
1

Expanding the Training Set for Better
Generalization in MLP

Debrup Chakraborty and Nikhil R. Pal
Electronics and Communication Sciences Unit

Indian Statistical Institute
Calcutta 700108, India

Email:
�
debrup r,nikhil � @isical.ac.in

Abstract— A method to improve the generalization ability of
a multilayered perceptron (MLP) network is proposed here.
The method expands a given training set and trains an MLP
with a new data set in each epoch. The method of data
generation maintains the spatial density of the original training
sample. Experiments show that the method can yield excellent
generalization.

Index Terms— MLP, Generalization, Mountain Potential, k-
nearest neighbors

I. INTRODUCTION

A training set � contains data �����	��
������
������
�������
���� ,
where � is a feature vector and � is its corresponding numer-
ical response or a class label. There are plenty of procedures
available in literature which use this training set � to form a
predictor function � �"!#
$�	� . Where ! is a parameter vector
which is decided using � . A very popular procedure of
obtaining the predictor � is by training a feed-forward neural
network (like a multilayered perceptron (MLP)) with � . In this
case the parameter vector ! becomes the parameters (weights
and biases) of the neural network, which are learned with
the aid of the training set � and the optimization procedure
selects a ! which minimizes the error on the training set. The
operational performance measure for the trained network is
the error on future data outside the training set, also known as
the generalization error. This error may be undesireably large,
when, for example the training set size is too small compared
to the network parameter set size. Practice has shown that
a direct minimization of the training error for a given fixed
training set by backpropagation or similar type of training
algorithm does not necessarily imply a minimization of the
generalization error. A common means to bypass this difficulty
is to use a validation set to judge the generalization ability and
decide on the stopping time for training. Researchers have also
followed a variety of different approaches to improve gener-
alization like pruning [8], weight sharing [2], and complexity
regularization [6], [7].

The problem of bad generalization and overfitting stems
from the fact that neural networks are trained with a finite
training sample. The available training data are reused in
every epoch and as a result, the neural network “concentrates”
more and more on these points and often results in a bad
generalization. A probable solution to this problem would
be to have an infinitely large training set which is seldom

realizable in practice. Here we propose a method to expand
the training set to any required size, for better generalization.
A related concept, suggested in [3] adds noise to the training
set. In [3] the authors considered adding additive white noise
independently to the input and output vectors to generate
new training samples. In [4], Karistinos and Pados gave
an algorithmic procedure for random expansion of a given
training set. They proposed a locally most entropic estimate
of the true joint input-output probability density function of
the training sample to generate new training samples. They
argued that the method in [3] is an extreme special case of
that in [4]. Here we present a scheme which generates new
input vectors following the same density of the training sample
and uses a k-nearest neighbor regression heuristic to generate
the output of the corresponding input vector. Our experiments
demonstrate that our method can produce nice generalizations.
Our method is different from that in [4] as our method does
not require an explicit density estimation, which is known to
be unstable [10].

II. EXPANDING THE TRAINING SET

It is assumed that the training data are obtained from an un-
known time invariant probability distribution. Thus expansion
of the training data can be best done if we attempt to learn
the unknown probability distribution from which the data were
generated and generate additional samples from the obtained
distribution. Estimating probability distributions from data is
an ill posed problem whose solutions are again unstable and
tends to become inaccurate with the increase in dimensionality
of the data [10], [11]. Here we do not attempt to learn the
probability distribution of the data but we exploit its spatial
distribution to generate additional data points which maintains
the spatial distribution of the given training set.

Let us denote the the input vector �	% augmented with its
output �&% (which may be single valued or a vector, without
loss of generality we consider a single valued output) by '�(% .
For each data point �"� %
� % � in � , we assign a probability) %
which is a function of the density of input data points in the
neighborhood of � % . We model) % using the mountain potential
which has been used successfully for numerous clustering
applications [5], [13]. Thus

) % � �*
+,
-$.0/�132) �547698�8 � % 4:� - 8�8 ��
 (1)

where
*

is a normalizing constant which is so chosen that� +
% .0/) % � � . Our algorithm samples a point � % from � with

probability) % . Then it finds the � nearest neighbors of '� % , we
call them '� /%
 '���%
�������
 '���% . A new point '�(���	� is generated as a
convex combination of the points '� /%
 '���%
�������
 '���% , i.e,

'� ���	� � �,
-$. /

 - '� - %
 (2)

where
�,
-$.0/

 - � ��
 ��
 - � �&�

The

 - ’s are randomly generated. Note that '� represents a

new input output pair but the probability distribution assumed
for sampling, depends on the input vectors only. In each step
our algorithm samples a point according to the density, and
generates a point in the neighborhood of it. So, more points
will be generated in dense regions and less points in the sparse
regions. This algorithm has two user defined constants the
window size 6 in eq. (1), and � which denotes the number of
nearest neighbors considered. Here we use 6 ��� � � and � ���
for simulations, which works quite well.

An MLP is trained with these generated data points. The
MLP gets trained with the original training set � in the first
epoch and in the subsequent epochs it faces points generated
by the above described algorithm. Thus in each iteration, the
MLP faces a new set of points.

III. RESULTS

Here we present results on two function approximation
problems.

A. Sine data

We consider the problem of learning a noisy sine curve [4]
� � 2 � ��� � ����� � 2

� �����
 2
��� � (3)

As in [4], we generate 36 input-output pairs '� % � ��� %
$� % � ,
� � �&
�����
���� , with � % generated uniformly on �4"!
#!%$ and � % �� � 2 % �

�'& % , where
& %)(+* �,��
�-.� � accounts for the noise with

variance -.� ����� ��� .
We trained MLPs with this data set and also MLP’s with

the generated data points. In each case we used sigmoidal
activation functions, used 7 nodes in the hidden layer and used
the Levenberg-Marquardt algorithm to update the weights.
Figure 1 shows the generalization produced for 8 MLPs trained
with only the 36 points repeated in each epoch. Figure 2 shows
the generalization for the generated data. The figures reveal
that generating additional data in each epoch gives better and
consistent generalization. In Fig. 1 out of 8 MLPs, 4 cases
((a), (c), (f) and (h)) exhibit very bad generalization, while
no such case arises in Fig. 2. Even the smoothness of the
output when the nets are trained with the original data is
much less than in the cases where training is done using
data generated by our method. The additional data act as
constrains (regularizing force) on the network and prevents
it from making poor generalization.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(a) (b)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(c) (d)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(e) (f)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(g) (h)

Fig. 1. Generalization produced by ordinary MLP

B. Chemical Plant data

Chemical Plant data contains data for operator’s control of
a chemical plant for producing a polymer by polymerization
of some monomers. There are five inputs and one output.
The input variables are monomer concentration (/ /), change
of monomer concentration (/ �), monomer flow rate (/%0) and
the two local temperatures inside the plant (/.1 and /%2). The
only output (�) is the set point for monomer flow rate. In
[12] there is a set of 70 data points obtained from an actual
plant operation. For our convenience we have normalized / 0
and � such that they lie between [0,1], as they have greater
magnitudes compared to others.

The results obtained on Sine data could be easily plotted
to show that our method produces nice generalizations. But as
the Chemical Plant data is a high dimensional data such visual
comparison is not possible. Also, this is a comparatively small

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(a) (b)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(c) (d)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(e) (f)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
output
target
training points

(g) (h)

Fig. 2. Generalization produced by MLP trained with generated data

sized data set, hence we use all the data points for training and
test the performance on an artificially generated data set. We
generate 100 points within the approximate multidimensional
convex hull of the 70 input vectors. We use the method used by
Smith and Jain in [9] to generate points inside the approximate
convex hull.

A method which produces consistent and smooth general-
ization must be “stable” [1], i.e., the output must not change
much with a small change in input. We give a measure here
to test the stability of a network. Let us denote the set of test
input vectors as � � ������� � � �&
�������
�� � and the training set
as � � ����� %
� % �	� � � �&����� � � . Let
 % be the output of the
trained MLP for the test point � % . We calculate the measure

of stability (S) as

� �
�,
% .0/ 8
 %(4:� � 8
��� 1

&
1
 � ��� &�� � � � - 8�8 � % 4:� - 8�8 � (4)

Hence
�

measures the sum deviations of the output of a test
point � % from the output of the training point nearest to � % .
Thus a more stable method should have a lower value of

�
.

Also for a stable method the value of
�

should be consistent
over several runs.

We trained 100 ordinary MLPs and another 100 MLP’s
using our method of data generation. For both cases we used
the Levenberg-Marquardt algorithm for training and used 10
nodes in a single hidden layer and each node having sigmoidal
activation function. We calculated the values of

�
for all runs.

The average value of
�

over 100 MLP runs using conventional
training was 12.9691 and that for MLP’s trained by our method
was 12.5106. Thus on average our method produces a lesser
value of

�
. Also for our method the value of

�
is more

consistent over runs. Fig. 3 shows the histogram for the values
of
�

for 100 runs of both ordinary MLP and the MLPs trained
with the generated data. Fig. 3 shows that with usual MLP
training for some runs

�
can take a value as high as 21, but

for our method, no run produces a
�

greater than 15.5.

10 12 14 16 18 20 22
0

10

20

30

40

S

fr
eq

ue
nc

y

10 12 14 16 18 20 22
0

10

20

30

40

S
fr

eq
ue

nc
y

(a) (b)

Fig. 3. Histogram for values of � for 100 runs on Chemical Plant data : (a)
Ordinary MLP (b) MLP trained with generated data

IV. CONCLUSIONS AND DISCUSSION

We presented a simple method to improve the generaliza-
tion ability of an MLP. Our method involves expanding the
available training set and using new data points in each epoch
to avoid overfitting.

The method developed here is for function approximation
problems, but it may be extended for classification problems
with minor modifications. Our results demonstrated that our
method can yield better generalization compared to usual MLP
training. There are a few issues that we like to address in near
future : We shall compare our method with other methods
which improve generalization. Our method requires two user
defined parameters. So far we have experimentally determined
suitable values for them. We shall try to provide some general
guidlines on this. We also plan to extend our method to train
networks with “small” training sets.

REFERENCES

[1] L. Breiman, “Bagging Predictors”, Machine Learning, vol. 24, no. 2,
pp. 123-140, 1996.

[2] Y. le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.
Hubbard, and L.D. Jackel, “Backpropagation applied to handwritten zip
code recognition”, Neural Computation, vol 1, no 4, pp. 541-551, 1989.

[3] L. Holmstrom and P. Koistinen, “Using additive noise in backpropaga-
tion training”, IEEE Trans. Neural Networks, vol 3, pp. 24-38, 1992.

[4] G.N. Karystinos and D.A. Pados, “On overfitting, generalization, and
randomly expanded training sets”, IEEE Trans Neural Networks vol 11,
no 5, pp. 1050-1057, 2000.

[5] N.R. Pal and D. Chakraborty,“ Mountain and Subtractive Clustering
Method: Improvements and Generalizations”, International Journal of
Intelligent Systems, vol 15, pp.329–341, 2000.

[6] T. Poggio and F. Girosi, “Networks for approximation and learning”,
Proceedings of the IEEE, vol 78, pp. 1481-1497.

[7] T. Poggio and F. Girosi, “Regularization algorithms for learning that are
equivalent to multilayered networks”, Science, vol. 247, pp. 978-982.

[8] R. Reed, “Pruning algorithms - a survey”, IEEE Trans. Neural Networks,
vol 1, vol 4, pp. 740-747, 1993.

[9] S.P. Smith, A.K Jain, “Testing of uniformity in multidimensional data”,
IEEE Trans. on Pattern Analysis and Machine Learning, Vol 6, no 1,
pp.73-81, 1984.

[10] A.N. Tikhonov and V.Y. Arsenin, Solution of ill posed problems,
Washington D.C.: W.H. Winston, 1977.

[11] J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk and
C. Watkins, “Support vector density estimation”, Advances in Kernel
Methods — Support Vector Learning, MIT Press, Cambridge, MA, pp.
293-306, 1999.

[12] M. Sugeno and T.Yasukawa, “ A Fuzzy-Logic based approach to
qualitative modeling”, IEEE transactions Fuzzy Systems, vol 1, no 1,
pp. 7-31, 1993.

[13] R. R. Yagar and D.P. Filev, “Approximate Clustering via the Mountain
Method”, IEEE Trans. Systems man Cybernetics, vol 24, no 8, pp. 1279-
1284, 1994.

