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Databases

Databases store records or objects

Personnel database: Each employee has a name, id code, date
of birth, function, salary, start date of employment, . . .

Fields are textual or numerical
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Database queries

A database query may ask for
all employees with age
between a1 and a2, and salary
between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer

born: Aug 16, 1954

salary: $3,500
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Database queries

When we see numerical fields of objects as coordinates, a
database stores a point set in higher dimensions

Exact match query: Asks for the objects whose coordinates
match query coordinates exactly

Partial match query: Same but not all coordinates are
specified

Range query: Asks for the objects whose coordinates lie in a
specified query range (interval)
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Database queries

Example of a 3-dimensional
(orthogonal) range query:
children in [2 , 4], salary in
[3000 , 4000], date of birth in
[19,500,000 , 19,559,999]

19,500,000 19,559,999

3,000

4,000

2
4
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Data structures

Idea of data structures

Representation of structure, for convenience (like DCEL)

Preprocessing of data, to be able to solve future
questions really fast (sub-linear time)

A (search) data structure has a storage requirement, a query
time, and a construction time (and an update time)
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1D range query problem

1D range query problem: Preprocess a set of n points on
the real line such that the ones inside a 1D query range
(interval) can be reported fast

The points p1, . . . ,pn are known beforehand, the query [x,x0]
only later

A solution to a query problem is a data structure description,
a query algorithm, and a construction algorithm

Question: What are the most important factors for the
e�ciency of a solution?
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Balanced binary search trees

A balanced binary search tree with the points in the leaves

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 7: Range searching and kd-trees8

25 90 Lahojamásaladerecha del

subáribif

9 23 90
º

9397



Introduction

Kd-trees

Database queries

1D range trees

Balanced binary search trees

The search path for 25

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49
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1D range trees

Balanced binary search trees

The search paths for 25 and for 90

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49
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Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49
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Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49
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Node types for a query

Three types of nodes for a given query:

White nodes: never visited by the query

Grey nodes: visited by the query, unclear if they lead to
output

Black nodes: visited by the query, whole subtree is
output

Question: What query time do we hope for?
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1D range trees

Node types for a query

The query algorithm comes down to what we do at each type
of node

Grey nodes: use query range to decide how to proceed: to
not visit a subtree (pruning), to report a complete subtree, or
just continue

Black nodes: traverse and enumerate all points in the leaves
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Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node
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Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node
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1D range query algorithm

Algorithm 1DRangeQuery(T, [x : x
0
])

1. nsplit  FindSplitNode(T,x,x0)
2. if nsplit is a leaf
3. then Check if the point in nsplit must be reported.
4. else n  lc(nsplit)

5. while n is not a leaf
6. do if x xn
7. then ReportSubtree(rc(n))
8. n  lc(n)

9. else n  rc(n)

10. Check if the point stored in n must be reported.
11. n  rc(nsplit)

12. Similarly, follow the path to x
0, and . . .
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Query time analysis

The e�ciency analysis is based on counting the numbers of
nodes visited for each type

White nodes: never visited by the query; no time spent

Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size
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Query time analysis

Grey nodes: they occur on only two paths in the tree, and
since the tree is balanced, its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m�1 internal
nodes; traversal visits O(m) nodes and finds m points for the
output

The time spent at each node is O(1) ) O(logn+ k) query
time
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Storage requirement and preprocessing

A (balanced) binary search tree storing n points uses O(n)

storage

A balanced binary search tree storing n points can be built in
O(n) time after sorting, so in O(n logn) time overall
(or by repeated insertion in O(n logn) time)
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Result

Theorem: A set of n points on the real line can be
preprocessed in O(n logn) time into a data structure of O(n)

size so that any 1D range query can be answered in
O(logn+ k) time, where k is the number of answers reported
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Example 1D range counting query

A 1-dimensional range tree for range counting queries

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14
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Example 1D range counting query

A 1-dimensional range counting query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97
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49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14
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Database queries

1D range trees

Result

Theorem: A set of n points on the real line can be
preprocessed in O(n logn) time into a data structure of O(n)

size so that any 1D range counting query can be answered in
O(logn) time

Note: The number of points does not influence the output
size so it should not show up in the query time
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Kd-tree query time analysis

Higher-dimensional kd-trees

Range queries in 2D
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Kd-tree query time analysis

Higher-dimensional kd-trees

Range queries in 2D

Question: Why can’t we simply use a balanced binary tree in
x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and
query the one where we think querying is more e�cient?
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Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left and half right

split by y-coordinate: split by a horizontal line that has half
the points below and half above
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Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left or on, and half right

split by y-coordinate: split by a horizontal line that has half
the points below or on, and half above
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Kd-trees
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Kd-tree construction

Algorithm BuildKdTree(P,depth)
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P with a vertical line ` through the

median x-coordinate into P1 (left of or
on `) and P2 (right of `)

5. else Split P with a horizontal line ` through
the median y-coordinate into P1 (below
or on `) and P2 (above `)

6. nleft  BuildKdTree(P1,depth+1)
7. nright  BuildKdTree(P2,depth+1)
8. Create a node n storing `, make nleft the left

child of n , and make nright the right child of n .
9. return n
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Kd-tree construction

The median of a set of n values can be computed in O(n)

time (randomized: easy; worst case: much harder)

Let T(n) be the time needed to build a kd-tree on n points

T(1) = O(1)

T(n) = 2 · T(n/2)+O(n)

A kd-tree can be built in O(n logn) time

Question: What is the storage requirement?
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Higher-dimensional kd-trees

Kd-tree regions of nodes

`1

`2

`3
region(⌫)

⌫

`1

`2

`3
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Higher-dimensional kd-trees

Kd-tree regions of nodes

How do we know region(n) when we are at a node n?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from
the root to n

Question: What are reasons to choose one or the other
option?
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Kd-tree querying

Algorithm SearchKdTree(n ,R)
Input. The root of (a subtree of) a kd-tree, and a range R

Output. All points at leaves below n that lie in the range.
1. if n is a leaf
2. then Report the point stored at n if it lies in R

3. else if region(lc(n)) is fully contained in R

4. then ReportSubtree(lc(n))
5. else if region(lc(n)) intersects R

6. then SearchKdTree(lc(n),R)
7. if region(rc(n)) is fully contained in R

8. then ReportSubtree(rc(n))
9. else if region(rc(n)) intersects R

10. then SearchKdTree(rc(n),R)
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Higher-dimensional kd-trees

Kd-tree querying

Question: How about a range counting query?
How should the code be adapted?
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Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of
white, grey, and black nodes

White nodes: never visited by the query; no time spent

Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size
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Higher-dimensional kd-trees

Kd-tree query time analysis

White, grey, and black nodes with respect to region(n):

White node n: R does not intersect region(n)

Grey node n: R intersects region(n), but region(n) 6✓ R

Black node n: region(n)✓ R

Computational Geometry Lecture 7: Range searching and kd-trees37



Introduction

Kd-trees

Kd-trees

Querying in kd-trees

Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Computational Geometry Lecture 7: Range searching and kd-trees38



Introduction

Kd-trees

Kd-trees

Querying in kd-trees

Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black leaves?
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Kd-tree query time analysis

Question: How many grey and how many black nodes?
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Kd-tree query time analysis

Grey node n : R intersects region(n), but region(n) 6✓ R

It implies that the boundaries of R and region(n) intersect

Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let’s analyze the number
of grey nodes if the query is with a vertical line `
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Question: How many grey and how many black leaves?
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Kd-tree query time analysis

We observe: At every vertical split, ` is only to one side, while
at every horizontal split ` is to both sides

Let G(n) be the number of grey nodes in a kd-tree with n

points (leaves). Then G(1) = 1 and:

If a subtree has n leaves: G(n) = 1+G(n/2) at even depth

If a subtree has n leaves: G(n) = 1+2 · G(n/2) at odd depth

If we use two levels at once, we get:

G(n) = 2+2 · G(n/4) or G(n) = 3+2 · G(n/4)
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x

y y

y

x x

n leaves n leaves

Computational Geometry Lecture 7: Range searching and kd-trees44



Introduction

Kd-trees

Kd-trees

Querying in kd-trees

Kd-tree query time analysis

Higher-dimensional kd-trees

Kd-tree query time analysis

G(1) = 1

G(n) = 2 · G(n/4)+O(1)

Question: What does this recurrence solve to?
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Kd-tree query time analysis

The grey subtree has unary and binary nodes
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The depth is logn, so the binary depth is 1
2 · logn

Important: The logarithm is base-2

Counting only binary nodes, there are

2
1
2 ·logn

= 2logn
1/2

= n
1/2

=
p

n

Every unary grey node has a unique binary parent (except the
root), so there are at most twice as many unary nodes as
binary nodes, plus 1
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The number of grey nodes if the query were a vertical line
is O(

p
n)

The same is true if the query were a horizontal line

How about a query rectangle?
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The number of grey nodes for a query rectangle is at most
the number of grey nodes for two vertical and two horizontal
lines, so it is at most 4 · O(

p
n) = O(

p
n) !

For black nodes, reporting a whole subtree with k leaves,
takes O(k) time (there are k�1 internal black nodes)
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Higher-dimensional kd-trees

Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n) size so that
any 2D range query can be answered in O(

p
n+ k) time,

where k is the number of answers reported

For range counting queries, we need O(
p

n) time
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Higher-dimensional kd-trees

E�ciency

n logn
p

n

4 2 2
16 4 4
64 6 8

256 8 16
1024 10 32
4096 12 64

1.000.000 20 1000
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Kd-tree query time analysis

Higher-dimensional kd-trees

Higher dimensions

A 3-dimensional kd-tree alternates splits on x-, y-, and
z-coordinate

A 3D range query is performed with a box
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Higher-dimensional kd-trees

Higher dimensions

The construction of a 3D kd-tree is a trivial adaptation of the
2D version

The 3D range query algorithm is exactly the same as the 2D
version

The 3D kd-tree still requires O(n) storage if it stores n points
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Higher-dimensional kd-trees

Higher dimensions

How does the query time analysis change?

Intersection of B and region(n) depends on intersection of
facets of B ) analyze by axes-parallel planes (B has no more
grey nodes than six planes)
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Higher dimensions

m leaves

x

y

z

y

z zz
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Kd-tree query time analysis

Let G3(n) be the number of grey nodes for a query with an
axes-parallel plane in a 3D kd-tree

G3(1) = 1

G3(n) = 4 · G3(n/8)+O(1)

Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary
search tree with depth 2

3 logn have?
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Higher-dimensional kd-trees

Result

Theorem: A set of n points in d-space can be preprocessed in
O(n logn) time into a data structure of O(n) size so that any
d-dimensional range query can be answered in O(n

1�1/d
+ k)

time, where k is the number of answers reported
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