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is a convex polygon.
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The convex hull of a simple polygon
is a convex polygon.
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In both cases, the vertices of ch(X) are points of X.
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Computing the extreme points
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Computing the extreme points
Characterization

Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.
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Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
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Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pnd— boc&os \.D_S ?OVA’OS d"s-[ﬂm%%' [
Output: set of the extreme points °
Procedure: ¢
For each 1, | | ° o °
For each j,k,[ # 1, o ® ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
o
o ® ®
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Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: P1y---,DPn o
Output: set of the extreme points N
Procedure: A
For each 1, | | ° . FAFRIN o
For each j,k,[ # 1, g ® P
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.
2 ® ®
Algorithm: INTERIOR POINTS ’_‘ ®
for each i do
foreach j # i do o

if pr € A(pi, Pjy D1
then p; is nonextreme

foreachk #i # j do \
foreachl # i # j # k do O Z(OQ)\(\Q@ ® ® °

)
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Computing the extreme points
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Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

Algorithm

InPUt: P1,---3Pn [
Output: set of the extreme points

Procedure:
For each 1, °
For each j,k,[ # 1,
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.

Running time: O(n?)
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Computing the extreme segments
Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.
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Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.
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Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.
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Computing the extreme segments
Characterization
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Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme segments °
Procedure: ®
For each 1, 7, ° °

Check whether all py, with k # i, ° ® o °

lie in the same halfplane defined by p;p;.

In the affirmative, return the segment p;p;. ° ° o

o
o
o ® ®
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Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm

Input: p1,...,pn
Output: set of the extreme segments

Procedure:
For each 1, 7,
Check whether all p with £ # 4,7
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;.
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Computing the extreme segments

Characterization
Given X = {p1,

,Dn }, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm '
Input: p1,...,pn e .
Output: set of the extreme segments ®
Procedure: RN
For each 1, 7, o.. ‘ PY
Check whether all p with £ # 4,7 "~~’:::.. e n e L
lie in the same halfplane defined by p;p;. TTEIra, W w7
. . Tea, St s 4 L
In the affirmative, return the segment p;p; o ':..i?‘-,:x
o RLEEEl LT LL ()
. ----- ‘4"'0" :
,""’ "’ :'
o"‘ 4. :
- @
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CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm

Input: p1,...,pn
Output: set of the extreme segments

Procedure:
For each 1, 7,
Check whether all p with £ # 4,7
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;.
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CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

ORoovee,

Algorithm: EXTREME EDGES
Input: p1,...,pn for each i do

0O : f th foreach j # i do
utput: set or the extreme segments foreach k # i # j do

Procedure: if py is not left or qn (pi, Pj)
then (p;, p;) is not extreme

Algorithm

For each 1, 7,

Check whether all p;, with k # 4, j ® o °
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;. ° o
o
Running time: ©O(n?)
?ro\)\exvm 53 Vos ?OV\'\'@S 0o estan e OB Cdn ¢

c\ \ ow\j(Mo X)V'Déuce G
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CONVEX HULL

Computing the convex hull
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CONVEX HULL

Computing the convex hull (sorted list of its vertices)
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CONVEX HULL

Computing the convex hull

Input:
P ={p1,...,pn} C R? a set of n points in the plane

Output:
[, the list of the vertices of ch(P) sorted in counterclockwise order

zé\ﬂ@{ o«?%uué OV'C?M\UQ se. VA CdYwno
colila Vo Lot do adstos, esbl:,g
(NS 22 A Vepaw T 3 o =N

\)U”&\/é\zoqrc@vmo celidan, O

‘%C(('F\S&JQ/J(OL( Ofa"r«\c«Q oI 0 'Booree,
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CONVEX HULL

Computing the convex hull

Input:
P ={p1,...,pn} C R? a set of n points in the plane

Output:
[, the list of the vertices of ch(P) sorted in counterclockwise order

Characterization
Given X = {p;,...,pn}, the segment p;p, is an edge of the convex hull of X if and only if all

the points p, with £ # 4, j lie to the left of the oriented line p;p;.
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CONVEX HULL
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CONVEX HULL

Jarvis march _ L{y
Gl de menor coord U, PO ¢mmpA:

B(n\1- Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return ]
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [ ®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
o ® ®
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [ ®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
......... O @
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Jarvis march

CONVEX HULL
O
1. Find a vertex of ch(P) (for example, the lexico- &O

graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First((), do: °
(a) Detect the angularly rightmost point p; € P o
with respect to v. T
(b) Add p; to i e . e .
\“ . l“ .. :' , '. ,"’
3. Return [ _(( ( E U A o
no necest o Yo LOTEN e@ R Yo
oV QM | b Catexn L we CeR VO o Eis S
( < ‘::“\“ :: :: '::OOQ"
6& WA O s :::,;.;.’
— MabERRC PR 3
danangee vso |
AVA CLMV\%UC 0do

hid
?W,c\-a ‘(\oﬂ?)d\r\*uQ Q\“"/

Yoson PO .
Computational Geometry, Facultat d'Informatica de Barcelona, UPC



CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [ ®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
o ——
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P ®
with respect to v. 4
(b) Add p; to i N ooy
3. Return [
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [ ®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o °
o o
3. Return [
o o ®
o
®
o
.7
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return ]
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do: o

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p; tol () o

3. Return ]
o
o
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Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return ]
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Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I o

3. Return ]
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Jarvis march
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Jarvis march
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Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [
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Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I
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CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return ]

tjog%ﬁ%fc —£ \ljhmaﬁocle la eatoda
Time cost: O(hn) = O(n?)
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CONVEX HULL

QuickHull algorithm (by prune-and-search)“artgos ',\;\\)es\-;ﬂm&ovw

2 fianal deln dfcedan de los 0. .
\o baolc'eaam*n Quicy dull, Por so s Ddod o

QuiceSovt.

@ O\ cpgcﬂf_

PArTITION(A[1..1], p):

A — A
QuickSorT(A[1..n]): ZVEPO [p] > Aln]

if(n>1)
Choose a pivot element A[p]
r < PARTITION(A, p)
QuickSorT(A[1..r —1])  ((Recursel))
QuickSorT(A[r +1..n]) ((Recursel))

((#items < pivot))

forie—1ton—1
ifA[i] <A[n]
{—{+1
swap A[{] «— A[i]
swap A[n] «—> A[{ + 1]
return £ + 1

\ l Figure 1.8. Quicksort
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization
1. Find the extreme points in the horizontal and ° ¢
vertical directions. °
o
2. Compute the convex hull of these (between 2 ¢ °
and 8) points. °
3. Test all the remaining points, and classify them @ ° Y ®
according to their position (NE, SE, SW, NW) ¢ ¢
or eliminate them if they lie in the interior.
o o ®
° ¢ °
[
® ®
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization
1. Find the extreme points in the horizontal and ° ¢
vertical directions. °
o
2. Compute the convex hull of these (between 2 ¢ °
and 8) points. °
3. Test all the remaining points, and classify them @ ° Y ®
according to their position (NE, SE, SW, NW) ¢ ¢
or eliminate them if they lie in the interior.
o o ®
° ¢ °
[
o ° ®
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Running time of this step: O(n)
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance .’

Recursively, do:

1. Among all points lying in each region, find the R
extreme point in the direction orthogonal to the .
edge that determines the region. *f

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or  [*,
right) or eliminate them if they lie in the interior
of the newly created triangle.
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QuickHull algorithm (by prune-and-search)
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QuickHull algorithm (by prune-and-search)
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QuickHull algorithm (by prune-and-search)

Advance
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QuickHull algorithm (by prune-and-search)
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QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.
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QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Running time of this step: O(n?)
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Overall running time: O(n?)
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CONVEX HULL

QuickHull algorithm (by prune-and-search)

Overall running time: O(n?)

Nevertheless, the running time of this algorithm de-
pends on the position of the input points.
For example:

e |f the input points are in convex position, the
running time is ©(n?).

e If the points are such that each prune step eli-
minates half of the current points, then the al-
gorithm runs in ©(nlogn) time.

e |f the convex hull is triangular, the algorithm runs
in ©(n) time.
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CONVEX HULL

Graham’s algorithm
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CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [ and delete it from P
- Angularly sort the points around v
- Push the first point in [ and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [
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CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [ and delete it from P
- Angularly sort the points around v
- Push the first point in [ and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l)) °
- If p~pp; is a left turn: ® ®
- Push p; inl
- Advance ¢ ® ®
- Else: ®
- Pop p from [
Return [
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Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [ and delete it from P
- Angularly sort the points around v
- Push the first point in [ and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l)) °
- If p~pp; is a left turn: ® ®
- Push p; inl
- Advance ¢ ® ®
- Else: ®
- Pop p from [
Return [
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CONVEX HULL

Graham’s algorithm
Initialization
- Find a vertex v of ch(P), push it in [ and delete it from P o
- Angularly sort the points around v :
- Push the first point in [ and delete if from P
Advance Q .
While there exist points p; € P to be explored, do: '
p = top(l) P
p~ = previous(top(l)) e .'\‘ é '." -
- If p~pp; is a left turn: RN S R
- Push p; in [ ‘\‘ LY ; e
- Advance 1 . s f ’
- Else: ‘\\‘" | @ 'y ,/,':,;f'"
- Po N, e
p p from [ w5 :::::::: »
.-..__::.::*: _______ P

Return [
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CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [ and delete it from P lo
- Angularly sort the points around v :
- Push the first point in [ and delete if from P 14
Advance Q 12
While there exist points p; € P to be explored, do: . .8
p = top(l) 17 i .:11,': s
p~ = previous(top(l)) e 15. '\‘ ¢ & 6 ".5
- If p~pp; is a left turn: RN : /09 R
- Push p; in{ ‘\‘ 1 ! ; xx'
- Advance i . 13 : /® ,.
- Else: “““““‘ ?:, :, :~ ,".":,;f"' 4
- Pop p from [ ‘1:“ " ..'.,"'::'."'.""
Return [ 18 ._*::.\..,‘x’ _____ o
1 2
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Incremental algorithm
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CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [
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o
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Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Running time: O(nlogn)

By storing [ in a structure allowing binary se-
arch and updatings (insertions and deletions)
in O(logn) time.
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Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae
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Divide-and-conquer algorithm
Running time

Initialization: O(nlogn) (only once)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



CONVEX HULL

Divide-and-conquer algorithm
Running time
Initialization: O(nlogn) (only once)
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Divide-and-conquer algorithm
Running time
Initialization: O(nlogn) (only once)

Division: O(n)
Merge: O(n)
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CONVEX HULL

Divide-and-conquer algorithm
Running time

Initialization: O(nlogn) (only once)

Division: O(n)
Merge: O(n)
Advance:
T(n)=2T (g) + O(n) = O(nlogn)

Overall: O(nlogn)
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Lower bound

Input: n real numbers ¢
x1,...,ZTy real numbers
/”
Input: n points °
. _ 2 ,/
Dly-- -y Pn, With p; = (5, 27)
_-®
- @-----""" ®
@ o—©O @ @ @

Output: convex hull of the points
Sorted list of the vertices of the convex hull
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CONVEX HULL

Extensions

e Convex hull of a set of n points in 3D

(proposed for a theory presentation)

— Gift wrapping
— Divide-and-conquer

— Incremental

e Convex hull of a simple polygon
(proposed for a theory presentation)
— Is it possible to design an o(nlogn) time algorithm by exploiting the order of the
vertices of the polygon?

— Is it possible, for example, to apply Graham's algorithm using the order of the
vertices of the polygon?
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CONVEX HULL

SOME LINKS TO PLAY
WITH THE CONSTRUCTION OF CONVEX HULLS

In 2D:

http: //www.dma.fi.upm.es/recursos/aplicaciones/geometria_computacional_y_grafos/

In 3D:
http://www.cse.unsw.edu.au/~lambert/java/3d
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TO LEARN MORE

e J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press,
1998.

e F. Preparata, M. Shamos, Computational Geometry: An introduction (revised ed.),
Springer, 1993.
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