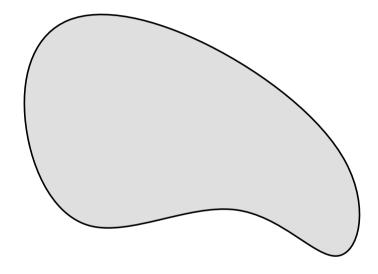
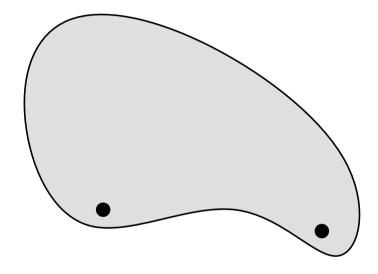
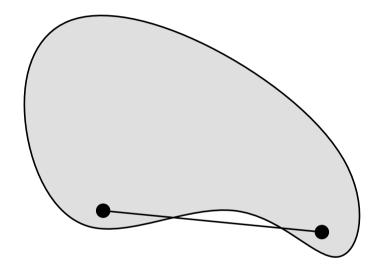
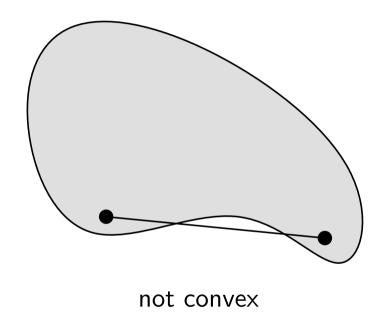
### Vera Sacristán

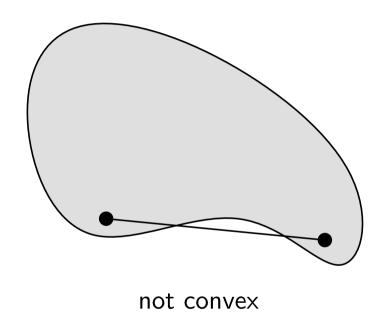
Computational Geometry Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

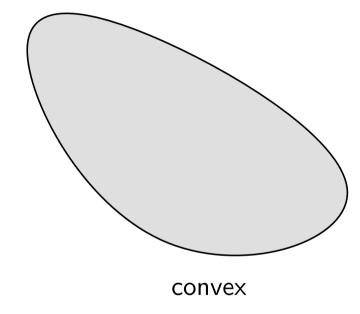


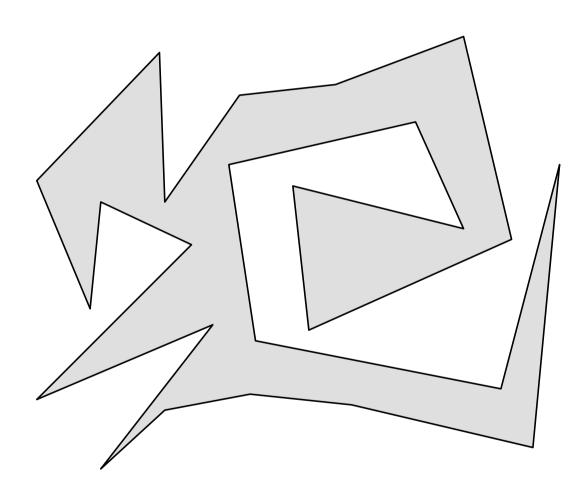


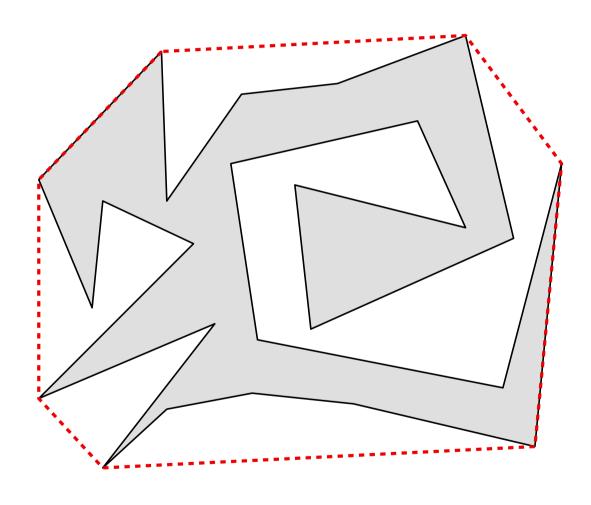




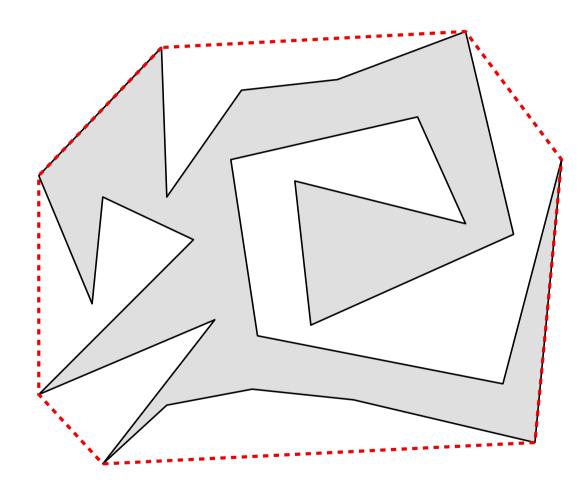






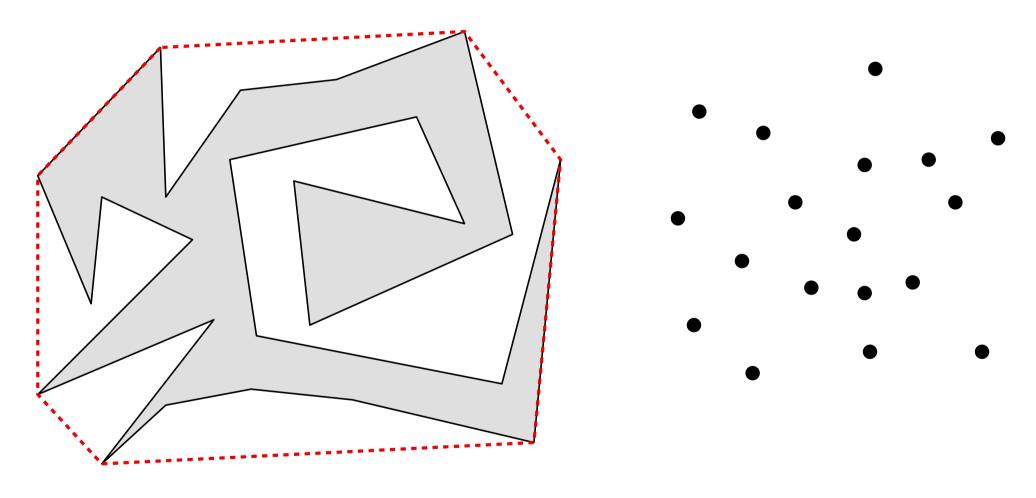


The convex hull of a set X is the smallest convex set C enclosing X.



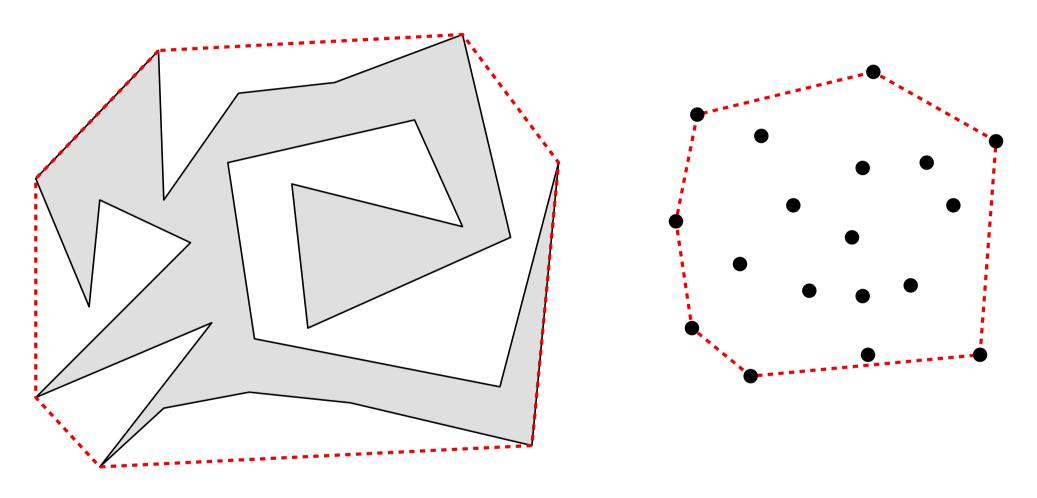
The convex hull of a simple polygon is a convex polygon.

The convex hull of a set X is the smallest convex set C enclosing X.

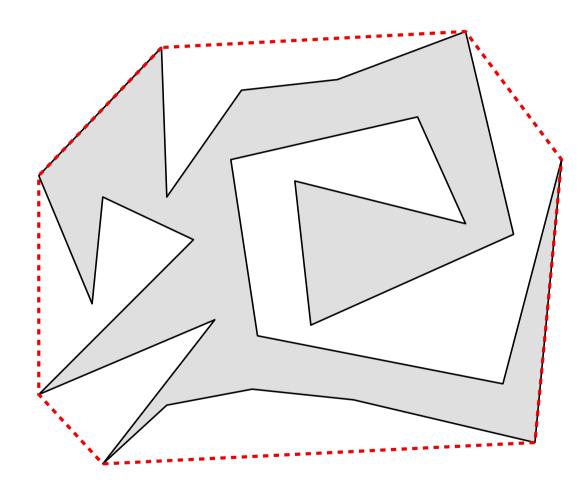


The convex hull of a simple polygon is a convex polygon.

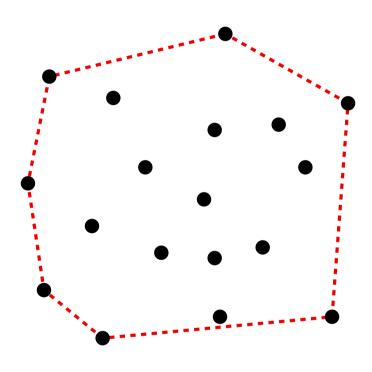
The convex hull of a set X is the smallest convex set C enclosing X.



The convex hull of a simple polygon is a convex polygon.

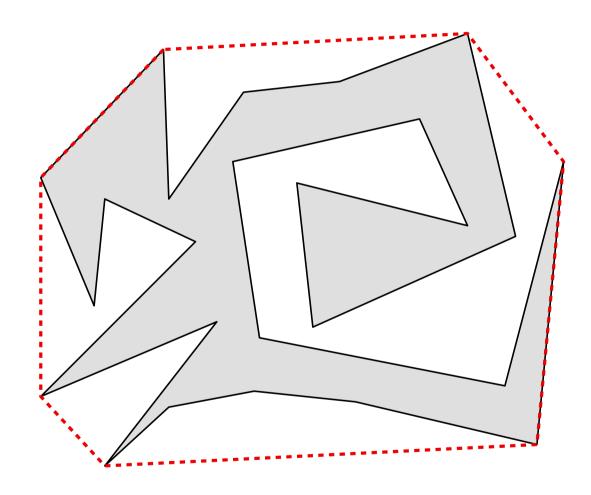


The convex hull of a simple polygon is a convex polygon.

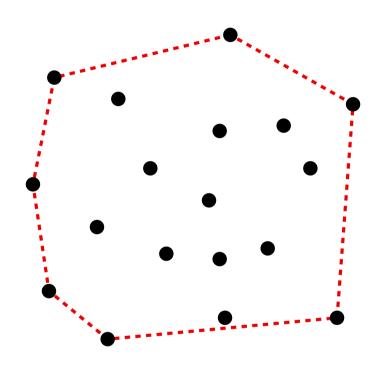


The convex hull of a finite set of points in the plane is a convex polygon.

The convex hull of a set X is the smallest convex set C enclosing X.



The convex hull of a simple polygon is a convex polygon.



The convex hull of a finite set of points in the plane is a convex polygon.

In both cases, the vertices of ch(X) are points of X.

Computing the extreme points Deseamos dar onalgoritmo para calcular el cierre convexo de un canjonto S de n pontos on el plano. Podriamas dar como salida: 1. Todos los puntos de la frontera ch(s), en or dien arbitrario. 20 los pontos extremos, es decir los vértices del cierre curvero, en orden aubitrario Todos los pontos de Dahlos en el orden de recornido \$ A los pontos extremos, es decir los vértices del cierre jos convero, en orden el orden de recorrido. Pontos extremos: más alto, más bajo, más ala iza, más aladerecha.

i.e. si existe una recta que pasa por este y ún i came
te intersecta alch (S) en ese purto.

### **Computing the extreme points**

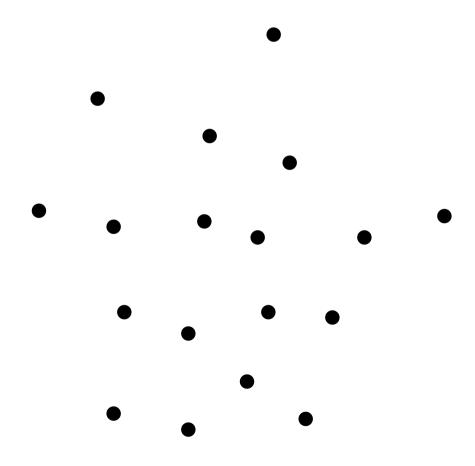
#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Computing the extreme points**

#### Characterization

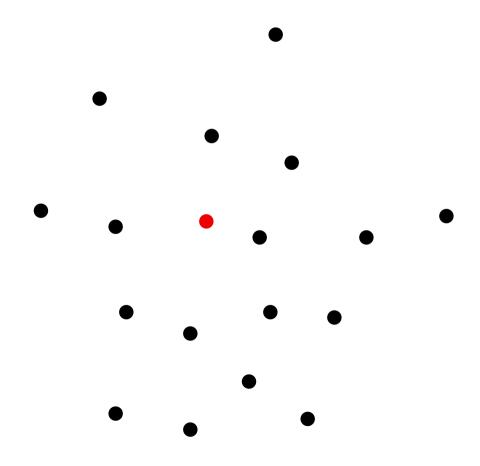
Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .



### **Computing the extreme points**

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

Demostración. Sabemos que chis) es la combinación convera de todos los subconjuntos de S de tamaino 3, rice. Es la unión de todos los D's con verticos i.e. Es la unión de todos los D's con verticos Sea pGS, tap p está en ch(S), si p esta en el intenor de algún triángulo, entonces no es extremo. Si no existe ningoin D que con tunga a p, entones per extremo. Es failver

### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$  — todos los pontos distintos.

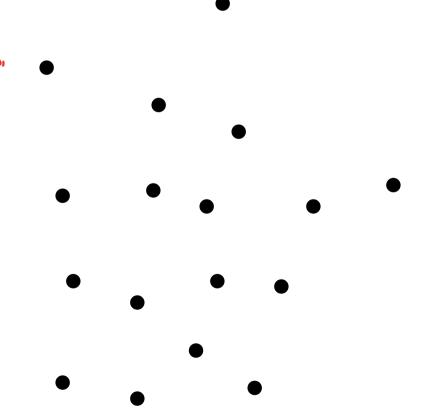
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

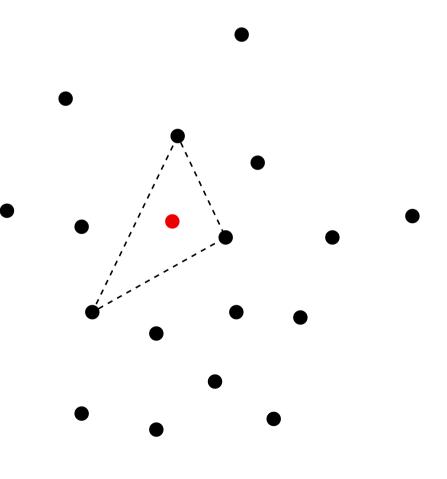
For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

Return the set of surviving  $p_i$ 's.

Algorithm: INTERIOR POINTS for each i do for each  $j \neq i$  do for each  $k \neq i \neq j$  do for each  $l \neq i \neq j \neq k$  do if  $p_l \in \Delta(p_i, p_j, p_k)$  then  $p_l$  is nonextreme





### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

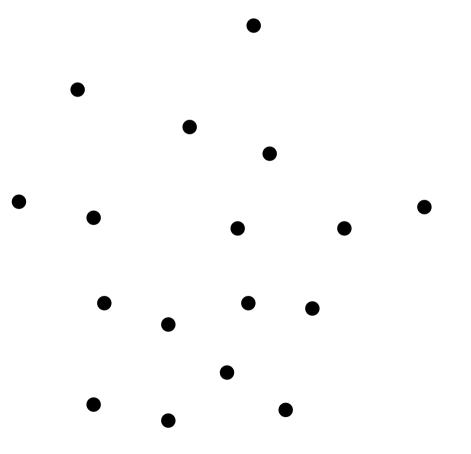
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### **Computing the extreme points**

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

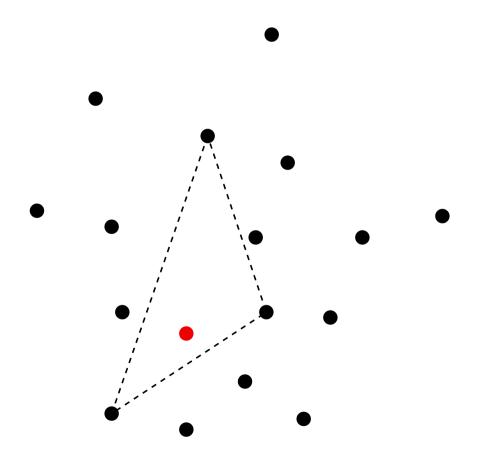
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

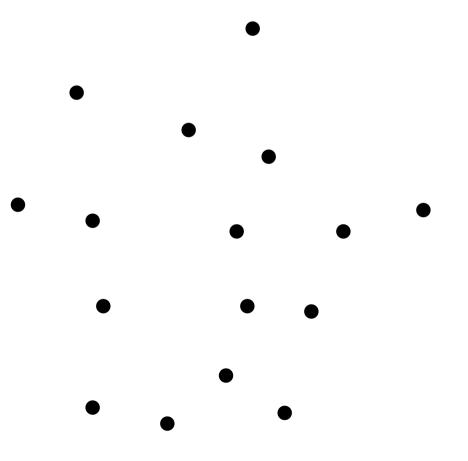
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### **Computing the extreme points**

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

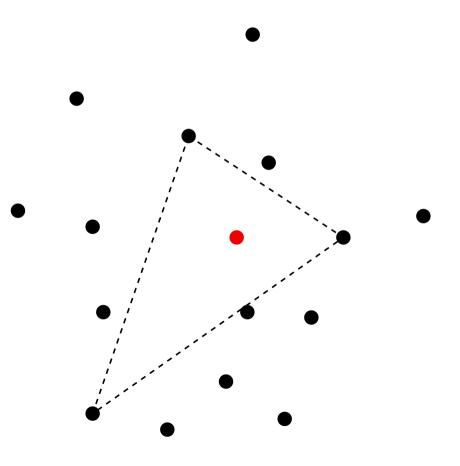
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

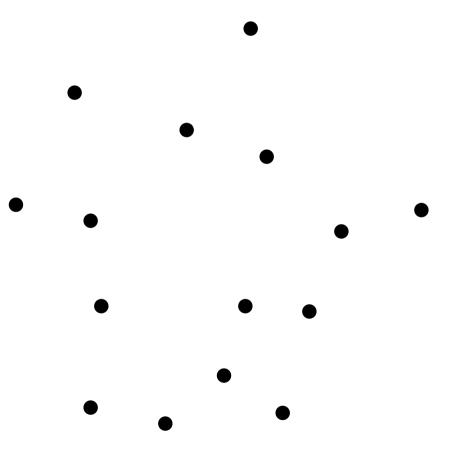
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### **Computing the extreme points**

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

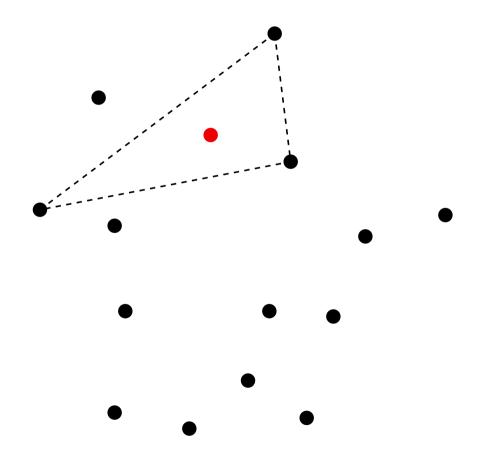
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

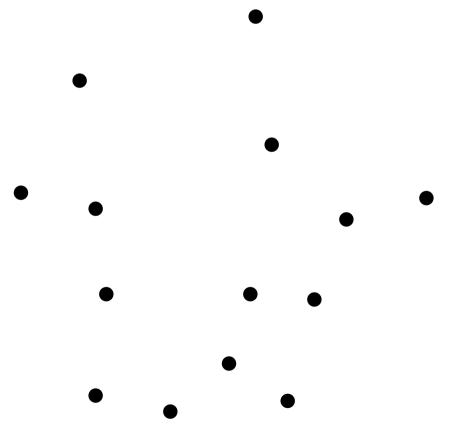
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

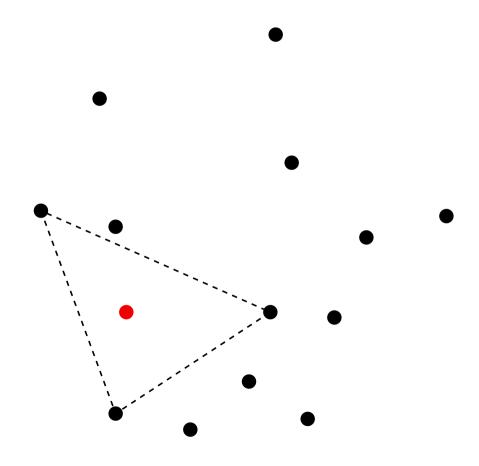
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

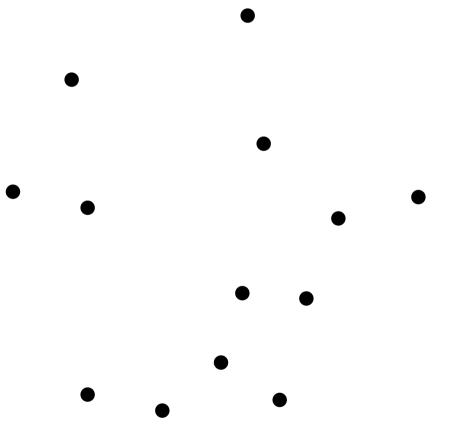
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

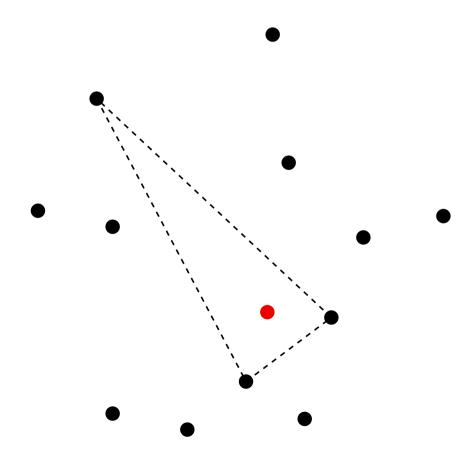
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

### **Computing the extreme points**

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

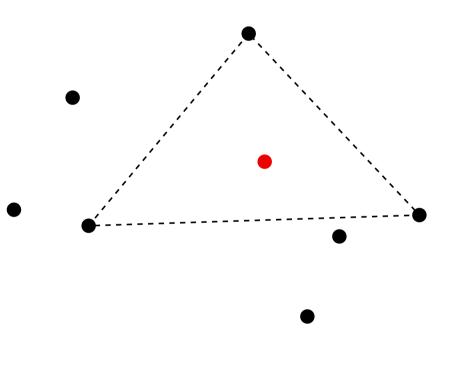
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



### Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

### **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

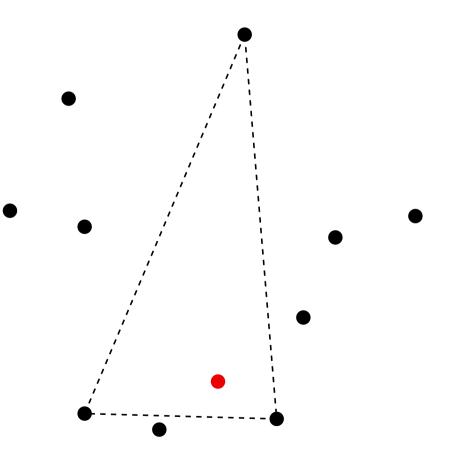
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

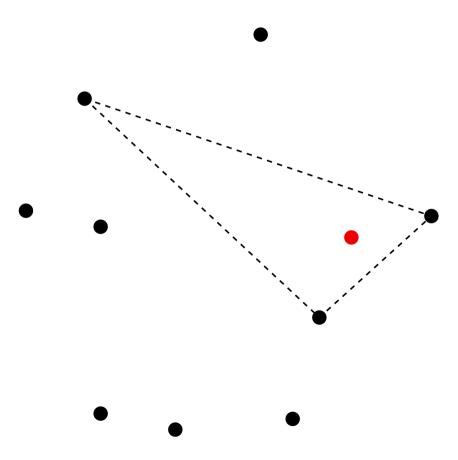
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



## Computing the extreme points

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

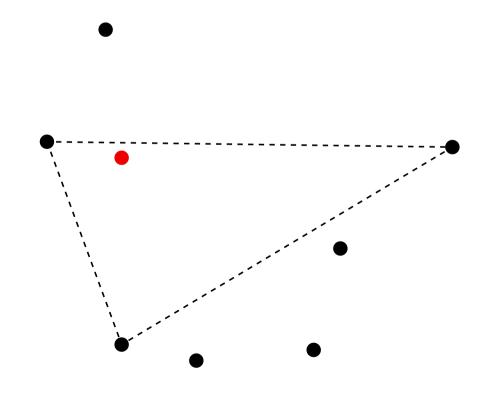
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

## Computing the extreme points

#### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

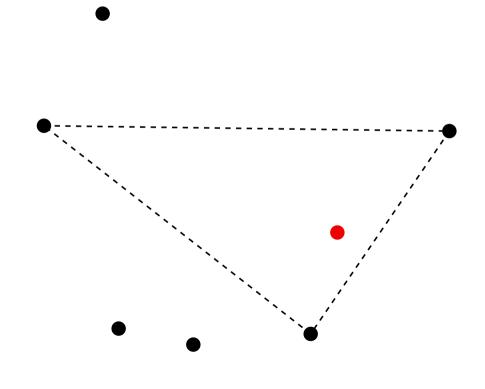
Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .



## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

## **Computing the extreme points**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the point  $p_i$  belongs to the boundary of the convex hull of X if and only if  $p_i$  does not lie in any of the triangles  $p_j p_k p_l$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme points

#### Procedure:

For each i,

For each  $j, k, l \neq i$ ,

If  $p_i$  lies in the triangle  $p_j, p_k, p_l$ , eliminate  $p_i$ .

Return the set of surviving  $p_i$ 's.

## Running time: $O(n^4)$

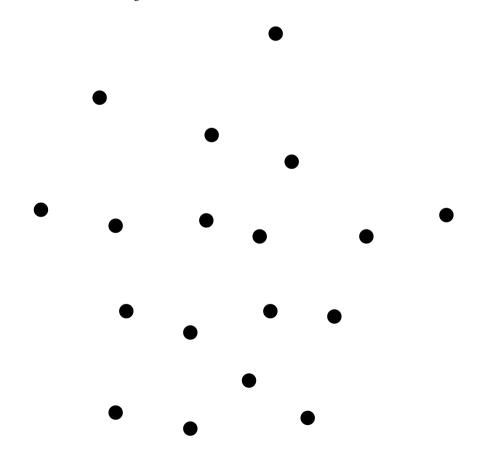
**Computing the extreme segments** 

### **Computing the extreme segments**

### Characterization

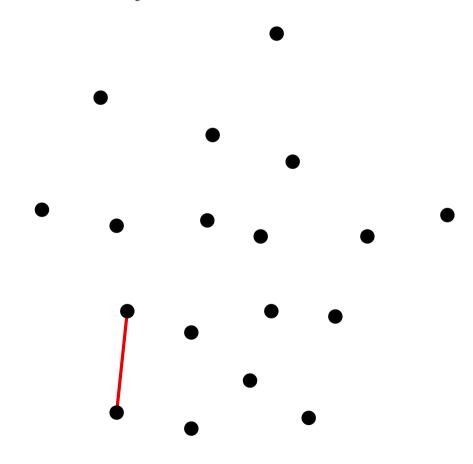
## **Computing the extreme segments**

### Characterization



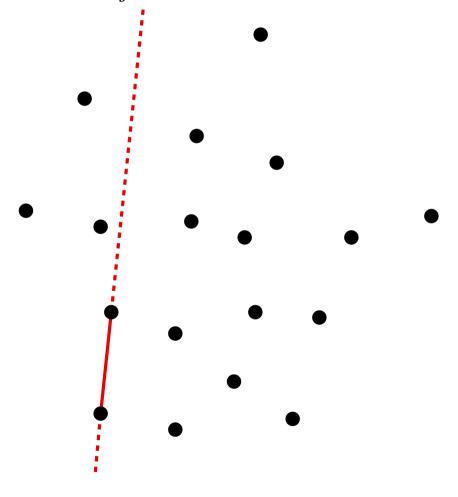
## **Computing the extreme segments**

### Characterization



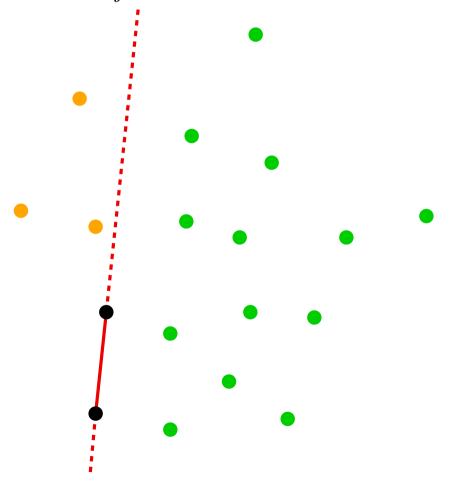
### **Computing the extreme segments**

### Characterization



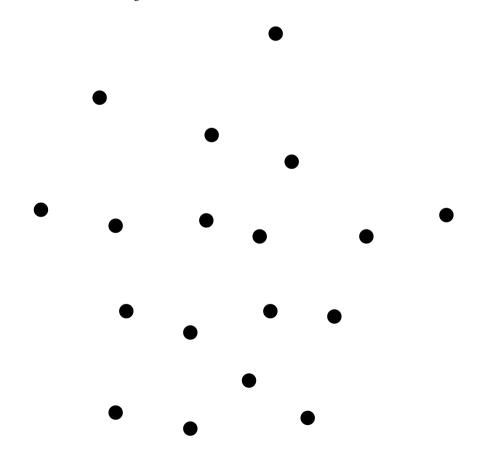
### **Computing the extreme segments**

### Characterization



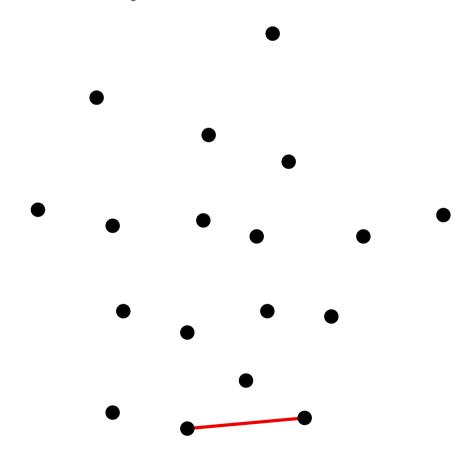
## **Computing the extreme segments**

### Characterization



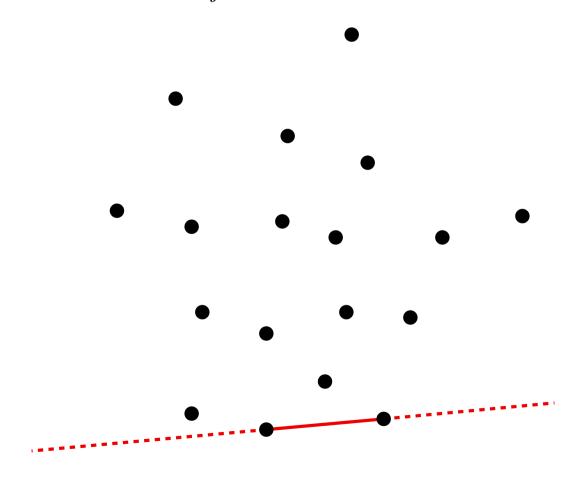
## **Computing the extreme segments**

### Characterization



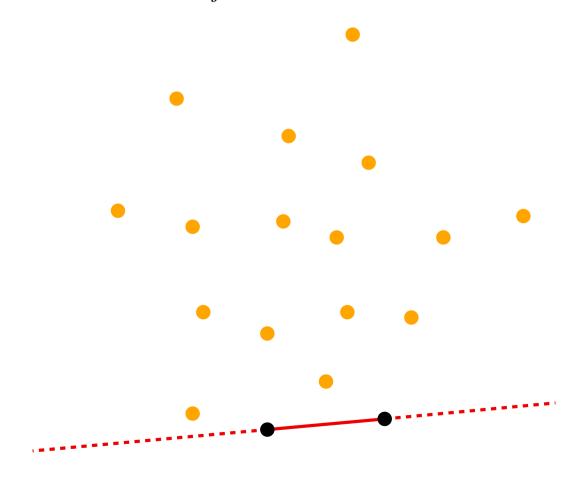
## **Computing the extreme segments**

### Characterization



## **Computing the extreme segments**

### Characterization



## **Computing the extreme segments**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an extreme segment if and only if all the points  $p_k$  with  $k \neq i, j$  lie in the same halfplane defined by the line  $p_i p_j$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

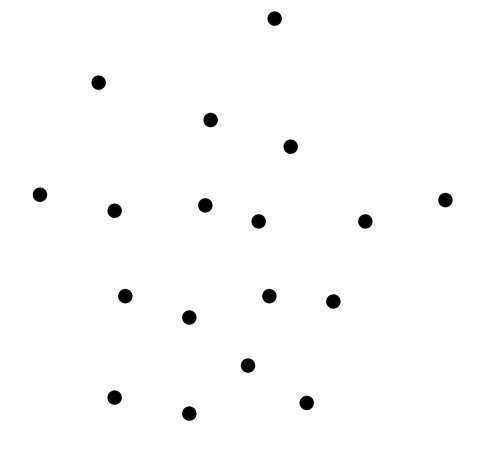
Output: set of the extreme segments

#### Procedure:

For each i, j,

Check whether all  $p_k$  with  $k \neq i, j$ 

lie in the same halfplane defined by  $p_i p_j$ .



### **Computing the extreme segments**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an extreme segment if and only if all the points  $p_k$  with  $k \neq i, j$  lie in the same halfplane defined by the line  $p_i p_j$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

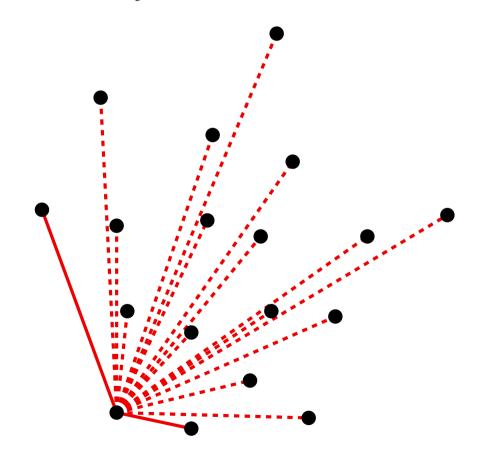
Output: set of the extreme segments

#### Procedure:

For each i, j,

Check whether all  $p_k$  with  $k \neq i, j$ 

lie in the same halfplane defined by  $p_i p_j$ .



## **Computing the extreme segments**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an extreme segment if and only if all the points  $p_k$  with  $k \neq i, j$  lie in the same halfplane defined by the line  $p_i p_j$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

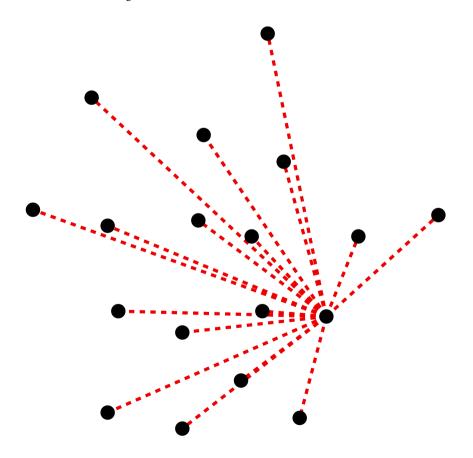
Output: set of the extreme segments

#### Procedure:

For each i, j,

Check whether all  $p_k$  with  $k \neq i, j$ 

lie in the same halfplane defined by  $p_i p_j$ .



### **Computing the extreme segments**

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an extreme segment if and only if all the points  $p_k$  with  $k \neq i, j$  lie in the same halfplane defined by the line  $p_i p_j$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

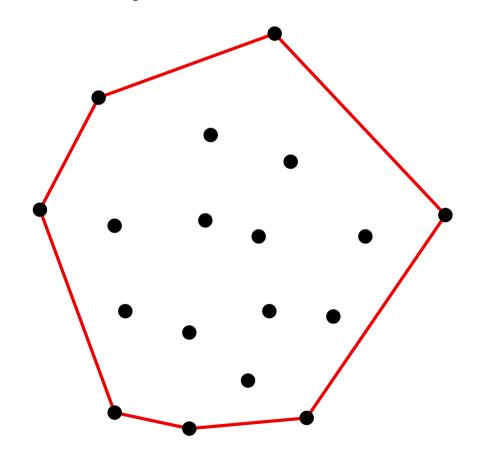
Output: set of the extreme segments

#### Procedure:

For each i, j,

Check whether all  $p_k$  with  $k \neq i, j$ 

lie in the same halfplane defined by  $p_i p_j$ .



## Computing the extreme segments

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an extreme segment if and only if all the points  $p_k$  with  $k \neq i, j$  lie in the same halfplane defined by the line  $p_i p_j$ .

## **Algorithm**

Input:  $p_1, \ldots, p_n$ 

Output: set of the extreme segments

Procedure:

For each i, j,

Check whether all  $p_k$  with  $k \neq i, j$ 

lie in the same halfplane defined by  $p_i p_j$ .

In the affirmative, return the segment  $p_i p_j$ .

Running time:  $\Theta(n^3)$ Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

Problemas si los pontos <u>no</u> están en posición general:

**Algorithm:** EXTREME EDGES for each i do for each  $i \neq i$  do for each  $k \neq i \neq j$  do if  $p_k$  is not left or on  $(p_i, p_i)$ then  $(p_i, p_j)$  is not extreme

Computing the convex hull

**Computing the convex hull** 

(sorted list of its vertices)

## Computing the convex hull

### Input:

 $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$  a set of n points in the plane

## **Output:**

l, the list of the <u>vertices</u> of ch(P) sorted in counterclockwise order

L'en el algoritus original se generar como salida la lista de aristas, esta es una pequeña variante: generar les vértices como salida.

« consultar original en 0 Poorke

## Computing the convex hull

### Input:

 $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$  a set of n points in the plane

## **Output:**

 $\it l$ , the list of the vertices of  $\it ch(P)$  sorted in counterclockwise order

### Characterization

Given  $X = \{p_1, \dots, p_n\}$ , the segment  $p_i p_j$  is an edge of the convex hull of X if and only if all the points  $p_k$  with  $k \neq i, j$  lie to the left of the oriented line  $p_i p_j$ .

todemes mejorar et algoritmo anterior Hay exactamente n aristos.

Jarvis march, 1973 Raymond Austin Varvis, Ing. Electrico Australian murio en 2013,

Gift wrapping.

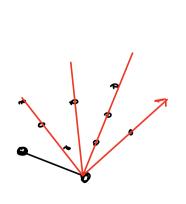
Suporevios posición general.

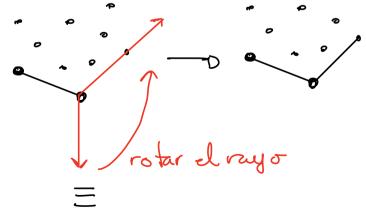


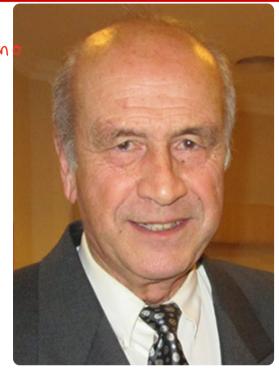
Idea : Usar la información ya en contrada para encontrar nueva información. Esta esona técnica muy comón.

Podemas replantear el problema: (i)

Dada una avista extrena de chlo), encontrar otra avista extrema.



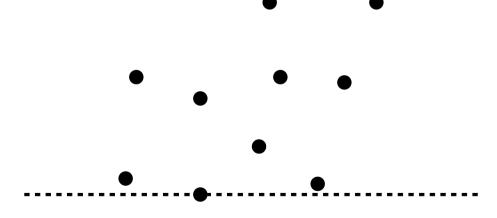




- $\begin{array}{c} \text{ of de Nevor coord $\mathcal{Y}$, por ejemple.} \\ \text{ o(n) 1. Find a vertex of } ch(P) \text{ (for example, the lexicographically smaller point } p_i \in P) \text{ and add it to } l \end{array}$ 
  - 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
    - (a) Detect the angularly rightmost point  $p_j \in P$ with respect to v.
    - (b) Add  $p_i$  to l
  - 3. Return l

- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l

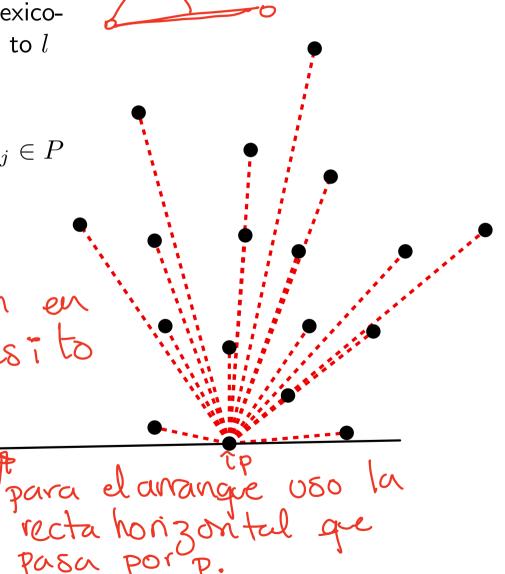
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l



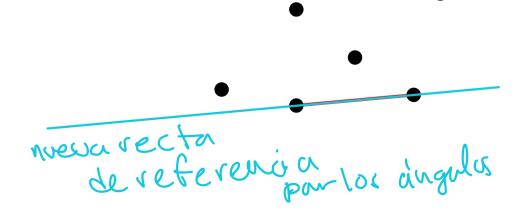
### **Jarvis** march

- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$ with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l

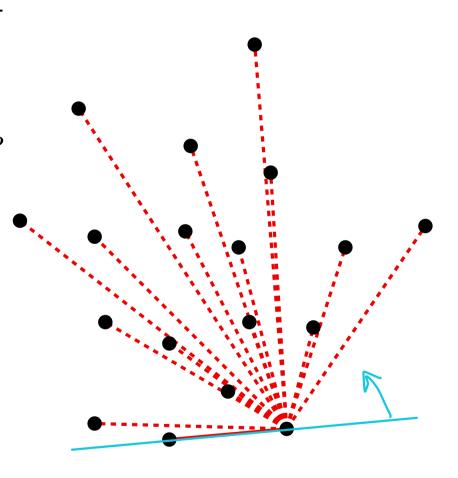
no recess to gre estén en ordan, uni camente reces i to el mínimo



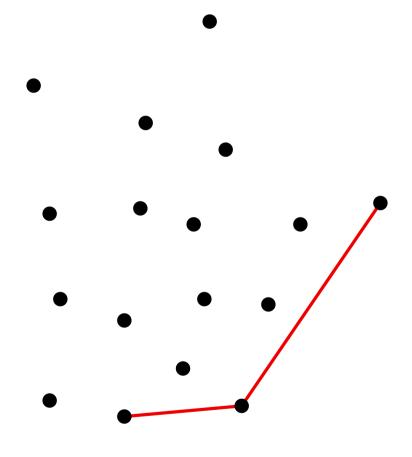
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return *l*



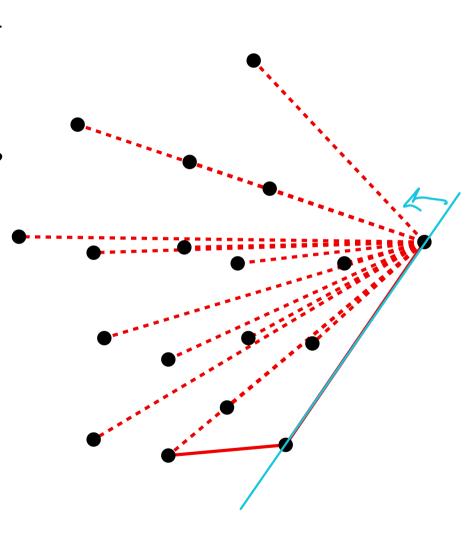
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



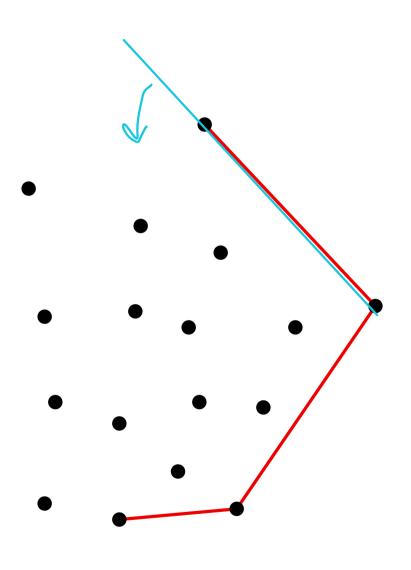
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



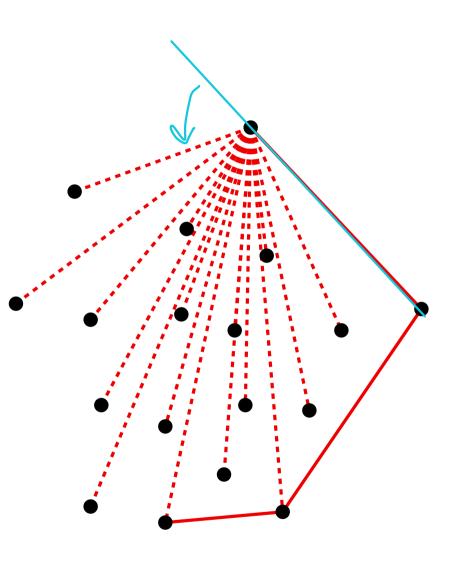
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



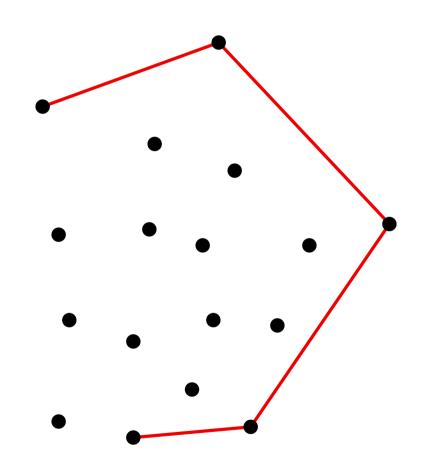
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return *l*



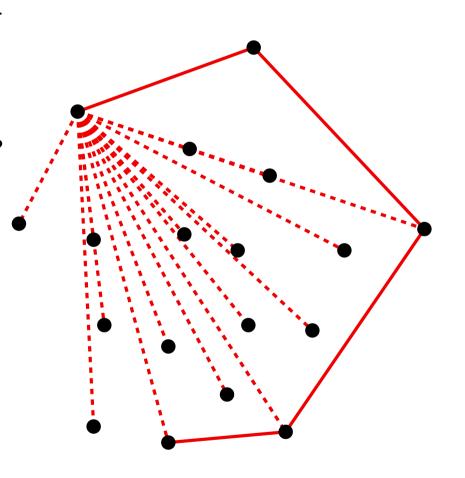
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l



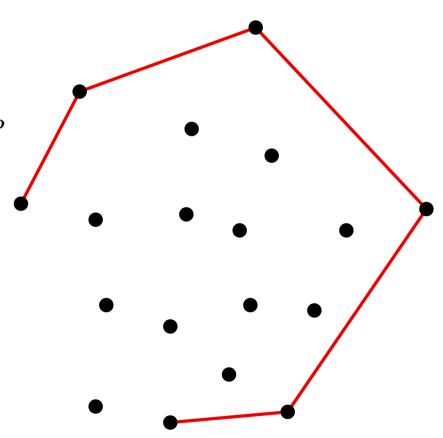
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



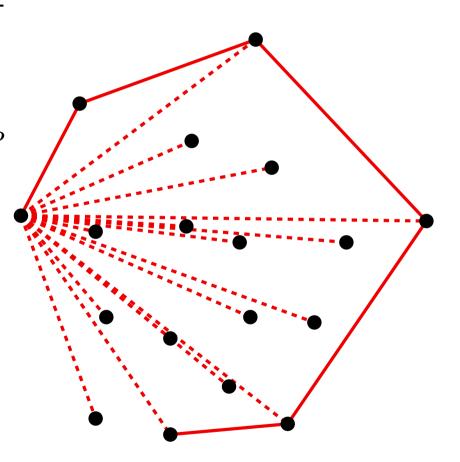
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l



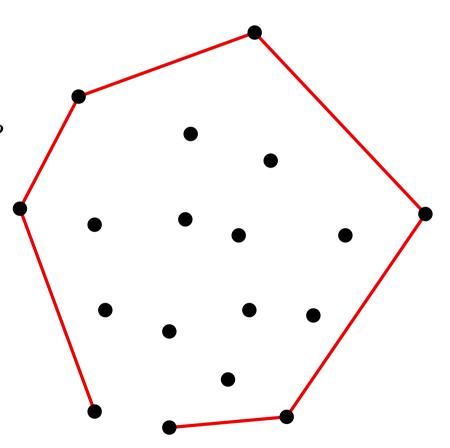
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l



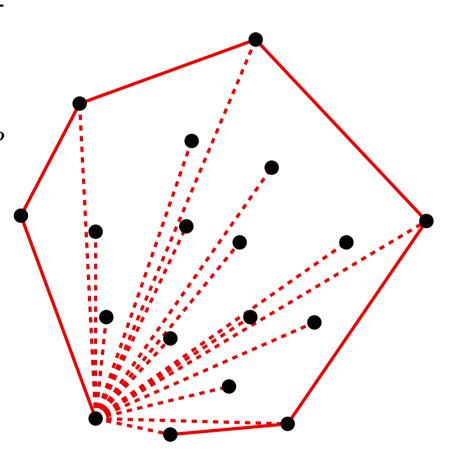
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



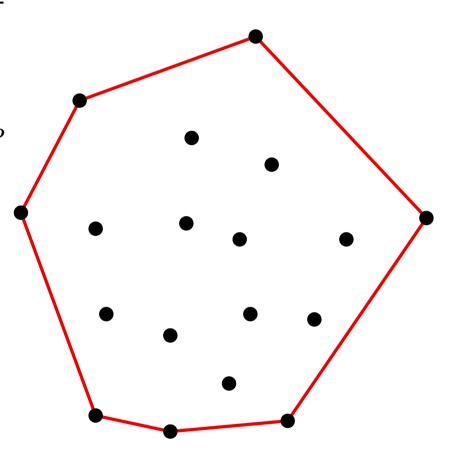
- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l



- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l



- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_j$  to l
- 3. Return l

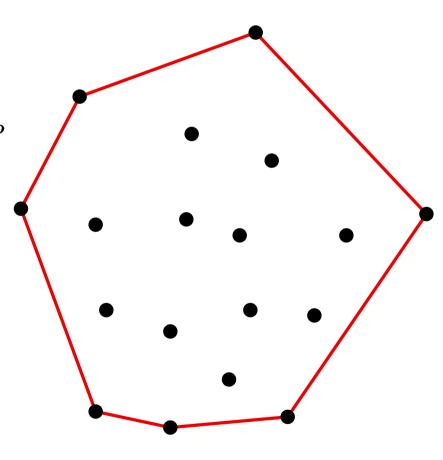


#### Jarvis march

- 1. Find a vertex of ch(P) (for example, the lexicographically smaller point  $p_i \in P$ ) and add it to l
- 2. While  $v = \text{Last}(l) \neq \text{First}(l)$ , do:
  - (a) Detect the angularly rightmost point  $p_j \in P$  with respect to v.
  - (b) Add  $p_i$  to l
- 3. Return l

tamaño de la entrada la salida  $\Theta(hn) = O(n^2)$  Out put sensi tive





QuickHull algorithm (by prune-and-search) Varços investigadores al final de la década de los 70.
Lo bautizaron Quick Hull por so similitud com Quick Sort.

Presurata & Shamos, 1985.

QuickSort

```
S X >x
```

```
\frac{\text{PARTITION}(A[1..n], p):}{\text{swap } A[p] \longleftrightarrow A[n]} \longleftrightarrow A[n]
\ell \leftarrow 0 \qquad \qquad \langle \langle \# items < pivot \rangle \rangle
\text{for } i \leftarrow 1 \text{ to } n-1
\text{if } A[i] < A[n]
\ell \leftarrow \ell + 1
\text{swap } A[\ell] \longleftrightarrow A[i]
\text{swap } A[n] \longleftrightarrow A[\ell + 1]
\text{return } \ell + 1
```

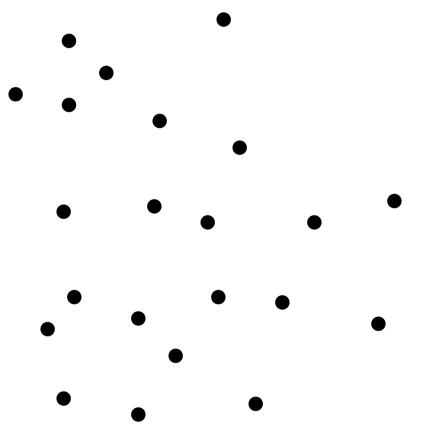
Figure 1.8. Quicksort

### **QuickHull algorithm (by prune-and-search)**

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.

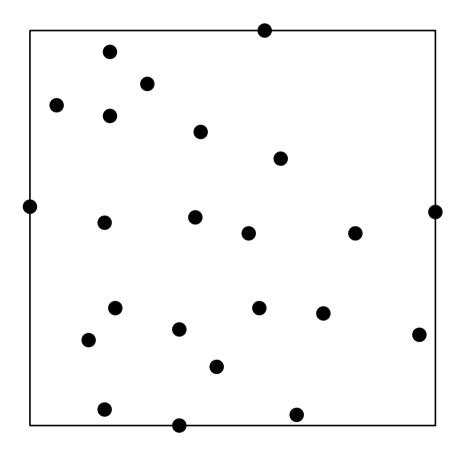
### **QuickHull algorithm (by prune-and-search)**

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.



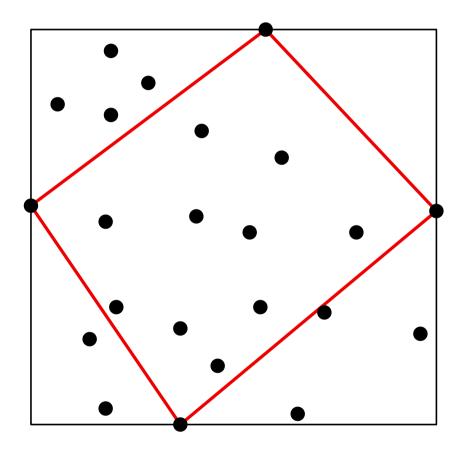
### **QuickHull algorithm (by prune-and-search)**

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.



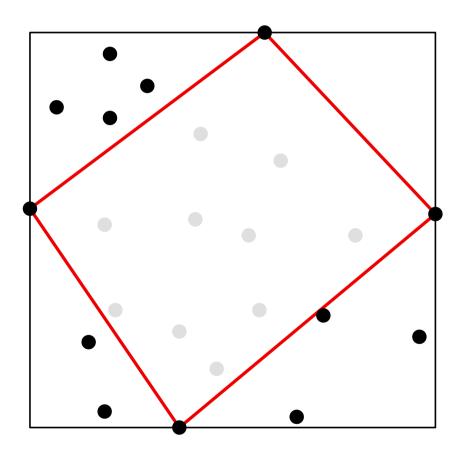
### **QuickHull algorithm (by prune-and-search)**

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.



### **QuickHull algorithm (by prune-and-search)**

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.

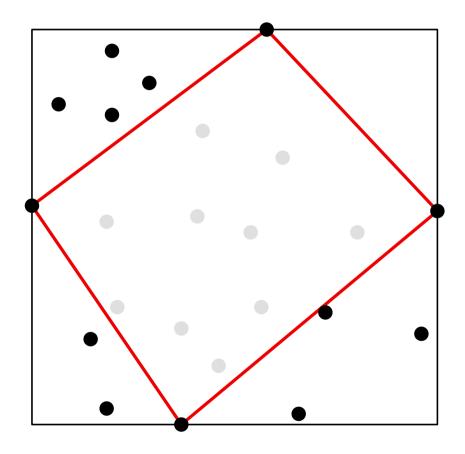


### **QuickHull algorithm (by prune-and-search)**

#### Initialization

- 1. Find the extreme points in the horizontal and vertical directions.
- 2. Compute the convex hull of these (between 2 and 8) points.
- 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior.

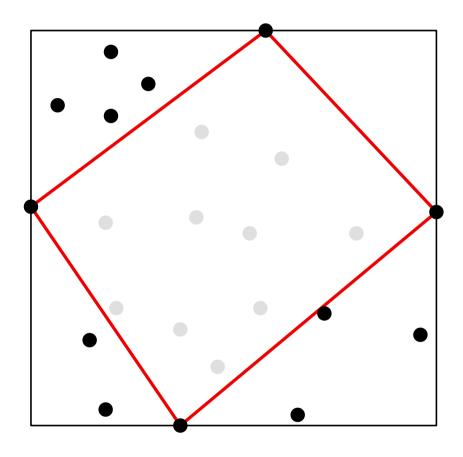
Running time of this step: O(n)



### **QuickHull algorithm (by prune-and-search)**

#### Advance

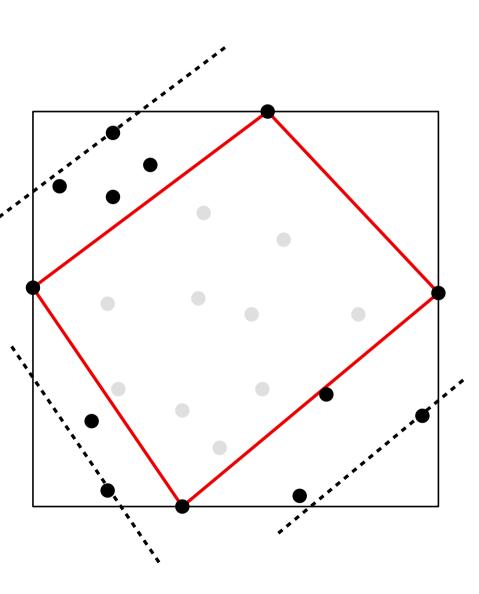
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### QuickHull algorithm (by prune-and-search)

Advance

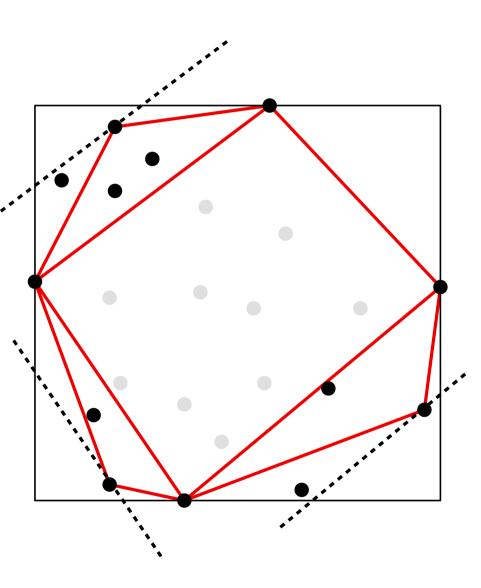
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

Advance

- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

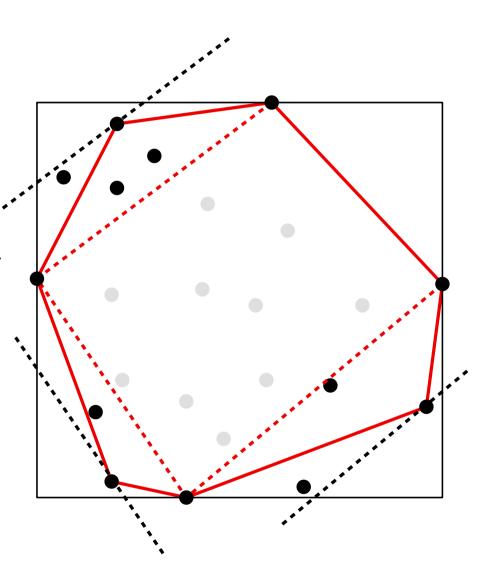
Advance

Recursively, do:

1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.

2. Connect the extreme point with te endpoints of the edge, and update the convex hull.

3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

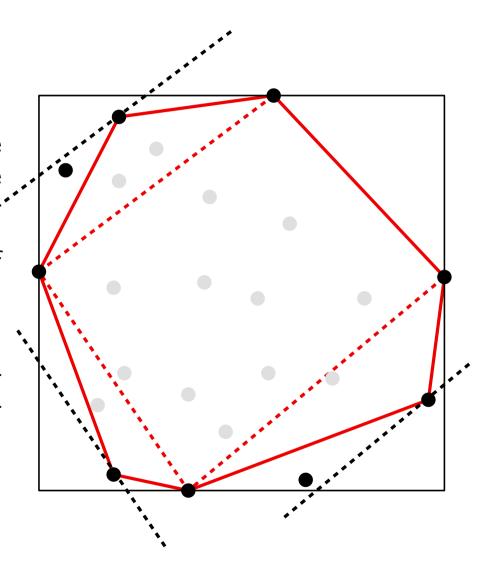
Advance

Recursively, do:

1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.

2. Connect the extreme point with te endpoints of the edge, and update the convex hull.

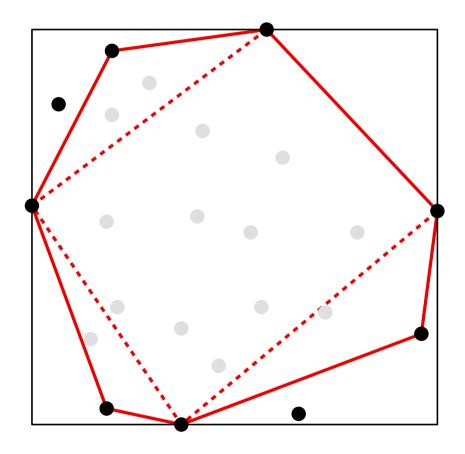
3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

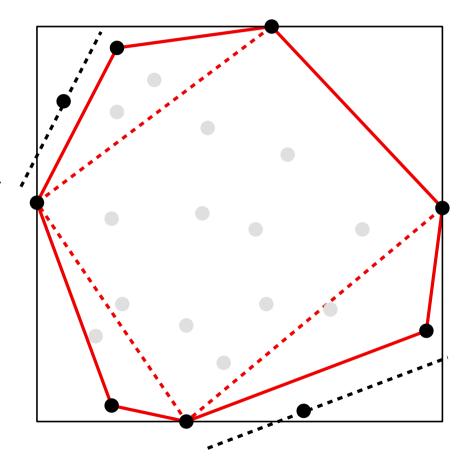
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

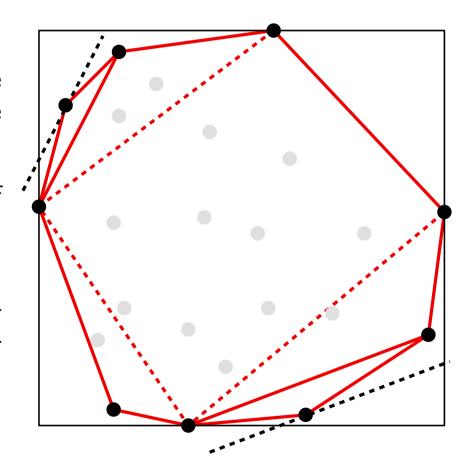
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

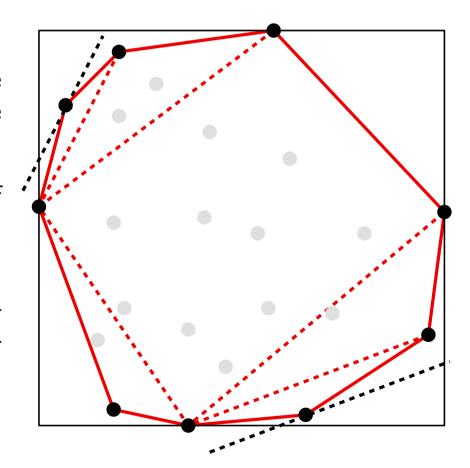
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

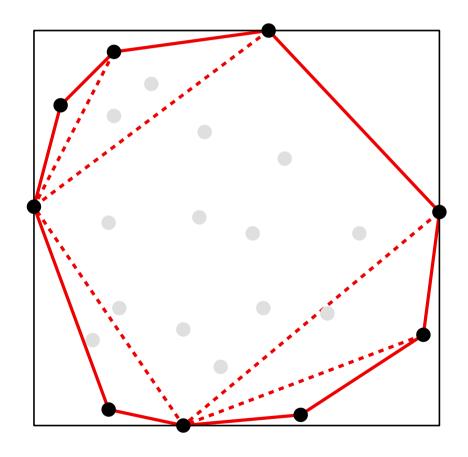
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

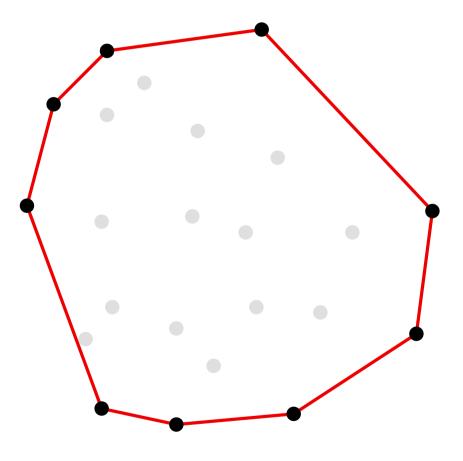
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



### **QuickHull algorithm (by prune-and-search)**

#### Advance

- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.



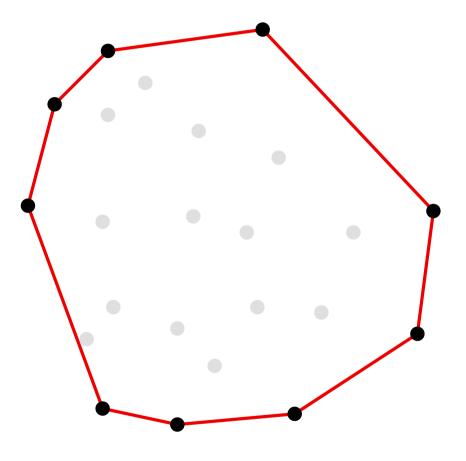
### QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

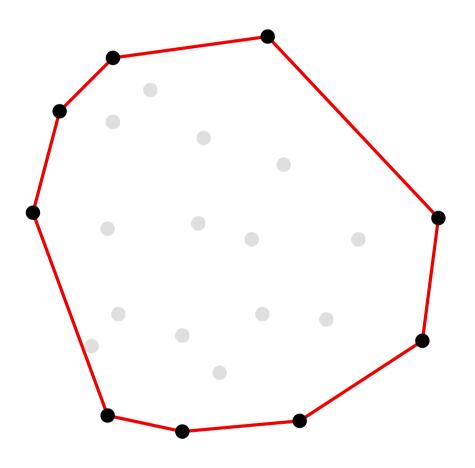
- 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region.
- 2. Connect the extreme point with te endpoints of the edge, and update the convex hull.
- 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle.

Running time of this step:  $O(n^2)$ 



QuickHull algorithm (by prune-and-search)

Overall running time:  $O(n^2)$ 

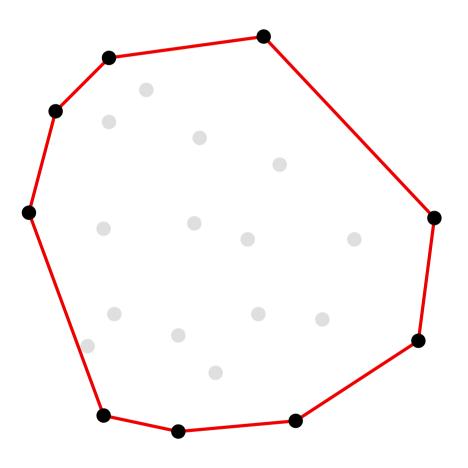


### **QuickHull algorithm (by prune-and-search)**

Overall running time:  $O(n^2)$ 

Nevertheless, the running time of this algorithm depends on the position of the input points. For example:

- If the input points are in convex position, the running time is  $\Theta(n^2)$ .
- If the points are such that each prune step eliminates half of the current points, then the algorithm runs in  $\Theta(n \log n)$  time.
- If the convex hull is triangular, the algorithm runs in  $\Theta(n)$  time.



**Graham's algorithm** 

### **Graham's algorithm**

```
Initialization
```

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in l and delete if from P

#### Advance

```
While there exist points p_i \in P to be explored, do:
```

```
p = top(l)

p^- = previous(top(l))

- If p^-pp_i is a left turn:

- Push p_i in l

- Advance i
```

- Else:

- Pop p from l

Return l

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in l and delete if from P

#### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
p = top(l)p^- = previous(top(l))
```

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l

#### Return l

### **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

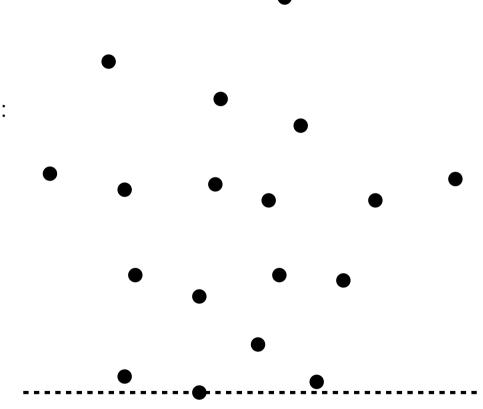
#### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l

#### Return *l*



## **Graham's algorithm**

### **Initialization**

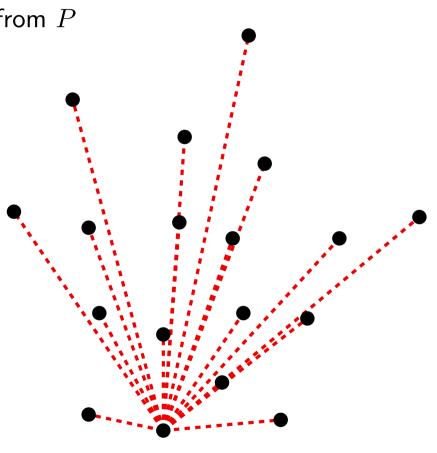
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\emph{l}$  and delete if from  $\emph{P}$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
p = top(l)
p^{-} = previous(top(l))
```

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



### **Graham's algorithm**

### **Initialization**

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\emph{l}$  and delete if from  $\emph{P}$

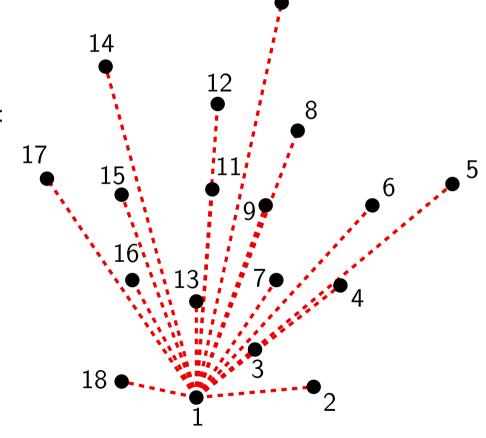
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

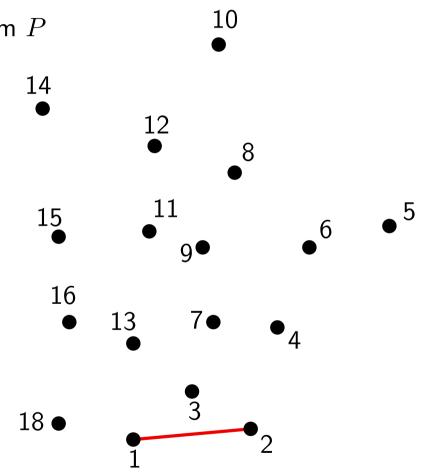
#### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

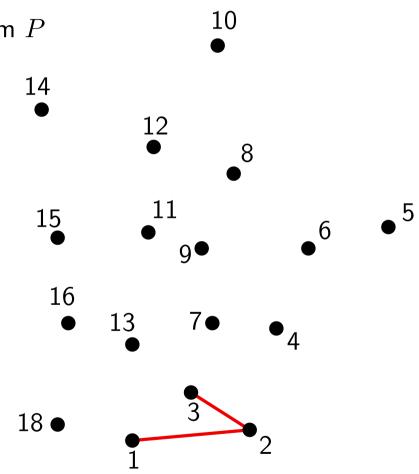
#### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

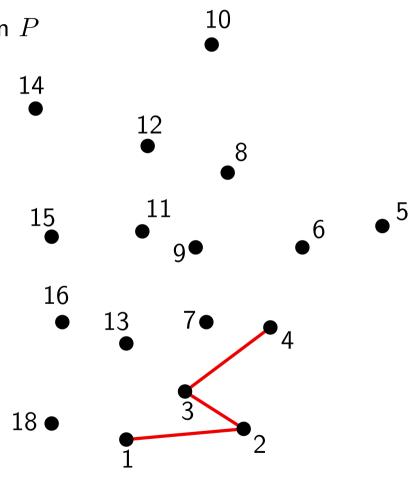
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

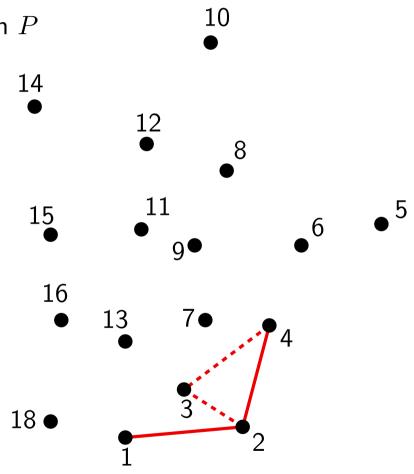
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

## **Graham's algorithm**

#### Initialization

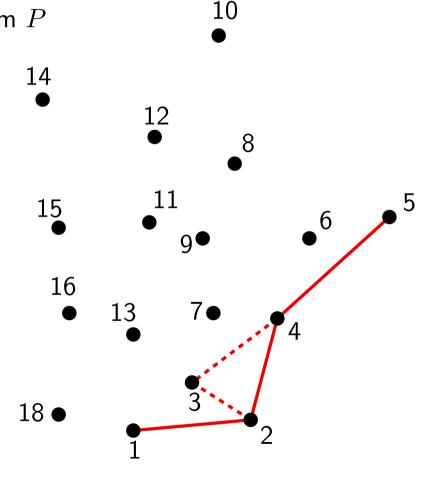
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

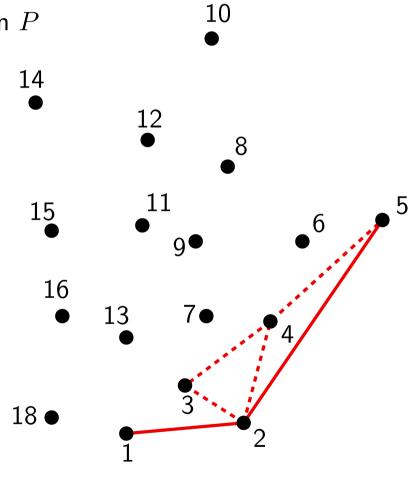
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

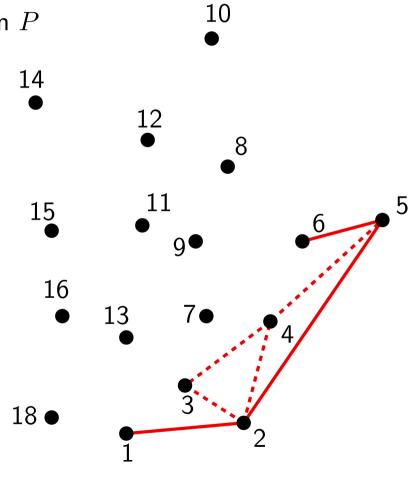
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

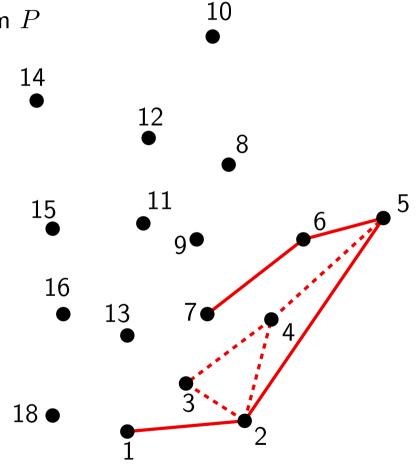
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

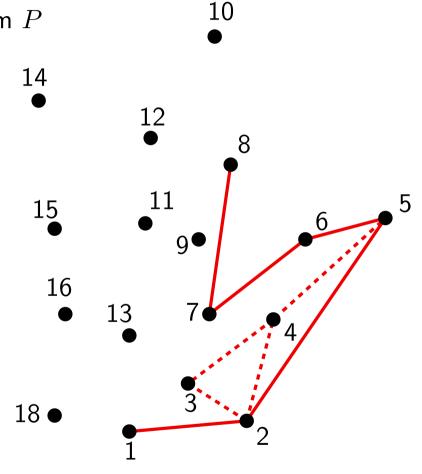
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

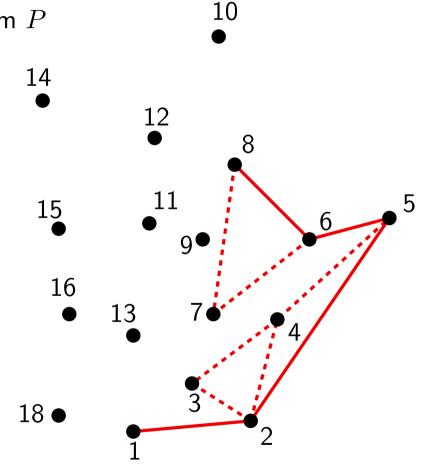
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

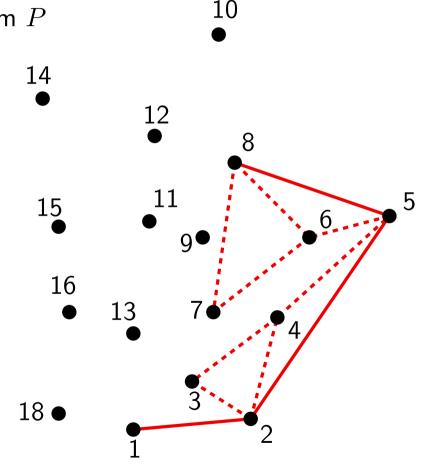
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

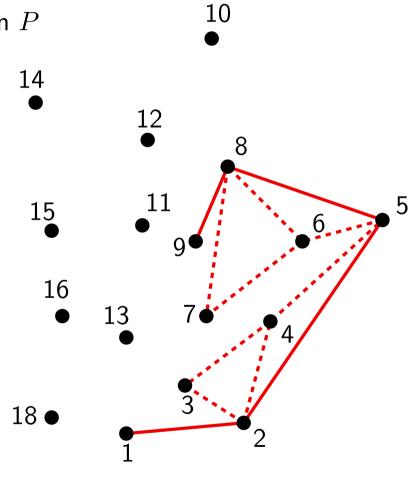
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

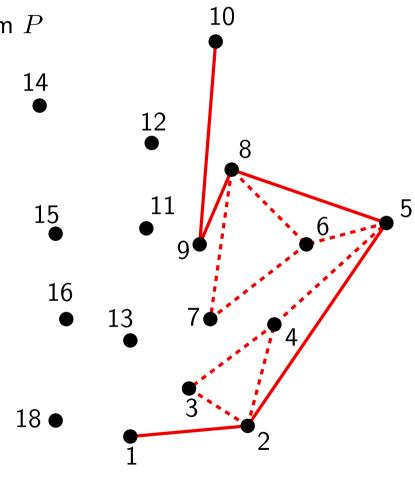
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

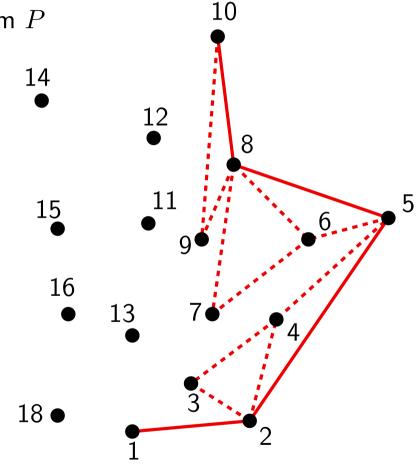
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

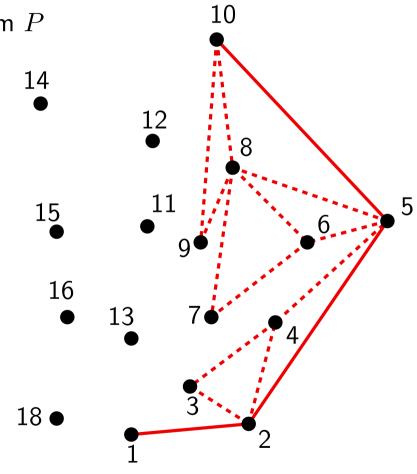
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

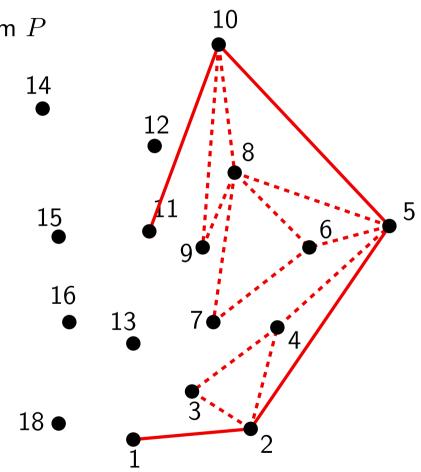
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

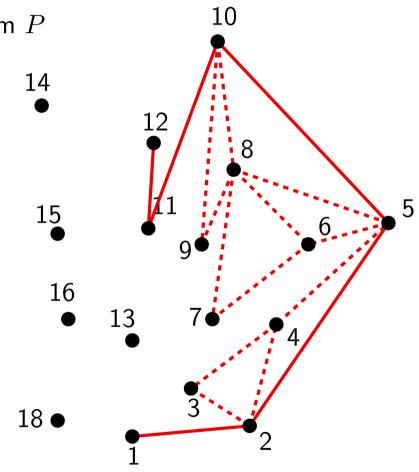
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

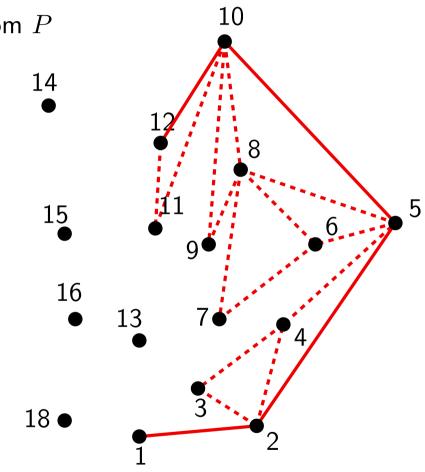
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

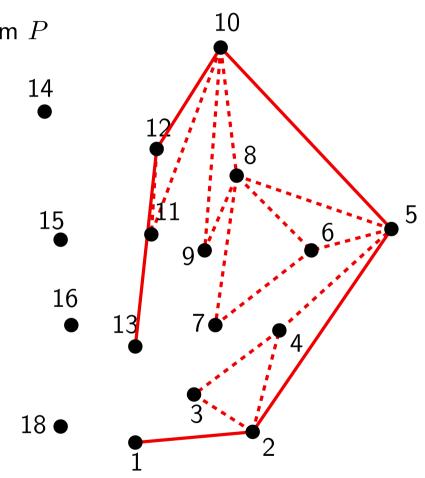
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\boldsymbol{l}$  and delete if from  $\boldsymbol{P}$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

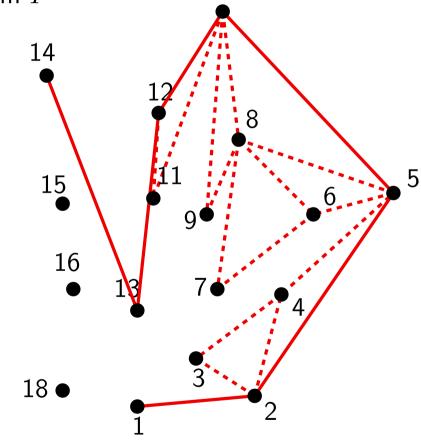
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance *i*
- Else:
  - Pop p from l



17

## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

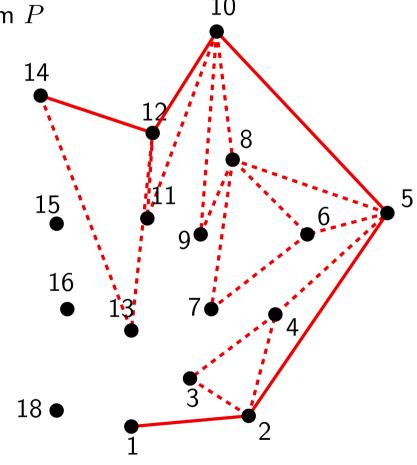
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

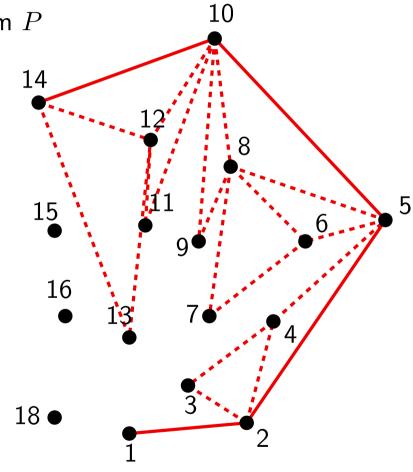
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

## **Graham's algorithm**

### Initialization

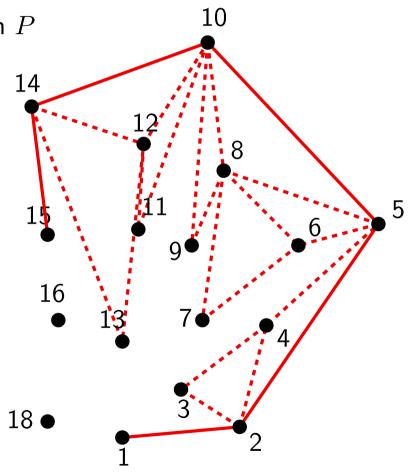
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$
$$p^- = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

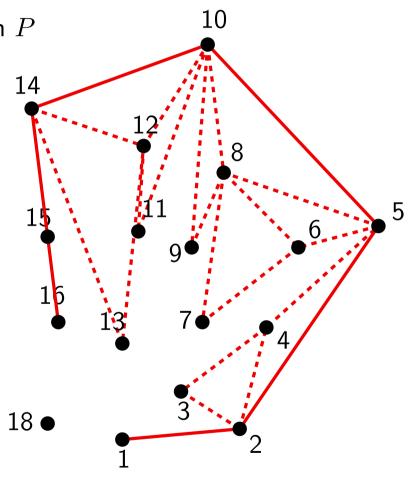
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



17

### Graham's algorithm

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

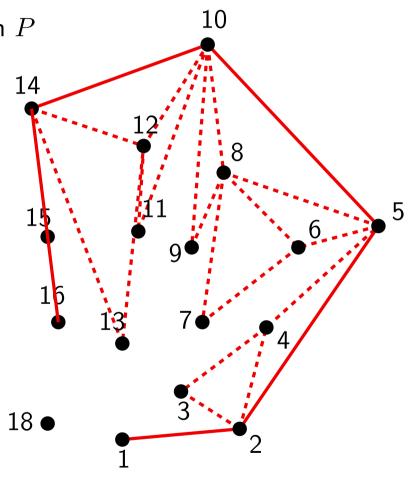
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



### **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

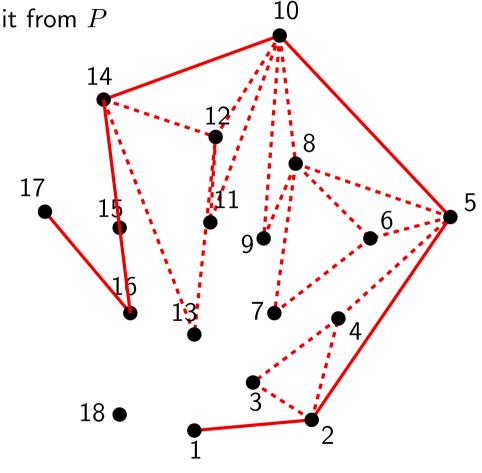
### Advance

While there exist points  $p_i \in P$  to be explored, do:

$$p = top(l)$$

$$p^{-} = previous(top(l))$$

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



### **Graham's algorithm**

#### Initialization

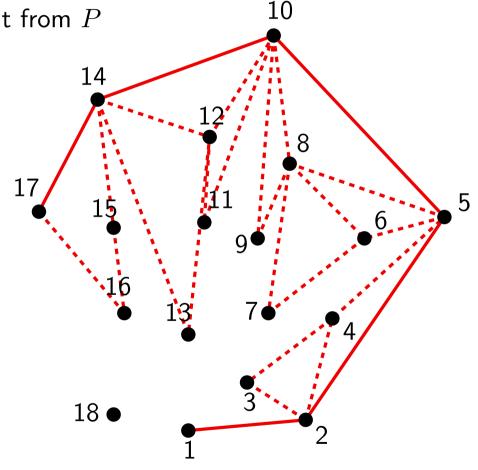
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
p = top(l)
p^{-} = previous(top(l))
```

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance i
- Else:
  - Pop p from l



### **Graham's algorithm**

### **Initialization**

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

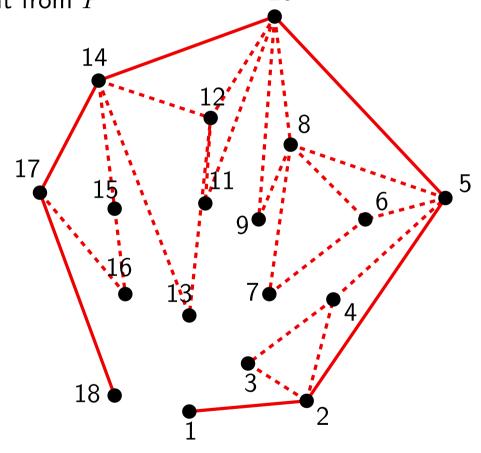
### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
p = top(l)
p^{-} = previous(top(l))
- If p^{-}pp_{i} is a left turn:
- Push p_{i} in l
- Advance i
```

- Else:
  - Pop p from l

Return *l* 



10

### **Graham's algorithm**

#### Initialization

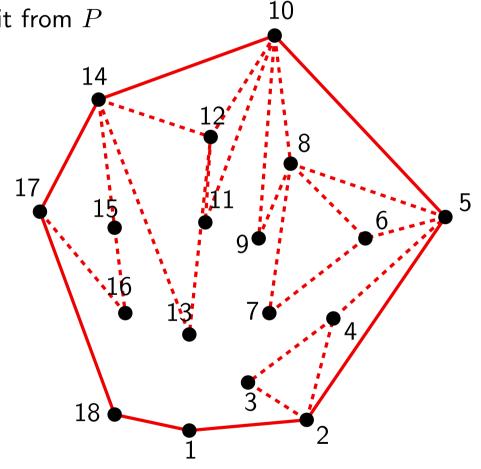
- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
\begin{split} p &= \mathrm{top}(l) \\ p^- &= \mathrm{previous}(\mathrm{top}(l)) \\ \text{- If } p^- p p_i \text{ is a left turn:} \\ \text{- Push } p_i \text{ in } l \\ \text{- Advance } i \end{split}
```

- Else:
  - Pop p from l



## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

While there exist points  $p_i \in P$  to be explored, do:

```
p = \operatorname{top}(l)

p^- = \operatorname{previous}(\operatorname{top}(l))

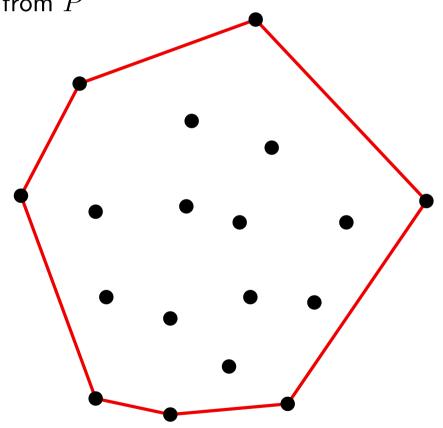
- If p^- p p_i is a left turn:

- Push p_i in l

- Advance i

- Else:

- Pop p from l
```



## **Graham's algorithm**

#### Initialization

- Find a vertex v of ch(P), push it in l and delete it from P
- Angularly sort the points around  $\boldsymbol{v}$
- Push the first point in  $\it l$  and delete if from  $\it P$

### Advance

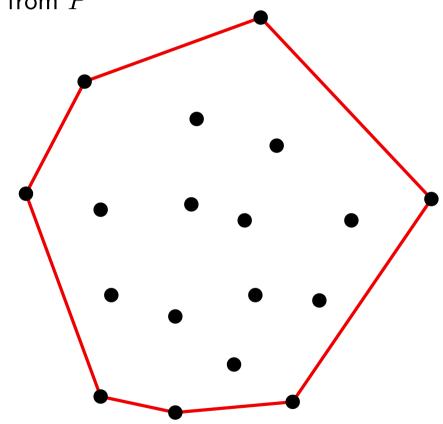
While there exist points  $p_i \in P$  to be explored, do:

```
p = top(l)
p^{-} = previous(top(l))
```

- If  $p^-pp_i$  is a left turn:
  - Push  $p_i$  in l
  - Advance *i*
- Else:
  - Pop p from l

### Return *l*

**Running time:**  $O(n \log n)$ 



**Incremental algorithm** 

## **Incremental algorithm**

```
Initialization
```

$$l = p_1, p_2, p_3$$

#### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$

## Incremental algorithm

### Initialization

$$l = p_1, p_2, p_3$$

#### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$

## Incremental algorithm

### Initialization

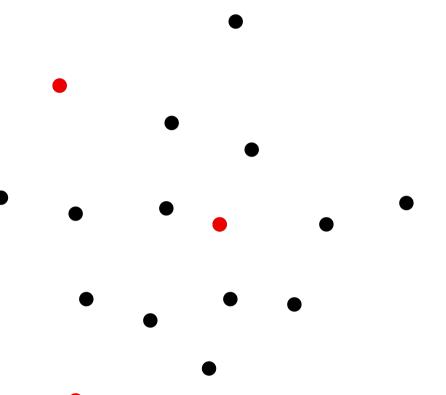
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

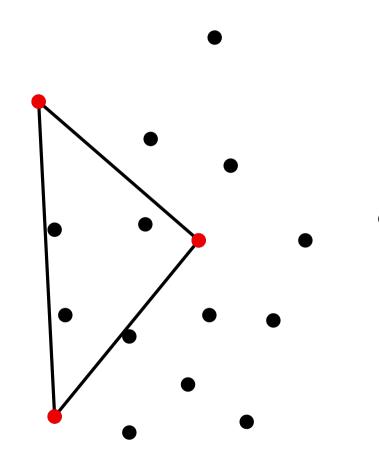
$$l = p_1, p_2, p_3$$

#### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

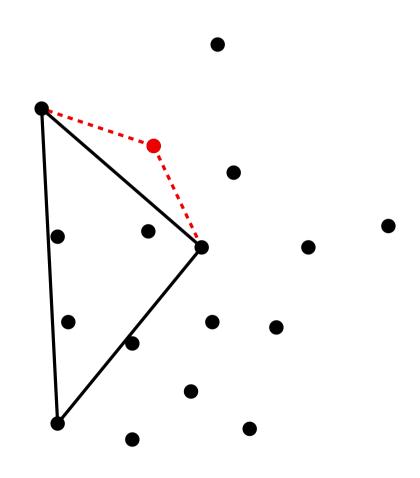
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

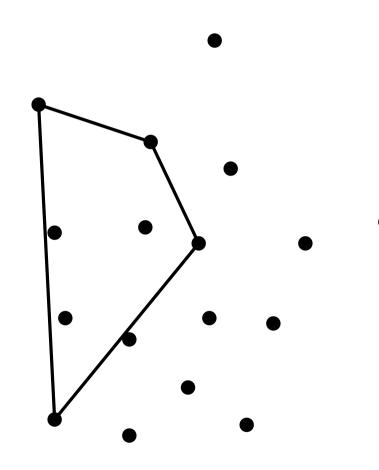
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

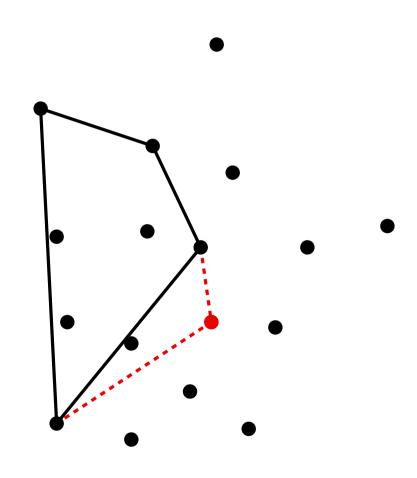
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

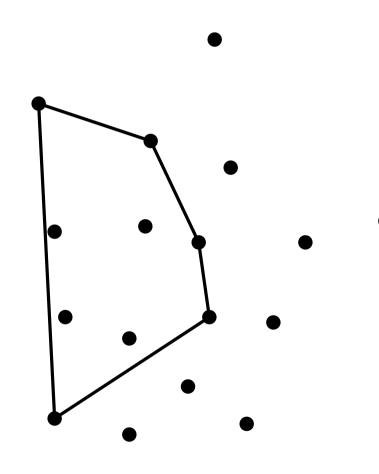
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

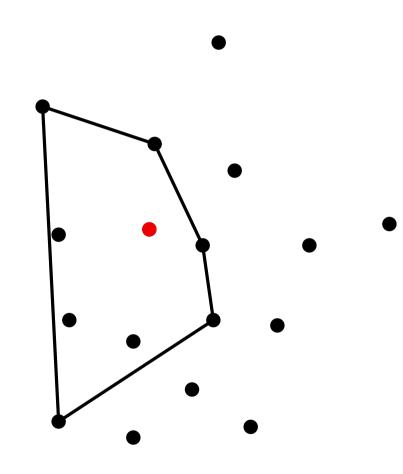
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

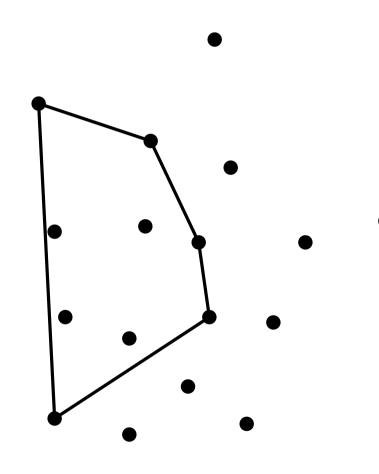
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

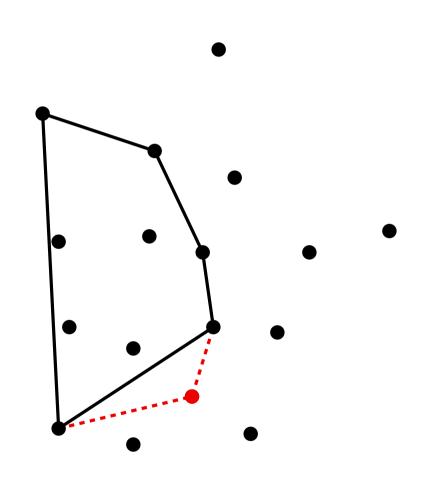
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

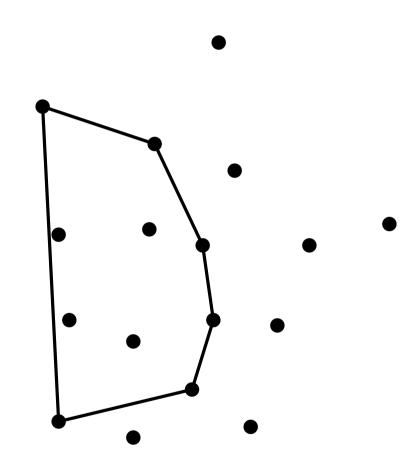
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

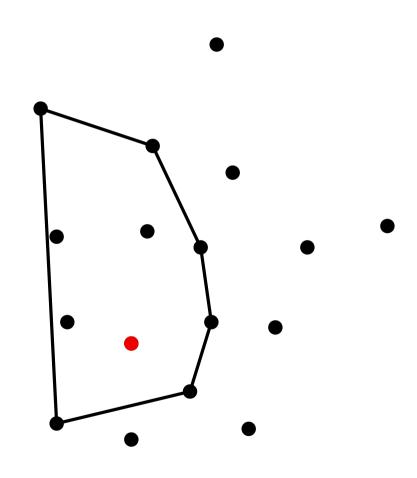
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

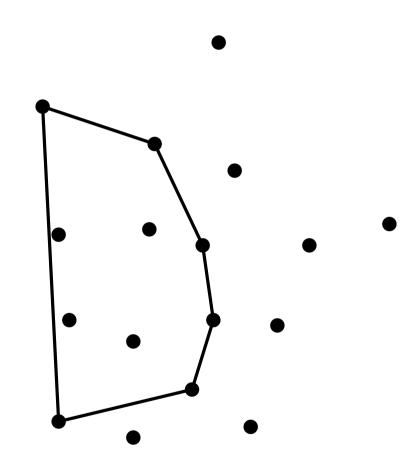
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

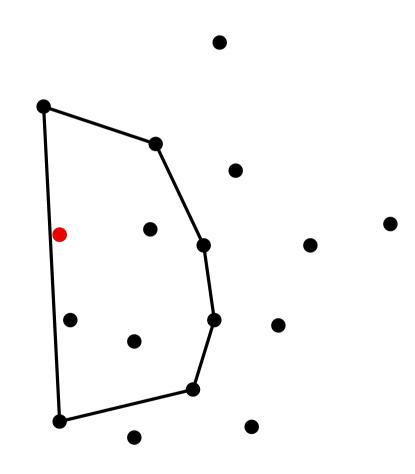
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

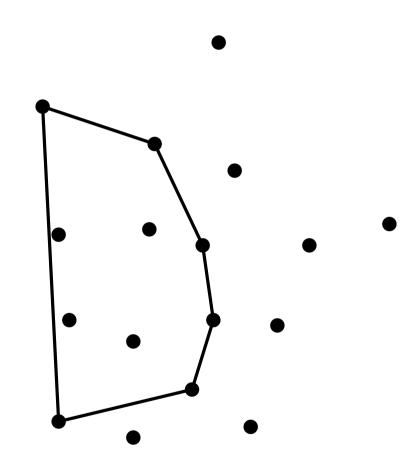
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

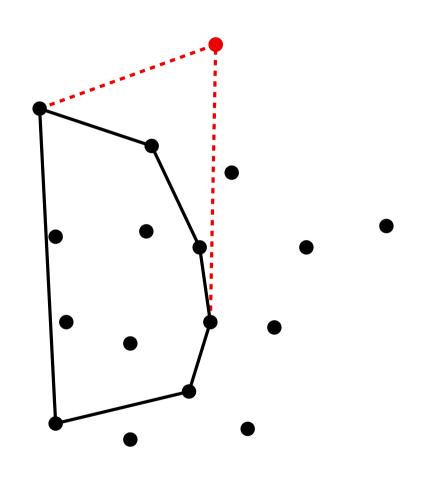
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



### Incremental algorithm

### Initialization

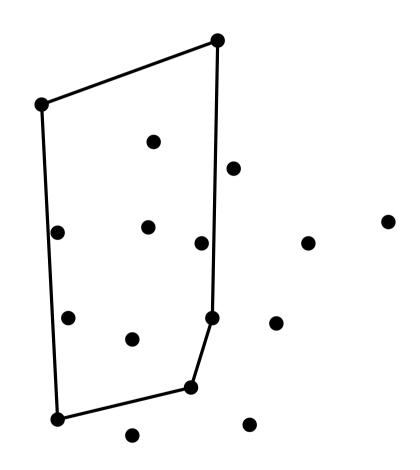
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

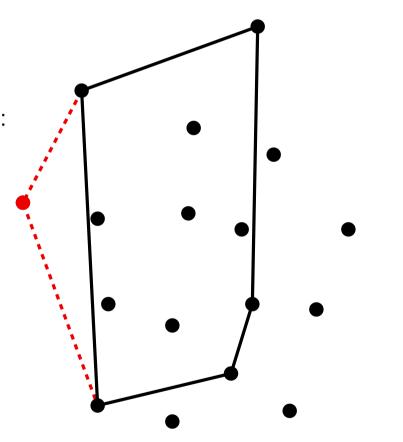
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

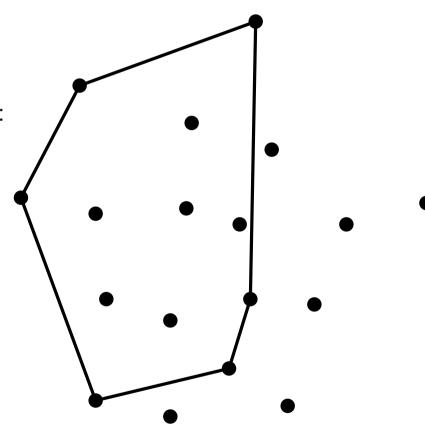
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

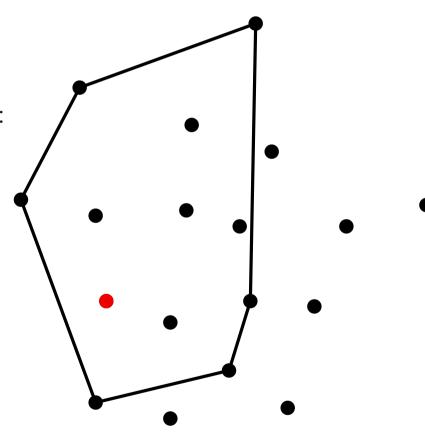
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

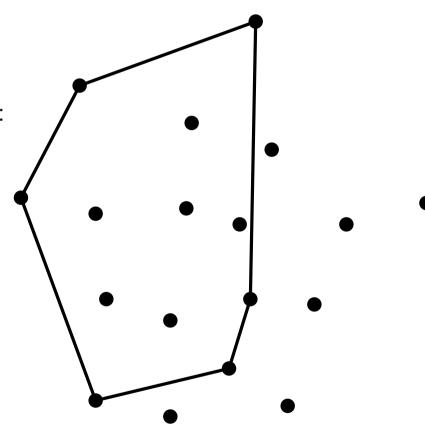
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



### **Incremental algorithm**

### Initialization

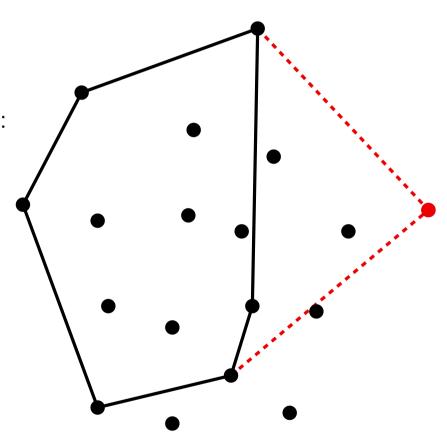
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

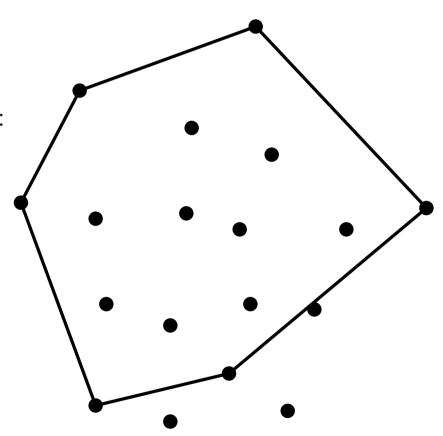
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



### Incremental algorithm

### Initialization

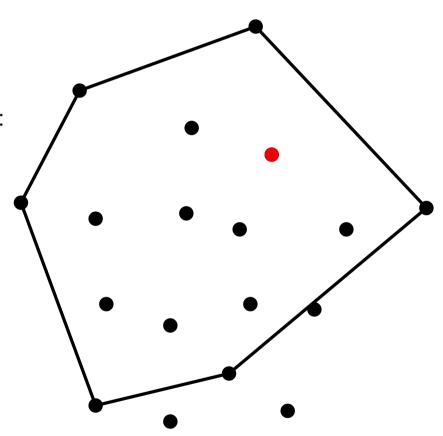
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

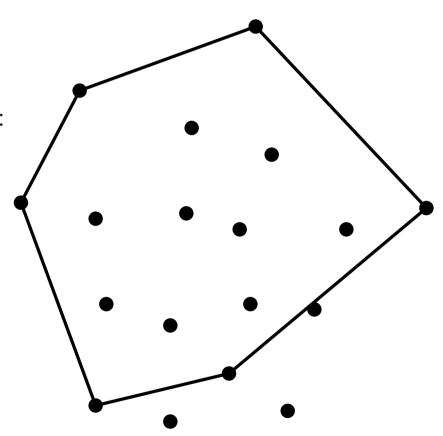
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## **Incremental algorithm**

### Initialization

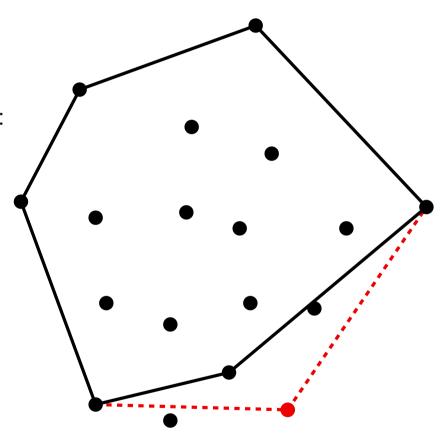
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

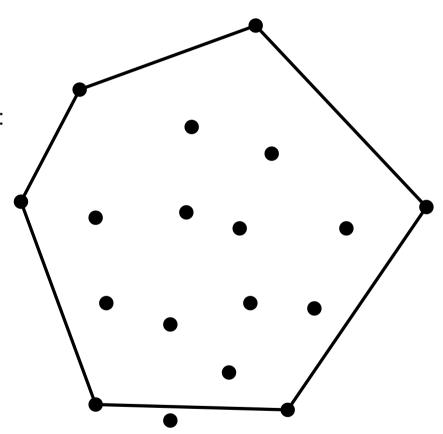
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

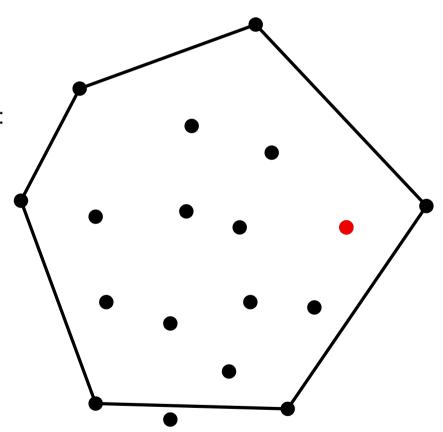
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

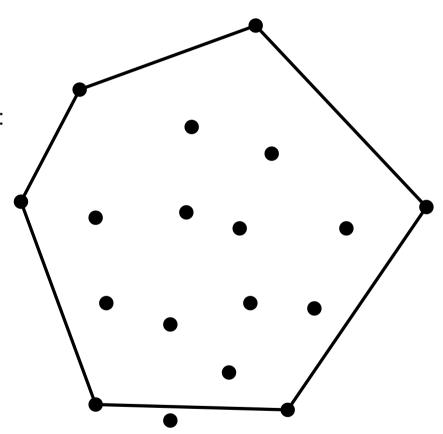
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



### Incremental algorithm

### Initialization

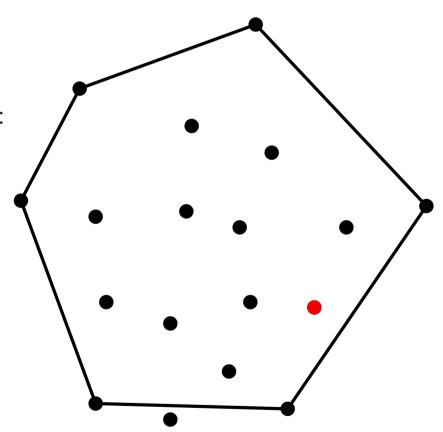
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

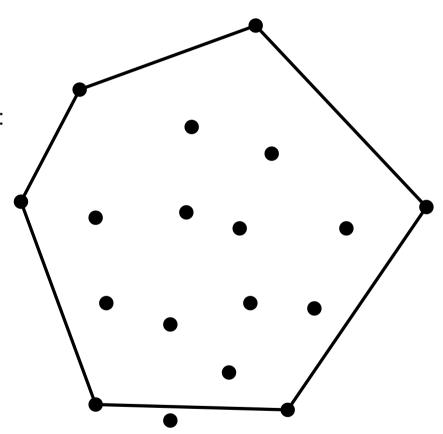
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## **Incremental algorithm**

### Initialization

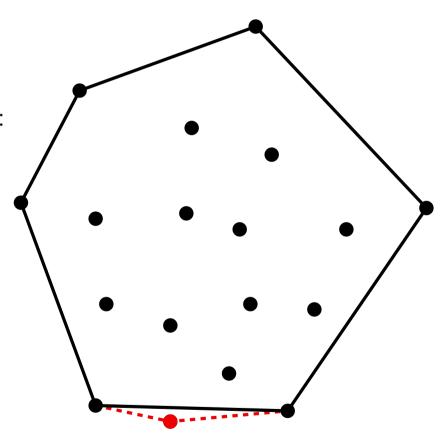
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

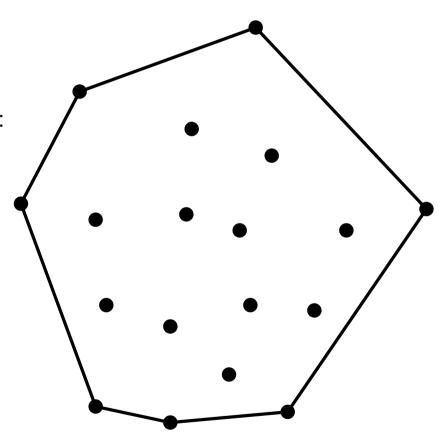
$$l = p_1, p_2, p_3$$

### Advance

From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$



## Incremental algorithm

### Initialization

$$l = p_1, p_2, p_3$$

#### Advance

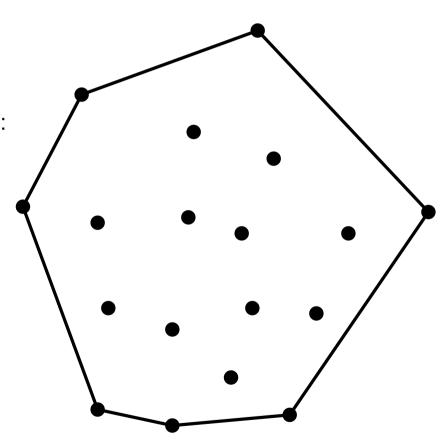
From i = 4 to n, do:

If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$

Return l

Running time:  $O(n \log n)$ 



## Incremental algorithm

### Initialization

$$l = p_1, p_2, p_3$$

#### Advance

From i = 4 to n, do:

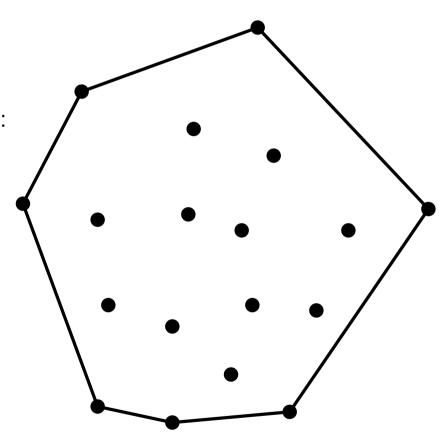
If  $p_i$  lies in the exterior of the polygon defined by l:

- Compute the points  $p_l$  and  $p_r$  defining the supporting lines from  $p_i$  to the polygon
- Replace the chain  $p_l, \ldots, p_r$  in l with the chain  $p_l, p_i, p_r$

Return *l* 

## Running time: $O(n \log n)$

By storing l in a structure allowing binary search and updatings (insertions and deletions) in  $O(\log n)$  time.



**Divide-and-conquer algorithm** 

## **Divide-and-conquer algorithm**

Initialization

1. Sort the points by abscissae

### **Divide-and-conquer algorithm**

Initialization

1. Sort the points by abscissae

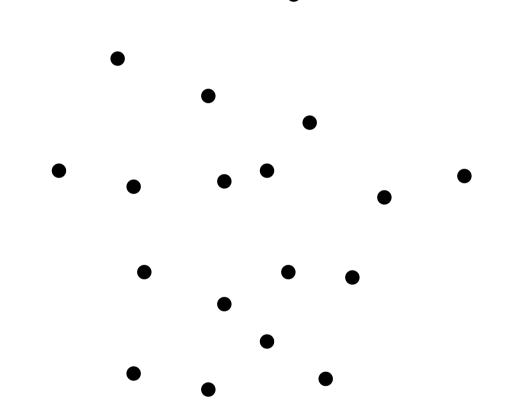
Division

### **Divide-and-conquer algorithm**

### Initialization

1. Sort the points by abscissae

### Division

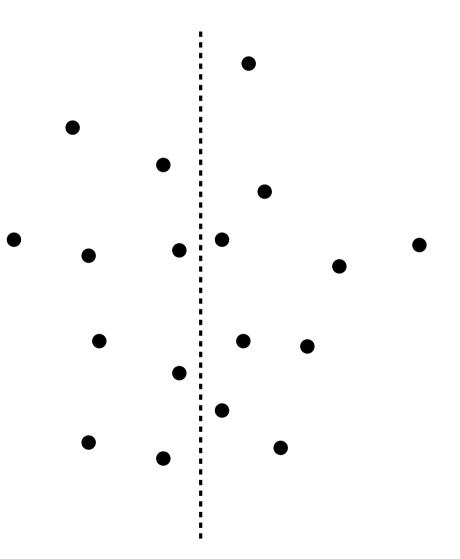


### **Divide-and-conquer algorithm**

### Initialization

1. Sort the points by abscissae

### Division

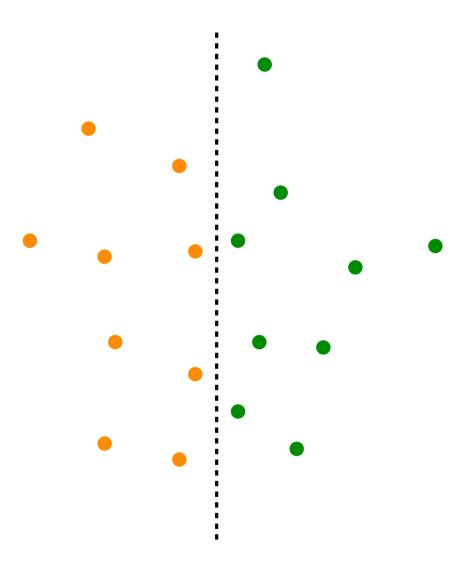


### **Divide-and-conquer algorithm**

### Initialization

1. Sort the points by abscissae

### Division



### **Divide-and-conquer algorithm**

### Initialization

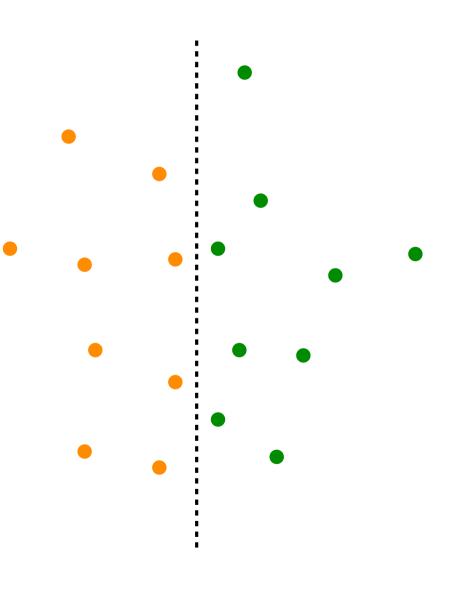
1. Sort the points by abscissae

### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

### Recursion

1. Recursively compute the convex hull of the two subsets



### **Divide-and-conquer algorithm**

### Initialization

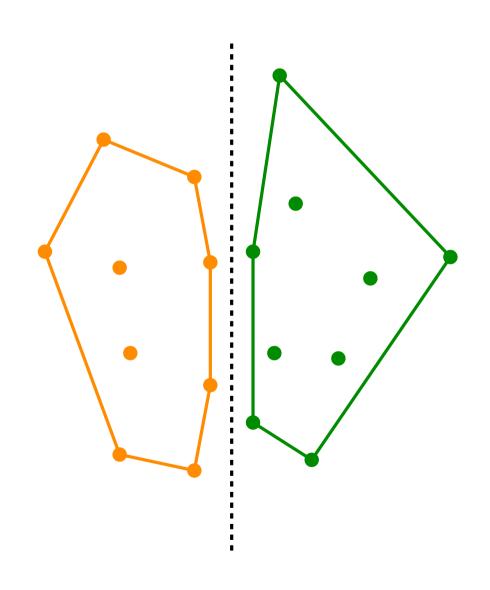
1. Sort the points by abscissae

### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets



### **Divide-and-conquer algorithm**

### Initialization

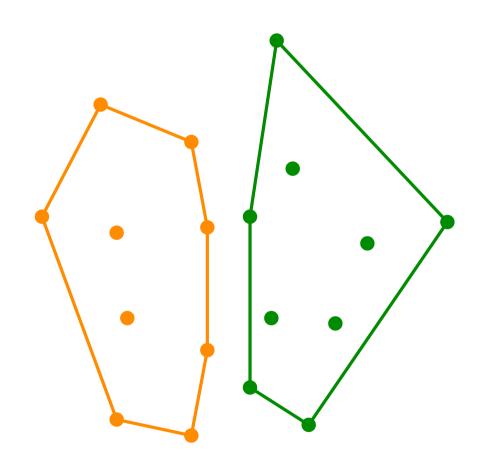
1. Sort the points by abscissae

### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

### Recursion

1. Recursively compute the convex hull of the two subsets



### **Divide-and-conquer algorithm**

#### Initialization

1. Sort the points by abscissae

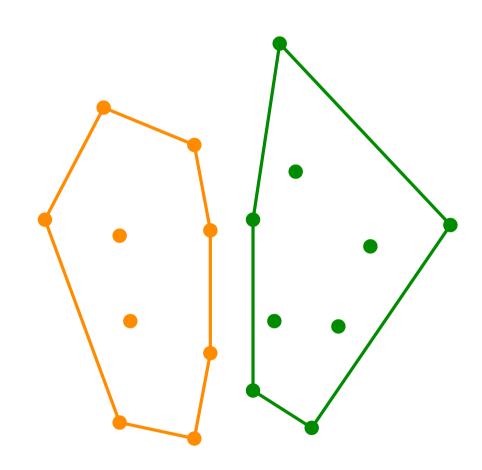
#### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets

- 1. Compute the external common tangents of the two convex polygons
- 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments



### **Divide-and-conquer algorithm**

#### Initialization

1. Sort the points by abscissae

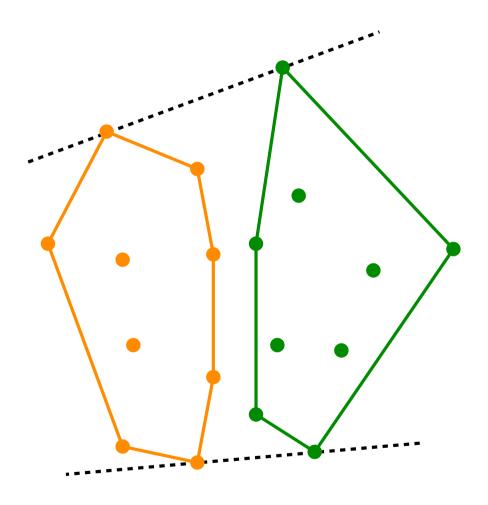
#### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets

- 1. Compute the external common tangents of the two convex polygons
- 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments



### **Divide-and-conquer algorithm**

#### Initialization

1. Sort the points by abscissae

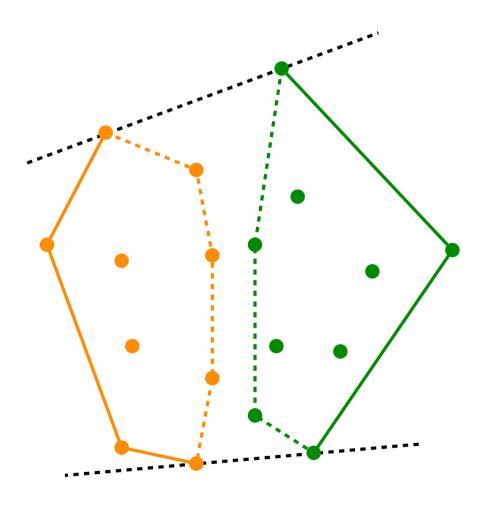
#### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets

- 1. Compute the external common tangents of the two convex polygons
- 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments



### **Divide-and-conquer algorithm**

#### Initialization

1. Sort the points by abscissae

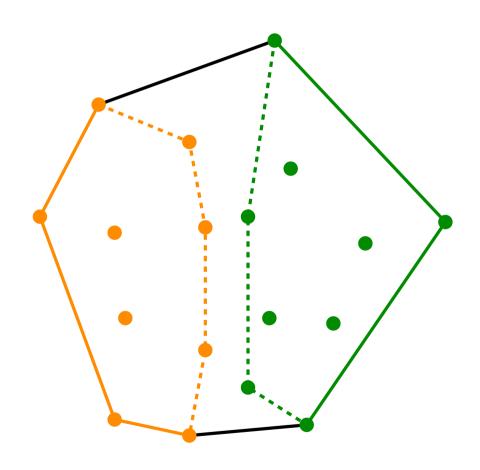
#### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets

- 1. Compute the external common tangents of the two convex polygons
- 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments



### **Divide-and-conquer algorithm**

#### Initialization

1. Sort the points by abscissae

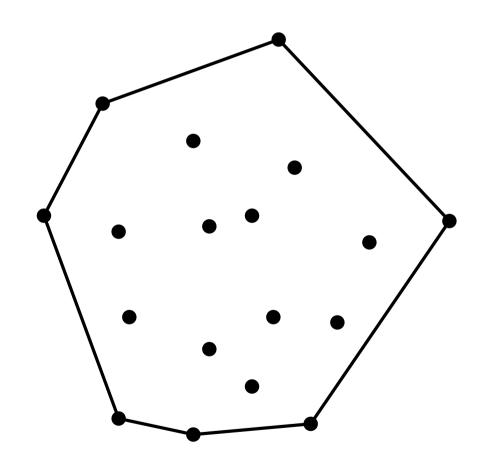
#### Division

1. Divide the points  $(x_i, y_i)$  into two subsets, wrt the median value of the abscissae

#### Recursion

1. Recursively compute the convex hull of the two subsets

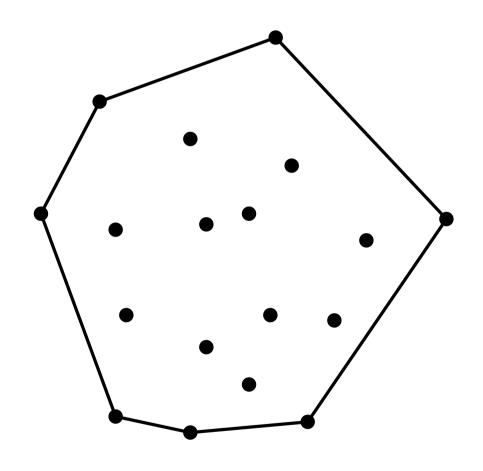
- 1. Compute the external common tangents of the two convex polygons
- 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments



### **Divide-and-conquer algorithm**

### Running time

Initialization:  $O(n \log n)$  (only once)

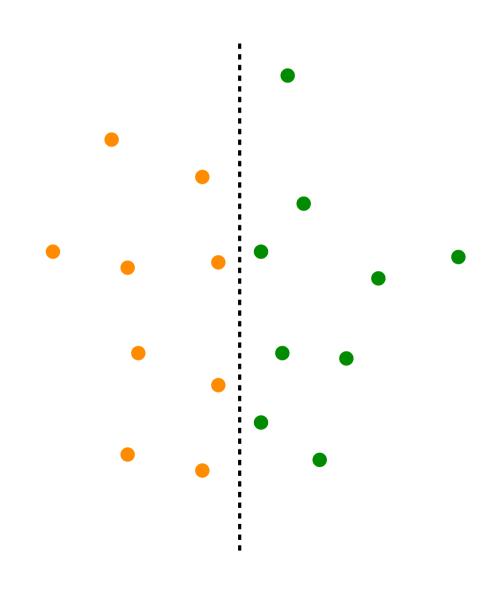


### **Divide-and-conquer algorithm**

### Running time

Initialization:  $O(n \log n)$  (only once)

Division: O(n)



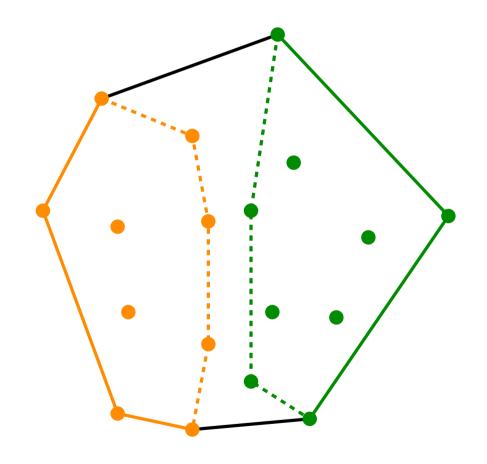
### **Divide-and-conquer algorithm**

### Running time

Initialization:  $O(n \log n)$  (only once)

Division: O(n)

Merge: O(n)



### **Divide-and-conquer algorithm**

### Running time

Initialization:  $O(n \log n)$  (only once)

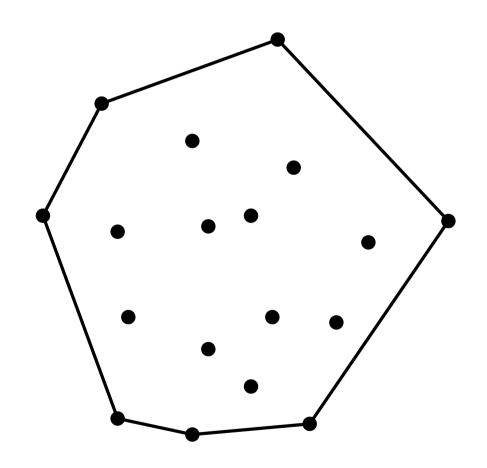
Division: O(n)

Merge: O(n)

Advance:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n\log n)$$

Overall:  $O(n \log n)$ 



Lower bound

### Lower bound

Input: n real numbers  $x_1, \ldots, x_n$  real numbers

### Lower bound

Input: n real numbers

 $x_1, \ldots, x_n$  real numbers

### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

$$p_1, \ldots, p_n$$
, with  $p_i = (x_i, x_i^2)$ 

### Lower bound

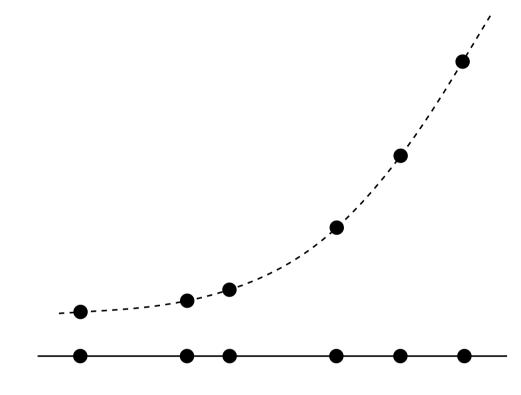
### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $p_1, \ldots, p_n$ , with  $p_i = (x_i, x_i^2)$ 



### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



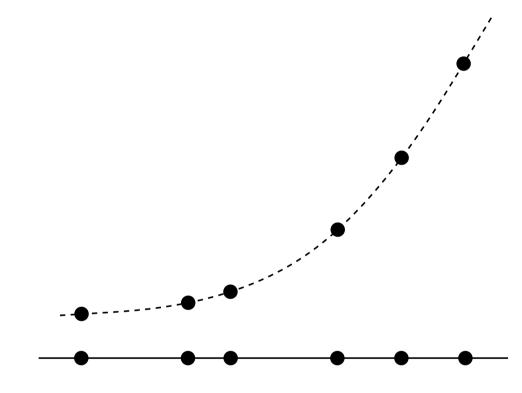
### Input: n points

 $p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 



### **Output:** convex hull of the points

Sorted list of the vertices of the convex hull



### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



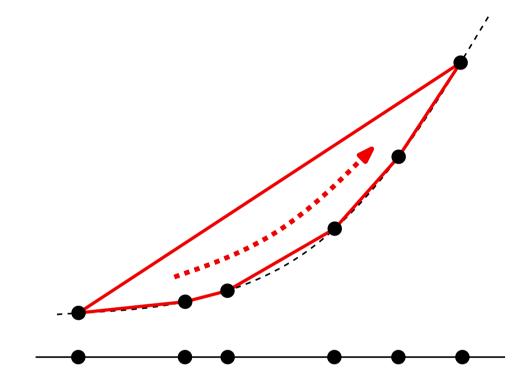
### Input: n points

 $p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 



### **Output:** convex hull of the points

Sorted list of the vertices of the convex hull



### **Lower bound**

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $p_1, \ldots, p_n$ , with  $p_i = (x_i, x_i^2)$ 

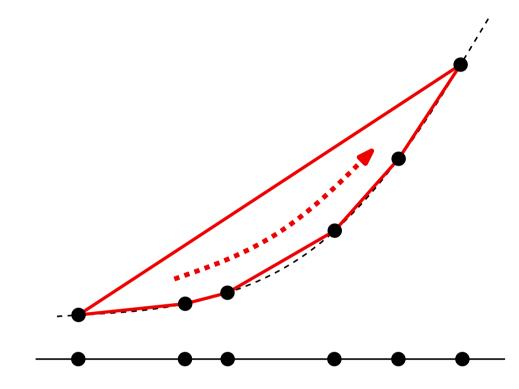


### Output: convex hull of the points

Sorted list of the vertices of the convex hull



### **Output:** sorting the numbers



### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 

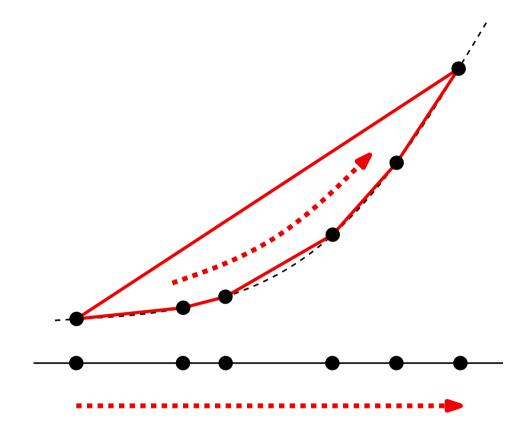


### Output: convex hull of the points

Sorted list of the vertices of the convex hull



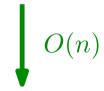
### **Output:** sorting the numbers



### **Lower bound**

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 

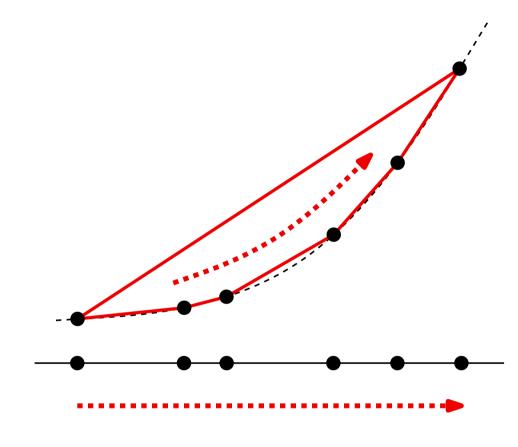


### Output: convex hull of the points

Sorted list of the vertices of the convex hull



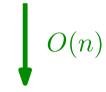
### **Output:** sorting the numbers



### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $(p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 

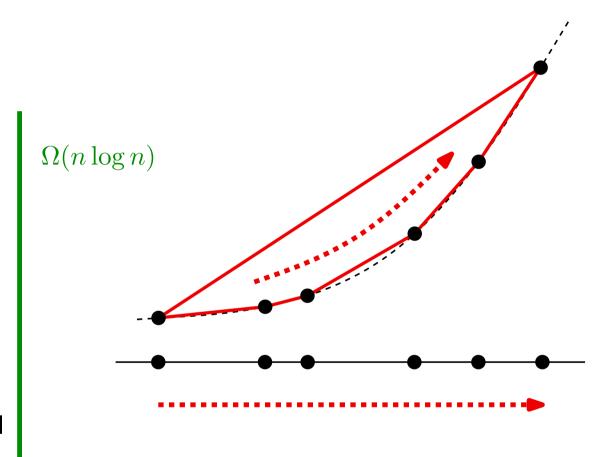


### Output: convex hull of the points

Sorted list of the vertices of the convex hull



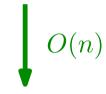
### **Output:** sorting the numbers



### Lower bound

### Input: n real numbers

 $x_1, \ldots, x_n$  real numbers



### Input: n points

 $p_1,\ldots,p_n$ , with  $p_i=(x_i,x_i^2)$ 

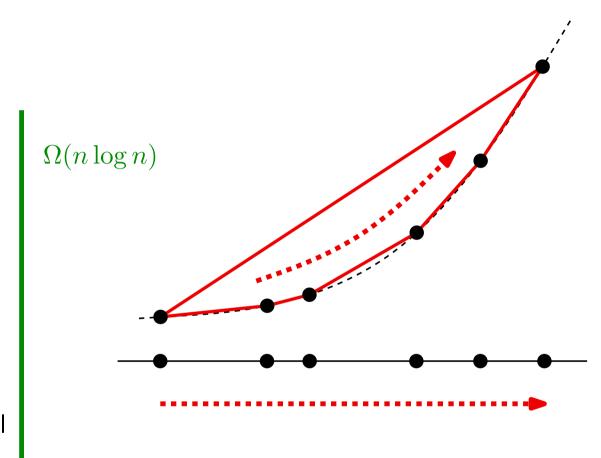


### **Output:** convex hull of the points

Sorted list of the vertices of the convex hull



### **Output:** sorting the numbers



**Extensions** 

#### **Extensions**

- Convex hull of a set of n points in 3D (proposed for a theory presentation)
  - Gift wrapping
  - Divide-and-conquer
  - Incremental
- Convex hull of a simple polygon (proposed for a theory presentation)
  - Is it possible to design an  $o(n \log n)$  time algorithm by exploiting the order of the vertices of the polygon?
  - Is it possible, for example, to apply Graham's algorithm using the order of the vertices of the polygon?

# SOME LINKS TO PLAY WITH THE CONSTRUCTION OF CONVEX HULLS

In 2D:

http://www.dma.fi.upm.es/recursos/aplicaciones/geometria\_computacional\_y\_grafos/

In 3D:

http://www.cse.unsw.edu.au/~lambert/java/3d

# SOME LINKS TO PLAY WITH THE CONSTRUCTION OF CONVEX HULLS

In 2D:  $http://www.dma.fi.upm.es/recursos/aplicaciones/geometria\_computacional\_y\_grafos/$  In 3D:  $http://www.cse.unsw.edu.au/\sim lambert/java/3d$ 

#### **TO LEARN MORE**

- J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press, 1998.
- F. Preparata, M. Shamos, **Computational Geometry: An introduction (revised ed.)**, Springer, 1993.