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Abstract. In this paper we present a new method to create neural
network ensembles. In an ensemble method like bagging one needs to
train multiple neural networks to create the ensemble. Here we present
a scheme to generate different copies of a network from one trained net-
work, and use those copies to create the ensemble. The copies are pro-
duced by adding controlled noise to a trained base network. We provide
a preliminary theoretical justification for our method and experimentally
validate the method on several standard data sets. Our method can im-
prove the accuracy of a base network and give rise to considerable savings
in training time compared to bagging.

1 Introduction

Let £ = {(x;,y:;) : i = 1,...,n} be a training set where & is a feature vec-
tor and y is its corresponding numerical response or a class label. There are
plenty of procedures available in literature which uses this training set £ to
form a predictor function ¢, which on input x, give y as the output, i.e., the
function ¢ approximates the input-output relationship between & and y. The
function generally is of the form ¢(x, W), where W is a parameter vector which
is decided upon using L. A very popular procedure for obtaining the predic-
tor ¢ is by training a neural network with L. In this case we will call the
predictor function N(z, W), where the parameter vector W contains the pa-
rameters (weights and biases) of the neural network, which are learned with
the aid of the training set. The training algorithm finds that W which mini-
mizes the error committed by the predictor on the training set (the training
error). The operational performance measure of a predictor function is the er-
ror committed on future data points which are not present in the training set.
The error on such points which are not in the training set is known as the
generalization error (or test error) of the predictor. Practice has shown that a
direct minimization of the training error does not always guarantee a small
generalization error. There are plenty of methods available in the literature
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which improves the generalization ability of predictor functions learned from
data. There are also particular methods in the context of neural networks, that
broadly fall into the following categories: (a) early stopping [I](b) Complexity
control of the network (weight pruning strategies, etc.)[16] (c) training with noise
[10](d) ensemble methods [9I7]. In this paper we are interested with the last
paradigm.

It have been noticed that an ensemble of predictors have better generalization
abilities than a single predictor function [3/15]. In the past few years there have
been numerous proposals for creating ensemble of predictors. Two of the well
known proposals in this regard are Bagging [3] and Boosting [I4]. Ample theo-
retical studies of Bagging and Boosting have been reported in the literature, and
these studies clearly point out why and under which scenarios ensembles created
by these methods can give better predictions [3I15]. Also, in the last few years
numerous variants of bagging and boosting have been proposed [TIUT2][7].

Right from the early nineties neural network ensembles has also been widely
studied [9/I7]. The studies regarding neural network ensembles are mainly for
adapting suitably the general ensemble techniques in case of neural networks
[5]. The other studies have been focussed on developing heuristics to choose
better candidates for an ensemble such that each candidate has good prediction
power along with that the selected candidates have better diversity [4I8], which
is known to effect the performance of an ensemble [ITIT2JT3].

Bagging involves creating multiple bootstrap samples [6] from £ and training
predictors from each of the bootstrap samples. The final output is obtained by
a suitable aggregation of the output of each predictor. The type of aggregation
depends on the type of the output, i.e., whether it is a numerical response or a
class label. Leo Brieman in [3] noted that neural network predictors are unstable,
i.e., it is not necessary that for a trained neural network, small changes in the
input will produce small changes in the output. In [3] it was also noted that
along with neural networks other very popular methods like classification and
regression trees, subset selection in linear regression are also unstable. In [3] it
has been shown that for an unstable classifier bagging can improve the prediction
both in terms of stability and accuracy.

There are theoretical guarantees about good prediction accuracy in case bag-
ging is applied to neural networks, but using bagging to learn multiple neural
predictors seems to be suboptimal, as neural network training is computation-
ally expensive. Creating multiple neural networks from the bootstrap samples is
costly. In this paper we propose a new method to create neural network ensem-
bles. The method involves adding controlled noise to a base network and thus
create numerous clones of the network and use an ensemble of the degraded net-
works for prediction. Our experiments show that such an ensemble can improve
the performance of a base network, but the performance of such ensembles on
the average is poorer than conventional bagging. What we gain by our method is
a drastic reduction of training time, as in the average training using our method
requires almost half training time compared to bagging. Under some assumptions
we also provide a theoretical justification of why such an ensemble works.
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2 The Strategy

In the discussion that follows by a neural network we shall mean a multilayered
perceptron (MLP). As training multiple neural networks from bootstrap samples
of the training data is time consuming, here we propose a method for generating
multiple copies of neural networks from a single trained network. Let N(W') be
a neural network trained using the training set £. We call this network as the
base network. Here W is a vector containing all the learnable parameters of the
network, thus, if the network contains s weights and r biases, then W will have
p = s + r components. Let W = (w1, ws,...,w,). Now a little perturbation of
the weight vector will generate a different network, whose performance would
be comparable with the base network. We create an ensemble of these degraded
network, which acts as the final predictor network. In the following paragraphs
we discuss the steps of our method in details.

Let N(W) be a base network. By a base network we mean an MLP trained
with the given training set £. Any standard technique like error back-propagation
or some of its variants can be used to train the base network N(W). The size of
the parameter vector W would depend on the architecture of the base network.
We assume that the architecture of N(W) is adequate to learn the problem
represented by the training set £. Once we have the base network, then we
create a degraded version of N(W) by adding a zero mean Gaussian noise to
each of its components (weights and bias). Thus if W = (wq, wa, ..., wp) be the
parameter vector of the base network N(W) and W% = (w¢, w, ..., w) be the
parameter vector of a degraded version of N(W), then

wg:wi—i-ei,w:l,l..,p (1)

where e; ~ N (0, 0;), i.e. e; is a random number drawn from a normal distribution
of zero mean and variance o, and to generate each component of the parameter
of the degraded version, e; is drawn independently of its previous values. Thus
we see that the amount of degradation that a component receives is dependent
on the value of o. Further we shall call this o as the degradation parameter. A
large o means a more degraded network, in average. Thus by controlling the
parameter ¢ one can control the degree of degradation of a network. Let € be
the training error of the base network on the training set £ and let €4 be the
error committed by the degraded network N(W?) on £. We call N(W?) as a
valid candidate if €5 < te. Where t is a user defined threshold, which we call as
the selection threshold. For our simulations we assume t = 1.05, i.e., we accept a
degraded copy to be a valid candidate if the error committed by it on the training
set is within 5% of the error that the base network commits on the training set
Thus by repeated degradation we obtain the desired number of valid candidates
and these are used to form the ensemble, with a suitable aggregation function.
The overall strategy is summarized in the algorithm shown in Table [Tl

! Note that, if the error committed by the base network is zero, then this multiplicative
threshold does not work, in fact then there is no point in creating an ensemble.
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Table 1. The overall strategy to create ensembles from degraded networks

Algorithm Make _Ensemble(N (W), o, m,t,¢, L)

1 Let W = (w1, w2,...,wp);

2 Ve—0;d+«1;

3 while |[V| < n,

4. for j =1 to p,

5. e~N(0,0)

6 wf — wj + €

7 end for

8. Wde(w‘f,wg,...,wg);

9. Let €4 be the error committed by N(W?) on L;
10. if €4 < te, then

11. Ve VU{NWH}; d—d+1;

12. end if

13.  end while

14.  Create ensemble of the networks in {N(W)} U V;

In the algorithm described in Table [1l the inputs are a trained base network
N (W), the degradation parameter o, a positive integer m where m + 1 is the
number of candidates to be present in the ensemble, the selection threshold t,
and €, the error committed by N(W) on £ and the training set £. The al-
gorithm collects the valid candidates in the set V. It creates degraded copies
by drawing a random number e from a normal distribution with zero mean
and variance ¢ and adding this noise to the parameters of the base network.
Then, it checks whether the degraded copy is a valid candidate and contin-
ues creating degraded copies until it gets m copies. At the end an ensem-
ble of m + 1 candidate networks is created using the base network and the
m valid candidates generated from the base network. By creation of an en-
semble we mean using all networks N (W), N(W'),..., N(W™) together for
prediction. For a test point & we present the point to all networks and ob-
tain £ = N(z,W),&' = N(@x,W?'),...,&™ = N(z,W™). These outputs are
aggregated together to get the final output. The most preferred technique of
aggregation is to use the simple average or a majority vote.

Note that, m, t and o are user defined parameters. The choice of m and ¢ is
not crucial. The number of candidates in an ensemble can be suitably selected
and a guideline for selection of ¢ has already been given A proper choice of ¢ is
most crucial for the proper functioning of the algorithm. It is possible that the
“optimum” value of ¢ is data dependent. We suggest to use a “small” value for
sigma, the following example will illustrate some effects on the choice of ¢ also
will serve as a motivation that our method works.
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3 An Example

Here we provide a convincing example showing that the gross methodology works
well. We consider the problem of learning a noisy sine curve as shown in the
equation below.

f(z;) =0.4sinx; + 0.5,z € [—m, 7. (2)

We generate 150 input-output pairs (x;,y;), ¢ = 1,2,...,150, with z;s gener-
ated uniformly on [—m, 7] and y; = f(z;) + r;, where r; ~ AM(0,0.001) accounts
for a zero mean Gaussian noise with a small variance. We use these 150 input-
output pairs as a training set. Additionally, we generate 50 more pairs using eq.
which we use as the test set. Now we train a base network using the training
data and create degraded copies of the base network using different values of o.
Figure [I] shows the variation of the sum of square errors measured on the test
data for different values of ¢. In this example the base network had 10 hidden
nodes in a single hidden layer, and was trained using the conventional back-
propagation algorithm. For each run we generated 14 valid candidates from the
network and thus created an ensemble of 15 networks according to the algorithm
Make_Ensemble. In Fig. [[l we show two representative scenarios of variation of
the sum of square error (SSE) on the test points of the ensemble against the
choice of various values of o.

SSE and sigma values SSE and sigma values
0.0325 T T T T 0.0325
0.032 | 1 0.032 -
00315 - 0.0315
0.031 0.031 -
4 2 00305 |
2] 7]
0.0305
0.03 -
003 1 0.0295 |-
0.0295 1 0.029
0.029 - - - - 0.0285 - - - -
0 0.0005 0.001 0.0015 0.002 0.0025 0 0.0005 0.001 0.0015 0.002 0.0025
o o

Fig. 1. Two representative runs showing the error of ensemble with variation of the
degradation parameter (o). In the figures the o is plotted in the z axis and the SSE in
the y axis.

Figure[lclearly shows that as the value of the degradation parameter increases
the SSE of the ensemble decreases, and after a certain value of the degradation
parameter the SSE starts to increase. In the two scenarios shown in Fig. [Il the
optimum value of ¢ lies in the interval [0.001,0.002]. In all the runs that we made
with this data this was true. The explanation of the variation of the SSE with
the degradation parameter is probably that for very small values of o, the valid
candidates generated are too similar to the base network, thus there is too little
variability among the candidates of the ensemble, thus an improvement over
the base network is not possible. For high values of the degradation parameter,
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the structure of the base network gets altered and thus the degraded candidates
created cannot really sustain the learning capabilities of the base network. Thus,
it seems that there would be an optimal value of the degradation parameter
which will give rise to a good ensemble. But, in this study we could not give a
method to select the parameter o, but our experience show that a small value
of o can give rise to good ensembles. Based on our experiments we suggest to
select o in the range of [0.001, 0.002], and this seems to give acceptable results
across data sets.

4 A Theoretical Justification

In this section we give a theoretical justification of why our method works.
We first consider an ideal scenario, where we assume an ensemble of neural
networks whose parameters are sampled from a specific distribution. But this
specific distribution will always be unknown and sampling from that would not
be possible. Later we argue why our scenario closely resembles the ideal scenario.

When a neural network architecture and the internal activation functions are
fixed and also the parameters of a learning algorithm (like the learning rate in
back-propagation) are fixed then the learning algorithm becomes a deterministic
algorithm. A learning algorithm then can be viewed as a function which takes as
input a training set and outputs the weights and biases of the network which can
be viewed as a parameter vector W € RP. In other words, the learning algorithm
on a fixed architecture A can be characterized by the function A4 : R4 xC — RP.
Where the training set £ C R? x C, we implicitly assume that the input feature
vector is a g dimensional real vector and C is the set of possible class labels or
the numerical responses. Also we assume that the specific architecture A has p
learnable parameters. In all machine learning tasks it is assumed that the train-
ing data (also the test data) are generated from a fixed (but unknown) time
invariant probability distribution. Let the the unknown distribution from which
the training data £ has been generated be P. Let L£1,Ls,..., L, be r training
sets generated independently from the distribution P. Then for a fixed archi-
tecture A, the learning algorithm A, will produce different parameter vectors
Wi, Wa,...,W, corresponding to the r different training sets. The distribution
‘P on the training data will induce a distribution on the parameter vectors Ws,
let Py denote this distribution. Now, if this distribution Py is known then we
can sample parameter vectors using this distribution, which can be treated as
parameters of a neural network trained by the learning algorithm A4 using the
data generated following the distribution P. We assume that we construct an
ensemble of neural networks with parameters drawn from the distribution Pyy.
The ensemble of such neural networks be denoted by Ng. Let W be a random
variable following the distribution Py, and £ denote the expectation operator,
then we have

Ng(z) = Ew[N(z,W)].
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Assuming X and Y to be random variables having a joint distribution P the
average prediction error for a single network would thus be

e=EwlEx y[{Y — N(X, W)}l
The error in the ensemble Ng would be
e = Ex,y[{Y — Np(X)}?]
Now we have

e=Ewlx y[{Y — N(X, W)}
= EwExy[{Y? - 2YN(X, W) + N2(X,W)}]]
=Ex y[Y?] = 26x y[Y Ne(X)] + Ex vy [EW[N* (X, W)]] (3)

As for any random variable Z, we have (£][Z])? < £[Z?], hence

Ew[N* (X, W)] = [EwIN (X, W)]? = [Np(X)]?. (4)
Hence using eqgs. @) and (@), we have

e>Exy[(Y — Nep(X))*] =eg. (5)

Thus we see that the error committed by the ensemble is less than that of an
individual predictor, if we create an ensemble of neural networks whose parame-
ters have been sampled from Py. The above explanation that we gave is due to
function approximation type problems, and it cannot directly applicable for gen-
eral classification problems where the outputs are discrete and do not generally
bear a metric relationship between them. But, while an multilayered perceptron
is trained for a classification task, the class labels are suitably coded as binary
vectors and the network learns a function approximation task associated with
binary outputs. Due to the choice of the activation functions (typically a sigmoid
function is used in case of MLPs), the outputs of the MLP are not binary, they
are real numbers in the interval [0, 1]. And, those real output vectors are suitably
interpreted to get the final solution. So the above analysis is valid for an MLP
trained as a classifier also, but may not be valid for a general classifier.

The above analysis represents an idealistic scenario, where we assume that
the ensemble is created using parameter vectors W;s which follow a certain
distribution Pyy. Py is the distribution induced by the distribution of the input
output data through the learning algorithm. Needless to say that the distribution
Pw is unknown, in-fact a knowledge of the input-output data distribution P
does not guarantee a closed form formula for the distribution Py, as they are
related in a highly non-linear manner through the learning algorithm. And, to
us P is also unknown. The best algorithm which would be faithful to the above
analysis would be a technique to sample parameter vectors from the distribution
Pw, and the first step towards it would be an estimate for the distribution Py .
We claim that our algorithm samples parameter vectors from Py under certain
assumptions.
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To see this, let us observe our algorithm a bit closely. Our algorithm starts
with a base network N(W?). The parameters of the base network (i.e. W?)gives
us one sample from Pyy . If we assume that Py follows a multidimensional normal
distribution centered around W, then our process of degradation do generate
parameter vectors following the distribution Py, with a small variance o. This
naive assumption is unlikely to capture the whole distribution Py but probably
restricts us to a small area in the whole distribution. But as the results in the
following section suggest, this naive approximation also can give us encouraging
results.

5 Experimental Results

We report performance of our method on six classification data sets from [2].
For training the neural networks we use the traingdz algorithm as implemented
in the Neural-network toolbox of MATLAB. All the networks we use in the
experiments have a single hidden layer with 10 nodes. As usual, this decision was
rather ad-hoc and a change in the number of hidden nodes would not change the
conclusions of our experiments. For each run we use the degradation parameter
o = 0.0015.

Table 2. Performance Comparison

Data set Base Network |Degraded Ensemble|Conventional Bagging
Performance (in %)|Performance (in %)| Performance (in %)
Iris 91.26 £ 6.11 91.33 + 6.81 96.09 + 5.66
Glass 67.87 + 3.61 71.11 £ 9.76 72.96 + 8.05
Waveform-40 60.19 £ 5.99 71.02 + 3.62 85.41 £ 0.94
Waveform-21 62.75 £ 5.95 72.64 + 3.80 84.11 + 1.89
Pima-Diabetes 66.35 + 2.10 68.41 +1.97 75.11 + 4.06
Wine 83.90 £ 7.99 85.54 + 7.63 97.18 + 1.89

Table 3. Training Times

Data set  |Degraded Ensemble|Conventional Bagging
(time in secs) (time in secs)
Iris 18.92 + 4.37 134.01 + 2.32
Glass 45.41 £ 3.25 66.11 + 1.32

4077.50 £ 166.80
3669.75 £ 142.14
797.81 £ 8.12
85.54 £+ 7.63

Waveform-40
Waveform-21
Pima-Diabetes
Wine

367.12 £ 19.61

294.79 £ 18.60
41.30 £ 10.34
29.99 £ 8.26

In Table 2 we show the comparative performance of our network. All the
results reported are on 10 fold cross validation repeated 10 times. The second
column of Table 2] gives us the average performance of a single network. For
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each of the trained base networks 10 degraded copies were created and then
aggregated with the principle of majority voting. The third column of the table
shows the average performance of the ensemble of the degraded networks. The
last column give result of conventional bagging, where also 10 candidate networks
trained from bootstrap samples of the training data were trained and aggregated
using the principle of majority voting.

Table 2] clearly shows that our method of creating ensembles can significantly
enhance the performance of the base network. The entries in bold in Table
suggests that the improvement in the degraded ensemble was statistically signif-
icant . But in all cases the results obtained by our method are poorer than that
obtained by conventional bagging. But, what we gain in comparison to bagging is
the training time. As discussed earlier, conventional bagging in neural networks
amounts to training multiple networks, but in our method the candidates of the
ensemble are created by perturbing the parameters of the base network. This
gives rise to a huge savings of time compared to bagging. The training times
for our method and bagging are depicted in Table Bl Tables 2] and [3] clearly in-
dicates that our method can improve the performance of a single network to a
large extent in very less time.

6 Discussions and Conclusion

The results in section [l show that the method of creating ensembles from de-
graded networks is able to improve over the base network. The accuracy of these
kind of ensembles are not better than bagging, the reason behind this is probably
the lack of diversity among the candidate classifiers. The training time is also
significantly low. An important feature of our methodology is that the ensemble
can be created without access to the training data. It may be possible that a
user has a trained network to perform a specific task but does not have access
to the training data. In such a scenario, improving the accuracy through other
available ensemble methods is not possible, as in all of the reported methods
access to the training data is necessary to create ensembles, but our method
does not require access to the training data. Additional clones can be generated
from a trained network to create ensembles of the clones. This feature may find
application in certain scenarios.
Some future work of immediate interest are as follows:

1. The most crucial part of the proposed algorithm is the selection of the degra-
dation parameter ¢. Unfortunately we were unable to provide a procedure
to obtain an optimal value for ¢ in this work. But,our experience shows that
small values of o do work well. We are investigating ways to find out an opti-
mal value of ¢ for a given data. We believe that this will have an immediate
impact on the performance of our algorithm.

2. We noted down in Section M that there is a theoretical guarantee that an
ensemble of networks created from parameters sampled from the distribu-
tion Py would give rise to less prediction errors. With certain assumptions

2 These results are based on a studentized t-test with 95% confidence.
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we viewed our scheme for degradation as sampling vectors from the distri-
bution Py . A possible technique to overcome some assumptions may be to
start with multiple base networks and thus try to estimate the distribution
Pw by a better technique (say a kernel density estimate). This would have
implication on the training time, but may give rise to better accuracy.
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