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Introduction

Kd-trees

Database queries

1D range trees

1D range query algorithm

Algorithm 1DRangeQuery(T, [x : x
0
])

1. nsplit  FindSplitNode(T,x,x0)
2. if nsplit is a leaf
3. then Check if the point in nsplit must be reported.
4. else n  lc(nsplit)

5. while n is not a leaf
6. do if x xn
7. then ReportSubtree(rc(n))
8. n  lc(n)

9. else n  rc(n)

10. Check if the point stored in n must be reported.
11. n  rc(nsplit)

12. Similarly, follow the path to x
0, and . . .
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Introduction

Kd-trees

Database queries

1D range trees

Query time analysis

Grey nodes: they occur on only two paths in the tree, and
since the tree is balanced, its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m01 internal
nodes; traversal visits O(m) nodes and finds m points for the
output

The time spent at each node is O(1)  O(logn+ k) query
time

Computational Geometry Lecture 7: Range searching and kd-trees17
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Notemos que cada término
de la forma

1 E se

puede escribir como

2
1 1 In

2 1 n D

Entonces la suma se puede
escribir como

ayitsa Olnlgn



Storage of 2D range trees

To analyze storage, two arguments can be used:

• By level: On each level, any point is stored exactly once. So all associated trees

on one level together have O(n) size

• By point: For any point, it is stored in the associated structures of its search

path. So it is stored in O(logn) of them

25
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Querying
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2D range queries

How are queries performed and why are they correct?

• Are we sure that each answer is found?

• Are we sure that the same point is found only once?
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2D range query time

Question: How much time does a 2D range query take?

Subquestions: In how many associated structures do we search? How much time

does each such search take?
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2D range queries

⌫

µ µ0

36



























Query L S



2D range query efficiency

Use the concept of grey and black nodes again:
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2D range query efficiency

We visit O(logn) grey nodes in the main structure.

We perform a 1D range query using the associated structure of O(logn) nodes ν ;

at most two per level.

Each such query visits O(lognν) grey nodes and O(kν) black nodes, and thus

takes O(lognν + kν) time, where

nν = #leaves in subtree ν , and

kν = #reported points from subtree of ν .

So the query time is

∑
ν

O(lognν + kν)

38
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2D range query efficiency

So the number of grey nodes is ∑ν O(lognν) = O(log2 n), since nν ≤ n

The number of black nodes is ∑ν O(kν) = O(k) if k points are reported (since

k = ∑ν kν ).

The query time is O(log2 n+ k), where k is the size of the output

39
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2D range query efficiency

So the number of grey nodes is ∑ν O(lognν) = O(log2 n), since nν ≤ n

The number of black nodes is ∑ν O(kν) = O(k) if k points are reported (since

k = ∑ν kν ).

The query time is O(log2 n+ k), where k is the size of the output
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Result

Theorem: A set of n points in the plane can be preprocessed in O(n logn) time

into a data structure of O(n logn) size so that any 2D range query can be answered

in O(log2 n+ k) time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(
√

n+ k) time
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2D range query efficiency

Question: How about range counting queries?
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2D Range trees

Higher dimensions
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Higher dimensional range trees

A d-dimensional range tree has a main

tree which is a one-dimensional balanced

binary search tree on the first coordinate,

where every node has a pointer to an

associated structure that is a

(d−1)-dimensional range tree on the

other coordinates
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Storage

The size Sd(n) of a d-dimensional range tree satisfies:

S1(n) = O(n) for all n

Sd(1) = O(1) for all d

Sd(n)≤ 2 ·Sd(n/2)+Sd−1(n) for d ≥ 2

This solves to Sd(n) = O(n logd−1 n)

44
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Query time

The number of grey nodes Gd(n) satisfies:

G1(n) = O(logn) for all n

Gd(1) = O(1) for all d

Gd(n)≤ 2 · logn+2 · logn ·Gd−1(n) for d ≥ 2

This solves to Gd(n) = O(logd n)
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Result

Theorem: A set of n points in d-dimensional space can be preprocessed in

O(n logd−1 n) time into a data structure of O(n logd−1 n) size so that any

d-dimensional range query can be answered in O(logd n+ k) time, where k is the

number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(n1−1/d + k) time
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