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To be covered today
• Linear Regression
• Probabilistic Interpretation of Linear Regression
• Logistic Regression

Material covered is mostly from course notes of Prof.
Andrew Ng on regression.
Can be found at:
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
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Supervised Learning
• We are given a training set

L = {(xxxi, yi) : i = 1 . . . n,xxxi ∈ Rp, yi ∈ R}
• Our goal is to find a good hypothesis h such that

h(xxx) is a good predictor for the corresponding
value of y.

• When the target variable y takes continuous
values as in the above case, we call the learning
problem a function approximation problem.

• If y takes discrete values then we call the problem
a classification problem.
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The structure of h
• To begin with, we need to decide a structure of h

• To start with we assume that h is a linear function
of xxx, i.e.,

hθ(xxxi) = θ0 + θ1xi,1 + θpxi,2 + . . . θpxi,p

=

p
∑

j=0

θjxi,j

= θθθTxxxi

Assuming that xxxi,0 = 1,∀i
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The Structure of h (contd.)
• This structure of h

hθ(xxxi) = θθθTxxxi (1)

depends on the parameter vector θθθ.
• Such a representation of h is called a parametric

representation.
• Now the problem boils down to finding the

parameter vector θθθ such that the function h fits
the data the best.
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Linear Regression
• Given the training set L, how do we learn the

parameters θθθ.
• One of the reasonable methods would be to make

h(xxx) close to y for at least the training set.
• An intuitive cost function for this purpose would

be:

J(θθθ) =
1

2

n
∑

i=1

(hθ(xxxi)− yi)
2

• This function is called the least squares function.
• Our task is to find that θθθ which minimizes J .
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Gradient Descent Algorithm
• To begin with, we start with an iterative

algorithm.
• We start with an initial guess of θθθ and in each step

change theta to make J(θθθ) smaller.
• This can be done by the gradient descent

algorithm which gives the update rule as

θj)new ← θj)old − α
∂

∂θj

J(θθθ)

Here α is called the learning rate.
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Gradient Descent (contd.)
• For our specific cost function J , and for a single

training example (xxxi, yi) the update rule becomes

θj)new ← θj)old + α (yi − h(xxx)) xi,j

How?
• This update rule is called

• Least Mean Squares (LMS) update rule
• Widrow-Hoff learning rule
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Gradient Descent (contd.)
This rule can be extended for the case of multiple
training data in two obvious ways:

• The batch gradient descent
• Stochastic gradient descent
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Batch Gradient Descent
Algorithm:
repeat until convergence
{

θj)new ← θj)old + α

n
∑

i=1

(yi − h(xxx)) xi,j,∀j

}
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Stochastic Gradient Descent
Algorithm:

repeat until convergence
for i = 1 to n

for j = 0 to p
θj)new ← θj)old + α (yi − h(xxx)) xi,j

end for
end for

end repeat
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A Closed Form Solution
• The gradient descent is not a specific method to

solve the linear regression problem but can be
applied to other problems also.

• The linear regression problem has a closed form
solution, which we shall state without proof.

• Let X be the design matrix and Y the responses.
Then the value of θθθ that minimizes J is given by

θθθ = (XTX)−1XTY
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A Probabilistic Interpretation
• Here we take another view of the linear

regression problem.
• We find an answer to the question:

Why the least-squares cost function is a
reasonable one

• We will show that under certain reasonable
probabilistic assumptions the least squares
method has a natural interpretation.
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A Prob. Interpretation (contd.)
• We assume that the target variables and the inputs

are related via the equation

yi = θθθTxxxi + εi

• εi is an error term which takes care of:
• Unmodeled effects
• Random Noise

• We assume that the εi are distributed IID
(independent and identically distributed)
according to the Gaussian distribution with zero
mean and a variance σ2.
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A Prob. Interpretation (contd.)
• Thus we can write,

εi ∼ N (0, σ2)

• Hence, the probability density of εi will be

p(εi) =
1√
2πσ

exp

(

− ε2

i

2σ2

)

.

• This implies that

p(yi|xxxi;θθθ) =
1√
2πσ

exp

(

−(yi − θθθTxxxi)
2

2σ2

)

.
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A Prob. Interpretation (contd.)
• Given X (all xxxi) and θθθ the probability of the data

is given by p(Y |X;θθθ)

• This quantity when viewed as a function of θθθ is
called the likelihood function.

• By the independence assumption of εi we can
write the likelihood function as

L(θθθ) =
n
∏

i=1

p(yi|xxxi;θθθ)

=
n
∏

i=1

1√
2πσ

exp

(

−(yi − θθθTxxxi)
2

2σ2

)
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A Prob. Interpretation (contd.)
• Given this probabilistic model what is the best

way to choose θθθ ?
• According to the principle of maximum

likelihood, we should choose θθθ so as to make the
data most likely. Thus, we should choose that θθθ
which maximizes L(θθθ).

• Maximizing L(θθθ) is same as minimizing J(θθθ).
Why??
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