A Modified Bottleneck Neural Network for
Dimensionality Reduction

Eduardo Filemén Véazquez Santacruz, Debrup Chakraborty

Centro de Investigaciones y Estudios Avanzados del IPN
Av. IPN 2508, Col: San Pedro Zacatenco
Mexico D.F, Mexico
email:evazquez@computacion.cs.cinvestav.mx, debrup@cs.cinvestav.mx

Abstract. We present a modification of the bottleneck neural network for
dimensionality reduction. We call our scheme a modified bottleneck network
(MBNN). Unlike a traditional bottleneck network for dimensionality reduc-
tion, an MBNN uses the class information and thus the transformed data
can be suitably used for classification problem. We also propose a new tech-
nique to create ensembles of neural networks using multiple projections of
the same data obtained from different MBNNs. We justify the suitability of
the proposed method by some experiments on some classification problems.

1 Introduction

Dimensionality reduction is probably one of the most important task in any pattern
recognition problem. This problem has been addressed from different viewpoints,
and by various kinds of tools. Naively, dimensionality reduction can be defined as
follows. Given the input data X = {z : x € RP}, we want to find a transformation
é: X — X', where X' = {z' : &’ € R} and ¢ < p. Typically the set X’ optimizes
certain criteria J. The criteria J usually depends on the problem that is being
solved, like for a classification problem J may be a measure of class separability or
the misclassification rate for a fixed classifier. Two important types of dimensionality
reduction are feature selection, where only a subset of the p features present in the
data points in X are selected and an other type is feature extraction where the data
is projected into some low dimensional space. In the second type of transformation,
the original features present in the data may loose their individual identity and the
final features obtained in X’ may be a combination of all features present in the data
points of X. Note that the term feature extraction is a generic term which signifies
extracting features from a given set of features and includes such transforms which
increases the dimensionality of a given data set.

Dimensionality reduction enables obtaining a data whose representation is less
complex. This data thus can be learned by a learning machine which is less complex.
This gives rise to a computational saving in construction and use of the learning ma-
chine. Also dimensionality reduction can give rise to improved prediction accuracies
in scenarios where the training sample size is small (which is true in most real life
scenarios)[12].

The problem of dimensionality reduction has been well addressed in literature
and it has been tried out in various paradigms. Previous studies on dimensionality
reduction focused mainly around statistical approaches like Principal Components
Analysis (PCA)[14], linear discriminant analysis (LDA) [10] etc. These methods
attempt to reduce the dimensionality of the feature space by creating new features
which are combination of the original ones. Hence, PCA and related methods are
feature extraction techniques which extract a new set of features from the available
set, of features, and the dimensionality of the extracted feature space is less than that
of the original one. There are numerous variants of the PCA which tries to solve
the projection problem using various modifications of the main PCA technique [24].
The main drawback of these methods is that the new features lose their original
identity. Leaving aside the feature extraction methods, there have been other works
on feature selection using statistical techniques [13,18].

Blum and Langley [4] have given an excellent survey for selection of relevant
features in machine learning. These approaches are different in evaluation of the
feature subsets. One can broadly classify the approaches as filter approaches and
wrapper approaches. In filter approach, the feature evaluation index is independent
of the main classification/function approximation algorithm, whereas in wrapper
approaches the features are evaluated by the main algorithm itself. Wrapper ap-
proaches are considered better as the relevance of a feature is generally dependent
on the task being performed and also on the tool being used to do the task [16].

There are many feature selection algorithms that use soft computing or com-
putational intelligence tools. Methods described in [6,19] use genetic algorithms to
select the relevant feature subsets. Methods described in [20, 22, 23, 25] and a variety
of others use neural networks for feature selection. Feature selection has also been
attempted using fuzzy and neuro-fuzzy techniques [8, 21].

Our contribution: In this paper we discuss a technique to do dimensionality re-
duction using a neural network. Our method is a feature extraction technique. Our
technique projects a given data into a low dimensional space while preserving the
class separability of the data. Our technique depends on an special neural architec-
ture called the bottleneck neural network. The bottleneck neural network has been
previously used for data compression. The traditional bottleneck network do not use
class information present in a data thus the compression achieved is sort of unsu-
pervised, which may not be suited for classification problems. We discuss a simple
variant of the bottleneck network which uses the class information for classification.
We discuss several ways to use the transformed data for classification. We also pro-
pose a new technique to create neural network ensembles using the projected data
obtained from a modified bottleneck network. We test the method on some real life
classification problems.

2 The Bottleneck Neural Network

The bottleneck neural network is a nice strategy which has been used for data
compression. Given a data set = = {£1,&2,...&n C NP, a multilayered perceptron

(MLP) with p nodes in the input and output layer and ¢ (¢ < p) nodes in a hidden
layer is trained. Further we shall refer to such an architecture with the notation p :
q : p. For training this network input-output pairs of the form (&;,&;) (i =1,2,...n)
are used. So the network is trained to learn an identity map, and for a properly
trained network, the output for & would be &; itself. Now, the output of the hidden
layer for each & would be a ¢ dimensional representation of &;. Thus a reduction of
dimensionality is obtained. The bottleneck neural network has been previously used
in many applications [3,17].

Bottleneck
Layer

Fig. 1. The Modified Bottleneck Network

2.1 Modified Bottleneck Network

Here we propose a variant of the bottleneck neural network which we call the mod-
ified bottleneck network (MBNN). Let X = {(z;,y;) : ¢ = 1,2,...n} be a training
data where z; € R and y; € R°. We train an MLP with this data. We have no
restriction on the architecture of the MLP except that at least one of the hidden
layers (say, the rt" layer) contains ¢ (where ¢ < p) nodes, we call this layer as the
bottleneck layer. Note, unlike the traditional bottleneck network in MBNN we are
not training the network to learn an identity map but our network tries to learn the
real input-output mapping present in the data.

Let B denote a MBNN. B is not different from an ordinary MLP in terms of
structure or the learning algorithm except the minimal restriction on its architecture
as stated earlier. The output of B is not the output of its output layer but is the
output of the bottleneck layer. For example, let us consider a data set S = {(z,y) :
x € N°,y € N2)}. Figure 1 shows a MBNN trained with S. As evident from Fig. 1,
the MBNN has an architecture of 5 : 3 : 4 : 2 with the first hidden layer (the hidden

layer containing 3 nodes) as the bottleneck layer. One could have also chosen the
second hidden layer as the bottleneck layer. The network is trained with the data
set S using any convenient learning algorithm like the backpropagation or some of
its variants. For using this network, the output is tapped from the first hidden layer.
So for any input vector & € R°, the output of the network would be a € R3.

For the general case, let Bx be a MBNN trained with X = {(z;,y,) :z € R,y €
R°)}. Let the 7" layer of Bx be the bottleneck layer with ¢ nodes. Let a; € R4
denote the output of the rt* layer of Bx for a data point 2. From a properly trained
neural network we collect the output of the r** node and this output serves as a
projection of the original p dimensional data in a ¢ dimensional space. We call this
data as the reduced data. It is likely that the reduced data retains the properties
required for learning the underlying function that the original data represents. This
is because the reduced data represents an internal configuration of the data within
the network, and truly this configuration helps the neural network in learning the
proper mapping present in the data.

The reduced data set obtained from a trained network can further be used to
train a new network possibly with a smaller architecture. Thus this will lead to lesser
training time and possibly better generalization. Next we discuss some of the ways
in which the reduced data obtained from an MBNN can be used.

3 How to Use the Reduced Data

An MBNN transforms a data set into a low dimensional space using a nonlinear
transform. Also, an important feature of this transform is that it uses the output
information (eg. the class labels for a classification data) for performing the trans-
form. The reduced data represents an internal configuration of a trained network
which further gets transformed into the output. This intermediate configuration is
thus suitable to be used in any other neural network. Next we discuss some scenarios
where a reduced data set may be useful.

3.1 As a Transform Before Training an MLP for Prediction

It is common knowledge that as dimensionality of a data goes up we need a bigger
network to learn the data. A bigger network means more adjustable parameters,
and as the number of parameters increases, the possibility of a network to overfit
becomes more. An overfitted network though performs good with the training data
can miserably fail to give acceptable results on test data sets. This problem becomes
more acute if the number of training samples are small. To avoid this a natural and
popular practice is to apply a dimensionality reduction on the data before training
a network with the data. Thus by reducing the dimension of the original data, the
data can be learned by a smaller network and thus possibility of overfitting becomes
less. The most used technique is to use Principal Components Analysis (PCA) on
the data. The PCA technique is a generic technique for dimensionality reduction
and it projects the data in a new space where it has maximum variance. This may

not be the best objective for projection when we know what we need to do with
the data. For example, when the desired task is classification, class separability may
be a better objective than maximizing the variance. Also, if the targeted tool is a
multilayered perceptron, which functions in a highly nonlinear manner and produces
highly nonlinear class boundaries, use of the PCA (or other related projection tech-
niques like LDA) may not be always useful. The reduced data set obtained by a
MBNN will have better representation than the other known data projection meth-
ods in terms of classifiability by a neural network. The reason for this being that the
reduced data obtained by a MBNN is an internal representation of a neural network
meant for classifying the data.

A critique to this method may be that we need to train a network to get the
reduced data itself. Thus for data sets with huge dimensions the MBNN may itself
overfit the data if we need a network which performs good on the training data.
This is of course true. But as the MBNN is not used for prediction purposes, an
overfitted MBNN may not do us much harm. And we extract the reduced data of
low dimension from an MBNN and train a new network (possibly much smaller
than the MBNN itself), thus the network we use for prediction will have better
generalization capabilities.

3.2 In Constructing Neural Network Ensembles

Ensemble methods like bagging [5] and boosting [9] can enhance the prediction
ability of any classifier to a great extent. Neural network ensembles has also been
reported to perform better than single networks. Bagging is a method very suited to
neural networks, as bagging can decrease the variance of predictions in classifiers, and
neural networks which are known to be “unstable” have large variance in prediction
[5]. For neural networks, bagging involves creation of multiple bootstrap samples
from a given data set and training multiple neural networks with those bootstrap
samples. The final result is obtained by suitably aggregating the outputs of the
candidate networks of the ensemble. Thus creating a bagging ensemble of neural
networks is quite expensive in terms of computation, as neural network training is
expensive. Using an bottleneck neural network BN one can project the data to a
low dimensional space, and use bootstrap samples of the projected data to train
individual candidates of the ensemble. This can give considerable savings in training
times.

3.3 In Methods Which Uses Explicit or Implicit Density Estimation

There is a family of works which observes that one of the reasons of the phenomenon
of overfitting in MLPs is due to the fact that MLPs are trained with a finite train-
ing sample [7,11,15]. In a conventional training algorithm for training MLPs, the
network gets trained with a fixed sample of training points in each epoch. In [11] it
was proposed that overfitting can be reduced if the training set can be indefinitely
expanded, and the network be trained with a new set of data in each epoch. To

achieve this, the authors in [11], use a method to estimate the probability density of
the data, and generate a new data set following the same probability density in each
epoch, thus the MLP faces new points in each epoch. In [15], the method reported in
[11] was modified by improving the procedure for density estimation. In [7] another
method to expand the training set was reported and it do not depend on explicit
density estimation but uses a k-NN heuristic to generate new points in each epoch.

All these methods reported in [7,11,15] can reduce the overfitting in MLP net-
works to a great extent. But as in [11,15] a sort of a kernel density estimate is
considered using gaussian kernels, the correctness of the density estimate decreases
with the increase of dimension of the data. In [7] a K-nn technique is used which
also fails for high dimensional data. An easy fix of this problem may be to use the
reduced data obtained from an MBNN for training and density estimation not the
original data set.

3.4 Bagging with Multiple Projections of the Same Data

As discussed earlier bagging involves aggregating outputs of k classifiers trained
with k different bootstrap samples drawn from a given data set X. The idea behind
bagging is to create independent classifiers from the same data set. Each bootstrap
samples thus acts as a different data set for each classifier. Here we propose to use
different projections of the same data to train each candidate of the ensemble. We
propose to use the MBNN for projecting the data.

Given a dataset X = {(z;,y,;) 11 =1,2,...n,x € NP,y € R°} we train k MBNNs
Bi1,Bs, ..., By. Each B; can have different architectures with different hidden layers
and different hidden nodes. The only restriction in each B; being that the input
layer should contain p nodes, the output layer should contain s nodes, and for any
hidden layer should contain g(where ¢ < p) nodes. From each of the networks we can
collect a different projection of the original data X, possibly in different dimensions.
Thus using each B; we obtain the following transform B; : X — X!. Thus we train k&
new neural networks using the data sets X/ for i = 1,..., k. We create an ensemble
of these k networks, and aggregate the final outputs using a suitable aggregation
function.

4 Experimental Results

We study the suitability of this method by applying it to some real life classification
problems. The data sets used are Lung Cancer, Sonar, Iono, DNA and Protein. The
summary of the data sets are presented in Table 1.

In all the simulations performed we used the neural network tool-box of MAT-
LAB. We used “traingdx” as the learning algorithm, which is a variant of back-
propagation with an ability to automatically tune the learning rate when necessary.
Tables 2,3,4,5 and 6 summarizes the results. Each row in the tables stands for a
different method and the columns report the average performance (with standard
deviation) in percentage on the test data. Each reported result is of a 10 fold cross

Table 1. Summary of the data sets

Data Source|Number of points|No of features|No of Classes
Lung Cancer| [2] 32 56 3
Sonar 2 208 60 2
Tono 2 351 34 2
DNA 2] 2000 180 3
Protein | [1] 698 125 1

validation repeated 20 times. We explain each row of each table in more details as

follows.

Table 2. Results on Lung Cancer

Methods

Performance

MBNN Single

80.16667 £ 4.1578

MBNN Bagging

80.6667 £ 5.23

MBNN MP Bagging

83.7778 £ 3.674

PCA Single

78.1667 £ 3.6388

PCA Bagging

75.8333 £ 4.2492

77.1667 £ 5.6501
82.44 £+ 2.194

Full Data Single NN
Full Data Bagging

N[O O | WIN|

1. MBNN Single:We trained a MBNN with 10 nodes in the hidden layer to get
a 10 dimensional reduced data. We trained 20 different networks with the same
reduced data each having the same architecture with 10 nodes in a single hidden
layer. Row 1 of the tables shows the average performance of those 20 networks.

2. MBNN Bagging Next using the same reduced data of 10 dimension as obtained
in row one we perform a bagging with 10 candidates in the ensemble. We use
the majority vote to aggregate the results of the 10 different candidate networks.
We created 20 different ensembles using the same reduced data. Row 2 shows
the average performance of those 20 ensembles.

3. MBNN MP Bagging: MP bagging signifies bagging with multiple projections.
In this experiment we trained 10 different MBNN each with 10 nodes in the
bottleneck layer and thus obtained 10 different projections of the data in 10
dimensions. We trained 10 different networks with 10 nodes in a single hidden
layer and aggregated their results using majority voting. This experiment was
also performed 20 times. The results of this experiment are summarized in row
3 of the tables.

4. PCA Single:We ran a Principal Components Analysis on the original data
with all features and took the 10 most significant components thus reducing the

Table 3. Results on Sonar

Methods

Performance

MBNN Single

82.1143 £ 3.048

MBNN Bagging

82.1929 £ 3.2514

MBNN MP Bagging

85.7929 £ 0.6167

PCA Single

77.6786 £ 1.4881

PCA Bagging

78.7857 £ 1.1756

Full Data Single NN

79.6214 £ 2.8686

~N| OO | W N~

Full Data Bagging

84.5429 £ 0.8891

Table 4. Resul

ts on Iono

Methods

Performance

MBNN Single

89.9786 £ 0.9993

MBNN Bagging

90.2937 £ 1.1636

MBNN MP Bagging

90.8341 £ 0.2622

PCA Single

86.7246 £ 0.7528

PCA Bagging

86.1579 £ 0.6861

Full Data Single NN

87.8389 £ 1.7492

N[O | W N~

Full Data Bagging

91.0611 £ 0.9597

Table 5. Results on DNA

Methods

Performance

1 MBNN Single 92.425 £ 0.675
2| MBNN Bagging 92.49 £+ 0.5611
3IMBNN MP Bagging|94.585 + 0.094428
4 PCA Single 90.72 4+ 0.3048
5 PCA Bagging 90.6 £ 0.2856
6|/Full Data Single NN| 89.3 £+ 0.1768
7| Full Data Bagging 94.8 £+ 0.2619

Table 6. Results on Protein

Methods Performance
1 MBNN Single 76.3377 £ 1.4511
2| MBNN Bagging 76.4 + 1.7995
3|MBNN MP Bagging| 79.5584 £ 0.459
4 PCA Single 63.7143 + 1.2786
5 PCA Bagging 64.4 + 1.3853
6|Full Data Single NN|69.7633 + 4.1204
7| Full Data Bagging 78 £ 0.5898

original data to a 10 dimensional data. Row 4 of the tables shows the average
performance and the best performance among 20 MLPs with 10 hidden nodes
in a single hidden layer trained with the data of 10 features obtained by using
PCA.

5. PCA Bagging: The 10 dimensional data obtained by PCA is also used to train
an ensemble of 10 MLPs (each 10 nodes in a single hidden layer) using bagging.
Row 5 of the tables gives the average and best performance of 20 such ensembles
created with the 10 dimensional data obtained by PCA.

6. Full Data Single NN Row 6 gives the result on the data with all features
using a ordinary MLP.

7. Full Data Bagging Row 7 gives the results on the data sets for bagging using
the full dimensional data.

The results clearly show that the reduced data retains the class separability for
all data sets experimented with. For all the data sets the MBNN single gives a
better result than a single neural network trained with the whole data. The results
obtained by using a PCA for dimensionality reduction are significantly poorer than
the results obtained using a MBNN. MBNN MP bagging gives very encouraging
results in all cases. In fact the results obtained by MBNN MP bagging outperform
all other methods and is quite comparable with the results obtained by bagging on
the full data set.

5 Conclusion

We presented a simple modification of the traditional bottleneck network for di-
mensionality reduction. We also showed some specific ways to use the reduced data
obtained from an MBNN. The method of multiple projection bagging seems to work
quite well as a method to create neural network ensembles. The methods are tested
on some real life classification problems and the results obtained are encouraging.

References

1. http://www.nersc.gov/~cding/protein

2. A. Asuncion and D.J. Newman, UCI Machine Learning Repository
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science

3. Y. Araki, T. Ohki, D. Citterio, M. Hagiwara, K. Suzuki, “A new method for inverting
feedforward neural networks,” IEEE International Conference on Systems, Man and
Cybernetics, 2003. Volume 2, pp.1612 - 1617, 2003

4. A.L. Blum, P. Langley, “Selection of relevant features and examples in machine learn-
ing”, Artificial Intelligence, vol 97, no 1, pp. 245-271, 1997.

5. Leo Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140,
1996.

6. F.Z. Brill, D.E. Brown and W.N. Martin, “Fast genetic selection of features for neural
network classifiers”, IEEE Trans. Neural Networks, vol. 3, no. 2, pp. 324-328, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Chakraborty and N. R. Pal, “Expanding the training set for better generalization
in MLP,” Proceedings of International Conference on Communication, Devices and
Intelligent Systems, CODIS-2004, pp. 454-457, 2004.

R. De, N.R. Pal and S.K. Pal, “ Feature analysis: neural network and fuzzy set theoretic
approaches”, Pattern Recognition vol 30, no 10,pp. 1579-1590, 1997.

Y. Freund and R.E. Schapire, “A short introduction to boosting”, Journal of Japanese
Society for Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 1999.

K. Fukunaga, Statistical Pattern Recognition, Academic Press, San Diego, CA, USA,
1991.

L. Holmstrom and P. Koistinen, “Using additive noise in backpropagation training,”
IEEE Trans. Neural Networks, vol. 3, pp. 24-38, 1992.

A. K. Jain, B. Chandrasekaran, “Dimensionality and sample size considerations in pat-
tern recognition practice,” in P.R. Krishnaiah, N.L. Kanal (eds.), Handbook of Statis-
tics, vol 2, North-Holland, Amsterdam, pp. 835-855, 1982.

A. K. Jain and D. Zongker, “Feature selection: evaluation, application and small sample
performance,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2,
pp- 153-148, 1997

I. T. Jollife, Principal Component Analysis, Springer Verlag, New York, 1986.

G. N. Karystinos and D. A. Pados, “On overfitting, generalization, and randomly
expanded training sets,” IEFEE Trans Neural Networks vol 11, no. 5, pp. 1050-1057,
2000.

F. Kohavi and G. John, “Wrappers for feature subset selection”, Artificial Intelligence,
vol 97, no 1, pp. 273-342, 1997.

M. Marseguerra ans A. Zoia, “The autoassosiative neural network in signal analysis: 1.
Data dimensionality reduction and its geometric interpretation”, Annals of Neuclear
Energy, vol. 32, pp. 1191-1296, 2005.

J. Novovicova, P. Pudil and J. Kittler, “Divergence based feature selection for multi-
modal class densities”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol
18, no 2, 1996.

M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn and A.K. Jain, “Dimensionality
reduction using genetic algorithms”, IEEE Trans. on Evolutionary Computing, vol 4,
no 2, pp. 164-171, 2000.

D.W. Ruck, S.K. Rogers, M. Kabrisky, “Feature selection using a multilayered percep-
tron”, Journal of Neural Network Computing, pp. 40-48, 1990.

M. R. Rezaee, B. Goedhart, B. P. F. Lelieveldt and J.H.C. Reiber, “Fuzzy feature
selection,” Pattern Recognition, vol. 32, pp. 2011-2019, 1999.

R. Setino, “Neural network feature selector”, IEEE Trans. Neural Networks, vol 8,
pp-654-662, 1997.

J.M. Steppe Jr, “Integrated feature and architecture selection”, IEEE Trans. Neural
Networks, vol 7, pp. 1007-1014, 1996.

M. Ture, I. Kurt, Z. Akturk, “Comparison of dimension reduction methods using patient
satisfaction data”, Expert Systems with Applications, Vol 32, pp. 422-426, 2007

J.M. Zurada, A. Malinowski and S. Usui, “Perturbation method for detecting redun-
dant inputs of perceptron networks”, Neurocomputing, vol 14, pp. 177-193, 1997.

