
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008 381

Selecting Useful Groups of Features
in a Connectionist Framework

Debrup Chakraborty and Nikhil R. Pal, Fellow, IEEE

Abstract—Suppose for a given classification or function approx-
imation (FA) problem data are collected using sensors. From the
output of the th sensor, features are extracted, thereby gener-
ating =

=1
features, so for the task we have

as input data along with their corresponding outputs or class la-
bels . Here, we propose two connectionist schemes that
can simultaneously select the useful sensors and learn the relation
between and . One scheme is based on the radial basis func-
tion (RBF) network and the other uses the multilayered perceptron
(MLP) network. Both schemes are shown to possess the universal
approximation property. Simulations show that the methods can
detect the bad/derogatory groups of features online and can elimi-
nate the effect of these bad features while doing the FA or classifi-
cation task.

Index Terms—Classification, feature selection, multilayered per-
ceptron networks, radial basis function (RBF) networks.

I. INTRODUCTION

I T IS known that for a given problem all features that charac-
terize a data point may not be equally important; some fea-

tures may even have unfavorable influence on the task at hand.
Feature selection techniques aim to discard the bad/irrelevant
features from the available set of features. This reduction may
improve the performance of classification, function approxima-
tion, and other pattern recognition systems in terms of speed,
accuracy, and simplicity. We want to emphasize that the utility/
suitablity of features depends on the machine learning tool being
used and the problem being solved. For an easy-to-classify data
set, there may exist a set of features that would be equally good
with different machine learning tools, but usually this is not the
case. If there exists a feature that is necessary for discrimina-
tion, then every feature selection method should select it. On the
other hand, a given data set may have many correlated features
and there may be different subsets of features that are equally
good for the task at hand using a given machine learning tool.
If features are ranked looking at the properties of each feature
and/or ignoring the tool that will be finally used to design the
pattern recognition system, then one may end up with a set of
features with too much of redundancy and may not be able to
exploit the dependency of utility of features on the tools used.

Manuscript received August 21, 2006; revised February 16, 2007 and June
26, 2007; accepted July 12, 2007.

D. Chakraborty is with the Department of Computer Science, CINVESTAV-
IPN, Mexico D.F. 07360, Mexico (e-mail: debrup@cs.cinvestav.mx).

N. R. Pal is with the Electronics and Communication Sciences Unit, Indian
Statistical Institute, Calcutta 700108, India (e-mail: nikhil@isical.ac.in).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.910730

The problem of feature selection has been well addressed in
literature and it has been tried out in various paradigms. Previous
studies on feature subset selection focused mainly around statis-
tical approaches like principle component analysis (PCA) [23],
linear discriminant analysis (LDA) [14], etc. These methods at-
tempt to reduce the dimensionality of the feature space by cre-
ating new features which are combination of the original ones.
Hence, strictly speaking, PCA and related methods are feature
extraction techniques which extract a new set of features from
the available set of features, and the dimensionality of the ex-
tracted feature space is less than that of the original one. The
main drawback of these methods is that the new features lose
their original identity. Leaving aside the classical PCA and LDA
techniques, there have also been many other works on feature se-
lection in the statistical framework; some of them are [22], [24],
and [37]. In [25], a unified framework to compare different fea-
ture selection algorithms with different objectives is proposed.

Blum and Langley [7] have given an excellent survey on fea-
ture selection in machine learning. These approaches are dif-
ferent in evaluation of the feature subsets. One can broadly clas-
sify the approaches as filter and wrapper approaches. In filter
approach, the feature evaluation index is independent of the
main classification/function approximation algorithm, whereas
in wrapper approaches the features are evaluated by the main al-
gorithm itself. Wrapper approaches are considered better as the
relevance of a feature is generally dependent on the task being
performed and also on the tool being used to do the task [27].

There are many feature selection algorithms that use soft
computing/computational intelligence tools. Methods described
in [8] and [41] use genetic algorithms to select the relevant
feature subsets. Methods described in [3], [13], [43]–[45], and
[49] and a variety of others use neural networks for feature
selection. Feature selection has also been attempted using
fuzzy and neurofuzzy techniques [12], [42]. There are also
specialized methods to deal with feature selection for very large
dimensional data sets that are typical in application areas such
as bioinformatics [1], [32].

In [33]–[35], MacKay has considered neural network
learning in a Bayesian framework. MacKay and Neal pro-
posed a feature selection mechanism in the Bayesian learning
framework called automatic relevance detection (ARD) [36].
In the ARD model, each input variable is associated with a
hyperparameter that controls the magnitude of the weights of
connections out of that input unit. The significance of an input
variable is determined according to the posterior distributions
of these hyperparameters.

In [39], Pal and Chintalpudi developed an integrated feature
selection and classification scheme based on the multilayer per-
ceptron (MLP) architecture. The feature selection phase in their

1045-9227/$25.00 © 2008 IEEE

382 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

method was integrated with the main learning task, and the MLP
learned certain feature modulators along with the conventional
weights and biases of a neural network. In [9], a neurofuzzy
system was developed for simultaneous feature selection and
system identification. The methodology developed in [9] was
modified for a classifier in [10].

We term the feature selection methods described in [9],
[10], and [39] and the method described in this paper as online
methods. They are in spirit with the wrapper methods of feature
selection. In wrapper methods, although the feature evaluation
is done through the classification/function approximation algo-
rithms, in most methods, one uses a fixed classifier or function
approximation system, and the best subset from the available
set of features is chosen by evaluating each possible subset or
by a suitable search technique. However, in an online method,
the feature selection phase is integrated with the task of learning
other parameters of the system. There are other methods avail-
able in literature which can also be classified as online. The
ARD [36] and its variant [46] also learn hyperparameters as-
sociated with the input features. Some evolutionary techniques
[47] also learn the importance of input features along with other
parameters of the classifier. For the classification problem,
LIKNON [5] uses a linear programming formulation to learn
feature weights along with other parameters of the separating
hyperplane.

This paper addresses the problem of feature selection in a dif-
ferent setting. Here, we assume that the features available can
be divided into a few groups. The motivation of the problem
comes from the fact that today for a given problem we often
obtain data from multiple sensors. For example, in an intel-
ligent welding inspection system, the sensors could be radio-
graph, acoustic emission, thermograph, eddy-current detector,
etc. The sensory information obtained from various sensors in
the raw form may not always be useful. Hence, from a single
sensory information, one may generate/extract several features.
If we use all these sensors, then the design cost and complexity
of the hardware will be more. Moreover, the learning task will
also become more difficult. Consequently, the designer tries to
reduce the number of sensors without hampering the system’s
performance, so the problem is the selection of useful sensors
where each sensor generates a set of features. Conventional fea-
ture selection methods select good features from all available
features generated from all these sensors. However, our objec-
tive here is to discard all features obtained from bad sensors, if
any. In other words, we aim to discard sensors which are not
necessary for a given problem.

This problem is different from the feature selection problem.
We call this group feature selection (GFS). Sensor selection is
a special type of GFS, where each feature group corresponds to
a sensor. This kind of grouping results in a natural partition of
the total set of features according to their sensory origin. In this
case, selecting good feature groups is equivalent to the selection
of good (relevant) sensors. Such GFS can thus help to discard
poor sensors which can, consequently, yield systems with low
hardware and computational costs. Sometimes, it can reduce the
time to make decisions, which is very important for many ap-
plications including medical applications. There may exist other
natural groupings among features as well. For example, given an

image, there could be features based on cooccurance matrix [15]
and wavelet analysis. In this case, the set of cooccurance-based
features can form one group while the wavelet-based features
can give another group. The selection of individual feature is a
special case of this GFS methodology. To our knowledge, this
problem has not been addressed in literature. We have reported
some preliminary results of this investigation in [11]. Note that
the issue of how to group the available set of features is not
within the scope of this work. We assume that the available
features can be grouped in some natural way, for example, ac-
cording to their sensory origin.

We use two connectionist schemes to deal with the problem of
GFS. The first scheme is a modified radial basis function (RBF)
network which we call group feature selecting radial basis func-
tion (GFSRBF) network and the other is a modified MLP called
the group feature selecting multilayered perceptron (GFSMLP).
In both methods, the user needs to specify the groupings that
exist between the features. The networks are designed to dis-
card the effect of the bad groups. The basic philosophy of both
schemes are highly inspired by [39], but both schemes are quite
different from that in [39] as our schemes have the ability to se-
lect groups of useful features and thus, as discussed earlier, can
be applied to the task of sensor selection. Moreover, in [39],
the authors discussed only a model for the MLP framework.
The GFSMLP network may be viewed as a generalization of
the method in [39].

The rest of this paper is organized as follows. In Section II,
we discuss the GFSRBF network along with suitable learning
rules. Then, in Section III, we discuss the GFSMLP. Finally, in
Section IV, we present results on some well-known classifica-
tion and function approximation problems. In Section VI, the
paper is concluded. In the Appendix, we discuss the universal
approximation properties of GFSRBF and GFSMLP.

II. GFSRBF NETWORK

Given an input data set , an RBF
network computes the function

where the ’s are the basis functions. If we assume Gaussian-
type basis functions, then

(1)

In (1), and are the parameters related to the th basis
function, commonly known as the center and spread, re-
spectively, and is the Euclidean norm. Let us assume

and . Then, we have

(2)

We assume that our data are generated by sensors and, from
the sensor , we generate features, so

. Let the features from each sensor be denoted
by a vector . Hence, we can write .

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 383

Similarly, we can write the vector representing the center as
, where and , , have

the same dimensionality. Equation (1) can now be rewritten as

(3)

In (3), each basis function is represented as the product of
the component Gaussian functions , , where

(4)

Thus, each takes as an input the vector representing the fea-
tures from a specific sensor , so the output of is related to the
inputs obtained from the sensor. Our objective is to eliminate
the effect of the features generated from bad sensors. For the
time being, let us pretend that we know the bad groups. Hence,
we aim to design the component functions in such a manner that
a component function corresponding to a bad group will al-
ways take the value of unity (1) irrespective of the input . If
we can do so, then will never contribute anything to the total
process, i.e., to . To achieve this, we design the component
functions as

(5)

Clearly, in (5), if we set , then , thereby it
can eliminate the effect of the sensor in each of the basis
function irrespective of values of . On the other hand, if

is very large, then in (5) reduces to in (4) resulting
in no change in the role of the basis functions. However, how
do we know which group is good and which is bad? In other
words, how do we set the values of the ’s? The solution lies
in the training process. We treat each as an adjustable param-
eter and learn its appropriate value along with other parameters
through training. With these preliminaries, we next discuss the
network structure of GFSRBF.

A. Network Structure

GFSRBF network is a four-layer feedforward network as
shown in Fig. 1. The network in Fig. 1 is designed for data
obtained from three sensors, where two features are computed
from each sensor. Also, it assumes three basis functions and
two output nodes. The use of three basis functions has nothing
to do with the number of sensors. We denote our training data
set as . Each point has features
which can be divided into groups and the total number of
classes present is . The division of the features into groups
could be made based on sensors or by some other criteria. In our
subsequent discussions, we denote the output of the th layer
by . We now discuss the general structure of the network
layer by layer.

Fig. 1. GFSRBF network structure.

Layer 1) This layer is called the input layer. The number of
nodes in this layer is equal to the dimensionality of
the input data; here, it is .

Layer 2) This layer is called the component function layer, and
it is responsible for the feature selection task. If the
network contains basis functions, then this layer
will have nodes. Thus, this layer contains the
component functions for each basis function for all
feature groups. Let denote the output of the com-
ponent function related to the th basis function and
the th group—the superscript “2” denotes the layer
number. Then, we have

(6)

In (6), is an adjustable parameter related to the th
feature group. We call , as the fea-
ture group modulator for the th feature group. When

, then . Thus, for a bad group of fea-
tures if , then the effect of the th group gets
eliminated. The training procedure (to be discussed in
Section II-B) will start with very low values of ,
i.e., with very small values of for all , thereby
making all feature groups unimportant. As the training
process continues, the network allows features from
only those groups which can lower the sum of square
error significantly.

Layer 3) This layer is called the basis function layer; the
number of nodes in this layer depends on the number
of basis functions used (required) for solving the
problem. The output of the th basis function is

(7)

Layer 4) This layer is called the output layer. The number of
nodes in this layer is equal to the number of classes
present in the data or the dimensionality of the output
vector. The nodes in this layer are fully connected to
the nodes of layer 3. The connection between node in

384 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

layer 4 and node in layer 3 bears a learnable weight
. Like a conventional RBF network, the output of

the th node in this layer is given by

(8)

where is the number of nodes in layer 3. When
the network is used for classification problems, then
the target output of an output node lies in ,
and this is true for all kinds of class labels that the
data may have (probabilistic, possibilistic, fuzzy, or
hard). However, (8) shows that is unbounded as
the learnable weight , can take any value.
Consequently, for classification tasks, we modify the
output of this node by adding a standard sigmoidal
nonlinearity to this node function, so that the learning
process becomes more simple. The output of node
in this layer is then computed as

(9)

For regression (function approximation) type of appli-
cations, nodes in the layer 4 use (8) while for classifier
applications (9) is used. Now, we discuss the param-
eter updating strategies.

B. Learning Rules

We assume that there are outputs and the training data con-
tain points in along with its associated output in . In case
of classifiers, the output is a label vector in . Let the
output associated with a data point be . Thus,
we can define the instantaneous error for a data point as

(10)

For our further discussion without loss of generality, we omit
the subscript and call the error term as . The error function
depends on the weights s connecting nodes of layers 2 and
3, the parameters of the basis functions, and the group feature
modulators ’s. We will consider fixed parameters for the basis
functions, i.e., basis functions with fixed centers and spreads.
We use the gradient–descent technique to update the weights
and the feature group modulators ’s. Thus, the update equa-
tions for and are

(11)

and

(12)

Here, and are predefined learning rates. For the clas-
sification network, i.e., for the network with sigmoidal transfer
functions in the output units, we get

(13)

and for the regression network, we get

(14)

For both networks

(15)

where

(16)

Note that along with and the other parameters and
could also be learned using the gradient–descent technique.

Since our objective here is to demonstrate the feature selection
ability of the proposed scheme, we do not update and ,
but we use judicious choices for them as discussed next.

C. Selection of Centers and Spreads

Selecting the parameters for the RBFs forms an important
part in designing RBF networks. Generally, there are the fol-
lowing two common strategies used in practice.

1) The parameters for the basis functions are chosen a priori
and are kept fixed. Only the weights between the hidden
and output layers are updated during learning.

2) All parameters are optimized by a gradient–descent (or a
similar) technique.

As discussed earlier, we follow the first strategy here. Initial cen-
ters and spreads are determined by running the fuzzy means
clustering algorithm (FCM) [4] on the training data. We use
the fuzzifier in all reported results. Once we obtain the
cluster centers by the FCM algorithm, we calculate the spread

of the th basis function as , where is the center
of the basis function nearest to . In other words

(17)

D. Threshold for the Feature Attenuators

The final values of the group feature attenuators of a
trained GFSRBF network can be used to decide the importance
of the sensors. A low value of indicates that sensor is less
important and a high value indicates a high importance of the
sensor. In the limit, represents that the sensor is very
poor and it has derogatory effect on the system while
suggests that the sensor is very important. However, as ’s
are modeled and updated, it can take any value in . Here,
we try to find a threshold for , such that if takes values
less than we can discard sensor .

From (6), we get

(18)

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 385

We call a group of features bad, if all component basis func-
tions (CBF) related to that feature group produce a response al-
most equal to one for all points. Specifically, we consider a fea-
ture group to be not important, if all CBFs produce a response
greater than 0.95, even for points which are as far as distance
away from the center of the associated CBF. Thus, we select that
value of as the threshold which makes the right-hand side of
(18) equal to 0.95 (1) when is replaced by . This
way we obtain

(19)

Equation (19) gives . Hence, we can safely discard
a feature group with attenuation less than 0.01.

The GFSRBF network also has universal approximation
properties, which is discussed in the Appendix.

III. GFSMLP NETWORK

An MLP network can also be modified to do GFS. A fea-
ture selecting MLP was proposed by Pal and Chintalapudi [39]
which used sigmoidal attenuation functions in the input layer.
We generalize their idea to propose GFSMLP, a modified form
of MLP for GFS.

Here, the philosophy is different from that used in case of
RBF network. Let be the attenuator function attached to the
th group of features. Each feature of the th group gets mul-

tiplied by the attenuator function before it gets into the net-
work. If , then no feature of the th group will get into
the network, while if , then every feature of the th group
enters the network unattenuated. For intermediate values of ,
transformed values of the features enter into the network. Fig. 2
shows the architecture of a GFSMLP with just one hidden layer,
and two groups of features with attenuation functions and

. Each attenuation function should be such that it has a
tunable parameter and . To facilitate the learning
of , should be differentiable. Moreover, should be such
that over a reasonably large interval , as goes from
to , should either monotonically increase from 0 to 1, or
monotonically decrease from 1 to 0. There can be many choices
for ; we take . is a parameter related to the th
group of features. If , then and if ,
then . The objective here is to select appropriate values
of ’s through training such that , if is associated with
a useful group of features and , if the th group is a bad
or redundant group. The parameters can be learned by the
backpropagation algorithm along with other parameters of an
MLP.

Let us consider a network with sigmoidal activation func-
tions and a single hidden layer. For each input vector

, let denote the set of features which
belongs to the th group. Let , , and be the outputs
of the th nodes of the input, hidden, and output layers, respec-
tively. Thus, for input , if , the output of the th node
in the input layer would be

(20)

Fig. 2. MLP with GFS.

Let be the weight of the link connecting the th node of
the hidden layer with the th node of the output layer. Similarly,

denotes the weight connecting the th node of the input
layer with the th node of the hidden layer. Thus

(21)

and

(22)

For an input , if the target is , then we define the instanta-
neous error as

(23)

We define

(24)

Thus, the update equations for the two sets of weights can be
derived as

(25)

and

(26)

In (25) and (26), is a predefined learning constant. The update
equation for the feature attenuator of the th group can be
derived as

(27)

386 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

Here, is also a predefined learning constant. The ’s are so
initialized that at the beginning of training no feature group is
important (i.e., no feature gets into the network). As training
continues, the ’s of the groups which can reduce the error
more will be changed significantly to make .

Although we have shown the derivation for an MLP with only
one hidden layer, its extension to MLPs with more than one
hidden layer is straightforward. The GFSMLP also has the uni-
versal approximation property, which is proved in the Appendix.

IV. EXPERIMENTAL RESULTS

We provide here experimental results on five data sets: Chem,
Iris, RS-Data, Wine, and Breast Cancer.

The Chem data sat [48] is used to test the function approxima-
tion capability of the network. Chem contains data for operator’s
control of a chemical plant for producing a polymer by polymer-
ization of some monomers. There are five input features, which
a human operator may refer to for control and one output, that is
his/her control. The input variables are monomer concentration

, change of monomer concentration , monomer flow
rate , and two local temperatures inside the plant (and

). The only output is the set point for monomer flow rate.
Chem contains a set of 70 data points obtained from an actual
plant operation. In [48], it has been reported that the two local
temperatures inside the plant, i.e., and do not significantly
contribute to the output.

The remaining data are on classification problems. Iris data
set [2] is a 4-D data set of 150 examples equally distributed in
three classes. There are previous studies which suggest that two
features among the four are enough for the classification task.

RS-Data [26] is generated from a 256 level satellite image
of size 512 512 pixels captured by seven sensors operating
in different spectral bands from Landsat-TM3. The 512 512
ground truth data provide the actual distribution of classes of
objects captured in the image. This image is available along with
full ground truth in the catalog of sample images of the ERDAS
software and is used for testing various algorithms [26]. From
this image, we produce the labeled data set where each pixel
is represented by a 7-D feature vector and a class label. Each
dimension of a feature vector comes from one channel. This data
have eight classes representing different landcover types.

The Wine data set [6] consists of 178 data points in 13 dimen-
sions distributed in three classes. These data are the results of a
chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types
of wines.

The Breast Cancer data set [6] consist of 699 points in 9-D
distributed in two classes (malignant and benign).

In the following sections, we discuss in details the results ob-
tained by GFSRBF and GFSMLP networks on these data sets.
As stated earlier, the attenuation parameters for each network
are initialized so that at the onset of training the network con-
siders all feature groups to be unimportant. Thus, for GFSRBF,
we set which makes , , where repre-
sents a feature group. In GFSMLP, we set thus making

, . For both GFSRBF and GFSMLP, we consider
0.01 as a threshold for the feature attenuators, i.e., if the value

TABLE I
VALUES OF
 IN GFSRBF FOR CHEM DATA SET

(CONSIDERING THREE GROUPS OF FEATURES)

Fig. 3. Plot of y and u .

of corresponding to feature group is less than 0.01, then we
discard that feature group.

A. Chem

In this example, we demonstrate the feature selection capa-
bility of our network for the function approximation task. As
stated earlier, the data set consists five input features. The five
input features can be easily divided into three groups with re-
spect to the type of information. The monomer concentration

and change of monomer concentration can constitute
one group, the monomer flow rate can be a second group,
and the temperature parameters (and) can form the third
group. With 15 basis functions, we find that the GFSRBF net-
work accepts only the second group of features, i.e., only is
important for the task (see Table I). Fig. 3 shows the plot of the
output with . Fig. 3 reveals a very strong correlation be-
tween and correlation coefficient . The Chem
data set was used by Lin and Cunningham in [31]. To evaluate
a system, they used a performance index (PI) defined as

PI (28)

Here, and are the desired and actual outputs, respectively.
They obtained a PI of 0.002245 on Chem by using features ,

, and . The PI in our case was 0.004271.
A close look into the Chem data set shows that the values of

feature 3 numerically dominate all other features. Table II shows
the ranges of the input and output features. Since an RBF-type
network computes the Euclidean norm, it is quite natural that
features with larger numerical values dominate the output of
the basis functions. Therefore, has the strongest influence
on the network behavior. Moreover, has a strong positive
correlation with the output . Consequently, the network picks

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 387

TABLE II
RANGE OF FEATURE VALUES FOR CHEM DATA SET

TABLE III
PERFORMANCE OF GFSRBF ON NORMALIZED-CHEM

up . However, previously, it has been reported that the features
and also have some effect on the output [48]. Our network

cannot detect that, and as a result we get reasonable (but not very
good) performance as suggested by the PI value. This is not a
problem of the model or of the philosophy being used, but is due
to very wide variance of different features. To establish this fact,
we normalize feature 3 and the output so that each of
these two lie in . We call this new data set as normalized-
Chem.

With normalized-Chem, we run GFSRBF with different
number of basis functions and different initializations of the
FCM algorithm. The FCM outputs are used to compute the
centers and spreads of the basis functions. For a fixed number
of basis functions, various FCM initializations do not signif-
icantly change the feature attenuators and the performance.
Table III gives the average performance of GFSRBF on nor-
malized-Chem data set for different number of basis functions.
With a fixed architecture (a fixed number of basis functions),
five independent runs are made with different initializations,
and the average value of PI and the number of groups selected
are shown in Table III. The frequency of each of the groups
selected in these 30 runs are shown in Fig. 4. From Fig. 4, we
see that the network rejects the third group for most of the runs.
From Table III, we see that the best performance is obtained
by using three basis functions and 15 basis functions. In case
of three basis functions, the network considers the first and the
second group of features, but for 15 basis functions, it considers
only the second group. In both cases, the networks result in
almost the same average performance. This establishes that
changing the number of basis functions changes the learning
machine, so the importance of the features may also vary.

The performance of GFSMLP on normalized-Chem data set
for different hidden nodes is shown in Table IV. Here too, the
average performance in terms of PI and the number of groups se-
lected are shown for five independent runs for each architecture.
Table IV shows that the GFSMLP selects two groups for all runs.
The two groups selected are the first and the second group. The
PI value suggests that GFSMLP can also do the function approx-
imation job with a good accuracy. Note that GFSMLP gives rel-

Fig. 4. Number of times each feature was selected for Chem data set using
GFSRBF.

TABLE IV
VALUES OF F IN GFSMLP FOR NORMALIZED-CHEM DATA SET

(CONSIDERING THREE GROUPS OF FEATURES)

TABLE V
VALUES OF
 FOR IRIS DATA SET (CONSIDERING FOUR GROUPS OF FEATURES)

USING GFSRBF

atively more importance on the first group than GFSRBF. This
emphasizes the fact that importance of a feature (or a group of
features) is a function of the tool being used to solve a problem.

B. Results on Iris Data Set

For this data set, we select 100 points randomly as the training
data. First, we assume that the four features of Iris form four
groups with one feature in each group, so we obtain a feature
modulator for each feature. We use a network with six basis
functions. The values of the modulator functions for all features
are shown in Table V, which clearly shows that the network does
not accept the first and the second features. This result is consis-
tent with the well-known fact that the third and fourth features
of Iris data set are enough for the classification task. The number
of misclassifications obtained on the training data is three and
on the whole data (150 points) is five. This performance is quite
comparable with that of other classifiers [4].

Physically, the Iris features are the sepal length , sepal
width , petal length , and petal width of Iris flower.
Therefore, we can make two natural groups of features, i.e.,
one group characterizing the sepals and the other containing
the petals. In other words, we consider features 1 and 2 as the
first group and features 3 and 4 as the second group. With this
grouping, we ran GFSRBF for different basis functions and dif-

388 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

TABLE VI
MISCLASSIFICATIONS AND NUMBER OF GROUPS SELECTED FOR IRIS DATA SET WITH GFSRBF (CONSIDERING TWO GROUPS OF FEATURES)

Fig. 5. Variation of attenuator values and misclassification with number of iterations for Iris data set: (a) misclassification, (b) attenuator values for group 1
features, and (c) attenuator values for group 2 features.

ferent FCM initializations. Table VI shows the average misclas-
sifications and the average number of groups selected for five
independent runs of GFSRBF for each architecture. Table VI
clearly suggests that our network selects only one group irre-
spective of the number of basis functions used. Also, in all cases,
the network selected group 2 (i.e., and) features.

GFSMLP can also select the relevant features for the Iris data
set. We use a GFSMLP with ten nodes in the hidden layer, each
with a sigmoidal activation function. We use the same 100 sam-
ples for training as used for GFSRBF. In Fig. 5(a)–(c), we show
the performance of our feature selection algorithm in a pictorial
manner. Fig. 5(a) gives the variation of the misclassifications
with the number of iterations for a typical run. Fig. 5(b) and (c)
depicts the feature attenuator values for different iterations
for groups 1 and 2, respectively, for the same run. Fig. 5(a)

shows that the misclassification drops sharply from 100 to 10
at around 800 iterations. Fig. 5(c) reveals that at that time the
features in the second group enter the network. As the training
continues, we find that again there is a sharp decrease in mis-
classification around 1800 iterations when the first group of fea-
tures gets in the network [Fig. 5(b)]. This behavior is consistent
with most of the runs. We find that the second group of fea-
tures first gets in the network to give an average misclassifica-
tion of 10 (averaged over ten runs of the same network with
different initializations). If training is continued, then the first
group of features also gets in and reduces the misclassifications
to 0. The final network produces a misclassification of 1 on the
whole data. This clearly demonstrates the feature selection capa-
bility of the network. It suggests that features 3 and 4 constitute a
very important group of features for Iris, but the other group also

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 389

TABLE VII
VALUES OF
 IN GFSRBF FOR RS-DATA (CONSIDERING SEVEN GROUPS, ONE FEATURE PER GROUP)

TABLE VIII
MISCLASSIFICATIONS AND NUMBER OF GROUPS OF FEATURES SELECTED FOR RS14 DATA SET WITH GFSRBF

has some discriminating ability that can facilitate the learning in
MLP. In fact, this observation is consistent with the results re-
ported elsewhere [39] which suggests that features 1 and 3 have
equally good discriminating power as features 3 and 4. Here, we
like to emphasize the fact that this network is primarily intended
to select features. Once the features are selected, one can remove
the nodes and links associated with the bad or redundant features
and retrain the net for a few more epochs for further improving
the performance of the network. For example, in this particular
case, after features 3 and 4 are selected, one can delete the links
associated with features 1 and 2 and retrain the net to achieve a
better performance.

C. RS-Data

This data set contains 262 144 points distributed in eight
classes. In previous studies with this data set [26], [28],
training-test partitions were created in the following manner.
From each class, 200 points were randomly selected to get a
training sample of 1600 points, and the rest of the data was
used for testing. In our study, we also use the same protocols
to generate the training-test partition. For this data set, we
initially consider each of the seven features as constituting a
group. Running GFSRBF with 30 basis functions, we obtain a
misclassification of 18.43% on the training data and 15.59%
on the test data. The final values of the feature attenuators are
shown in Table VII, which reveals that the network completely
discards the second feature. In [26], a misclassification of
21.8% was obtained on the test data. In [28], a misclassification
of about 14% on the test data was reported. The performance
of our system is comparable to those, though our system uses
smaller number of features.

In another experiment, we generated an additional feature
from each of the seven channels of the image. For each pixel
in the image, we considered its eight-neighborhood over a 3
3 window and computed the standard deviation of the 9-pixel
values (the neighborhood of and the pixel itself); we call it

. In the new data set, for each channel, we take the gray
value of and as features, so we have 14 features divided
into seven groups. We call this the RS14 data set. Table VIII
shows the average misclassification (in percent) on training and
test data for five independent runs for different architectures.
Fig. 6(a) shows the number of times each feature gets selected
for these 20 runs. From Fig. 6(a), we find that the features from
the second sensor are selected the least number of times. This

is consistent with the results described in Table VII using seven
features.

No previous study regarding the goodness of features of
RS-Data exists. We made a naive feature analysis to compare
our results. We ran the -nearest neighbor classifier [4] on
this data with all possible combination of six features, i.e., in
each run, we left out one feature. Among the seven possible
combinations, the feature set results in the
least number of misclassifications. This clearly points out that
feature 2 is a poor feature.

The GFSMLP selects smaller number of groups from RS14
data set than GFSRBF. Table IX shows the percentage of mis-
classification and the number of groups of features selected for
different number of hidden nodes for GFSMLP. For each archi-
tecture (a fixed number of hidden nodes), the average misclassi-
fications and average number of features selected for five inde-
pendent runs are reported in Table IX, from where it is evident
that GFSMLP produces a poorer classification than GFSRBF.
However, for all cases, our results are better than the result re-
ported in [26]. In [26], a misclassification of 21.8% is reported
on the test data. Fig. 6(b) shows the frequencies with which var-
ious groups are selected by GFSMLP. Here too, the features
from the second sensor are selected the least number of times.
Hence, this result is also consistent with the results of the pre-
vious experiments on RS-Data.

D. Wine

For Wine data set, a natural grouping of features was not pos-
sible. Thus, we considered 13 groups with one feature in each
group. We used 100 randomly chosen points from the data set
for training and the remaining 78 points for testing.

We trained GFSRBFs with different number of basis func-
tions. As shown in the first column of Table X, we considered
five different architectures of GFSRBF. For each architecture,
we made ten independent runs of the network with different
initializations, keeping the training-test partition fixed. Table X
shows the average misclassifications along with their standard
deviations for ten independent runs of GFSRBFs with each ar-
chitecture. Similarly, for GFSMLP, we also considered five dif-
ferent architectures as shown in the first column of Table XI. For
each architecture, we made ten independent runs. The summary
of the runs by GFSMLP is included in Table XI. Tables X and XI
show that the number of features selected by GFSMLP is always
lower than that selected by GFSRBF. Fig. 7(a) and (b) shows the

390 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

Fig. 6. Bar diagram showing the number of times each feature was selected for RS14 data set: (a) GFSRBF and (b) GFSMLP.

TABLE IX
MISCLASSIFICATIONS AND NUMBER OF GROUPS OF FEATURES SELECTED FOR RS14 DATA SET WITH GFSMLP

TABLE X
MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR WINE DATA SET WITH GFSRBF

TABLE XI
MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR WINE DATA SET WITH GFSMLP

frequency distribution of the number of times each feature is se-
lected over 50 runs of GFSRBF and GFSMLP, respectively.

In [29], the average misclassification obtained after feature
selection using three different feature selection methods is re-
ported. They report results with three methods called relief (a
feature-weight-based statistical approach), IFN (an information
theoretic feature selection scheme), and ABB (a breadth first
search, backward selection algorithm). With Wine data set, they
report an average test error of 8.3%, 5.0%, and 21.7% on the re-
duced set of features using IFN, relief, and ABB, respectively.
They use a decision tree as the classifier. With GFSRBF, we
obtain a mean test error (the mean of the entries of the fourth

column of Table X) of 3.28%, and with GFSMLP, we obtain a
mean test error (the mean of the entries of the fourth column of
Table XI) of 5.66%. This shows that our method produces com-
parable results with other state-of-the-art classifiers and feature
selection methods.

E. Breast Cancer

For the Breast Cancer data set, we randomly selected 500
points from the 699 points to use them as the training set, and
the rest are used for testing. For this data set, we also tested the
performance of GFSRBF using different architectures. We con-
sidered networks with 5, 7, 10, and 15 basis functions. Table XII

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 391

Fig. 7. Bar diagram showing the number of times each feature was selected for Wine data set: (a) GFSRBF and (b) GFSMLP.

TABLE XII
MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR BREAST CANCER DATA SET WITH GFSRBF

Fig. 8 Bar diagram showing the number of times each feature was selected for Breast Cancer data set: (a) GFSRBF and (b) GFSMLP.

shows the mean misclassification and standard deviation for
ten independent runs of GFSRBF for each architecture. It also
shows the average number of features selected.

Table XII reveals that the performance of GFSRBF on this
data in terms of misclassification and the number of features
selected does not vary much with the change in the number of
basis functions. The bar diagram in Fig. 8(a) shows the number
of times each feature is selected for 40 runs.

Table XIII shows the performance of GFSMLP on the Breast
Cancer data set. Here also, the same protocol is followed as in
case of the GFSRBF network. We considered GFSMLPs with
5, 7, 10, and 15 hidden nodes. Here too, we find that the per-
formance is quite stable with respect to changes in the number

of hidden nodes. Fig. 8(b) depicts the frequency of the selected
features over 40 runs. Fig. 8 reveals that GFSRBF completely
rejects feature 4, while features 2,3,6, and 7 are always selected.
On the other hand, for GFSMLP, feature 9 is the least important,
and although feature 6 appears to be the most important, there
is no feature which is always picked up by the network. This
reemphasizes that utility of a feature is dependent on the ma-
chine learning tool that is used to solve the problem.

Here too, we compare our methods with the results reported
in [29]. In [29], a test error of 6.0%, 6.4%, and 6.4% is reported
on the Breast Cancer data set using a reduced set of features
obtained by IFN, relief, and ABB, respectively. Using GFSRBF,
we obtain a mean misclassification (mean of the entries in the

392 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

TABLE XIII
MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR BREAST CANCER DATA SET WITH GFSMLP

TABLE XIV
MISCLASSIFICATIONS PRODUCED BY AN ORDINARY MLP WITH VARIOUS SETS OF FEATURES ON BREAST CANCER DATA SET

TABLE XV
MISCLASSIFICATIONS PRODUCED BY AN ORDINARY RBF NETWORK WITH VARIOUS SETS OF FEATURES ON BREAST CANCER DATA SET

fourth column of Table XII) of 1.071%, and using GFSRBF, we
obtain a mean misclassification (mean of the entries in the fourth
column of Table XII) of 1.28%.

F. Evaluation of Features

We now try to evaluate the quality of features that are selected
by GFSRBF and GFSMLP. We use the Wine and Breast Cancer
data set for this purpose. We again demonstrate here that the
suitability of the features depends not only on the data but also
on the learning machine. We train conventional MLPs and con-
ventional RBFs with all the features present in the data and also
with the features selected by GFSMLP and GFSRBF and com-
pare their performance.

For the Wine data set, a GFSRBF selects, on average, 6.16
features. Thus, we take the six most frequently selected features
as shown in Fig. 7(a) as the features selected by GFSRBF for
the Wine data set. These selected features are 1, 2, 7, 10, 12,
and 13. For the Wine data set, the GFSMLP selects 4.82 (5)
features on average. Thus, the GFSMLP selected features are 1,
2, 8, 10, and 13 [as evident from Fig. 7(b)]. Similarly, we get
the GFSRBF selected features for the Breast Cancer data set as
1, 2, 3, 6, 7, 8, and 9 and the GFSMLP selected features as 1, 2,
6, and 8.

For the experiments, we use the same training test partitions
as used in the previous experiments. We use the Mathworks
neural network toolbox implementations of RBF and MLP. For
MLP, we use sigmoidal activation functions and the trainlm al-
gorithm for training. The Mathworks neural network toolbox

implementation of RBF takes the same spread for all basis func-
tions. We experiment with spreads ranging from 0.1 to 10 with
an increment of 0.1 and report the best result that we obtain.

Table XIV depicts the results of a conventional MLP when
run with different hidden nodes on different sets of features of
the Breast Cancer data set. For each architecture, five indepen-
dent runs are made, and the average percentage of misclassi-
fications on the training and test data along with the standard
deviation are reported in Table XIV. The last row of Table XIV
shows the mean test errors using the different sets of features.
Table XIV clearly shows that an ordinary MLP produces smaller
test error on the GFSMLP features for all four different architec-
tures that we have tried. When MLPs are trained with features
selected by GFSRBF, the test result is slightly worse than what
is achieved with all features. This reemphasizes the fact that fea-
tures selected by GFSRBF are good, but they are the best with
RBF. Table XV gives the results of a conventional RBF on the
same set of features. Here, we see that the performance of an
RBF network is almost the same on both features selected by
GFSRBF and GFSMLP.

Tables XVI and XVII display the results on Wine data set
for MLP and RBF on different sets of features. As expected,
here too, we notice that, on average, an ordinary MLP performs
better with the GFSMLP selected features and an ordinary RBF
network performs better with the features selected by GFSRBF.

V. DISCUSSIONS

We discuss some of the features and limitations of the
methods proposed here. In order to analyze the behavior of

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 393

TABLE XVI
MISCLASSIFICATIONS PRODUCED BY AN ORDINARY MLP WITH VARIOUS SETS OF FEATURES ON WINE DATA SET

TABLE XVII
MISCLASSIFICATIONS PRODUCED BY AN ORDINARY RBF NETWORK WITH VARIOUS SETS OF FEATURES ON WINE DATA SET

our schemes, as discussed in the Introduction, we characterize
features (or groups of features) as essential features, redundant
features, derogatory or bad features, and indifferent features.
Essential features are those that are necessary for the task at
hand and any reasonable feature selection method should select
them. The bad features are those which hinder the learning and
must be discarded. By redundant features, we refer to those
features, all of which may not be needed for the task at hand,
but some of them are required. In other words, we can consider
the set of redundant features as a set of good features, but not
all of them are required to solve the problem. The indifferent
features are those which neither help nor cause any problem in
learning. For example, if a feature has almost constant value for
all samples in the training set, then it is an indifferent feature.
Next, we provide an example to illustrate our classification of
the features.

Example: Let us define a four-class problem with five fea-
tures: sex, height, weight, eye color, and number of legs. The
four classes are characterized as follows:
Class 1) male and short height or low weight;
Class 2) male and long height or heavy weight;
Class 3) female and short height or low weight;
Class 4) female and long height or heavy weight.

From the description of the four classes, it is easy to see that sex
is an essential feature and height and weight are good features,
but if one of them is selected then the other is redundant. The
eye color is a bad feature as it does have a relation to the class
definitions and it does not help to identify the classes but adds
the dimension of the problem. The number of legs is an indif-
ferent feature, as it takes the same value for all individuals/data
points.

Hence, the essential features and some of the good ones can
solve the problem and there could be more than one such choice.

With these definitions in mind we review the behavior of our
networks. The proposed methods are primarily dependent on
gradient search. If a group of features can reduce the error faster,
its associated modulator is expected to change faster to enhance
its influence on the training error. Thus, if the training error is
low, we can state the following.

• Essential features are selected by the network; otherwise,
the error cannot be low.

• Derogatory/bad features (the features which hinder the
learning process) are not selected by the network because
the error cannot be low. Bad features cannot reduce the
training error; rather, they may increase the error. If the
training tries to set the modulators associated with bad
features to high values, then the error will start increasing
unless all weights associated with those features are set to
practically zero values.

• Since indifferent features cannot reduce the error, the
modulator values are not expected to change. Thus, these
features will not get into the network because when the
training starts all features are treated as not important.

• Some redundant/correlated features, however, may get into
the network as we do not penalize the network if it selects
more features.

To summarize, we can say that the proposed schemes will be
quite effective in selecting essential features and eliminating bad
and indifferent features, but the selected feature set may contain
some correlated (redundant) features. Moreover, depending on
the initialization, the training may converge to a poor minimum
(very high training error) and in that case the selected features
are not likely to be good ones. Usually, such a situation does
not arise but if it does, it is not difficult to detect and discard
that solution. Finally, if there are several subsets of features or
several subsets of sensors that can solve the problem equally
well, our system can pick up any one of them depending on
the initialization. In other words, depending on the initialization,
different set of features/sensors may be selected by the system
in different runs. This phenomenon is evident from some of our
experiments, for example, from Figs. 4 and 6–8, we see that the
network selects different sets of features in different runs but
each run produces an acceptable and comparable training error.

VI. CONCLUSION

Many real life applications use data from several sensors for
decision making. Intelligent systems for automatic inspection
and controlling of welding, medical diagnosis, and controlling

394 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

of range safety for missile testing are some such examples. Typ-
ically, each sensor output is converted into a set of features. For
example, X-ray radiograph may be used to compute a set of fea-
tures for weld inspection. More sensors mean more cost, more
processing time, and sometimes more hazard (X-rays), and they
do not necessarily lead to a better performance. Therefore, if we
can reduce the number of required sensors, we can save cost,
time, and design complexity, and sometimes minimize the risk.
This is a very important problem but not addressed in literature.
In this paper, we provide some novel solutions to this problem.
In particular, we achieved the following.

1) We proposed two schemes for solving these problems. One
scheme is based on the RBF framework and the other uses
MLP.

2) Both schemes are capable of selecting useful groups of
features (sensors).

3) Both schemes can also select individual features.
4) We proved that both GFSRBF and GFSMLP have the uni-

versal approximation property.
5) Our experimental results reconfirm that the importance of

features depends on the tool used to solve a problem.
6) Our limited experiments show that GFSMLP usually needs

lower number of features to do a task than GFSRBF.
In near future, we would like to extend this concept to the neu-
rofuzzy framework.

APPENDIX

UNIVERSAL APPROXIMATION PROPERTY OF GFSRBF

The universal approximation property of RBF is well known
[16], [40]. If , then GFSRBF reduces to RBF. How-
ever, during the training process, usually takes values in

. Therefore, it is necessary to check the universal ap-
proximation property of GFSRBF. Unless, GFSRBF has the
universal approximation property, it may not be able to learn
the input–output relation for all functions and thus may not be
able to do the GFS task, so we check this property here.

We consider the GFSRBF network for function approxi-
mation (i.e., the one without the sigmoidal nonlinearity in the
output node) with a single output. The proof can be easily
extended for the multiple output case.

Definition: Let and be a family of functions on
with values in . Suppose that for all , such that

, there is a function such that ; then
we say that is a separating family of functions on [17].

Let . We define a function family as

Next, we prove a few lemmas concerning the function family .
Lemma 1: is a separating family.

Proof: For any and
, if , then there exists an ,

, such that . Without loss of generality, we as-
sume . Pick any with . If ,
then it is done. If , let

and

If

then is equidistant from both and . Let be such that
it is not equidistant from both and . As , then
always exists. In , replace by and call the new function

. Then, .
If

then select such that it is equidistant from both and so
that . Thus, is a separating family.

Lemma 2: contains the function 1.
Proof: A function with , is the

function 1.
Lemma 3: If , then for any .

Proof: Consider

then

Hence, .
We will now prove the universal approximation property of

GFSRBF using Stone–Wierstrass theorem.
Stone–Wierstrass Theorem [17]: Let be a nonvoid com-

pact set and a separating family of functions on containing
the function 1; then for any continuous real-valued function

CHAKRABORTY AND PAL: SELECTING USEFUL GROUPS OF FEATURES IN A CONNECTIONIST FRAMEWORK 395

defined on , and for any , there exists a polyno-
mial , where such that

Let us denote the network output by , for an
. In other words

GFSRBF

1) Theorem: For any given continuous function on the
compact set and arbitrary

GFSRBF

Proof: It directly follows from Lemmas 1–3 and the
Stone–Wierstrass theorem.

Universal Approximation Property of GFSMLP

The universal approximation property of MLP with sigmoidal
activation functions is well known [18]–[21], [30]. Here, we
show that adding attenuation functions in the input layer does
not affect the universal approximation property of an ordinary
MLP.

For convenience, we assume one feature in each group. The
net input to neuron in the hidden layer is

(29)

where is an attenuator of feature . Note that if the groups
contain more than one feature, then the attenuators for features
in the same group will be the same. We can consider the atten-
uators as parts of the weights connecting the input to the first
hidden layer. Thus, we can say

(30)

and

(31)

so the net input to a node in the first hidden layer remains of the
same form as that of a conventional MLP. However, the weight

is composed of two parts and , where both and
are adjustable, is unrestricted in sign and magnitude, and

. For any trained MLP, if we consider ’s to be the
weights connecting the inputs and the nodes in the first hidden
layer, then a decomposition as in (30) is always possible with
the trivial choice of , . Thus, the GFSMLP is equiva-
lent to an ordinary MLP, and hence the universal approximation
property would be retained.

REFERENCES

[1] H. Al-Mubaid and N. Ghaffari, “Identifying the most significant genes
from gene expression profiles for sample classification,” in Proc. IEEE
Conf. Granural Comput., 2006, pp. 655–658.

[2] E. Anderson, “The irises of the Gaspe Peninsula,” Bull. Amer. IRIS
Soc., vol. 59, pp. 2–5, 1935.

[3] L. M. Beleue and K. W. Bauer, “Determining input features for multi-
layered perceptron,” Neurocomputing, vol. 7, no. 2, pp. 111–121, 1995.

[4] J. C. Bezdek, J. Keller, R. Krishnapuram, and N. R. Pal, Fuzzy Models
and Algorithms for Pattern Recognition and Image Processing. Nor-
well, MA: Kluwer, 1999.

[5] C. Bhattacharyya, L. R. Grate, A. Rizki, D. Radisky, F. J. Molina, M. I.
Jordan, M. J. Bissell, and I. S. Mian, “Simultaneous classification and
relevant feature identification in high-dimensional spaces: Application
to molecular profiling data,” Signal Process., vol. 83, pp. 729–743,
2003.

[6] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning
Databases,” Dept. Inf. Comput. Sci., Univ. California, Irvine, CA,
1998 [Online]. Available: http://www.ics.uci.edu/mlearn/MLReposi-
tory.html

[7] A. L. Blum and P. Langley, “Selection of relevant features and exam-
ples in machine learning,” Artif. Intell., vol. 97, no. 1, pp. 245–271,
1997.

[8] F. Z. Brill, D. E. Brown, and W. N. Martin, “Fast genetic selection of
features for neural network classifiers,” IEEE Trans. Neural Netw., vol.
3, no. 2, pp. 324–328, Mar. 1992.

[9] D. Chakraborty and N. R. Pal, “Integrated feature analysis and fuzzy
rule-based system identification in a neuro-fuzzy paradigm,” IEEE
Trans. Syst. Man Cybern. B, Cybern., vol. 31, no. 3, pp. 391–400, Jun.
2001.

[10] D. Chakraborty and N. R. Pal, “A neuro-fuzzy scheme for simulta-
neous feature selection and fuzzy rule-based classification,” IEEE
Trans. Neural Netw., vol. 15, no. 1, pp. 110–123, Jan. 2004.

[11] D. Chakraborty and N. R. Pal, “Two connectionist schemes for se-
lecting groups of features (sensors),” in Proc. 2003 IEEE Int. Conf.
Fuzzy Syst., 2003, pp. 161–166.

[12] R. De, N. R. Pal, and S. K. Pal, “Feature analysis: Neural network and
fuzzy set theoretic approaches,” Pattern Recognit., vol. 30, no. 10, pp.
1579–1590, 1997.

[13] A. P. Engelbrecht, “A new pruning heuristic based on variance analysis
of sensitivity information,” IEEE Trans. Neural Netw., vol. 12, no. 6,
pp. 1386–1399, Nov. 2001.

[14] K. Fukunaga, Statistical Pattern Recognition. New York: Academic,
1989.

[15] R. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for
image classification,” IEEE Trans. Syst. Man Cybern., vol. SMC-3, no.
6, pp. 610–621, Nov. 1973.

[16] E. J. Hartman, J. D. Keeler, and J. M. Kowalski, “Layered neural net-
works with Gaussian hidden units as universal approximators,” Neural
Computat., vol. 2, pp. 210–215, 1990.

[17] E. Hewitt, Real and Abstract Analysis. Berlin, Germany: Springer-
Verlag, 1965.

[18] K. Hornik, “Some new results on neural network approximation,”
Neural Netw., vol. 6, pp. 1069–1072, 1993.

[19] K. Hornik, “Approximation capabilities of multilayer perceptrons,”
Neural Netw., vol. 4, pp. 251–257, 1991.

[20] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation
of an unknown mapping and its derivatives using multilayered feedfor-
ward networks,” Neural Netw., vol. 3, pp. 551–560, 1990.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multilayered feedforward
networks are universal approximators,” Neural Netw., vol. 2, pp.
259–366, 1989.

[22] A. Jain and D. Zongker, “Feature selection: Evaluation, application and
small sample performance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 2, pp. 148–153, Feb. 1997.

[23] I. T. Jollife, Principal Component Analysis. New York: Springer-
Verlag, 1986.

[24] D. Koller and M. Sahami, “Toward optimal feature selection,” in Proc.
13th Int. Conf. Mach. Learn., 1996, pp. 284–292.

[25] M. Kudo and J. Sklansky, “Comparison of algorithms that selects
features for pattern classifiers,” Pattern Recognit., vol. 33, no. 1, pp.
25–41, 2000.

[26] A. S. Kumar, S. Chowdhury, and K. L. Mazumder, “Combination of
neural and statistical approaches for classifying space-borne multispec-
tral data,” in Proc. Int. Conf. Adv. Pattern Recognit. Digit. Tech., Cal-
cutta, India, 1999, pp. 87–91.

[27] F. Kohavi and G. John, “Wrappers for feature subset selection,” Artif.
Intell., vol. 97, no. 1, pp. 273–342, 1997.

[28] A. Laha, N. R. Pal, and J. Das, “Designing prototype-based classifiers
and their application to multispectral satellite images,” in Proc. 6th Int.
Conf. Soft Comput., Japan, 2000, ISBN: 4-938717-04-2.

[29] M. Last, A. Kandel, and O. Maimon, “Information-theoretic algorithm
for feature selection,” Pattern Recognit. Lett., vol. 22, pp. 799–811,
2001.

396 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

[30] M. Leshno, V. A. Lin, A. Pinkus, and S. Schocken, “Multilayered feed-
forward networks with a nonpolynomial activation function can ap-
proximate any function,” Neural Netw., vol. 6, pp. 861–867, 1993.

[31] Y. Lin and G. A. Cunningham, III, “A new approach to fuzzy-neural
system modeling,” IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 190–198,
May 1995.

[32] H. Liu and L. Yu, “Towards integrating feature selection algorithms for
classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, May 2005.

[33] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4, no.
3, pp. 415–447, 1992.

[34] D. J. C. MacKay, “A practical Bayesian framework for backprop net-
works,” Neural Comput., vol. 4, no. 3, pp. 448–472, 1992.

[35] D. J. C. MacKay, “The evidence framework applied to classification
networks,” Neural Comput., vol. 4, no. 5, pp. 698–714, 1992.

[36] R. M. Neal, “Bayesian learning for neural networks,” in Lecture Notes
in Statistics. Berlin, Germany: Springer-Verlag, vol. 118.

[37] J. Novovicova, P. Pudil, and J. Kittler, “Divergence based feature selec-
tion for multimodal class densities,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 18, no. 2, pp. 218–223, 1996.

[38] N. R. Pal, “Soft computing for feature analysis,” Fuzzy Sets Syst., vol.
103, pp. 201–221, 1999.

[39] N. R. Pal and K. K. Chintalapudi, “A connectionist system for feature
selection,” Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359–381,
1997.

[40] J. Park and I. W. Sandberg, “Universal approximation using radial basis
function networks,” Neural Comput., vol. 3, pp. 246–257, 1991.

[41] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A.
K. Jain, “Dimensionality reduction using genetic algorithms,” IEEE
Trans. Evol. Comput., vol. 4, no. 2, pp. 164–171, Apr. 2000.

[42] M. R. Rezaee, B. Goedhart, B. P. F. Lelieveldt, and J. H. C. Reiber,
“Fuzzy feature selection,” Pattern Recognit., vol. 32, pp. 2011–2019,
1999.

[43] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using
a multilayered perceptron,” J. Neural Netw. Comput., pp. 40–48, 1990.

[44] R. Setino, “Neural network feature selector,” IEEE Trans. Neural
Netw., vol. 8, no. 3, pp. 654–662, May 1997.

[45] J. M. Steppe, Jr., “Integrated feature and architecture selection,” IEEE
Trans. Neural Netw., vol. 7, no. 4, pp. 1007–1014, Jul. 1996.

[46] P. Sykacek, “On input selection with reversible jump Markov chain
Monte Carlo sampling,” in Advances in Neural Information Processing
Systems, S. A. Sola, T. K. Leen, and K. R. Müller, Eds. Cambridge,
MA: MIT Press, 2000, vol. 12, pp. 638–644.

[47] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no.
9, pp. 1423–1447, Sep. 1999.

[48] M. Sugeno and T. Yasukawa, “A fuzzy-logic based approach to quali-
tative modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7–31, Feb.
1993.

[49] J. M. Zurada, A. Malinowski, and S. Usui, “Perturbation method for
detecting redundant inputs of perceptron networks,” Neurocomputing,
vol. 14, pp. 177–193, 1997.

Debrup Chakraborty received the B.E. degree in
mechanical engineering from Jadavpur University,
Kolkata, India, in 1997, and the M.Tech. and Ph.D.
degrees in computer science from Indian Statis-
tical Institute, Kolkata, India, in 1999 and 2005,
respectively.

Currently he is with the Computer Science
Department, Centro de Investigaciones y Estudios
Avanzados del IPN, Mexico City, Mexico. His
current research interests include design and analysis
of provably secure symmetric encryption schemes,

efficient software/hardware implementations of cryptographic primitives,
pattern recognition, and neural networks.

Nikhil R. Pal (M’91–SM’00–F’05) received the
B.Sc. degree in physics and the M.B.M. degree in
operations research from the University of Calcutta,
Calcutta, India, in 1978 and 1982, respectively, and
the M.Tech. and Ph.D. degrees in computer science
from the Indian Statistical Institute, Calcutta, India,
in 1984 and 1991, respectively.

Currently, he is a Professor at the Electronics and
Communication Sciences Unit, Indian Statistical
Institute. He has coauthored a book titled Fuzzy
Models and Algorithms for Pattern Recognition

and Image Processing (Norwell, MA: Kluwer, 1999) and edited/coedited
several books. His current research interest includes image processing, pattern
recognition, fuzzy sets theory, neural networks, evolutionary computation, and
bioinformatics.

Dr. Pal serves on the editorial/advisory board of several journals including
the International Journal of Approximate Reasoning, International Journal of
Hybrid Intelligent Systems, Neural Information Processing—Letters and Re-
views, International Journal of Knowledge-Based Intelligent Engineering Sys-
tems, International Journal of Neural Systems, and Fuzzy Sets and Systems.
He is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS MAN AND

CYBERNETICS—PART B: CYBERNETICS and the Editor-in-Chief of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS. He was the President and currently is a
Governing Board Member of the Asia Pacific Neural Net Assembly. He was
the Program Chair of the 4th International Conference on Advances in Pattern
Recognition and Digital Techniques (1999, Calcutta, India) and was a Co-Pro-
gram Chair of the 2005 and 2006 IEEE International Conference on Fuzzy Sys-
tems. He was the General Chair of the 2002 AFSS International Conference
on Fuzzy Systems, Calcutta, India, and the 11th International Conference on
Neural Information Processing (2004).

