Functions

Definition 1 If S and T are nonempty sets then a function from S to T is a subset, F, of $S \times T$ such that for every $s \in S$ there is an unique $t \in T$ such that the ordered pair $(s, t) \in F$.

The above definition precisely describes a function. But we would prefer to think a function as a rule which associates any element of S to some element in t. The rule being: associate $s \in S$ with $t \in T$ if and only if $(s, t) \in F$. We shall call t as the image of s under the function F.

We denote a function τ from S to T by the notation $\tau: S \rightarrow T$. If t is an image of s under τ then we shall usually write $\tau(s)=t^{1}$.

Example 1. Let S be a set. Define $I: S \rightarrow S$ as $I(s)=s$ for all $s \in S . I$ is called the identity function of S.

Example 2. Let \mathbb{Q} be the set of rational numbers and let T be $\mathbb{Z} \times \mathbb{Z}$, where \mathbb{Z} denotes the set of integers. Given $s \in \mathbb{Q}$, we can write $s=m / n$ where $m, n \in \mathbb{Z}$ such that they have no common factors. Define $\tau: \mathbb{Q} \rightarrow T$ as $\tau(s)=(m, n)$.

Example 3. Let S and T be sets; define $\tau: S \times T \rightarrow S$ by $\tau(a, b)=a$. This τ is called a projection of $S \times T$ on S. We can similarly define the projection of $S \times T$ on T.

Example 4. Define $\tau: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ as $\tau(a, b)=a+b$. This is an example of a binary operation on the set \mathbb{Z}. For a general set S, given a function $\tau: S \times S \rightarrow S$, we could use it to define a product $*$ in S by declaring $a * b=c$ if $\tau(a, b)=c$.

Example 5. Let $S=\left\{x_{1}, x_{2}, x_{3}\right\}$, define $\tau: S \rightarrow S$ by $\tau\left(x_{1}\right)=x_{2}, \tau\left(x_{2}\right)=x_{3}$ and $\tau\left(x_{3}\right)=x_{1}$
Example 6. Let \mathbb{Z} be the set of integers and $B=\{0,1\}$. Define $\tau: \mathbb{Z} \rightarrow B$ as $\tau(x)=1$ if x is even and $\tau(x)=0$ if x is odd.

We shall have the opportunity to see many more examples as we proceed. But for the time being let us proceed with our discussion.

Definition 2 Give $\tau: S \rightarrow T$, the inverse image of $t \in T$ with respect to τ is the set $\{s: \tau(s)=t\}$.

For example in Example 6 the inverse image of 1 is the set of all even numbers. It can be so that for some element in T the inverse image with respect to a function τ is empty. As in Example 2 the inverse image of $(4,2)$ is the empty set.

Definition 3 The function $\tau: S \rightarrow T$ is called onto T if for any $t \in T$, there exists an $s \in S$ such that $\tau(s)=t$. An onto function is called a surjection.

Definition 4 The function $\tau: S \rightarrow T$ is called one-to-one if whenever $s_{1} \neq s_{2}$, then $\tau\left(s_{1}\right) \neq \tau\left(s_{2}\right)$. A one-to-one function is called an injection.

Definition 5 A function which is both one-to-one and onto is called a bijection.

[^0]Definition 6 The two functions σ and τ from S to T are called equal if for all $s \in S$, $\sigma(s)=\tau(s)$

Now let us suppose that there are two functions $\sigma: S \rightarrow T$ and $\tau: T \rightarrow U$. We now want to combine these two functions σ and τ to yield another function from S to U. The obvious way to do this is to first apply the function σ to obtain an element in T and then again apply τ to obtain an element in U. This operation is called composition of functions which is formally defined as follows:

Definition 7 If $\sigma: S \rightarrow T$ and $\tau: T \rightarrow U$ then the composition of σ and τ is the function $\tau \circ \sigma: S \rightarrow T$ defined as $\tau \circ \sigma(s)=\tau(\sigma(s))$ for every $s \in S$.

Next we illustrate the composition operator with an example
Example 7. Let $S=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $T=S$. Let $\sigma: S \rightarrow S$ be defined by

$$
\begin{aligned}
& \sigma\left(x_{1}\right)=x_{2} \\
& \sigma\left(x_{2}\right)=x_{3} \\
& \sigma\left(x_{3}\right)=x_{1}
\end{aligned}
$$

and $\tau: S \rightarrow S$ by

$$
\begin{aligned}
& \tau\left(x_{1}\right)=x_{1} \\
& \tau\left(x_{2}\right)=x_{3} \\
& \tau\left(x_{3}\right)=x_{2}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \tau \circ \sigma\left(x_{1}\right)=\tau\left(x_{2}\right)=x_{3} \\
& \tau \circ \sigma\left(x_{2}\right)=\tau\left(x_{3}\right)=x_{2} \\
& \tau \circ \sigma\left(x_{3}\right)=\tau\left(x_{1}\right)=x_{1}
\end{aligned}
$$

Lemma 1. (Associative Law) If $\sigma: S \rightarrow T, \tau: T \rightarrow U$ and $\mu: U \rightarrow V$, then $\mu \circ(\tau \circ \sigma)=$ $(\mu \circ \tau) \circ \sigma$
Proof. First note that $\tau \circ \sigma$ makes sense and takes S to U, also $\mu \circ(\tau \circ \sigma)$ makes sense and takes S to V. Similarly $(\mu \circ \tau) \circ \sigma$ is meaningful and takes S to V. Thus we can talk of the equality or inequality of $\mu \circ(\tau \circ \sigma)$ and $(\mu \circ \tau) \circ \sigma$.

To show the equality, we must show that for any $s \in S$,

$$
\mu \circ(\tau \circ \sigma)(s)=(\mu \circ \tau) \circ \sigma(s)
$$

Now, from the definition of composition of functions we have

$$
\begin{aligned}
\mu \circ(\tau \circ \sigma)(s) & =\mu(\tau \circ \sigma(s)) \\
& =\mu(\tau(\sigma(s)))
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(\mu \circ \tau) \circ \sigma(s) & =(\mu \circ \tau)(\sigma(s)) \\
& =\mu(\tau(\sigma(s)))
\end{aligned}
$$

Thus we have $\mu \circ(\tau \circ \sigma)(s)=(\mu \circ \tau) \circ \sigma(s)$ for all $s \in S$.

Now we shall prove two more important properties of functions:
Lemma 2. Let $\sigma: S \rightarrow T$ and $\tau: T \rightarrow U$, then

1. $\tau \circ \sigma$ is a surjection if each of σ and τ are surjections.
2. $\sigma \circ \tau$ is an injection if each of σ and τ are injections

Proof. 1. By hypothesis σ and τ are surjections, i.e., for every $t \in T$ there exists a $s \in S$ s.t. $\sigma(s)=t$ and for every $u \in U$ there exist a $t_{1} \in T$ s.t. $\tau\left(t_{1}\right)=u$. So given any $u \in U$, we have a $s \in S$, s.t., $u=\tau(\sigma(s))$. So, $\tau \circ \sigma$ is a surjection.
2. Suppose $s_{1}, s_{2} \in S$ and $s_{1} \neq s_{2}$. As, σ is an injection, so $\sigma\left(s_{1}\right) \neq \sigma\left(s_{2}\right)$. And, τ being an injection $\tau\left(\sigma\left(s_{1}\right)\right) \neq \tau\left(\sigma\left(s_{2}\right)\right)$. Which implies that for $s_{1} \neq s_{2}, \sigma \circ \tau\left(s_{1}\right) \neq \sigma \circ \tau\left(s_{2}\right)$, which means that $\sigma \circ \tau$ is an injection.

Suppose $\sigma: S \rightarrow T$ is a bijection, i.e., it is both one-to-one and onto. For such a function we can define a function $\sigma^{-1}: T \rightarrow S$ by $\sigma^{-1}(t)=s$ if and only if $\sigma(s)=t$. We call σ^{-1} the inverse of σ. It is easy to verify that $\sigma^{-1} \circ \sigma$ is a function from S onto S, and similarly $\sigma \circ \sigma^{-1}$ is a function from T onto T. Now let $s \in S$, then $\sigma(s)=t$, for some t in T. Now, by definition $\sigma^{-1}(t)=s$, so

$$
\sigma^{-1} \circ \sigma(s)=\sigma^{-1}(\sigma(s))=\sigma^{-1}(t)=s
$$

We have shown that $\sigma^{-1} \circ \sigma$ is an identity function from S onto S. By a similar computation it can be shown that $\sigma \circ \sigma^{-1}$ is an identity function from T onto T.

Conversely, if $\sigma: S \rightarrow T$ is such that there exists a $\mu: T \rightarrow S$ with the property that $\mu \circ \sigma$ and $\sigma \circ \mu$ are identity mappings on S and T respectively then σ is a bijection. We formalize this in the next lemma:

Lemma 3. The function $\sigma: S \rightarrow T$ is a bijection if and only if there exists a function $\mu: T \rightarrow S$ such that $\mu \circ \sigma$ and $\sigma \circ \mu$ are identity functions on S and T respectively.

Proof. We have already shown that if σ is a bijection then there exist a function σ^{-1} such that $\sigma^{-1} \circ \sigma$ and $\sigma \circ \sigma^{-1}$ are identity functions on S and T respectively.

To prove the other way, we assume there exists a $\mu: T \rightarrow S$ with the property that $\mu \circ \sigma$ and $\sigma \circ \mu$ are identity mappings on S and T respectively. So for a given $t \in T$, $\sigma \circ \mu(t)=\sigma(\mu(t))=t$, so for any $t \in T, t$ is the image of $\mu(t) \in S$ under the function σ. This shows that σ is onto. Further, if $\sigma\left(s_{1}\right)=\sigma\left(s_{2}\right)$ then we have

$$
s_{1}=\mu \circ \sigma\left(s_{1}\right)=\mu\left(\sigma\left(s_{1}\right)\right)=\mu\left(\sigma\left(s_{2}\right)\right)=\mu \circ \sigma\left(s_{2}\right)=s_{2},
$$

as $\mu \circ \sigma$ is a identity function on S. Thus we have shown that σ is one-to-one. Thus σ is a bijection.

[^0]: ${ }^{1}$ Other notations are also in use like $t=F s$ or $s F=t$, the reader should be cautious about this while following other texts

