
Equivalence Relations

A subset R of the set A × A is called a relation on A. A relation of specific interest to
us is an equivalence relation.

A subset R of A×A is called an equivalence relation on A if

– (a, a) ∈ R for all a ∈ A
– (a, b) ∈ R implies (b, a) ∈ R
– (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Instead of talking of subsets of A × A we can conveniently talk of a binary relation on
elements of the set A, i.e., when (a, b) ∈ R we denote it by a ∼ b and call it as a related to
b. With this notation we can restate the definition of a equivalence relation as below

Definition 1 The binary relation ∼ on A is said to be a equivalence relation on A, if for
all a, b and c in A,

– a ∼ a [Reflexivity]
– a ∼ b implies b ∼ a [Symmetry]
– a ∼ b and b ∼ c implies a ∼ c [Transitivity]

Example 1. Let S be a set and define a ∼ b, for a, b ∈ S, if and only if a = b. This clearly
defines a equivalence relation on S. In fact, an equivalence relation is generalization of
equality, measuring equality up to some property.

Example 2. Let S be the set of all triangles in a plane. Two triangles are defined to be equiv-
alent if they are similar (i.e., have corresponding angles equal). This defines a equivalence
relation on S.

Example 3. Let S be the set of points in a plane. Two points a and b are defined to be
equivalent if they are equidistant from the origin. This defines an equivalence relation on S.

Example 4. Let S be the set of all integers. Given a, b ∈ S, define a ∼ b if a− b is an even
integer. We verify that this is an equivalence relation of S.

1. Since a− a = 0 is even, so a ∼ a
2. if a ∼ b then (a− b) is even, then b− a = −(a− b) is also even, so b ∼ a
3. If a ∼ b and b ∼ c then a− b and b− c are even, whence a− c = (a− b) + (b− c) is also

even, thus a ∼ c

Definition 2 If A is a set and if ∼ is an equivalence relation on A, then the equivalence
class of a ∈ A is the set {x ∈ A : a ∼ x}. We write it as cl(a)

Now let us see what are the equivalence classes in the examples that we just described.
In Example 1, the equivalence class of a consists only of a. In Example 2 cl(a) consists of
all triangles which are similar to a. In Example 3, cl(a) consists of all points in the plane
which lie on a circle whose center is the origin and which passes through a. In Example 4,
cl(a) consists of all integers of the form a + 2m, where m = 0,±1,±2, . . ..

Now we are ready to prove an important theorem regarding equivalence relations.



Theorem 1. Distinct equivalence classes of an equivalence relation on A provide us with a
decomposition of A as an union of mutually disjoint subsets. Conversely, given a decomposi-
tion of A as an union of mutually disjoint, nonempty subsets, we can define an equivalence
relation on A for which these subsets are the distinct equivalence classes.

Proof. Let ∼ be a equivalence relation on A. For a ∈ A let cl(a) be the equivalence class of
a. As a ∼ a, thus, for all a ∈ A, a ∈ cl(a). So, ∪a∈Acl(a) = A. So we have proved that the
union of the equivalence classes in A gives A.

Now, we need to show that for two distinct elements a, b ∈ A either cl(a) = cl(b) or cl(a)
and cl(b) are disjoint. To show this let us assume that cl(a) and cl(b) have a non-empty
intersection, and let x ∈ cl(a)∩cl(b). So, we have x ∈ cl(a) and x ∈ cl(b). Thus, by definition
of a equivalence class we have a ∼ x and b ∼ x. And b ∼ x implies x ∼ b. Also, a ∼ x and
x ∼ b together imply a ∼ b. Now if y ∈ cl(a) then y ∼ a, also as a ∼ b, so y ∼ b, which means
y ∈ cl(b). Thus y ∈ cl(b). So we conclude that cl(a) ⊆ cl(b). This argument is symmetric
and we can by the same argument conclude that cl(b) ⊆ cl(a). Thus cl(a) = cl(b). Thus we
have proved that if cl(a) and cl(b) have a nonempty intersection then they must be equal.

To prove the other part of the theorem, we assume that Aα, α ∈ I be a decomposition
of A such that ∪α∈IAα = A and Aα ∩ Aβ = φ for all α, β ∈ I s.t. α 6= β. Now, we need to
define an equivalence relation on A using this decomposition of A. For a, b ∈ A we define
a ∼ b iff a and b belongs to the same subset Aα. What is left is to prove that ∼ defined in
the above manner is indeed an equivalence relation. We leave this as an exercise.


