
Neural Network Ensembles From Training set
Expansions

Debrup Chakraborty

Computer Science Department, CINVESTAV-IPN, Av. IPN No. 2508, Col. San
Pedro Zacatenco, Mexico, D.F. 07360, MEXICO

email: debrup@cs.cinvestav.mx

Abstract. In this work we propose a new method to create neural net-
work ensembles. Our methodology develops over the conventional tech-
nique of bagging, where multiple classifiers are trained using a single
training data set by generating multiple bootstrap samples from the
training data. We propose a new method of sampling using the k-nearest
neighbor density estimates. Our sampling technique gives rise to more
variability in the data sets than by bagging. We validate our method by
testing on several real data sets and show that our method outperforms
bagging.

1 Introduction

The goal of constructing an ensemble of classifiers is to train a diverse set of
classifiers from a single available training data set, and to combine their outputs
using a suitable aggregation function. In the past few years there have been
numerous proposals for creating ensembles of classifiers, and in general, it have
been noticed that an ensemble of classifiers have better generalization abilities
than a single classifier. Two of the well known proposals for creating classifier
ensembles are bagging [2] and boosting [12]. Ample theoretical and experimen-
tal studies of Bagging, Boosting and their variants have been reported in the
literature, and these studies clearly point out why and under which scenarios
ensembles created by these methods can give better predictions [2, 9, 10, 13].

Bagging is a popular ensemble method which can significantly improve gen-
eralization abilities of “unstable” classifiers [2]. In bagging, given a training data
set Lx = {xxx1,xxx2, . . . ,xxxm} ⊂ <n with the associated class labels, α independent
bootstrap samples [5] are drawn from Lx each of size m. In other words, from
the original training set Lx, α different sets B1,B1, . . . ,Bα are obtained each
containing m points with their associated labels. These α different sets thus ob-
tained are used to train α different classifiers. In the discussions that follow we
shall call a single member of the ensemble as a candidate. The final decision is
made by an aggregation of the outputs of the candidates. The type of aggrega-
tion depends on the type of the output, i.e., whether it is a numerical response
or a class label. Generally, for classification a majority voting type aggregation
is applied, whereas in case of regression (function approximation) type problems

an average or a weighted average is used. This simple procedure can decrease
the classification error and give better classifiers with good generalization abili-
ties. The intuitive reason of why bagging works is that each candidate learns a
slightly different decision boundary, and thus the combination of all the different
decision boundaries learned by the candidate classifiers give rise to less variance
in the classification error. In [2] Leo Breiman provided theoretical justification
of the fact that one can obtain significant improvement in performance by bag-
ging unstable classifiers. It was also noted in [2] that supervised feed-forward
neural networks like the multilayer perceptron (MLP) are unstable, i.e., it is not
necessary that for a trained MLP, small changes in the input will produce small
changes in the output. Thus it is expected that bagging can decrease classifica-
tion errors in MLP classifiers to a large extent

Right from the early nineties neural network ensembles has been widely stud-
ied [8, 14]. A class of studies regarding neural network ensembles are directed
towards adapting suitably the general ensemble techniques in case of neural net-
works [4]. Other studies have been focussed on developing heuristics to choose
better candidates for an ensemble such that each candidate has good prediction
power along with that the selected candidates have better diversity [3, 6], which
is known to affect the performance of an ensemble [9, 10].

In this paper we propose a new method to create neural network ensem-
bles based on bagging. As discussed earlier, in bagging a bootstrap sample of
a given training set is used to train a candidate classifier. A bootstrap sample
is generated by sampling with replacement, so the difference among the various
bootstrap samples is that there may be some data points missing or some data
points may get repeated. In the proposed method we aim to achieve more diver-
sity in each of the training set which would be used to train the candidates of
the ensemble. In the ideal scenario it can be assumed that the training data gets
generated from a fixed but unknown time-invariant probability distribution. It
would have been the best if the different training sets for the candidates could
have been independently generated following the same probability distribution
from which the training data was generated. But, as this distribution is unknown,
so such a method cannot be developed in practice. One of the closely related
options can be to estimate the probability distribution of the training data and
thus draw different training sets from this estimated distribution. Our work is
motivated by this approach. The problem of this approach is that generally the
number of available training data is too small to have a reasonable estimate of
the distribution. So, in this work we do not attempt to estimate the true prob-
ability distribution of the training set, but we propose a method to generate
new data points such that the new points are generated according to the spatial
density of the training set, i.e., more points are generated in the dense regions
of the data and less points in the sparse regions.

The heart of our method is the k-nearest neighbor (k-NN) density estimation
and classification procedure. The new data points that are generated for train-
ing the candidates in a sense follows the k-NN density estimate of the original
training data. This technique has been successfully used for data condensation

in [11]. But we use it for a completely different goal. We generate new points
for each candidate and mix these new points with the original training data and
train the candidate with this data. Thus, it is expected that the training sets
used for the candidates are more diverse than the bootstrap samples. Our ex-
periments demonstrate that this technique when applied to MLP ensembles can
give better results than conventional bagging.

2 k Nearest Neighbor Density Estimation

Let xxx1,xxx2, . . . ,xxxm ∈ <n be independently generated from a continuous proba-
bility distribution with density f . The nearest neighbor density estimation pro-
cedure finds the density of a point zzz. We describe the methodology in brief next.

Let ||xxx − zzz|| denote the Euclidian distance between points xxx and zzz. A n
dimensional hyper-sphere centered at xxx with radius r is given by the set Sxxx,r =
{zzz ∈ <n : ||xxx − zzz|| ≤ r}. We call the volume of this sphere as Vr = Vol(Sxxx,r).
Let k(N) be a sequence of positive integers such that limN→∞ k(N) = ∞ and
limN→∞ k(N)/N = 0. Suppose we have a sample Lx = {xxx1,xxx2, . . . ,xxxm} ⊂ <n,
and we fix a value of k(N). Let rk(N),zzz be the Euclidian distance of zzz from its
(k(N) + 1)-th nearest neighbor in Lx. Then the density at zzz is estimated as

f̂(zzz) =
k(N)
N

× 1
Vrk(N),zzz

(1)

It has been shown that this estimate is asymptotically un-biased and consis-
tent, but it is known that this estimate suffers from the curse of dimensionality,
i.e., the estimate gets unstable for high dimensional data. We shall use this den-
sity estimation technique to generate new training points, which we describe
next.

3 Expanding a Training Set

Our basic motivation is to increase the variability of the individual training sets
which we shall use to train each candidate classifier. The idea is to create new
training points which are similar to the ones in the original training set. Ideally,
we want to generate points from the same probability distribution from which
the training data was generated. As that distribution is unknown to us and
obtaining a reasonable estimate from a small training set is not feasible we shall
apply some heuristic to generate new points following the rule that more points
should be generated in the denser regions of the distribution.

Given a labeled data set L = {(xxxi, yyyi) : xxxi ∈ <n, yyyi ∈ {1, 2, . . . , c}, i =
1, . . . m}, we shall call the set of the input vectors as Lx = {xxx1,xxx2, . . . ,xxxm}.
We shall denote the label (or output) associated with xxx as `(xxx). For each xxxi we
compute the distance of its k-th nearest neighbor in Lx. We call this distance as
di. From eq. (1), it is clear that the density at a point xxxi is inversely related to the
volume of the hypersphere centered at xxxi with radius di. So, it can be inferred

that points with higher values of di lies in less dense areas and the points which
low values of di lies in denser areas. Our objective is to generate new points
following the density of the original data, i.e., our method must be such that
more points are generated in the denser regions and less points in sparse regions.
To achieve this, for each xxxi ∈ Lx we define a quantity p as follows:

p(xxxi) =
1
Z

e−di (2)

where

Z =
m∑

i=1

e−di (3)

This definition of p guarantees that for a point xxxi the value of p(xxxi) would
be large if di is small and vice versa. Also, because of the way we define p
it is obvious that for all xxxi ∈ Lx, 0 ≤ p(xxxi) ≤ 1, and also

∑m
i=1 p(xxxi) = 1.

Thus p can be treated as a discrete probability distribution on the set Lx. To
generate a single new point we first sample a point randomly from Lx according
to the probability distribution p. The roullet wheel selection technique can be
used for this purpose. Let xxx ∈ Lx be the sampled point. As xxx has been sampled
according to the probability p, with high probability it will lie in a dense region of
the training data. Let {zzz1, zzz2, . . . , zzzk} be the k nearest neighbors of the sampled
point xxx. Let NBRS(xxx) be the set containing the k nearest neighbors of xxx along
with xxx, i.e,

NBRS(xxx) = {zzz1, zzz2, . . . , zzzk} ∪ {xxx}.
We now generate the new point x̃xx as a random convex combination of the points
in NBRS(xxx). In other words, let each λj , for j = 1, . . . , k + 1, be generated
independently from a uniform random distribution over [0, 1], we compute x̃xx as

x̃xx =

∑k
j=1 λjzzzj + λk+1xxx∑k+1

j=1 λj

. (4)

The new point will thus lie within the convex hull of the points in NBRS(xxx), and
thus cannot be very atypical of the points already present in the training set.

The new point x̃xx was not present in the training set, so to incorporate it into
the training set we need to label this point, i.e., assign a target output to this
point. The most natural label of x̃xx would be that label which the majority of its
neighbors have. Note, that NBRS(xxx) are the k + 1 neighbors of x̃xx (including xxx
itself). Thus, the label of x̃xx is calculated as

`(x̃xx) = argmax
j=1,...,c

∑

zzz∈NBRS(xxx)

δ(j, `(zzz)),

where δ(a, b) = 1 if a = b, and δ(a, b) = 0 if a 6= b.
The method described above can be repeated to obtain the desired number of

new points. The algorithm in Fig. 1 summarizes the procedure described above.
The algorithm Expand as described in Fig. 1 takes as input the training set

L, along with the parameters k and ν, where ν is the number of points that
are required to be generated. It gives as output a set called NewPoints, which
contains ν many new points generated by the procedure.

Fig. 1. Algorithm to expand a training set

Algorithm Expand(L,k,ν)
1. Z ← 0;
2. for i = 1 to m;
3. di ← Distance of the k-th nearest neighbor of xxxi in Lx;

4. p(xxxi) ← e−di ;
5. Z ← Z + p(xxxi)
6. end for
7. for i = 1 to m,
8. p(xxxi) ← p(xxxi)/Z;
9. end for
10. NewPoints ← ∅;
11. while |NewPoints| < ν,
12. Select xxx from Lx with probability p(xxx)
13. {zzz1, zzz2, . . . , zzzk} ← k nearest neighbors of xxx in Lx;
14. /* Let NBRS(xxx) = {zzz1, zzz2, . . . , zzzk} ∪ xxx */

15. λ1, λ2, . . . , λk+1 ∼ U [0, 1]; Λ ← ∑k+1
i=1 λi

16. x̃xx ← (
∑k

i=1 λizzzi + λk+1xxx)/Λ;
17. `(x̃xx) ← argmaxj=1,...,c

∑
zzz∈NBRS(xxx) δ(j, `(zzz)) ;

18. NewPoints ← NewPoints ∪ {(x̃xx, `(x̃xx))}
19. end while
20. return NewPoints;

4 Creating the Ensemble

Our strategy of creating the ensemble closely follows bagging, except the fact that
instead of using bootstrap samples for training the candidates of the ensemble
we use the algorithm Expand of Fig. 1 to create new points and mix them with
the original training set. Given a training set L we decide upon the size of the
ensemble, i.e., the number of candidate classifiers. Let us call this as α. We fix
two integers k and ν and call Expand(L, k, ν) α times. By this way we obtain
S1, S2, . . . , Sα as output, where each Si contains ν points. For training the i-
th candidate we train a multilayered perceptron using L ∪ Si. Thus obtaining
α trained networks. For using the network, we feed a test point to all the α
networks and decide the class of the test point by a majority vote. The algorithm
for creating the ensemble is depicted in Fig. 2.

Fig. 2. Algorithm for creating the ensemble

Algorithm Create Ensemble(L,k,ν,α)
1. for i = 1 to α;
2. Si ← Expand(L,k,ν);
3. WWW i ← Train(L ∪ Si,Ai)
4. end for;
5. return (WWW 1,A1), . . . , (WWW α,Aα);

The algorithm Create Ensemble takes as input the training set L, k, the
number of new points to be used for each candidate ν and the size of the ensemble
α. The algorithm calls a function Train, which takes as input a training set and
a variable A which contains the parameters necessary to fix the architecture of
a network. The algorithm Train outputs a vector WWW which contains the weights
and biases of the network. Thus A and WWW together will specify a trained network.
The output of Create Ensemble is α trained networks. The decision on a test
point is taken by a majority vote of these α networks.

The algorithm Train takes in two user defined parameters, k and ν. k is the
parameter for the k nearest neighbor density estimation procedure. Choosing a
proper value of k is a classical problem which do not yet have an well accepted
solution, but there exist solutions (some very complicated) which solves this
problem [7]. In the current work we do not attempt to solve this problem. In the
next section we present some simulation results using this algorithm, we tested
with numerous small values of k, we found that the performance do change
with the change of k, but we did not find any significant pattern which shows
a conclusive dependence of the parameter k with the performance. Based on
experiments we suggest a value of k near 5. The parameter ν decides the number
of new points that are to be included in each training set which is used for
training the candidates. A small value of ν will mean little variation among the
training set, and a big value of ν will mean more variability. But, the new points
generated by Expand are noisy versions of the original training set, so a very
big value of ν is not recommended. Our experiments suggest that ν being 10%
of the size of the original training data gives good results.

The computational overhead in creating the ensemble is same as bagging ex-
cept that it has the additional overhead of the function Expand. Expand requires
finding the k nearest neighbors of each data point for computing the value di,
this operation is computationally costlier than other operations involved. But
the computation of the values di are a one time operation and they are not
required to be repeated when Expand is called on the same training data mul-
tiple times. Thus, the total computational cost in creating the ensemble is not
significantly more than that of conventional bagging.

5 Experimental Results

We tried our method on six real data sets from the UCI repository [1]. The
data sets used are Iris, Wine, Liver-Disorder(Liver), Waveform-21(Wave), Pima-
Indian-Diabetes (Pima), and Wisconsin Breast cancer (WBC). For the exper-
iments we used the multilayered perceptron implementation of MATLAB. In
particular we used the Levenberg-Marquardt backpropagation algorithm imple-
mented as ’trainlm’ method in MATLAB for training.

Each of the results reported are for an MLP with 10 nodes in a single hidden
layer. Each node has a sigmoidal activation function. Though we agree that this
is not supposed to be ’optimal’ for all cases. We could have used a validation set
for determining the proper number of hidden unit for each data set. But, here
our objective is to show that our method performs better than conventional
bagging. So we decided to keep the number of hidden units and the number of
hidden layer to be fixed across runs irrespective of the data sets. Same decision
was taken with respect to the number of candidates in the ensemble. We fixed
the number of members in the ensemble to be 10 for all cases. For all the data
sets we take ν equal to 10% of the size of the training data.

The performance results reported are for a 10 fold cross validation repeated
10 times. The figures in Table 1 give the average performance and the standard
deviation (in percentage) for six different scenarios. The performance of a single
network, that of conventional bagging and that of our proposed method using
k = 3, 5, 7, 9.

Table 1. The results

Data Single Conventional Proposed
set network Bagging Method

k = 3 k = 5 k = 7 k = 9

Iris 91.26±6.11 96.08±2.66 96.46±0.54 97.00±0.47 96.67±0.44 96.86±0.32

Wine 92.02±4.86 97.18±1.88 98.93±0.32 98.70±0.38 98.70±0.38 99.04±0.53

Liver 64.85±3.21 67.60±1.74 68.63±1.26 68.95±2.24 68.78±1.28 68.95±1.70

Wave 62.74±5.93 84.10±1.88 86.09±0.18 86.43±0.32 85.98±0.26 85.70±0.24

Pima 66.35±5.14 75.11±1.06 77.03±0.83 76.66 ± 0.53 76.97±0.52 76.94±0.48

WBC 95.71±0.54 96.37±0.44 95.98±0.41 96.06±0.34 96.10±0.33 95.86±0.36

Glass 62.06±3.53 67.66±1.78 70.70±1.67 70.42±1.66 69.75±1.82 70.18±1.55

Table 1 clearly shows that the proposed method gives better results than
conventional bagging for almost all data sets. The amount of improvement for
some data sets are statistically significant. The figures are shown in bold if the
performance of the proposed method is significantly better than conventional
bagging 1.
1 These results are based on a studentized t-test with 95% confidence

6 Conclusion

We demonstrated a new method of creating ensembles. Our experiments demon-
strates that the method shows improvements over conventional bagging for most
of the data sets tried. We plan to address the following problems in future:

1. The procedures Expand and Train are quite general and can be used to train
other kinds of classifiers other than a MLP. We plan to apply the method for
other classifiers, in particular decision trees seem to be a good alternative.

2. Quantify the diversity among the candidates that this method yeilds.

Acknowledgements: This work was partially supported by CONACYT project
I0013/APOY-COMPL-2008/90775.

References

1. A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
2. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
3. Ruqing Chen and Jinshou Yu. An improved bagging neural network ensemble

algorithm and its application. In Third International Conference on Natural Com-
putation, volume 5, pages 730–734, 2007.

4. Harris Drucker, Robert E. Schapire, and Patrice Simard. Improving performance
in neural networks using a boosting algorithm. In Stephen Jose Hanson, Jack D.
Cowan, and C. Lee Giles, editors, NIPS, pages 42–49. Morgan Kaufmann, 1992.

5. B. Efron and R. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1993.
6. Vasileios L. Georgiou, Philipos D. Alevizos, and Michael N. Vrahatis. Novel ap-

proaches to probabilistic neural networks through bagging and evolutionary esti-
mating of prior probabilities. Neural Processing Letters, 27(2):153–162, 2008.

7. Anil K. Ghosh. On optimum choice of k in nearest neighbor classification. Com-
putational Statistics & Data Analysis, 50(11):3113–3123, 2006.

8. Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Trans.
Pattern Anal. Mach. Intell., 12(10):993–1001, 1990.

9. Ludmila I. Kuncheva. Diversity in multiple classifier systems. Information Fusion,
6(1):3–4, 2005.

10. Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classi-
fier ensembles and their relationship with the ensemble accuracy. Machine Learn-
ing, 51(2):181–207, 2003.

11. Pabitra Mitra, C. A. Murthy, and Sankar K. Pal. Density-based multiscale data
condensation. IEEE Trans. Pattern Anal. Mach. Intell., 24(6):734–747, 2002.

12. Robert E. Schapire. A brief introduction to boosting. In Thomas Dean, editor,
IJCAI, pages 1401–1406. Morgan Kaufmann, 1999.

13. Robert E. Schapire. Theoretical views of boosting. In Paul Fischer and Hans-Ulrich
Simon, editors, EuroCOLT, volume 1572 of Lecture Notes in Computer Science,
pages 1–10. Springer, 1999.

14. Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many
could be better than all. Artificial Intelligence, 137(1-2):239–263, 2002.

