If
one block is n bits, we can parse X into m = �|X |/n� blocks: X = X1, · · · , Xm,
where |Xm| ≤ n, and |X1| = · · · = |Xm−1| = n. Let |X |n = �|X |/n�. We say
that |X | has |X |n blocks. X [s] denotes the sth bit of X from left to right. X [s, t]
denotes the substring from the sth bit to the tth bit in X from left to right. For
example, if X = 110011, then X [2, 4] = 100. If X, Y ∈ {0, 1}∗, then X ⊕← Y is
slightly different to X⊕Y . If |X | < |Y | then X ⊕←Y = X⊕Y [1, |X |]. If |X | = |Y |
then X ⊕← Y = X ⊕ Y . If |X | > |Y | then X ⊕← Y = X ⊕ Y 0∗.

3.2 Multiplication in GF (2n)

We interchangeably think of a block L = (L1, · · · , Ln) as an abstract point in
the finite field GF (2n) and as a polynomial L(x) = L1 + L2x + · · · + Lnxn−1 in
GF (2)[x]/(p(x)), where p(x) is an irreducible polynomial of degree n in GF (2)[x].
The addition in GF (2n) is bitwise xor ⊕. The multiplication of A, B ∈ GF (2n)
is denoted as A · B which can be calculated as A(x)B(x) in GF (2)[x]/(p(x)). If
we choose the blockcipher as AES [6], then the bit-length of a block is 128 bits.
The corresponding irreducible polynomial can be chosen as p(x) = 1 + x + x2 +
x7 + x128.
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3.3 Universal Hash Function

H is a function family: H = {Hh : {0, 1}∗ → {0, 1}n|h ∈ {0, 1}n}. For any X ∈
{0, 1}∗, X is padded into complete blocks and then the polynomial evaluation [4]
is used. Suppose |X |n = m, we parse X into X = X1, · · · , Xm. We append 0s,
possibly none, at the end of X to complete the block and append |X |, which is
written as a n-bit string, as the last block. Then we use polynomial evaluation
hash function in h on the padding result. More specifically, Hh is defined as:

Hh(X) = X1 · hm+1 ⊕ · · · ⊕ Xm0∗ · h2 ⊕ |X | · h

which can be calculated as following:

Algorithm Hh(X)
parse X as X1, · · · , Xm

Y0 ← 0n

for i ← 1 to m do
Yi ← (Yi−1 ⊕← Xi) · h

Ym+1 ← (Ym ⊕ |X|) · h
return Ym+1

When X is empty string, we define that Hh(X) = h. H is a special AXU (Almost
Xor Universal) hash function. It has following properties which will be used in
the security proof of HCTR.

1. For any X1, X2 ∈ {0, 1}∗, Y ∈ {0, 1}n and X1 �= X2, Hh(X1) ⊕ Hh(X2)
is a nonzero polynomial in h without constant term. So Pr[h R←− {0, 1}n :
Hh(X1) ⊕ Hh(X2) = Y ] ≤ l/2n, where l = max{|X |n, |Y |n} + 1. In other
words, H is a l/2n-AXU hash function.

2. For any X, Y, Z ∈ {0, 1}∗, |X | = |Y |, we have H(X) ⊕ H(Y ) ⊕ H(Z) is a
nonzero polynomial in h without constant term.

3.4 The CTR Mode

In HCTR we use a special form of the CTR mode:

Algorithm CTRS
K(N)

Y ← EK(S ⊕ 1)|| · · · ||EK(S ⊕ m − 1)
D ← N ⊕← Y
return D

where |N |n = m − 1, K is the key and S is the counter.

3.5 The HCTR Mode

The HCTR mode makes use of a blockcipher E and the special universal hash
function H . Assume that the blockcipher is E : {0, 1}k×{0, 1}n → {0, 1}n. Then
HCTR[E, H ] is

HCTR[E, H ] : {0, 1}k+n × {0, 1}t × {0, 1}≥n → {0, 1}≥n

where {0, 1}≥n = ∪m≥n{0, 1}m and t ≥ 0.
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Fig. 1. The HCTR Mode

HCTR[E, H ] is illustrated in figure 1. we split the plaintext/ciphertext into
two strings. One is the left n bits, and the other is the rest. We assume that
plaintext/ciphertext has m blocks. More specifically, HCTR is the following
algorithm.

Algorithm HCTRT
K,h(M, N)

MM ← M ⊕ Hh(N ||T )
CC ← EK(MM)
S ← MM ⊕ CC

D ←CTRS
K(N)

C ← CC ⊕ Hh(D||T )
return (C,D)

Algorithm (HCTRT
K,h)−1(C, D)

CC ← C ⊕ Hh(D||T )
MM ← E−1

K (CC)
S ← MM ⊕ CC

N ←CTRS
K(D)

M ← MM ⊕ Hh(N ||T )
return (M, N)

4 Discussions

UNIVERSAL HASH FUNCTION. H in HCTR is a special AXU hash function. We
can not substitute H by a general AXU hash function. We define a different
universal hash function H ′

h(X) base on which HCTR is not secure. The main
difference is the padding rule. In the HCTR mode, the padding rule is to append
0s and then the bit-length of X as in H . Now we first append 1 and then 0s to
turn the bit-length of X into multiple of n and then use polynomial evaluation
hash function. Suppose X = X1, · · · , Xm where |X |n = m, and |X1| = · · · =
|Xm−1| = n. If |Xm| = n, then H ′

h(X) = X1 · hm+1 ⊕ · · · ⊕ Xm · h2 ⊕ 10n−1 · h.
If |Xm| < n, then H ′

h(X) = X1 · hm ⊕ · · · ⊕ Xm10∗ · h. We can prove that

Pr[h R←− H ′ : h(X) ⊕ h(Y ) = Z] ≤ ε for all X, Y ∈ {0, 1}∗, Z ∈ {0, 1}n, X �= Y .
Here ε = l/2n where l = max{|X |n, |Y |n} + 1.
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We now chose the length of tweak as 0: T = φ. In this situation, we can show
that HCTR[E, H ′] is not even a prp. We first make an arbitrary enciphering
query (M1, N1) such that |N1| = n − 1 and get an answer (C1, D1). If D1[n −
1] = N1[n − 1], then we do it again until D1[n − 1] �= N1[n − 1]. Now we
make the other enciphering query (M2, N2) such that M2 = M1 ⊕ C1 and
N2 = (N1 ⊕ D1)[1, n − 2]. We get the answer (C2, D2). Then the input to the
second blockcipher in the last but one query is the same as the input to the
first blockcipher in the last query. Therefore we have that (N1 ⊕ D1)[1, n − 2] =
(C2 ⊕H ′

h(D2))[1, n− 2] or (N1 ⊕D1)[1, n− 2] = (C2 ⊕h ·D210)[1, n− 2]. So we
can recover h with successful probability of 1/4 and get rid of the hash function
layers. Without the hash function layers, we can easily distinguish HCTR from
a random permutation.

LENGTH of TWEAK. The length of tweak is fixed, because in most application
environment there is no need for variable length tweak. We can chose the length
of tweak according to the practical application environment. If we really need
the variable length tweak, we can choose GHASH in [16, 14, 13] which is similar
to H and takes two inputs.

MULTIPLICATION. The multiplication in finite field dominates the efficiency of the
hash function layers. A simple implement of multiplication is even much slower
than one AES call. But notice that the key h is a constant during the enciphering
course, therefore we can do some pre-computations before enciphering. This
time-memory tradeoffs greatly speeds up the hash function, though a bit more
storage is needed. See [16, 25] for specific discussions.

CMC EME ABL XCB HCTR
Keys 2 1 4 5 2
Blockciphers 2m + 1 2m + 1 2m − 2 m + 1 m
Universal hash 0 0 2 2 2
Variable Input × Multiple

√ √ √

Length of n bits
Parallelizable × Almost Partially Partially Partially

COMPARISONS. We compare HCTR with other enciphering modes, such as CMC,
EME, ABL, and XCB, from several aspects. Suppose that we encrypt an message
of m blocks. We list the comparisons in the above table. The first is the number
of key. The second and third are the invocation number of the blockcipher and
universal hash function. The following is whether the mode is parallelizable. In
blockciphers, every bit of input bit must effect every bit of output. So there is
no full parallelization. Even in the EME mode, the last layer must begin after
the first layer is completely finished. In the HCTR mode, the CTR encryption
can be parallelizable.
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5 Security of HCTR

We prove that HCTR is a s̃prp. A concrete security bound for HCTR is given
in theorem 1. Lemma 1 shows that the random tweakable permutation and its
inverse are indistinguishable from oracles that return random bits. This lemma
greatly facilitates the proof procedure of lemma 2 which shows the security of
HCTR when EK is replaced by a random permutation.

Lemma 1 (lemma 6 in [8]). Let π̃
R←− PermT (M). Then for any adversary

A that makes q queries,

Pr[A�π(·,·),�π−1(·,·) ⇒ 1] − Pr[A$(·,·),$(·,·) ⇒ 1] ≤ q2/2N+1

where $(T, M) returns |M | random bits and N is the bit-length of a shortest
string in M.

Let HCTR[Perm(n), H ] be a variant of HCTR that uses a random permuta-
tion on n bits instead of EK . Specifically, the key generation algorithm returns a
random permutation π

R←− Perm(n) and a random string h
R←− {0, 1}n. We first

give a concrete security bound for HCTR[Perm(n), H ].

Lemma 2. Let E = HCTR[Perm(n), H ]. Then for any adversary A that asks
enciphering/deciphering queries totalling σ blocks,

Pr[AE(·,·),E−1(·,·) ⇒ 1] − Pr[A$(·,·),$(·,·) ⇒ 1] ≤ ((2 + t0)σ2 + σ3)/2n

where $(T, M) returns |M | random bits and t0 = |T |n.

A proof is given in Appendix B.
We now present our result for HCTR[E, H ]. Our theorem shows that if E is

sprp, then HCTR[E, H ] is a s̃prp. More specifically, our theorem states that if
there is an adversary A attacking the strong pseudorandomness of HCTR[E, H ]
asking at most σ blocks queries, then there is an adversary B attacking the
strong pseudorandomness of E, such that Advsprp

E (B) ≥ Adv�sprp
HCTR[E,H](A) −

q2/2n+1 − ((2 + t0)σ2 + σ3)/2n. So when Advsprp
E (B) is small for any B with

reasonable resources, Adv�sprp
HCTR[E,H](A) must be small. This means that the

strong security of E implies the strong security of HCTR[E, H ]. The theorem
for HCTR[E, H ] is given bellow.

Theorem 1. For any adversary A that makes q queries totalling σ plaintext/-
ciphertext blocks, there is an adversary B that makes σ queries, such that

Adv�sprp
HCTR[E,H](A) ≤ Advsprp

E (B) + q2/2n+1 + ((2 + t0)σ2 + σ3)/2n

where t0 = |T |n. Furthermore, B runs in approximately the same time as A.
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Proof (of theorem 1). Let E1 = HCTR[E, H ] and E2 = HCTR[Perm(n), H ].
π̃

R←− PermT (n) where T = {0, 1}t. Consider following probabilities:

p1 = Pr[AE1,E−1
1 ⇒ 1] − Pr[AE2,E−1

2 ⇒ 1],

p2 = Pr[AE2,E−1
2 ⇒ 1] − Pr[A$,$ ⇒ 1],

p3 = Pr[A$,$ ⇒ 1] − Pr[A�π,�π−1 ⇒ 1].

Adversary B simulates A and returns whatever A returns. Then p1 =
Advsprp

E (B). By lemma 1, we have p3 ≤ q2/2n+1. By lemma 2, we have
p2 ≤ ((2 + t0)σ2 + σ3)/2n. �

Acknowledgment

We thank the anonymous referees for their many helpful comments. This re-
search is supported by the National Natural Science Foundation Of China (No.
60273027, 60373047, 60025205); the National Grand Fundamental Research 973
Program of China(No. G1999035802, 2004CB318004).

References

1. M. Bellare and P. Rogaway. On the construction of variable-input-length ciphers.
In L. Knudsen, editor, Fast Software Encryption 1999, volume 1636 of LNCS, pages
231–244. Springer-Verlag, 1999.

2. M. Bellare and P. Rogaway. The game-playing technique. Cryptology ePrint
Archive, Report 2004/331, 2004. http://eprint.iacr.org/.

3. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. R. Knudsen, editor, Advances in Cryptology – EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 384–397. Springer-Verlag, 2002.

4. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

5. P. Crowley. Mercy: A fast large block cipher for disk sector encryption. In
B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of LNCS, pages
49–63. Springer-Verlag, 2001.

6. FIPS-197. Federal information processing standards publication (FIPS
197). Advanced Encryption Standard (AES), 2001. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf.

7. S. R. Fluhrer. Cryptanalysis of the Mercy block cipher. In M. Matsui, editor, Fast
Software Encryption 2001, volume 2355 of LNCS, pages 28–36. Springer-Verlag,
2002.

8. S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of LNCS, pages 482–499.
Springer-Verlag, 2003.

9. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In T. Okamoto,
editor, The Cryptographers’ Track at RSA Conference – CT-RSA 2004, volume
2964 of LNCS. Springer-Verlag, 2004.

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


184 P. Wang, D. Feng, and W. Wu

10. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search.
In N. Koblitz, editor, Advances in Cryptology – CRYPTO 1996, volume 1109 of
LNCS, pages 252–267. Springer-Verlag, 1996.

11. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung,
editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of LNCS, pages
31–46. Springer-Verlag, 2002.

12. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988. Spe-
cial issue on cryptography.

13. D. A. McGrew and S. R. Fluhrer. The extended codebook (XCB) mode
of operation. Cryptology ePrint Archive, Report 2004/278, 2004. http://
eprint.iacr.org/.

14. D. A. McGrew and J. Viega. The security and performance of the galois/counter
mode (GCM) of operation. In A. Canteaut and K. Viswanathan, editors, Ad-
vances in Cryptology – INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355.
Springer-Verlag, 2002.

15. D. A. McGrew and J. Viega. The ABL mode of operation, 2004. http://grouper.
ieee.org/groups/1619/email/pdf00004.pdf.

16. D. A. McGrew and J. Viega. The galois/counter mode of operation (GCM), 2004.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes .

17. M. Naor and O. Reingold. A pseudo-random encryption mode. http://wisdom.
weizmann.ac.il/ naor/.

18. M. Naor and O. Reingold. On the construction of pseudo-random permutations:
Luby-rackoff revisited. In Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing (STOC ’97), pages 189–199, New York, 1997. Association
for Computing Machinery.

19. P1619. IEEE Security in Storage Working Group. http://www.siswg.org/.
20. S. Patel, Z. Ramzan, and G. S. Sundaram. Towards making Luby-Rackoff ciphers

optimal and practical. In L. Knudsen, editor, Fast software encryption 1999, vol-
ume 1636 of LNCS, pages 171–185. Springer-Verlag, 1999.

21. S. Patel, Z. Ramzan, and G. S. Sundaram. Efficient constructions of variable-input-
length block ciphers. In H. Handschuh and M. A. Hasan, editors, Selected Areas in
Cryptography 2004, volume 3357 of LNCS, pages 326–340. Springer-Verlag, 2005.

22. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In P. J. Lee, editor, Advances in Cryptology – ASI-
ACRYPT 2004, volume 3329 of LNCS, pages 16–31. Springer-Verlag, 2004.

23. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryptiona. In Proceedings of the 8th ACM
Conference on Computer and Communications Security, pages 196–205, 2001.

24. R. Schroeppel. The hasty pudding cipher. http://www.cs.arizona.edu/rcs/
hpc/.

25. V. Shoup. On fast and provably secure message authentication based on universal
hashing. In N. Koblitz, editor, Advances in Cryptology – CRYPTO 1996, volume
1109 of LNCS, pages 313–328. Springer-Verlag, 1996.

26. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

27. SP-800-38A. Recommendation for block cipher modes of operation - methods
and techniques. NIST Special Publication 800-38A, 2001. http://csrc.nist.gov/
publications/nistpubs/800-38a/sp800-38a.pdf.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://grouper.ieee.org/groups/1619/email/pdf00004.pdf
http://grouper.ieee.org/groups/1619/email/pdf00004.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes
http://wisdom.weizmann.ac.il/~naor/
http://wisdom.weizmann.ac.il/~naor/
http://www.siswg.org/
http://www.cs.arizona.edu/~rcs/hpc/
http://www.cs.arizona.edu/~rcs/hpc/
http://eprint.iacr.org/
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf


HCTR: A Variable-Input-Length Enciphering Mode 185

A Intellectual Property Statement

The authors explicitly release any intellectual property rights to the HCTR mode
into the public domain. Further, the authors are not aware of any patent or
patent application anywhere in the world that cover this mode.

B Proof of Lemma 2

Proof (of lemma 2). Suppose A makes q queries. Assume that the rth query is
(T r, U r, V r), where T r is the tweak, (U r, V r) is the plaintext(ciphertext). Sup-
pose that mr = |(U r, V r)|n. σ = m1 + · · · + mq is the total plaintext/ciphertext
block number. Furthermore, we split V r into blocks: V r = V r

1 , · · · , V r
mr−1. We

describe the attacking procedure of A as the interaction with games.

Game 1 and Game 2. The following Game 1 illustrates how HCTR[Perm(n), H ]
and its inverse answer A’s queries:

D ← R ← φ; bad ← false

If the rth query (T r, Ur, V r) is an enciphering query:
UUr ← Ur ⊕ Hh(V r||T r)

XXr R←− {0, 1}n

if UUr ∈ D then bad ← true XXr ← π(UUr)

if XXr ∈ R then bad ← true XXr R←− R̄
D ← D ∪ {UUr}
R ← R ∪ {XXr}
Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do

Y Y r
i

R←− {0, 1}n

if Sr ⊕ i ∈ D then bad ← true Y Y r
i ← π(Sr ⊕ i)

if Y Y r
i ∈ R then bad ← true Y Y r

i
R←− R̄

D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y Y r

i }
Y Y r ← Y Y r

1 || · · · ||Y Y r
mr−1

Dr ← V r ⊕← Y Y r

Cr ← XXr ⊕ Hh(Dr||T r)
return (Cr, Dr)

If the rth query (T r, Ur, V r) is an deciphering query:
UUr ← Ur ⊕ Hh(V r||T r)

XXr R←− {0, 1}n

if UUr ∈ R then bad ← true XXr ← π−1(UUr)

if XXr ∈ D then bad ← true XXr R←− D̄
D ← D ∪ {XXr}
R ← R ∪ {UUr}
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Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do

Y Y r
i

R←− {0, 1}n

if Sr ⊕ i ∈ D then bad ← true Y Y r
i ← π(Sr ⊕ i)

if Y Y r
i ∈ R then bad ← true Y Y r

i
R←− R̄

D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y Y r

i }
Y Y r ← Y Y r

1 || · · · ||Y Y r
mr−1

Nr ← V r ⊕← Y Y r

Mr ← XXr ⊕ Hh(Nr||T r)
return (Mr, Nr)

Notice that the permutation π is not chosen before the attack, but “on the fly”
as needed to answer the queries during the attacking procedure. The sets D
and R, which are multisets in which the element may repeat, keep track of the
domain and the range of π respectively. Game 2 is obtained by omitting the
boxed statements. Because XXr, XY r(r = 1, · · · , q) are independent random
strings, the answers A get, when interacts with Game 2, are also independent
random strings. So AGame 2 is the same as A$,$. In Game 1, each boxed statement
is executed if and only if the flag bad is set to be true. Therefor we have

Pr[AE,E−1 ⇒ 1] − Pr[A$,$ ⇒ 1]

= Pr[AGame 1 ⇒ 1] − Pr[AGame 2 ⇒ 1] ≤ Pr[AGame 2 set bad]. (1)

Game 3. We make some modifications to Game 2. The answer of each query
is directly chosen as random string and the state of bad is set at the end of all
queries. Game 3 is the following:

Initialization :
D ← R ← φ

On the rth query (T r, Ur, V r):

(Xr, Y r) R←− {0, 1}mr ·n

return (Xr, Y r)[1, |(Ur, V r)|]

Finalization :
for r ← 1 to q do:

If the rth query (T r, Ur, V r) is an enciphering query:
UUr ← Ur ⊕ Hh(V r||T r)
XXr ← Xr ⊕ Hh(Y r[1, |V r|] || T r)
D ← D ∪ {UUr}
R ← R ∪ {XXr}
Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do
D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y r

i ⊕← V r
i }
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If the rth query (T r, Ur, V r) is an deciphering query:
UUr ← Ur ⊕ Hh(V r||T r)
XXr ← Xr ⊕ Hh(Y r[1, |V r|] || T r)
D ← D ∪ {XXr}
R ← R ∪ {UUr}
Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do
D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y r

i ⊕← V r
i }

bad ← (there is a repetition in D) or (there is a repetition in R)

We have
Pr[AGame 2 set bad] = Pr[AGame 3 set bad]. (2)

Without lost of generality, suppose that A is a deterministic algorithm. We
want to prove that for any fixed Xr, Y r(r = 1, · · · , q), the above probability is
negligible. But that is not true. For example when Y 1

1 ⊕← V 1
1 = Y 2

1 ⊕← V 2
1 , the

bad is set to be true. We firstly make some restrictions on the choices of these
random strings.

Restrictions on the choices of (Xr, Y r):

1. Xr, Y r
i are all distinct.

2. Xr �= U r ⊕Xs ⊕Us ⊕ i⊕ j for all s < r, 1 ≤ i ≤ (mr − 1), 1 ≤ j ≤ (ms − 1).
3. Xr �= Us for all s < r.
4. Y r

i �= Y s
j ⊕← V s

j ⊕← V r
i , for all s < r and for all s = r, j < i.

It is easy to calculate that each restriction in the above decreases the choices
of (Xr, Y r) at most σ2/2n+1. Totally, the choices of (Xr, Y r) are decreased at
most 2σ2/2n.

Game 4. With these restrictions, we fix queries and answers. Suppose that
{T r, U r, V r, Xr, Y r|r = 1, · · · , q} make the probability of setting bad maximum.
Now consider the following non-interactive and non-adaptive Game 4:

for r ← 1 to q do:

If the rth query (T r, Ur, V r) is an enciphering query:
UUr ← Ur ⊕ Hh(V r||T r)
XXr ← Xr ⊕ Hh(Y r[1, |V r|] || T r)
D ← D ∪ {UUr}
R ← R ∪ {XXr}
Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do
D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y r

i ⊕← V r
i }

If the rth query (T r, Ur, V r) is an deciphering query:
UUr ← Ur ⊕ Hh(V r||T r)
XXr ← Xr ⊕ Hh(Y r[1, |V r|] || T r)
D ← D ∪ {XXr}
R ← R ∪ {UUr}
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Sr ← UUr ⊕ XXr

for i ← 1 to mr − 1 do
D ← D ∪ {Sr ⊕ i}
R ← R ∪ {Y r

i ⊕← V r
i }

bad ← (there is a repetition in D) or (there is a repetition in R)

From the above discussion, we have that

Pr[AGame 3 set bad] ≤ Pr[Game 4 set bad] + 2σ2/2n. (3)

Let I = {1, · · · , q}, I = I1 ∪ I2, where I1 = {s ∈ I|(T s, Us, V s) is an
enciphering query} and I2 = {t ∈ I|(T t, U t, V t) is a deciphering query}. Let
l = max{m1, · · · , mq}. We can see that D = D1 ∪ D2 ∪ D3, where D1 =
{UUs|s ∈ I1}, D2 = {XXt|t ∈ I2}, and D3 = {Sr ⊕ i|r ∈ I, 1 ≤ i ≤ (mr − 1)}.
R = R1 ∪ R2 ∪ R3, where R1 = {XXs|s ∈ I1}, R2 = {UU t|t ∈ I2}, and
R3 = {Y r

i ⊕← V r
i |r ∈ I, 1 ≤ i ≤ (mr − 1)}.

Any element in D or R is a polynomial in h whose degree is at most (l+t0). We
want to prove that for any X1, X2 ∈ D or X1, X2 ∈ R, the repetition probability
Pr[X1 = X2] ≤ (l+ t0)/2n. Because the polynomial of degree (l+ t0) has at most
(l + t0) roots in finite field, we only need to prove that X1 ⊕ X2 is a nonzero
polynomial in h.

We consider following situations:

– X1, X2 ∈ D1. (T s, Us, V s), s ∈ I1 are all distinct, because A never ask trivial
query. By property 1 of H , X1 ⊕ X2 is a nonzero polynomial.

– X1, X2 ∈ D2. By restriction 1, the constant term of X1 ⊕ X2 is nonzero.
– X1, X2 ∈ D3. By restriction 2, the constant term of X1 ⊕ X2 is nonzero.
– X1 ∈ D1 and X2 ∈ D2. Suppose X1 = UUs and X2 = XXt. If s < t, then

by restriction 3, the constant term of X1 ⊕ X2 is nonzero. If s > t, then
(T s, Us, V s) �= (T t, Xt, Y t[1, |V t|]), because A never make trivial query. By
property 1 of H , X1 ⊕ X2 is a nonzero polynomial.

– X1 ∈ D2 and X2 ∈ D3. By property 2 of H , X1⊕X2 is a nonzero polynomial.
– X1 ∈ D1 and X2 ∈ D3. The same reason as the above.
– X1, X2 ∈ R1. By restriction 1, the constant term of X1 ⊕ X2 is nonzero.
– X1, X2 ∈ R2. (T t, U t, V t), s ∈ I2 are all distinct, because A never make

trivial query. By property 1 of H , X1 ⊕ X2 is a nonzero polynomial.
– X1, X2 ∈ R3. By restriction 4, X1 ⊕ X2 is a nonzero constant.
– X1 ∈ R1 and X2 ∈ R2. Suppose X1 = XXs and X2 = UU t. If s > t, then

by restriction 3, the constant term of X1 ⊕ X2 is nonzero. If s < t, then
(T t, U t, V t) �= (T s, Xs, Y s[1, |V s|]), because A never make trivial query. By
property 1 of H , X1 ⊕ X2 is a nonzero polynomial.

– X1 ∈ R2 and X2 ∈ R3. By property 2 of H , X1⊕X2 is a nonzero polynomial.
– X1 ∈ R1 and X2 ∈ R3. The same reason as the above.

There are totally σ(σ − 1)/2 pairs of elements in D and σ(σ − 1)/2 pairs of
elements in R. So the probability of repetition in D or R is at most (l+t0)σ2/2n.

Pr[Game 4 set bad] ≤ (l + t0)σ2/2n ≤ (t0σ2 + σ3)/2n. (4)

Combine (1), (2), (3) and (4), we complete the proof. �
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