CONVEX HULLS

Vera Sacristan

Computational Geometry
Facultat d'Informatica de Barcelona
Universitat Politecnica de Catalunya

CONVEX HULL

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

not convex

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

A set C' is said to be convex if Vp,q € C the segment pq is enclosed in C.

not convex convex

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

The convex hull of a simple polygon
is a convex polygon.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

L)
L Y
% o
A 3
L Y
L 3
\‘ o
\“ . .
® o
|
: o o
. o
| o
|
. o
. o
: ® o
: °
|
|
: o o
' o
|

The convex hull of a simple polygon
is a convex polygon.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

------------------- “
L Y
L Y
' —'-.§
L) --’ .
L Y --- .
L Y '-- ~~
- .
" o .
L Y . ~~
: ' o -
\‘ k
] [|
' °® o :
] :
| i .
1 []
:) ® CI
[]
|
‘ |]
: . o :
" |]
: ' o :
‘ | |
|
" o :
|
I . @ ® :
| ll .
.L |
|
I]
| ~~ .
| ‘Q . --------- ‘
I ‘®----""""""
|
|
L Y
L
L Y
L Y
“
- -
‘ -------------
‘ ------------------------

The convex hull of a simple polygon
is a convex polygon.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

“\ ,.‘-"' ~~~~~
‘\ : . ~~’
‘] o © :
: ' ° o
: é ’
: . o :
:] P .;
E s o ® ® !
" o .;
: ~‘~~ --". -------- *
: ' ______
RN PP EE R, The convex hull of a finite
) set of points in the plane is

The convex hull of a simple polygon a convex polygon.

is a convex polygon.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

The convex hull of a set X is the smallest convex set C enclosing X.

N o..
“\ ..‘-"' ~~~~~

‘\ : . ~~’

‘] o © :
: ' ° o
: é ’
: . o :
:] P .;
E s o ® ® !
" o .;
: ~‘~~ --". -------- *

: ' ______
RN PP EE R, The convex hull of a finite
) set of points in the plane is

The convex hull of a simple polygon a convex polygon.

is a convex polygon. _
In both cases, the vertices of ch(X) are points of X.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Q\?‘(m\xo Para aQLuQm J ceYie coneeko
Zfﬂon ?OWJVQS @AC@Q«P W

"D eaeseamos cJa(OoN
deon CM\OV&'\'D 5
Pod i ammas dar como solida
2 ’l.—[’oéo& [05 pov\'_DS ée,\a @rﬂv\w d’\CSJ)@U\or cl,gg/\/\
D& och? o,
&0, . — .
#S‘Qﬂ 2o Les PO"\J‘“DS f)C%"@WLOSJ es dece los Oé(/'_z(:% .:J,e,(, cierre
6, O‘/; CMUETD , a0 den o bl Yrzeas 'js(/‘
g§’q:<®a'[?>éos los pontdS de Dehlz) en el ovden Ql,Q,recorrNo ,

o
<83 @) los pontes exbiomos, es decie los vévt terre 17

2 C‘Mg“”@) a0t don e\ or dom df:ec“orc‘?&%l e @

(. _

ﬁm*@s exbremos : mas ol o, Mas ba\o, més ale ‘A4, TS OvaQlarecha,%
e, 8 exXe iy vaa vechz g¥e pasSa por es e ON Cag¥,
Yo kel secta Adi (§) en e polio.

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points
Characterization

Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and

only if p; does not lie in any of the triangles p;pip;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and

only if p; does not lie in any of the triangles p;pip;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and

only if p; does not lie in any of the triangles p;pip;.

/D@W\os*m{:fé(’\ °
Savemos gL c\/\lS\ (&>) \& Com)o'mac’iam ConNero. do o

todos los 5obcmr\ owles de S dz/‘\nW\m/\o Doy . .

\6 ES\(A ONLON bodog \as &'s Con k’@f 0% o

il .

S e% 1 e\s*a en oh(&X St P S o /@
,C?\aek w\\u\of' Qe a.Q@OV\ br\aU\ﬂJD ,@J\Avav\w . o

no e eXbrewmo, -b_m

5¢ V\Oe/sus'll VLA 9 CM 80l L ?, P ° o
eutongr D D eJ/\(quN\Ab i o

Ge £t o\ .

° . °

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pnd— boc&os \.D_S ?OVA’OS d"s-[ﬂm%%' [
Output: set of the extreme points °
Procedure: ¢
For each 1, | | ° o °
For each j,k,[# 1, o ® ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
o
o ® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: P1y---,DPn o
Output: set of the extreme points N
Procedure: A
For each 1, | | ° . FAFRIN o
For each j,k,[# 1, g ® P
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.
2 ® ®
Algorithm: INTERIOR POINTS ’_‘ ®
for each i do
foreach j # i do o

if pr € A(pi, Pjy D1
then p; is nonextreme

foreachk #i # j do \
foreachl # i # j # k do O Z(OQ)\(\Q@ ® ® °

)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points °
Procedure: ¢
For each 1, | | ° °
For each j,k,[# 1, o ® ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
o
o
P [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pn PS
Output: set of the extreme points °
Procedure: ®
For each 1, | | ° . °
For each j,k,[# 1, @ P
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o o .
;e L
III /”” .
‘,
P [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points °
Procedure: ¢
For each 1, | | ° °
For each j,k,[# 1, o ® ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points °
Procedure: N
For each 1, ® o
For each j,k,1 # 1, ¢ O e
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o & o
‘I/
P [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points °
Procedure: ¢
For each 1, | | ° °
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization

Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.
. @
Algorithm o
Input: p1,...,pn P
Output: set of the extreme points 7 e
Procedure: P o
For each 1, | | o ®
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
o
P [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure: ¢
For each 1, | | ° °
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ° ° o
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme points
Procedure: ®
For each 1, | | o . o
For each j,k,[# 1, v -2 Y
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. . e ' o
\\‘ ,,”¢' .
o’
P [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: P1,---3Pn [
Output: set of the extreme points
Procedure: ®
For each 1, | | ® o
For each j,k, 1 # 1, ® °
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o .
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme points
Procedure: °
For each 1, ° o
For each j,k,1 # 1, * °
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. N e e
\.,/
® °

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure: ¢
For each 1, | | ° °
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. [
Algorithm AR
Input: p1,...,pn P .
Output: set of the extreme points
Procedure: ¢
For each 1, ° e e
For each j,k,1 # 1, ®---- °

If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure:
For each 1, ° °
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o
o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.
. o
Algorithm o
Input: p1,...,pPn °
Output: set of the extreme points S
Procedure:
For each 1, | | ° o
For each j,k,[# 1, ®) '. ®
If p; lies in the triangle p;, px, pi, eliminate p;. '.
Return the set of surviving p;'s '.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure:
For each 1, ° °
For each j,k,[# 1, ¢ ®
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme points
Procedure:
For each 1, PY e
For each j,k,1 # 1, ® o
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;’s. ‘
o
P o

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure:
For each 1, ° °
For each j,k,1 # 1, *
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: P1,---3Pn [
Output: set of the extreme points
Procedure:
For each 7, | | C— g
For each j,k,[# 1, |
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. .
o °

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure:
For each 1, ° °
For each j,k,[# 1,
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. o
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme points
Procedure:
For each 7, @ °
For each j,k,[# 1,
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s. ®
® e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

. o
Algorithm
InPUt: Pi1y---5DPn o
Output: set of the extreme points
Procedure:
For each 1, ° °
For each j,k,[# 1,
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme points

Characterization
Given X = {p1,...,pn}, the point p; belongs to the boundary of the convex hull of X if and
only if p; does not lie in any of the triangles p;pip;.

Algorithm

InPUt: P1,---3Pn [
Output: set of the extreme points

Procedure:
For each 1, °
For each j,k,[# 1,
If p; lies in the triangle p;, px, pi, eliminate p;.
Return the set of surviving p;'s.

Running time: O(n?)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments
Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

°
°
°
®
® ®
°
¢ ° P
® ® ®
°
°
°
o— e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

°
°
°
°
) °
°
° . .
° e o
°
°
S
— e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments
Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

. o
Algorithm
Input: p1,...,pn o
Output: set of the extreme segments °
Procedure: ®
For each 1, 7, ° °

Check whether all py, with k # i, ° ® o °

lie in the same halfplane defined by p;p;.

In the affirmative, return the segment p;p;. ° ° o

o
o
o ® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm

Input: p1,...,pn
Output: set of the extreme segments

Procedure:
For each 1, 7,
Check whether all p with £ # 4,7
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization
Given X = {p1,

,Dn }, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm '
Input: p1,...,pn e .
Output: set of the extreme segments ®
Procedure: RN
For each 1, 7, o.. ‘ PY
Check whether all p with £ # 4,7 "~~’:::.. e n e L
lie in the same halfplane defined by p;p;. TTEIra, W w7
. . Tea, St s 4 L
In the affirmative, return the segment p;p; o ':..i?‘-,:x
o RLEEEl LT LL ()
. ----- ‘4"'0" :
,""’ "’ :'
o"‘ 4. :
- @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

Algorithm

Input: p1,...,pn
Output: set of the extreme segments

Procedure:
For each 1, 7,
Check whether all p with £ # 4,7
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the extreme segments

Characterization

Given X = {p1,...,pn}, the segment p;p; is an extreme segment if and only if all the points
pr with k # 7, j lie in the same halfplane defined by the line p;p;.

ORoovee,

Algorithm: EXTREME EDGES
Input: p1,...,pn for each i do

0O : f th foreach j # i do
utput: set or the extreme segments foreach k # i # j do

Procedure: if py is not left or qn (pi, Pj)
then (p;, p;) is not extreme

Algorithm

For each 1, 7,

Check whether all p;, with k # 4, j ® o °
lie in the same halfplane defined by p;p;.
In the affirmative, return the segment p;p;. ° o
o
Running time: ©O(n?)
?ro\)\exvm 53 Vos ?OV\'\'@S 0o estan e OB Cdn ¢

c\ \ ow\j(Mo X)V'Déuce G
Lt ot 1 Py Pife PPy Fedie salida @)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the convex hull

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Computing the convex hull (sorted list of its vertices)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Computing the convex hull

Input:
P ={p1,...,pn} C R? a set of n points in the plane

Output:
[, the list of the vertices of ch(P) sorted in counterclockwise order

zé\ﬂ@{ o«?%uué OV'C?M\UQ se. VA CdYwno
colila Vo Lot do adstos, esbl:,g
(NS 22 A Vepaw T 3 o =N

\)U”&\/é\zoqrc@vmo celidan, O

‘%C(('F\S&JQ/J(OL(Ofa"r«\c«Q oI 0 'Booree,

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Computing the convex hull

Input:
P ={p1,...,pn} C R? a set of n points in the plane

Output:
[, the list of the vertices of ch(P) sorted in counterclockwise order

Characterization
Given X = {p;,...,pn}, the segment p;p, is an edge of the convex hull of X if and only if all

the points p, with £ # 4, j lie to the left of the oriented line p;p;.

‘Poc\u\@s N\é\ DIV A aﬂfdoﬁ*«ug av\Jreffi‘)r

H&g 6><(1c:\wN\OI\AVo AN aXTS J"OLS . f/e\g&

I]

N__ oS

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march , (]0[57' 2 PMJ\N@V\A Postin U acass, \er € lectnce Aos Toliun

= MOV eAr 2013,
(o1 it ow app L,
SQ?M\]\«QS @S\(C.:ém MVZ'—QO / <

tdea 2 Voar \a ‘w\go«d\/\c\qé w@é& e com v da pa=
— encon\rar Yo tn d\/\o\cd{u tsta esova

n,
Y anicon a0y co'v\b / S

So\Cd\&u °
-?oéad\/\aé re Q\CW\ EaX o@
Dad @ ONCH cuf»EJ(‘D\ e/ﬁ“W‘@\.Q AQ. C-\/\ 53 GU\QCMW

oym oot =rtemd. -

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march _ L{y
Gl de menor coord U, PO ¢mmpA:

B(n\1- Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
o ® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
......... O @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

Jarvis march

CONVEX HULL
O
1. Find a vertex of ch(P) (for example, the lexico- &O

graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First((), do: °
(a) Detect the angularly rightmost point p; € P o
with respect to v. T
(b) Add p; to i e . e .
\“ . l“ .. :' , '. ,"’
3. Return [_(((E U A o
no necest o Yo LOTEN e@ R Yo
oV QM | b Catexn L we CeR VO o Eis S
(< ‘::“\“ :: :: '::OOQ"
6& WA O s :::,;.;.’
— MabERRC PR 3
danangee vso |
AVA CLMV\%UC 0do

hid
?W,c\-a ‘(\oﬂ?)d\r*uQ Q\“"/

Yoson PO .
Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o ° °
o o
3. Return [
o o ®
o
®
o ——

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P ®
with respect to v. 4
(b) Add p; to i N ooy
3. Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-

graphically smaller point p; € P) and add it to [®
2. While v = Last(l) # First(l), do: o
(a) Detect the angularly rightmost point p; € P °
with respect to v. ¢
(b) Add p; to ° o °
o o
3. Return [
o o ®
o
®
o
.7

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do: o

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p; tol () o

3. Return]
o
o

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I o

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Jarvis march

1. Find a vertex of ch(P) (for example, the lexico-
graphically smaller point p; € P) and add it to [

2. While v = Last(l) # First(l), do:

(a) Detect the angularly rightmost point p; € P
with respect to v.

(b) Add p, to I

3. Return]

tjog%ﬁ%fc —£ \ljhmaﬁocle la eatoda
Time cost: O(hn) = O(n?)
OUJ‘C ?UXX SeNn Thue,
}\::ﬁ de UéVJU?C&E (&el eNre comuery.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)“artgos ',\;\\)es\-;ﬂm&ovw

2 fianal deln dfcedan de los 0. .
\o baolc'eaam*n Quicy dull, Por so s Ddod o

QuiceSovt.

@ O\ cpgcﬂf_

PArTITION(A[1..1], p):

A — A
QuickSorT(A[1..n]): ZVEPO [p] > Aln]

if(n>1)
Choose a pivot element A[p]
r < PARTITION(A, p)
QuickSorT(A[1..r —1]) ((Recursel))
QuickSorT(A[r +1..n]) ((Recursel))

((#items < pivot))

forie—1ton—1
ifA[i] <A[n]
{—{+1
swap A[{] «— A[i]
swap A[n] «—> A[{ + 1]
return £ + 1

\ l Figure 1.8. Quicksort

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization
1. Find the extreme points in the horizontal and ° ¢
vertical directions. °
o
2. Compute the convex hull of these (between 2 ¢ °
and 8) points. °
3. Test all the remaining points, and classify them @ ° Y ®
according to their position (NE, SE, SW, NW) ¢ ¢
or eliminate them if they lie in the interior.
o o ®
° ¢ °
[
® ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization
1. Find the extreme points in the horizontal and ° ¢
vertical directions. °
o
2. Compute the convex hull of these (between 2 ¢ °
and 8) points. °
3. Test all the remaining points, and classify them @ ° Y ®
according to their position (NE, SE, SW, NW) ¢ ¢
or eliminate them if they lie in the interior.
o o ®
° ¢ °
[
o ° ®

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Running time of this step: O(n)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance .’

Recursively, do:

1. Among all points lying in each region, find the R
extreme point in the direction orthogonal to the .
edge that determines the region. *f

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or [*,
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance .’

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the .
edge that determines the region. *f

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance .’

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the .
edge that determines the region. *f

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance .’

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the .
edge that determines the region. *f

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.

Running time of this step: O(n?)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Overall running time: O(n?)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

QuickHull algorithm (by prune-and-search)

Overall running time: O(n?)

Nevertheless, the running time of this algorithm de-
pends on the position of the input points.
For example:

e |f the input points are in convex position, the
running time is ©(n?).

e If the points are such that each prune step eli-
minates half of the current points, then the al-
gorithm runs in ©(nlogn) time.

e |f the convex hull is triangular, the algorithm runs
in ©(n) time.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l)) °
- If p~pp; is a left turn: ® ®
- Push p; inl
- Advance ¢ ® ®
- Else: ®
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l)) °
- If p~pp; is a left turn: ® ®
- Push p; inl
- Advance ¢ ® ®
- Else: ®
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm
Initialization
- Find a vertex v of ch(P), push it in [and delete it from P o
- Angularly sort the points around v :
- Push the first point in [and delete if from P
Advance Q .
While there exist points p; € P to be explored, do: '
p = top(l) P
p~ = previous(top(l)) e .'\‘ é '." -
- If p~pp; is a left turn: RN S R
- Push p; in [‘\‘ LY ; e
- Advance 1 . s f ’
- Else: ‘\\‘" | @ 'y ,/,':,;f'"
- Po N, e
p p from [w5 :::::::: »
.-..__::.::*: _______ P

Return [
Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P lo
- Angularly sort the points around v :
- Push the first point in [and delete if from P 14
Advance Q 12
While there exist points p; € P to be explored, do: . .8
p = top(l) 17 i .:11,': s
p~ = previous(top(l)) e 15. '\‘ ¢ & 6 ".5
- If p~pp; is a left turn: RN : /09 R
- Push p; in{ ‘\‘ 1 ! ; xx'
- Advance i . 13 : /® ,.
- Else: “““““‘ ?:, :, :~ ,".":,;f"' 4
- Pop p from [‘1:“ " ..'.,"'::'."'.""
Return [18 ._*::.\..,‘x’ _____ o
1 2

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17 .
p~ = previous(top(l)) ° 15. ® 6 ® 5
- If p~pp; is a left turn: 0@ ®
- Push p; inl 16
- Advance ¢ e 13 7@ °
- Else: ® 4
- Pop p from [®
Return [3
18 @ o— 4_‘2

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17 .
p~ = previous(top(l)) ° 15. ® 6 ® 5
- If p~pp; is a left turn: 0@ ®
- Push p; inl 16
- Advance ¢ e 13 7@ °
- Else: ® 4
- Pop p from [
Return [18 @ ?%x
o— 2

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17 .
p~ = previous(top(l)) ° 15. ® 6 ® 5
- If p~pp; is a left turn: 0@ ®
- Push p; inl 16
- Advance ¢ e 13 7@
- Else: ® 4
- Pop p from [
Return [18 @ 3
o— 2

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 1:1
Advance 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17 11
p- = prev?ous(top(l)) ° 15. o 6 ® >
- If p~pp; is a left turn: 9@ o
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [18 @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance ° 12
While there exist points p; € P to be explored, do: ¢ .8
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance °
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance °
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance °
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P io
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance °
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization

- Find a vertex v of ch(P), push it in [and delete it from P

- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance

14
o

10

While there exist points p; € P to be explored, do:

p = top(!) 17

p~ = previous(top(l)) e 15

- If p~pp; is a left turn:
- Push p; in [16
- Advance 7 °

- Else:
- Pop p from [

Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v ?
- Push the first point in [and delete if from P 14
Advance ° :
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) ° 15.
- If p~pp; is a left turn:
- Push p; ir.1 [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v

- Push the first point in [and delete if from P 1:1
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) PY 15.
- If p~pp; is a left turn:
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v

- Push the first point in [and delete if from P 1:1
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) PY 15.
- If p~pp; is a left turn:
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v

- Push the first point in [and delete if from P 1:1
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) PY 15.
- If p~pp; is a left turn:
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v

- Push the first point in [and delete if from P 1:1
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) PY 15.
- If p~pp; is a left turn:
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v

- Push the first point in [and delete if from P 1:1
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) PY 15.
- If p~pp; is a left turn:
- Push p; in [16
- Advance ¢ PY
- Else:
- Pop p from [
Return [15 e

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17\ fL raTIel
p~ = previous(top(l)) ° TNy O
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l)) °
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17 % b T
p~ = previous(top(l)) ° TNy O
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17\ b raTe
p~ = previous(top(l)) ° TNy O
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17\ b raTe
p~ = previous(top(l)) ° TNy O
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P 14
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17 \% b raTe
p~ = previous(top(l)) ° TNy O
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [1S @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(!) 17
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

~
)

~

-

.h---

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P 10
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Graham’s algorithm

Initialization
- Find a vertex v of ch(P), push it in [and delete it from P
- Angularly sort the points around v
- Push the first point in [and delete if from P
Advance
While there exist points p; € P to be explored, do:
p = top(()
p~ = previous(top(l))
- If p~pp; is a left turn:
- Push p; inl
- Advance ¢
- Else:
- Pop p from [
Return [

Running time: O(nlogn)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
l = p1,p2,p3 ®
Advance
From 1 =4 to n, do: P
If p; lies in the exterior of the polygon defined by : °
- Compute the points p; and p, P
defining the supporting lines
from p; to the polygon ¢ P ° . o ®
- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,
o o
Return [® °
o
®)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
l = p1,p2,p3 ®
Advance
From 1 =4 to n, do: P
If p; lies in the exterior of the polygon defined by : °
- Compute the points p; and p, P
defining the supporting lines
from p; to the polygon ¢ P ° . o ®
- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,
o o
Return [® °
o
®)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

-
-
-
-
-
-
-
-
-
-
-
-
e®
-

LR L TR)

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
l = p1,p2,p3
Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by : °
- Compute the points p; and p, P
defining the supporting lines
from p; to the polygon ¢ ® ° . o ®
- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,
o
Return [® °
[

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
l = p1,p2,p3
Advance
From ¢ = 4 to n, do:
If p; lies in the exterior of the polygon defined by I: °
- Compute the points p; and p, °
defining the supporting lines ,"
@ ®
from p; to the polygon . ® ° o o
- Replace the chain p;,...,p, inl
with the chain p;, p;, p, .
“ .
Return [N ® °
Py o

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Running time: O(nlogn)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Incremental algorithm

Initialization
| = p1,p2,p3

Advance
From 1 =4 to n, do:
If p; lies in the exterior of the polygon defined by :

- Compute the points p; and p,
defining the supporting lines
from p; to the polygon

- Replace the chain p;, ..., p, inl
with the chain p;, p;, p,

Return [

Running time: O(nlogn)

By storing [in a structure allowing binary se-
arch and updatings (insertions and deletions)
in O(logn) time.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

[
Division
[
1. Divide the points (z;,y;) into two subsets, ®
wrt the median value of the abscissae PS
® ® ®

®

¢ °

o o ®
o
o
[
Py [

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

N
Division :
. 5
1. Divide the points (z;,y;) into two subsets, ° .

wrt the median value of the abscissae)
° ' @ °
. []
® E ® ®
o
' ®
o :
° . ¢

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

. o

Division E

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae)

' ® °
E o
: ® o
)
E o

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

. @
Division :
1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae)
Recursion ' @ ®
O
1. Recursively compute the convex hull of the v
two subsets
, @ o
)
E ()

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Merge

1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Merge

1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Merge

1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Merge

1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm

Initialization
1. Sort the points by abscissae
Division

1. Divide the points (z;,y;) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets

Merge

1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm
Running time

Initialization: O(nlogn) (only once)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm
Running time
Initialization: O(nlogn) (only once)

Division: O(n)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm
Running time
Initialization: O(nlogn) (only once)

Division: O(n)
Merge: O(n)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Divide-and-conquer algorithm
Running time

Initialization: O(nlogn) (only once)

Division: O(n)
Merge: O(n)
Advance:
T(n)=2T (g) + O(n) = O(nlogn)

Overall: O(nlogn)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers ¢
x1,...,ZTy real numbers
/”
Input: n pou_nts ; »
Dly-- -y Pn, With p; = (5, 27)
_-®
- @-----""" ®
@ o—©O @ @ @

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers ¢
x1,...,ZTy real numbers
/”
Input: n points °
. _ 2 ,/
Dly-- -y Pn, With p; = (5, 27)
_-®
- @-----""" ®
@ o—©O @ @ @

Output: convex hull of the points
Sorted list of the vertices of the convex hull

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Output: convex hull of the points
Sorted list of the vertices of the convex hull

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Output: convex hull of the points
Sorted list of the vertices of the convex hull

Output: sorting the numbers
Sorted list of the numbers z¢,...,z,

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Output: convex hull of the points e eeeeieeeeeenes >
Sorted list of the vertices of the convex hull

Output: sorting the numbers
Sorted list of the numbers z¢,...,z,

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

O(n)

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Output: convex hull of the points e eeeeieeeeeenes >
Sorted list of the vertices of the convex hull

O(n)

Output: sorting the numbers
Sorted list of the numbers z¢,...,z,

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

O(n)

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

Output: convex hull of the points
Sorted list of the vertices of the convex hull

O(n)

Output: sorting the numbers
Sorted list of the numbers z¢,...,z,

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Lower bound

Input: n real numbers
x1,...,%, real numbers

O(n)

Input: n points
Ply---,Pn, With p; = (:U,L,:cf)

| e

Output: convex hull of the points
Sorted list of the vertices of the convex hull

O(n)

Output: sorting the numbers
Sorted list of the numbers z¢,...,z,

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

Extensions

Computational Geometry, Facultat d'Informatica de Barcelona, UPC

CONVEX HULL

Extensions

e Convex hull of a set of n points in 3D

(proposed for a theory presentation)

— Gift wrapping
— Divide-and-conquer

— Incremental

e Convex hull of a simple polygon
(proposed for a theory presentation)
— Is it possible to design an o(nlogn) time algorithm by exploiting the order of the
vertices of the polygon?

— Is it possible, for example, to apply Graham's algorithm using the order of the
vertices of the polygon?

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

SOME LINKS TO PLAY
WITH THE CONSTRUCTION OF CONVEX HULLS

In 2D:

http: //www.dma.fi.upm.es/recursos/aplicaciones/geometria_computacional_y_grafos/

In 3D:
http://www.cse.unsw.edu.au/~lambert/java/3d

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

CONVEX HULL

SOME LINKS TO PLAY
WITH THE CONSTRUCTION OF CONVEX HULLS

In 2D:

http: //www.dma.fi.upm.es/recursos/aplicaciones/geometria_computacional_y_grafos/
In 3D:

http://www.cse.unsw.edu.au/~lambert/java/3d

TO LEARN MORE

e J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press,
1998.

e F. Preparata, M. Shamos, Computational Geometry: An introduction (revised ed.),
Springer, 1993.

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC

