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Introduction Database queries
1D range trees

Databases
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Databases store records or objects —= Cexncanos
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Personnel database: Each employee has a name, id code, date
of birth, function, salary, start date of employment, ...

Field textua
g aarte. Jron Tl n\l;Lngue)nc%‘& QL&)S 2 QU«Q]@A
’Y/@c&\ﬂw NV D = Q@d/\ﬂ

$ L 88 <z fodho <

Computational Geometry Lecture 7: Range searching and kd-trees



Introduction Database queries

1D range trees

Database queries

o K% G. Ometer

born: Aue 16. 1954
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,Q4 — C — Q,S salary salary: $3,500 mz

A database query may ask for
all employees with age
between a; and ap, and salary
between s; and s»
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Database queries

When we see numerical fields of objects as coordinates, a
database stores a point set in higher dimensions

@Exact match query: Asks for the objects whose coordinates
match query coordinates exactly

@Partial match query: Same but not all coordinates are

specified Quedy: ( 01,0z G ) roe g oo o ,0\./\3
@ange query: Asks for the objects whose coordinates lie in a
specified query range (interval)
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Database queries
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Data structures

ldea of data structures

@ Representation of structure, for convenience (like DCEL)
@ Preprocessing of data, to be able to solve future
questions really fast (sub-linear time)

A (search) data structure has a storage requirement, a query
{ time, and a construction time (and an update time)
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1D range query problem

1D range query problem: Preprocess a set of n points on
the real line such that the ones inside a 1D query range

(interval) can be reported fast O-o-olo o oo

The points p1,...,p, are known beforehand, the query [x,x’]

only later @

A solution to a query problem is ak‘data structure description,

a ry algorithm, and alconstruction algorithm -
CMSTrviv (e o CJM :

Question: What are the most important factors for the
efficiency of a solution?
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Balanced binary search trees

A balanced binary search tree with the points in the leaves (_ h
Cas- 46 e hof an Mad o
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Introduction Database queries
1D range trees

Balanced binary search trees

The search paths for 25 and for 90
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Example 1D range query
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A 1-dimensional range query with [25, 90] Q(‘-Q (OE (f\,OQ'LCE
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Example 1D range query
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1D range trees

Node types for a query

Three types of nodes for a given query:

@ White nodes: never visited by the query

@ Grey nodes: visited by the query, unclear if they lead to
output

@ Black nodes: visited by the query, whole subtree is
output

Question: What query time do we hope for?
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1D range trees

Node types for a query

The query algorithm comes down to what we do at each type
of node

Grey nodes: use query range to decide how to proceed: to
not visit a subtree (pruning), to report a complete subtree, or
just continue

Black nodes: traverse and enumerate all points in the leaves
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Example 1D range query

X=06"1
A 1-dimensional range query with [61, 90]
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\ split node
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Example 1D range query

@ Pl root(T)
] J

=

FINDSPLITNODE(T, x,x") @ L X 2 X 1
Input. A tree T and two values x and ¥’ with x < X',
Output. The node v where the paths to x and x’ split, or the leaf where both .
paths end. . u

. v r00(7) H5Fy g the selected subtrees

! ile v is not a leaf and (¥ < xy orx >x,) A&k &—.
3. o if X' < xy b 7;7)71'5. .

. en v — le(v
5. else v —rc(v

retu.

split node '

|
A 1-dimensional r:amge query with [61, 90| Dagw\/w-\
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1D range query algorithm

Algorithm 1DRANGEQUERY (T, [x : x']) Vs.pl/'\ \."
. Vgplit < FINDSPLITNODE(T, x,x")

>
~~—
if Vopiic is a leaf A /\

then Check if the point in Vi must ortea.

else v — lc(Vgpiit) W \’t \
while Vv is not a leaf A ‘
do if x <x,

then REPORTSUBTREE(rc(V))
vV —lc(v)
else v« re(v)
Check if the point stored in v must be reported.
V — FC(Vsplit)
Similarly, follow the path to X/, and ...
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Query time analysis

The efficiency analysis is based on counting the numbers of
nodes visited for each type

@ White nodes: never visited by the query; no time spent

(@ Grey nodes: visited by the query, unclear if they lead to
/ output; time determines dependency on n

Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size
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Query time analysis

Grey nodes: they occur on only two paths in the tree, and

since the tree is balanced, its depth is-

Black nodes: a (sub)tree with m leaves has m — 1 internal
nodes; traversal visits O(m) nodes and finds m points for the
output

The time spent at each node is O(1) == O(logn+ k) query

time DC\aaB t O(\a\m}
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Storage requirement and preprocessing

o, o S 2 &
/ €27 _
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AV AWAR AN DNe—a% =n
A (balanced) binary search tree storing n points uses O(n)

storage nWofon, N—14 nodes t atemos

A balanced binary search tree storing n points can be built in
O(n) time after sorting, so in O(nlogn) time overall
(or by repeated insertion in O(nlogn) time)
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Result

Theorem: A set of n points on the real line can be
preprocessed in O(nlogn) time into a data structure of O(n)
size so that any 1D range query can be answered in
O(logn+k) time, where k is the number of answers reported
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Example 1D range counting query

A 1-dimensional range tree for range counting queries

14
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Database queries
1D range trees

Example 1D range counting query

A 1-dimensional range counting query with [25, 90|
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Result

Theorem: A set of n points on the real line can be
preprocessed in O(nlogn) time into a data structure of O(n)

size so that any 1D range counting query can be answered in
O(logn) time

Note: The number of points does not influence the output
size so it should not show up in the query time
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Range queries in 2D
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Range queries in 2D

Question: Why can't we simply use a balanced binary tree in
x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and
query the one where we think querying is more efficient?
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left and half right

split by y-coordinate: split by a horizontal line that has half
the points below and half above N
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left or on, and half right

split by y-coordinate: split by a horizontal line that has half
the points below or on, and half above
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Kd-trees

Kd-trees

Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Computational Geometry
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree construction

Algorithm BUILDKDTREE(P,depth)

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P with a vertical line ¢ through the
median x-coordinate into P; (left of or
on /) and P; (right of /)

5. else Split P with a horizontal line £ through
the median y-coordinate into P (below
or on ) and P, (above /)

0. Vieft < BUILDKDTREE(P,depth+ 1)

/. Viight < BUILDKDTREE(P;,depth+ 1)

8. Create a node Vv storing £, make Vi the left
child of v, and make Vyjgn: the right child of v.

9. return v
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree construction

The median of a set of n values can be computed in O(n)
time (randomized: easy; worst case: much harder)

Let T'(n) be the time needed to build a kd-tree on n points
T(1)=0(1)
T(n)=2-T(n/2)+0(n)
A kd-tree can be built in O(nlogn) time

Question: What is the storage requirement?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree regions of nodes

gl o
¢ ) ¢ ’ | ° .62
region(v) |¢,
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree regions of nodes

How do we know region(v) when we are at a node v?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from
the root to v

Question: What are reasons to choose one or the other
option?
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Kd-tree querying

Computational Geometry

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree querying

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below v that lie in the range.
if vis a leaf
then Report the point stored at v if it lies in R
else if region(lc(v)) is fully contained in R
then REPORTSUBTREE(lc(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(lc(V),R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
then SEARCHKDTREE(rc(V),R)

© 0 NSOk

=
©

Computational Geometry Lecture 7: Range searching and kd-trees



region(Vv)

region(lc(v)) = region(v) N{(v)et,



Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree querying

Question: How about a range counting query?
How should the code be adapted?
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of
white, grey, and black nodes

@ White nodes: never visited by the query; no time spent

@ Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

o Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size
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Kd-tree query time analysis

Computational Geometry

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

White, grey, and black nodes with respect to region(v):

@ White node v: R does not intersect region(Vv)
e Grey node v: R intersects region(v), but region(v) Z R
e Black node v: region(v) CR
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Computational Geometry Lecture 7: Range searching and kd-trees



Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black /eaves?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black nodes?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Grey node v: R intersects region(Vv), but region(v) € R

It implies that the boundaries of R and region(Vv) intersect
Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let's analyze the number
of grey nodes if the query is with a vertical line /¢
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black /eaves?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

We observe: At every vertical split, £ is only to one side, while
at every horizontal split ¢ is to both sides

Let G(n) be the number of grey nodes in a kd-tree with n
points (leaves). Then G(1) =1 and:

If a subtree has n leaves: G(n) =14 G(n/2) at even depth
If a subtree has n leaves: G(n) =1+2-G(n/2) at odd depth

If we use two levels at once, we get:

G(n)=242-G(n/4) or Gn)=3+2-G(n/4)
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

n leaves n leaves
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

G(1)=1
G(n) = 2-G(n/4) +0(1)

Question: What does this recurrence solve to?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

The grey subtree has unary and binary nodes
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

The depth is logn, so the binary depth is %-logn
Important: The logarithm is base-2

Counting only binary nodes, there are

2%-10gn _ zlognl/2 _ n1/2 _ \/ﬁ

Every unary grey node has a unique binary parent (except the
root), so there are at most twice as many unary nodes as
binary nodes, plus 1
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

The number of grey nodes if the query were a vertical line

is O(y/n)
The same is true if the query were a horizontal line

How about a query rectangle?
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

J
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

The number of grey nodes for a query rectangle is at most
the number of grey nodes for two vertical and two horizontal

lines, so it is at most 4-O0(y/n) = O(+y/n) !

For black nodes, reporting a whole subtree with k leaves,
takes O(k) time (there are k— 1 internal black nodes)
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Result

Theorem: A set of n points in the plane can be preprocessed
in O(nlogn) time into a data structure of O(n) size so that
any 2D range query can be answered in O(y/n+k) time,
where k is the number of answers reported

For range counting queries, we need O(/n) time
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Efficiency

n | logn Vi
4 2 2
16 4 4
64 6 8

256 8 16

1024 10 32
4096 12 64
1.000.000 20 | 1000
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Higher dimensions

A 3-dimensional kd-tree alternates splits on x-, y-, and
z-coordinate

A 3D range query is performed with a box
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Higher dimensions

The construction of a 3D kd-tree is a trivial adaptation of the
2D version

The 3D range query algorithm is exactly the same as the 2D
version

The 3D kd-tree still requires O(n) storage if it stores n points
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Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Higher dimensions

How does the query time analysis change?

-

Intersection of B and region(v) depends on intersection of
facets of B = analyze by axes-parallel planes (B has no more
grey nodes than six planes)
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Higher dimensions

37

m leaves
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Let G3(n) be the number of grey nodes for a query with an
axes-parallel plane in a 3D kd-tree

G;(1)=1
Gsz(n) =4-G3(n/8)+ 0O(1)
Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary
search tree with depth %logn have?
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Kd-trees

Querying in kd-trees
Kd-trees Kd-tree query time analysis

Higher-dimensional kd-trees

Result

Theorem: A set of n points in d-space can be preprocessed in
O(nlogn) time into a data structure of O(n) size so that any
d-dimensional range query can be answered in O(n' =1/ + k)
time, where k is the number of answers reported
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