Range searching and kd-trees

Computational Geometry 12 - trues

Lecture 7: Range searching and kd-trees

K-dimensional

K=1, 1C=2, K=3

Database queries 1D range trees

Databases

consultos. Se 20 cumentos consultos. Se 20 cumentos o foto grafios. Vecinos mais concanos.

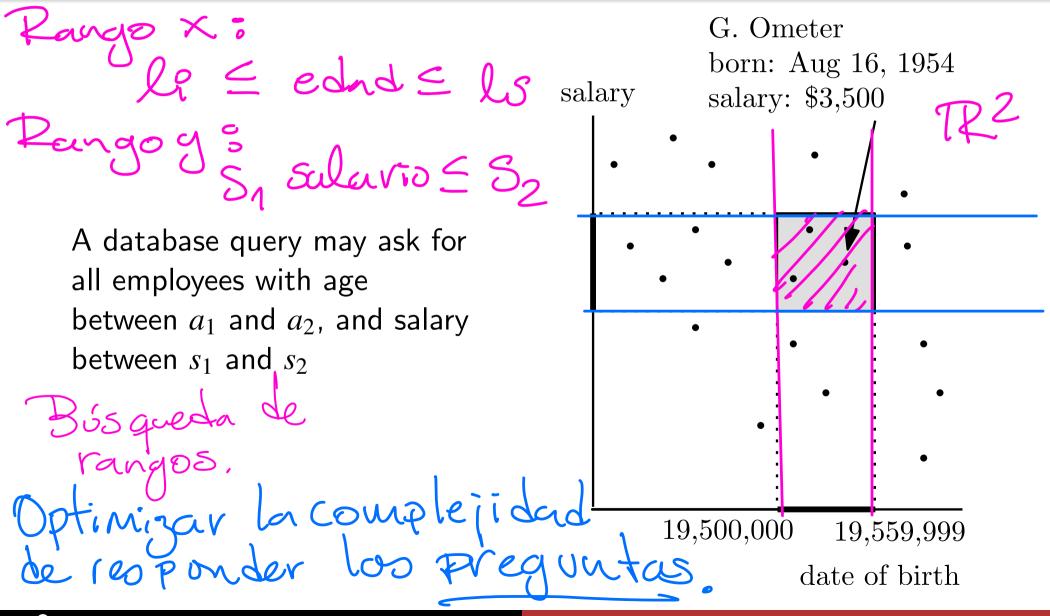
Databases store records or objects

Personnel database: Each employee has a name, id code, date of birth, function, salary, start date of employment, ...

Fields are textual or numerical Dada una techa, to dos los empleant Fecha-inicio = fecha.

Database queries 1D range trees

Database queries



Database queries

When we see numerical fields of objects as coordinates, a database stores a point set in higher dimensions

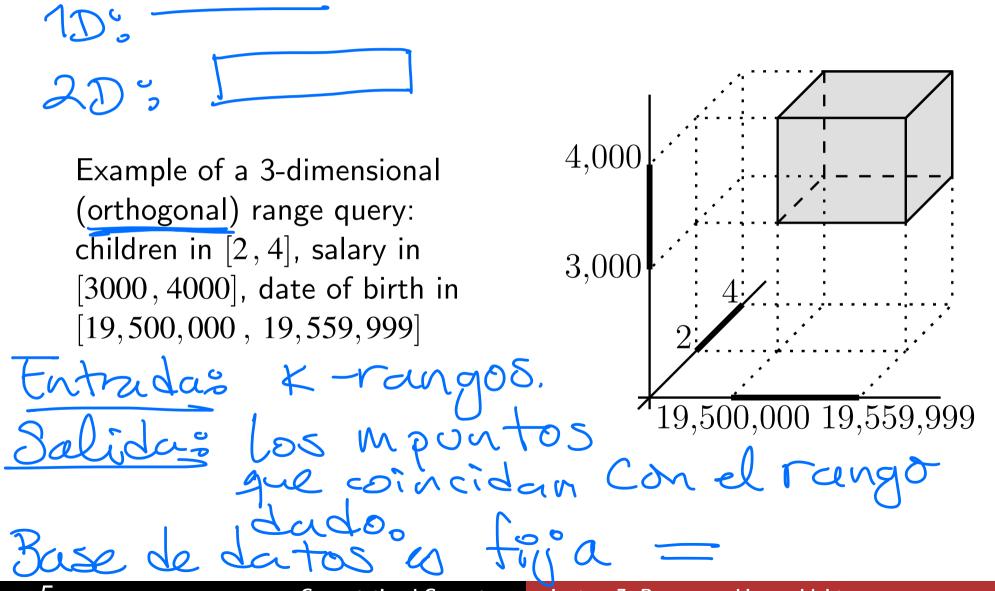
Exact match query: Asks for the objects whose coordinates match query coordinates exactly

Partial match query: Same but not all coordinates are specified محر معر 2000 من محر معر معر 2000 من محر معن مح Range query: Asks for the objects whose coordinates lie in a specified query range (interval)

Bisqueda de rangos.

Database queries 1D range trees

Database queries



Data structures

Idea of data structures

- Representation of structure, for convenience (like DCEL)
- Preprocessing of data, to be able to solve future questions really fast (sub-linear time)

A (search) data structure has a storage requirement, a query time, and a construction time (and an update time)

ro de ejecución: Mant

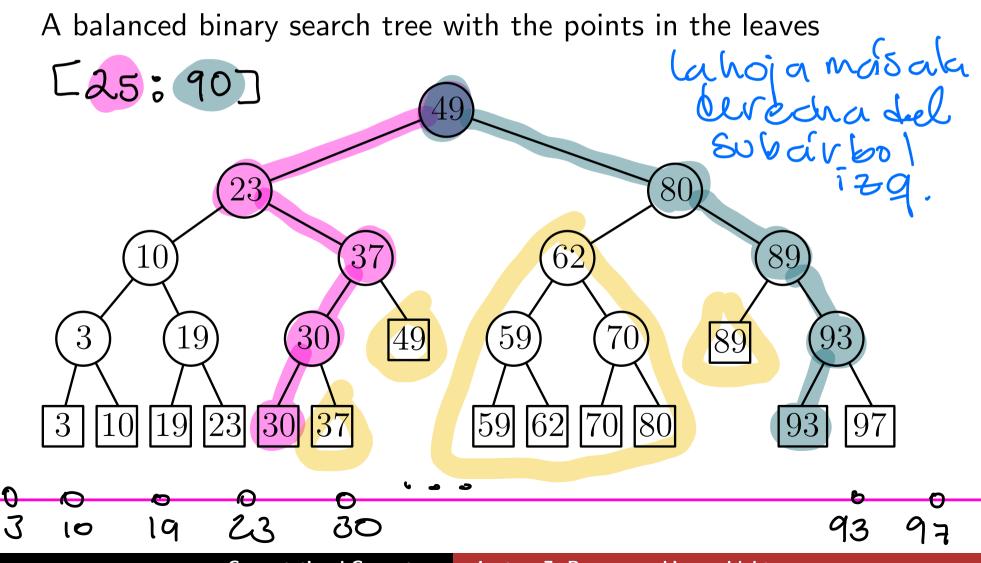
1D range query problem

1D range query problem: Preprocess a set of n points on the real line such that the ones inside a 1D query range (interval) can be reported fast

The points p_1, \ldots, p_n are known beforehand, the query [x, x'] only later

A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm 2 Question: What are the most important factors for the efficiency of a solution?

Balanced binary search trees

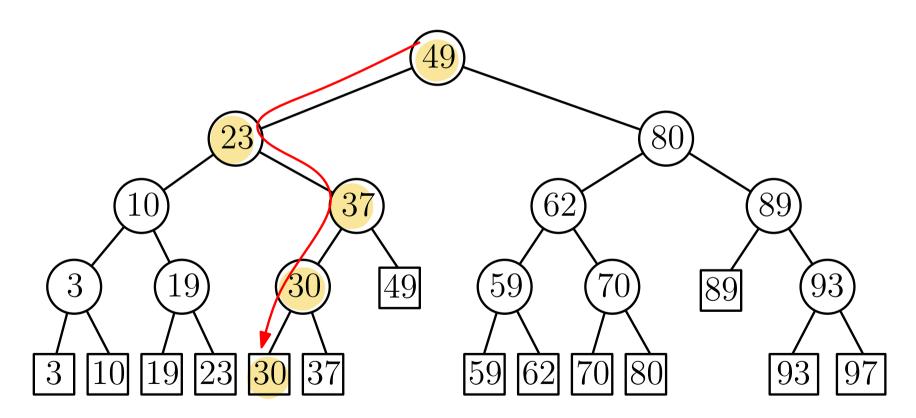


8

Database queries 1D range trees

Balanced binary search trees

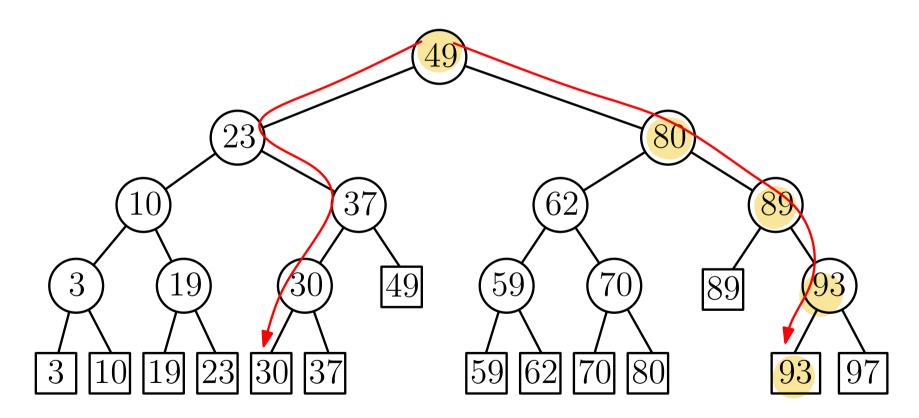
The search path for 25



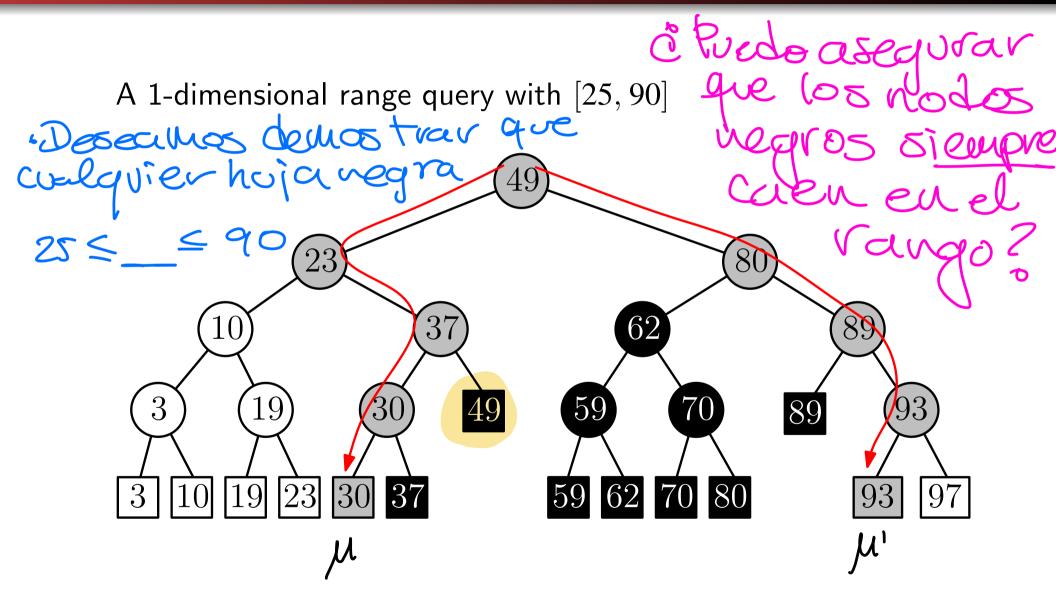
Database queries 1D range trees

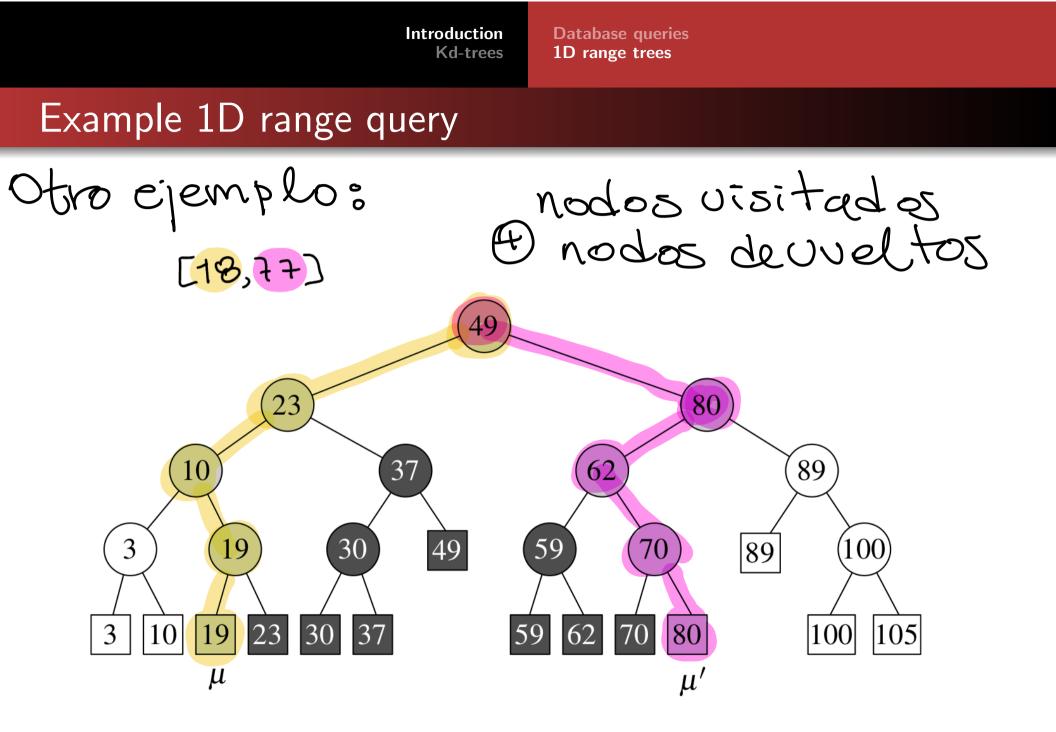
Balanced binary search trees

The search paths for 25 and for 90



Example 1D range query





Node types for a query

Three types of nodes *for a given query*:

- White nodes: never visited by the query
- Grey nodes: visited by the query, unclear if they lead to output
- Black nodes: visited by the query, whole subtree is output

Question: What query time do we hope for?

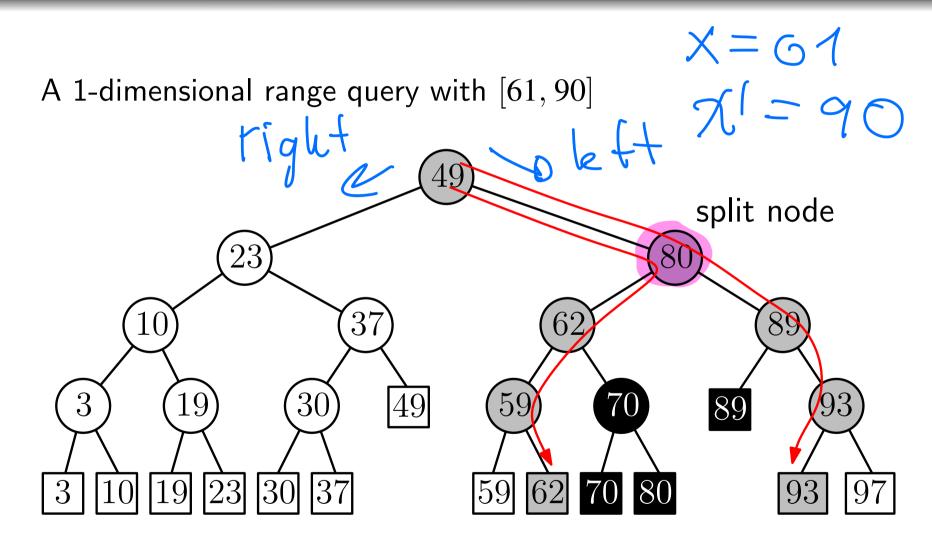
Node types for a query

The query algorithm comes down to what we do at each type of node

Grey nodes: use query range to decide how to proceed: to not visit a subtree (pruning), to report a complete subtree, or just continue

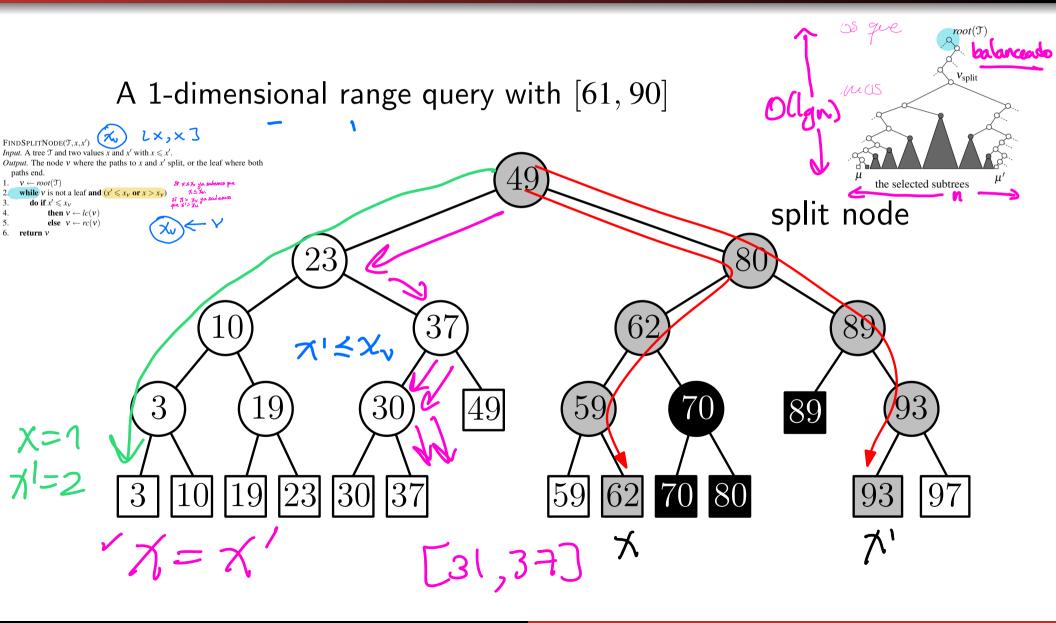
Black nodes: traverse and enumerate all points in the leaves

Example 1D range query

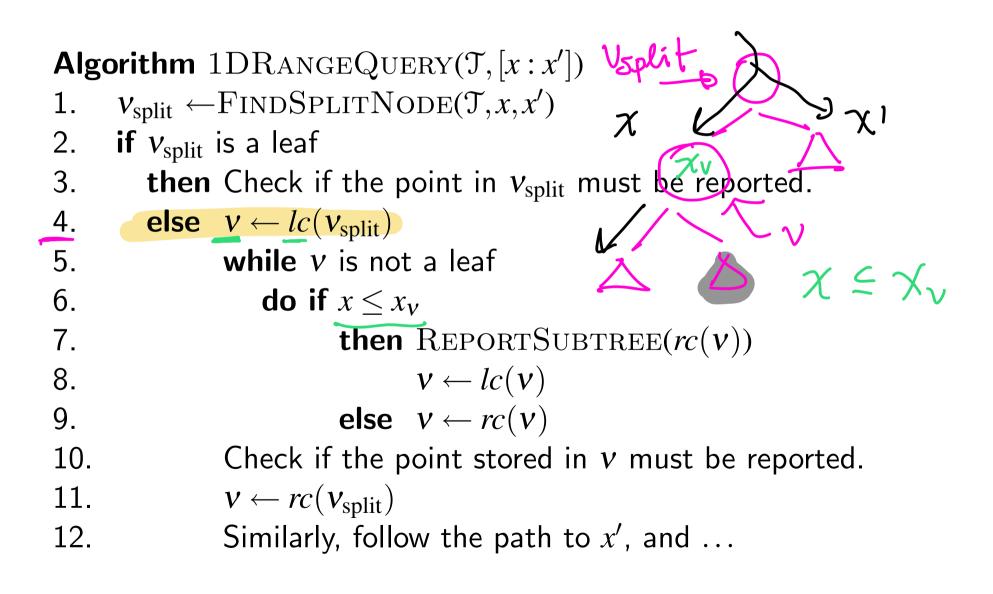


Database queries 1D range trees

Example 1D range query

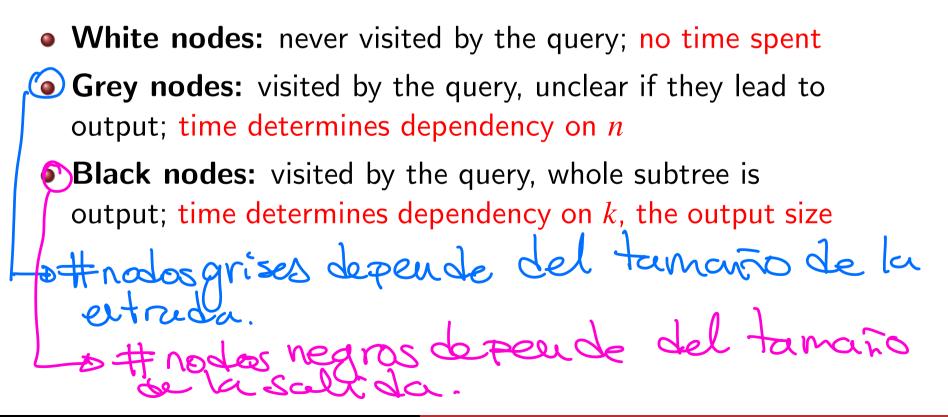


1D range query algorithm



Query time analysis

The efficiency analysis is based on counting the numbers of nodes visited for each type

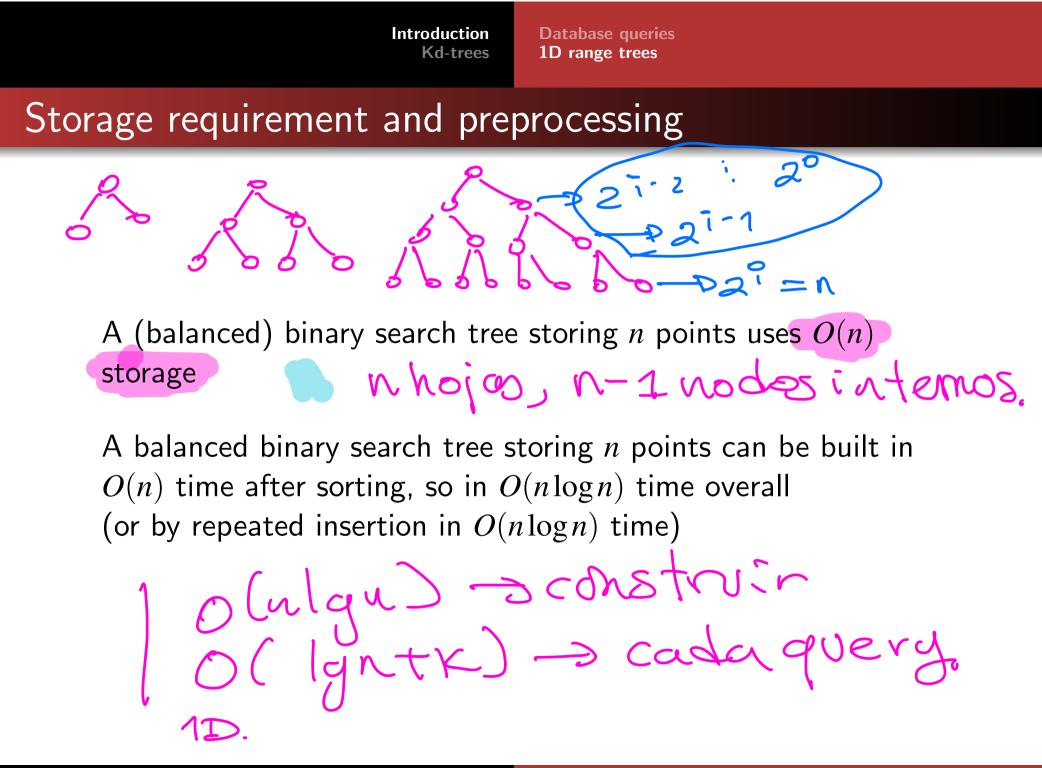


Query time analysis

Grey nodes: they occur on only two paths in the tree, and since the tree is balanced, its depth is $O(\log n)$

Black nodes: a (sub)tree with m leaves has m-1 internal nodes; traversal visits O(m) nodes and finds m points for the output

The time spent at each node is $O(1) \Rightarrow O(\log n + k)$ query time $O(\lg n) + O(\lg n)$ O(k) $\chi = \# nodos vegros.$

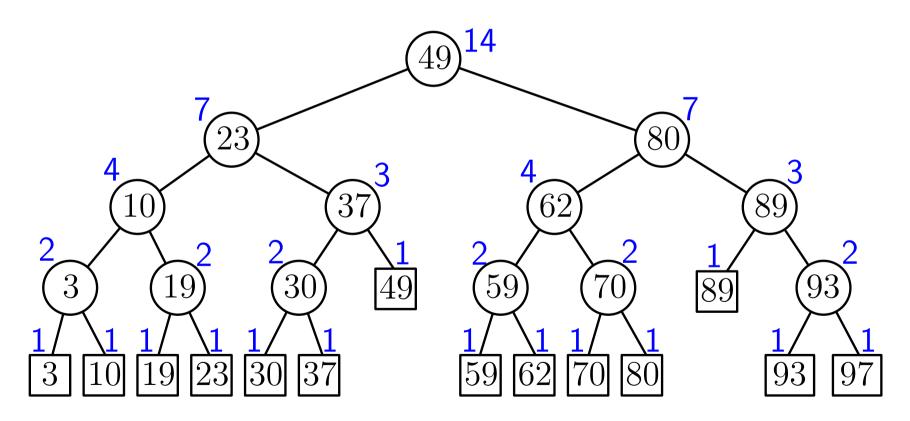


Result

Theorem: A set of *n* points on the real line can be preprocessed in $O(n \log n)$ time into a data structure of O(n)size so that any 1D range query can be answered in $O(\log n + k)$ time, where *k* is the number of answers reported

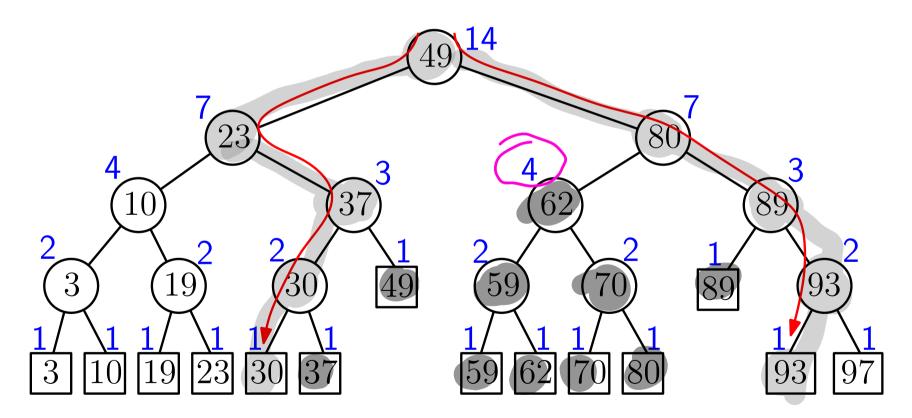
Example 1D range counting query

A 1-dimensional range tree for range counting queries



Example 1D range counting query

A 1-dimensional range counting query with [25, 90]

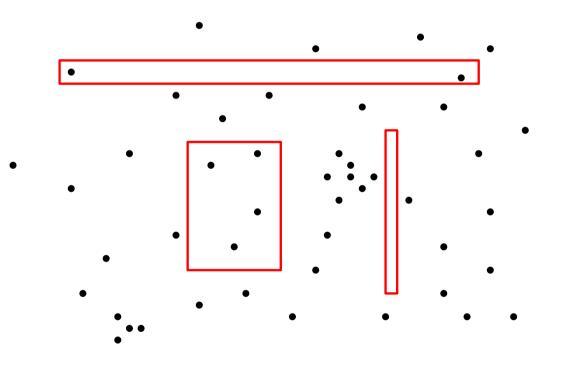


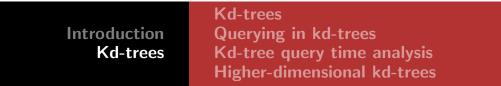
Result

Theorem: A set of *n* points on the real line can be preprocessed in $O(n \log n)$ time into a data structure of O(n)size so that any 1D range counting query can be answered in $O(\log n)$ time

Note: The number of points does not influence the output size so it should not show up in the query time

Range queries in 2D





Range queries in 2D

Question: Why can't we simply use a balanced binary tree in *x*-coordinate?

Or, use one tree on *x*-coordinate and one on *y*-coordinate, and query the one where we think querying is more efficient?



Kd-trees, the idea: Split the point set alternatingly by *x*-coordinate and by *y*-coordinate

split by x-coordinate: split by a vertical line that has half the points left and half right

split by y-coordinate: split by a horizontal line that has half the points below and half above

Kd-trees, the idea: Split the point set alternatingly by *x*-coordinate and by *y*-coordinate

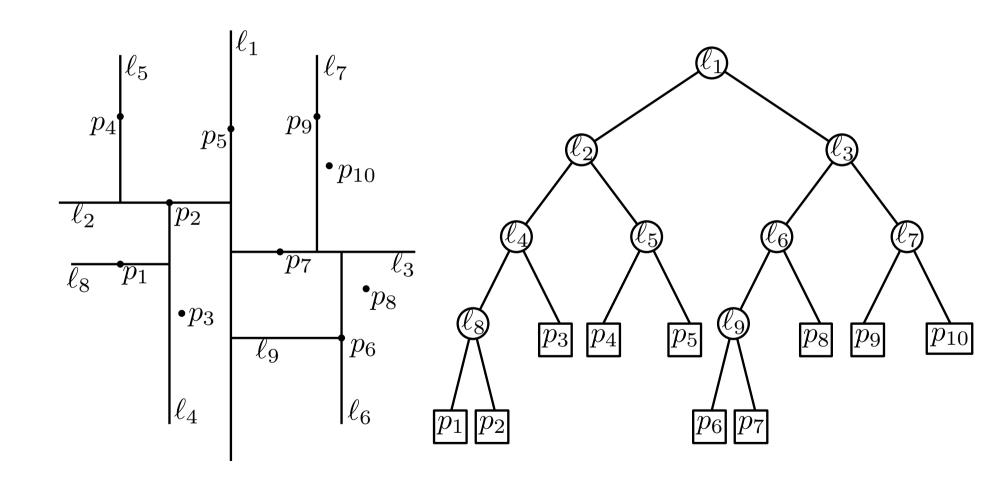
split by x-coordinate: split by a vertical line that has half the points left or on, and half right

split by y-coordinate: split by a horizontal line that has half the points below or on, and half above

Kd-trees

Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-trees



Kd-tree construction

Algorithm BUILDKDTREE(*P*, *depth*)

- 1. if P contains only one point
- 2. then return a leaf storing this point
- 3. **else if** *depth* is even
- 4. **then** Split P with a vertical line ℓ through the median x-coordinate into P_1 (left of or on ℓ) and P_2 (right of ℓ)
- 5. **else** Split P with a horizontal line ℓ through the median y-coordinate into P_1 (below or on ℓ) and P_2 (above ℓ)
- 6. $v_{\text{left}} \leftarrow \text{BUILDKDTREE}(P_1, depth+1)$
- 7. $v_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth+1)$
- 8. Create a node v storing ℓ , make v_{left} the left child of v, and make v_{right} the right child of v.

9. return v

Kd-tree construction

The median of a set of n values can be computed in O(n) time (randomized: easy; worst case: much harder)

Let T(n) be the time needed to build a kd-tree on n points

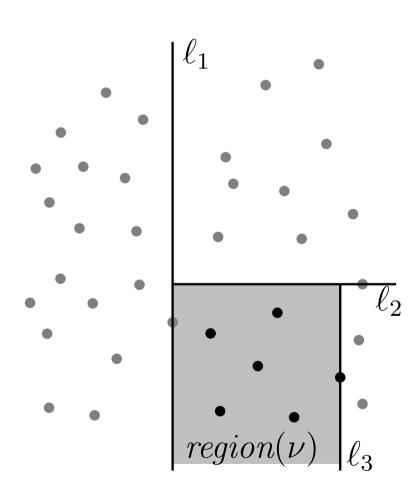
T(1) = O(1) $T(n) = 2 \cdot T(n/2) + O(n)$

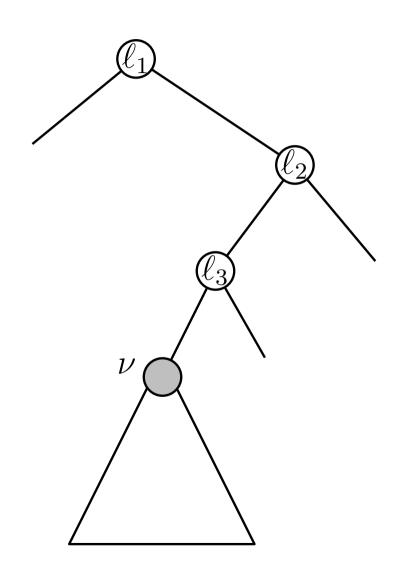
A kd-tree can be built in $O(n \log n)$ time

Question: What is the storage requirement?

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree regions of nodes





Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree regions of nodes

How do we know region(v) when we are at a node v?

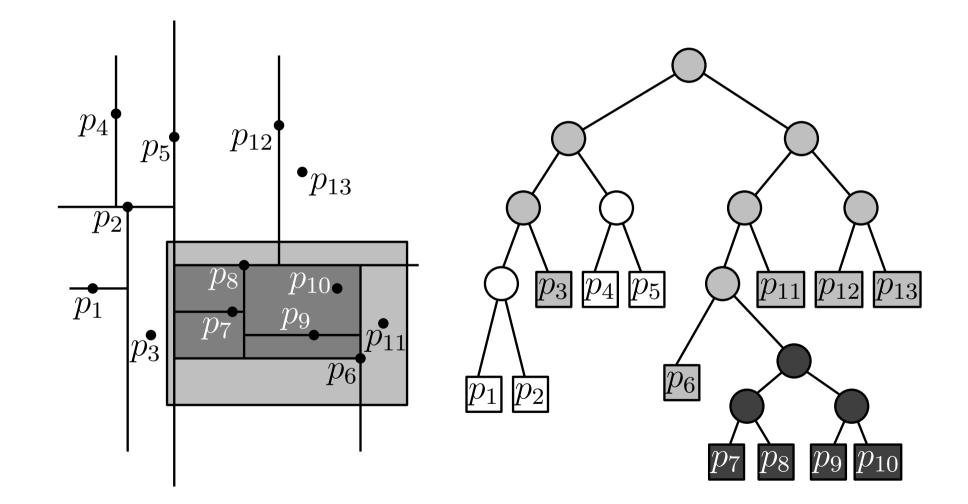
Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from the root to v

Question: What are reasons to choose one or the other option?

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree querying



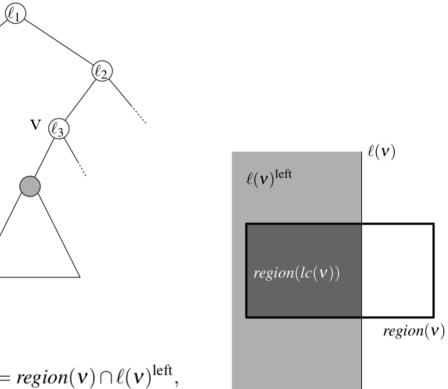
Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree querying

Algorithm SEARCHKDTREE(v, R)

Input. The root of (a subtree of) a kd-tree, and a range R*Output.* All points at leaves below v that lie in the range. 1. **if** v is a leaf

- 2. **then** Report the point stored at v if it lies in R3. **else if** region(lc(v)) is fully contained in R
- 4. then REPORTSUBTREE(lc(v))5. else if region(lc(v)) intersects R6. then SEARCHKDTREE(lc(v), R)7. if region(rc(v)) is fully contained in R
 - if region(rc(v)) is fully contained in R
- 8. then REPORTSUBTREE(rc(v)) 9. else if region(rc(v)) intersects R
- 10. **then** SEARCHKDTREE(rc(v), R)



$$region(lc(v)) = region(v) \cap \ell(v)^{\text{left}}$$

Kd-tree querying

Question: How about a range *counting* query? How should the code be adapted?

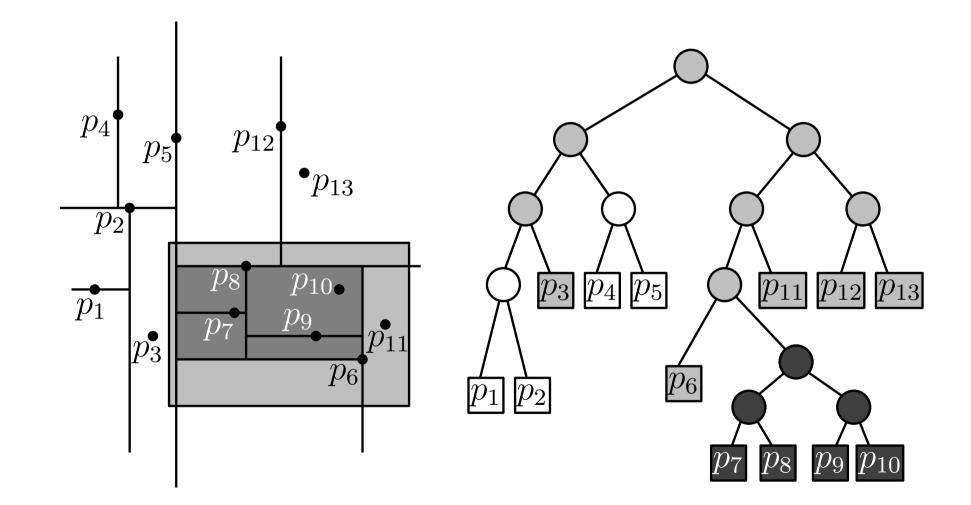
Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of white, grey, and black nodes

- White nodes: never visited by the query; no time spent
- **Grey nodes:** visited by the query, unclear if they lead to output; time determines dependency on *n*
- Black nodes: visited by the query, whole subtree is output; time determines dependency on k, the output size

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

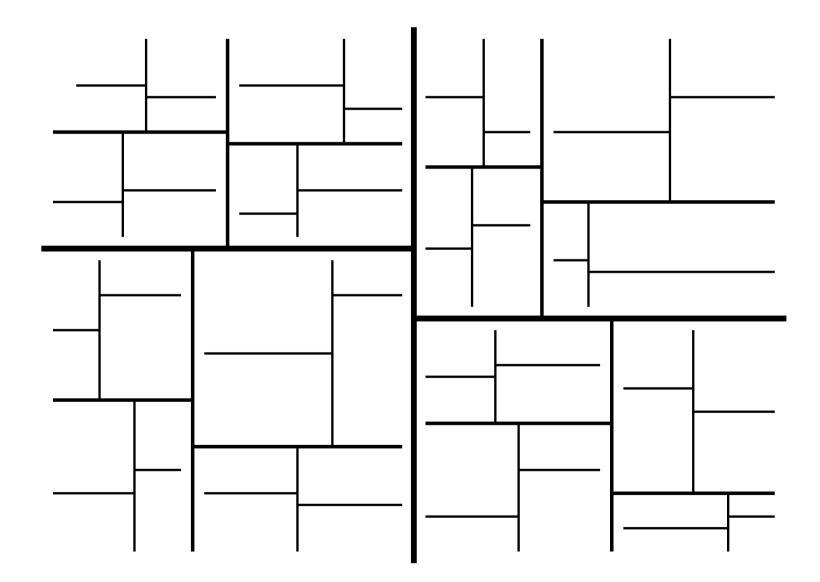
Kd-tree query time analysis

White, grey, and black nodes with respect to region(v):

- White node v: R does not intersect region(v)
- Grey node v: R intersects region(v), but $region(v) \not\subseteq R$
- Black node v: $region(v) \subseteq R$

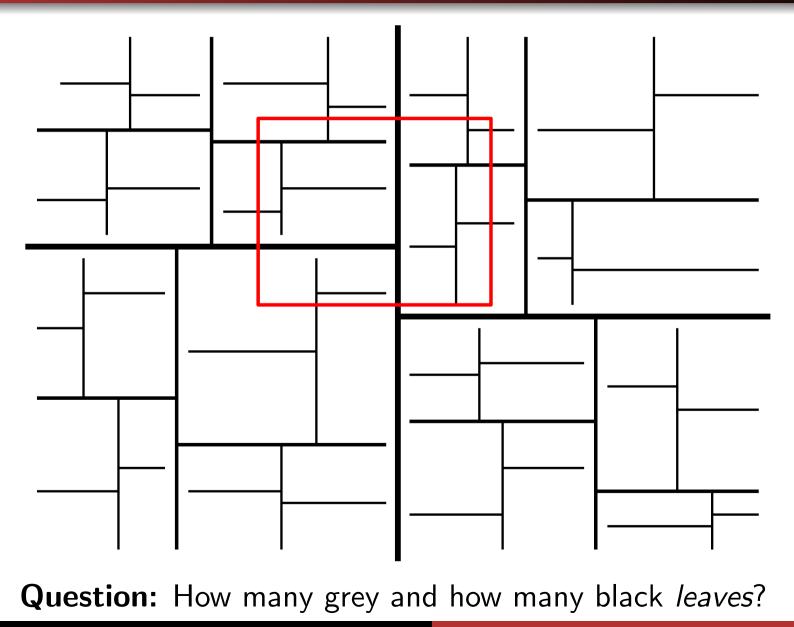
Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

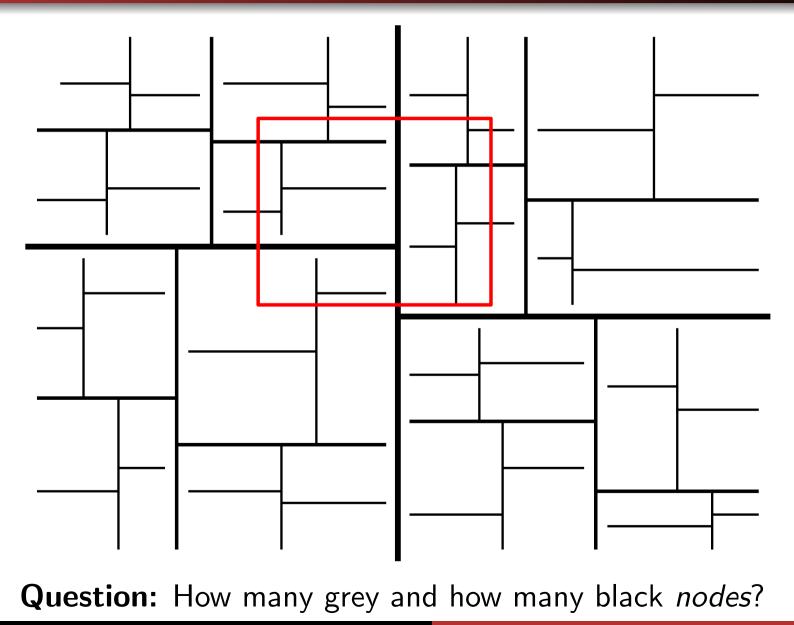
Kd-tree query time analysis



39

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



40

Kd-tree query time analysis

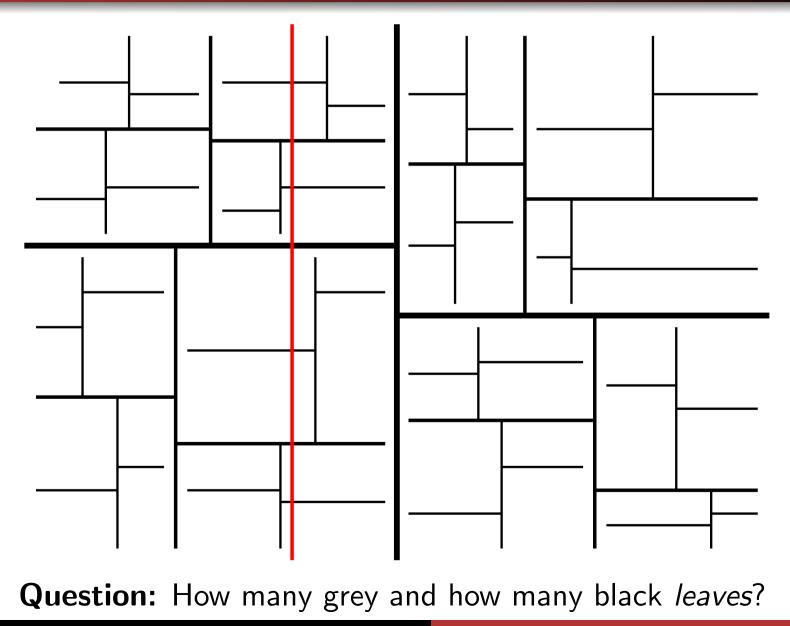
Grey node v: R intersects region(v), but $region(v) \not\subseteq R$ It implies that the boundaries of R and region(v) intersect

Advice: If you don't know what to do, simplify until you do

Instead of taking the boundary of R, let's analyze the number of grey nodes if the query is with a vertical line ℓ

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



42

Kd-tree query time analysis

We observe: At every vertical split, ℓ is only to one side, while at every horizontal split ℓ is to both sides

Let G(n) be the number of grey nodes in a kd-tree with n points (leaves). Then G(1) = 1 and:

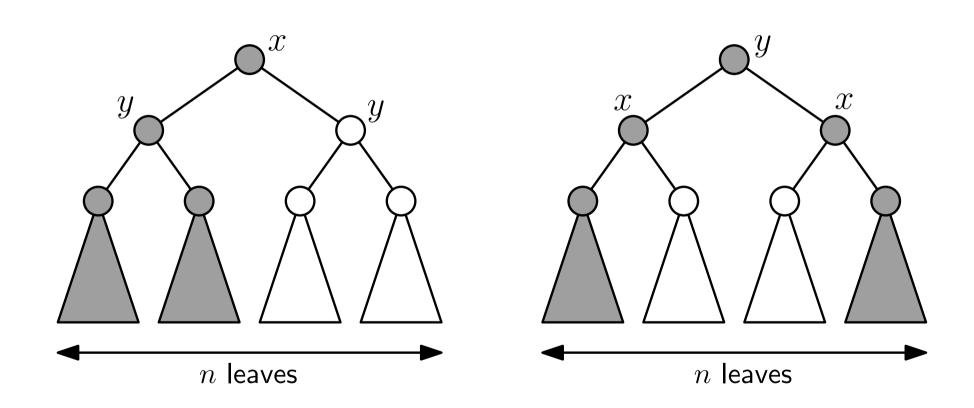
If a subtree has *n* leaves: G(n) = 1 + G(n/2) at even depth If a subtree has *n* leaves: $G(n) = 1 + 2 \cdot G(n/2)$ at odd depth

If we use *two levels at once*, we get:

$$G(n) = 2 + 2 \cdot G(n/4)$$
 or $G(n) = 3 + 2 \cdot G(n/4)$

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis

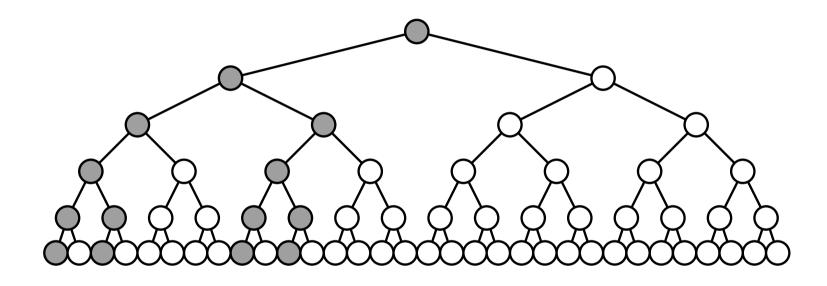
$$G(1) = 1$$

 $G(n) = 2 \cdot G(n/4) + O(1)$

Question: What does this recurrence solve to?

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



The grey subtree has unary and binary nodes

Kd-tree query time analysis

The depth is $\log n$, so the binary depth is $\frac{1}{2} \cdot \log n$ Important: The logarithm is base-2

Counting only binary nodes, there are
$$2^{\frac{1}{2} \cdot \log n} = 2^{\log n^{1/2}} = n^{1/2} = \sqrt{n}$$

Every unary grey node has a unique binary parent (except the root), so there are at most twice as many unary nodes as binary nodes, plus 1

Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis

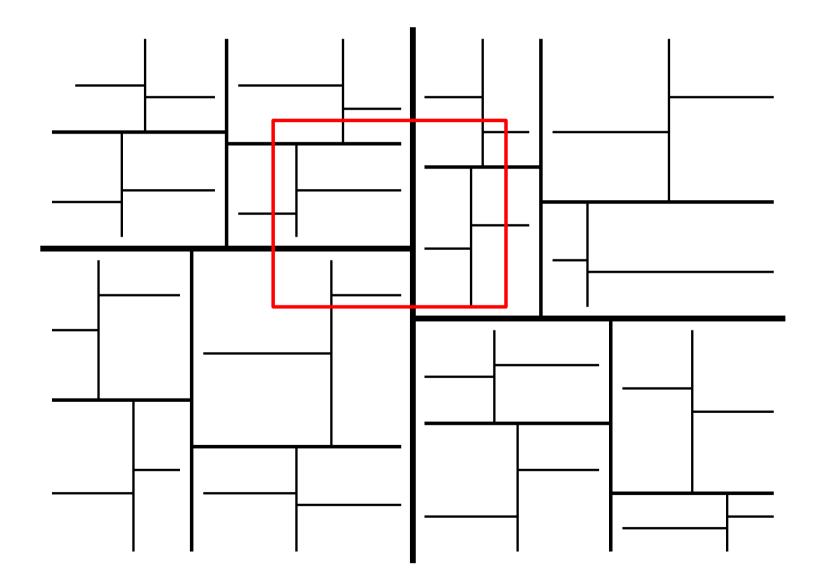
The number of grey nodes if the query were a vertical line is $O(\sqrt{n})$

The same is true if the query were a horizontal line

How about a query rectangle?

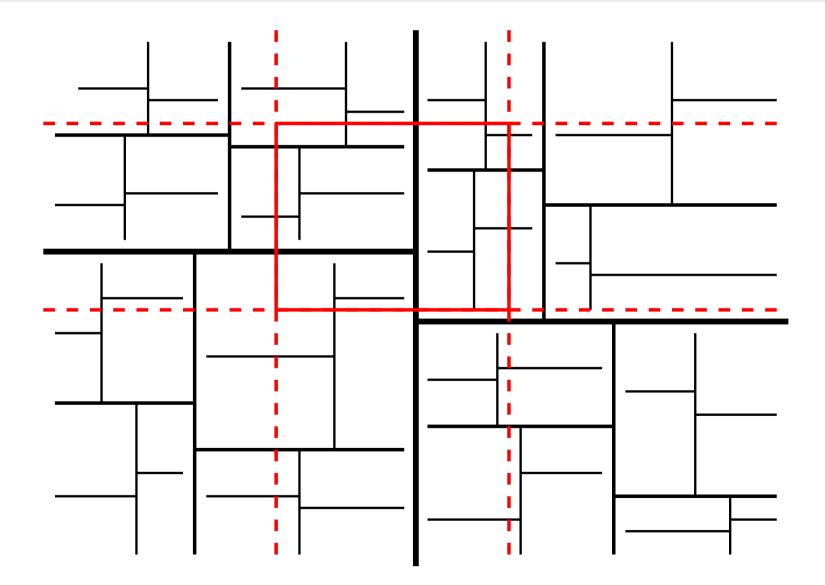
Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Kd-tree query time analysis



Kd-tree query time analysis

The number of grey nodes for a query rectangle is at most the number of grey nodes for two vertical and two horizontal lines, so it is at most $4 \cdot O(\sqrt{n}) = O(\sqrt{n})$!

For black nodes, reporting a whole subtree with k leaves, takes O(k) time (there are k-1 internal black nodes)

Result

Theorem: A set of *n* points in the plane can be preprocessed in $O(n \log n)$ time into a data structure of O(n) size so that any 2D range query can be answered in $O(\sqrt{n}+k)$ time, where *k* is the number of answers reported

For range counting queries, we need $O(\sqrt{n})$ time

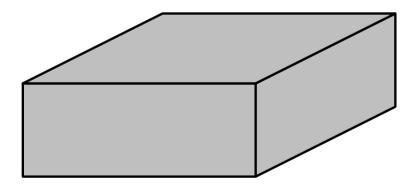
Kd-trees Querying in kd-trees Kd-tree query time analysis Higher-dimensional kd-trees

Efficiency

п	logn	\sqrt{n}
4	2	2
16	4	4
64	6	8
256	8	16
1024	10	32
4096	12	64
1.000.000	20	1000

A 3-dimensional kd-tree alternates splits on x-, y-, and z-coordinate

A 3D range query is performed with a box

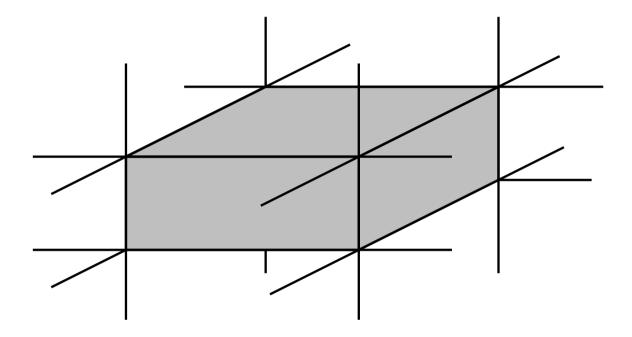


The construction of a 3D kd-tree is a trivial adaptation of the 2D version

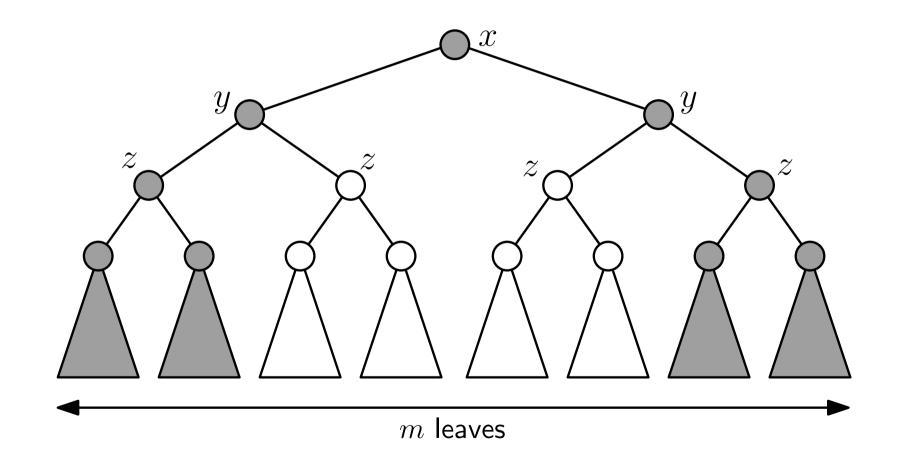
The 3D range query algorithm is exactly the same as the 2D version

The 3D kd-tree still requires O(n) storage if it stores n points

How does the query time analysis change?



Intersection of *B* and region(v) depends on intersection of facets of $B \Rightarrow$ analyze by axes-parallel planes (*B* has no more grey nodes than six planes)



Kd-tree query time analysis

Let $G_3(n)$ be the number of grey nodes for a query with an axes-parallel plane in a 3D kd-tree

 $G_3(1) = 1$

$$G_3(n) = 4 \cdot G_3(n/8) + O(1)$$

Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary search tree with depth $\frac{2}{3}\log n$ have?

Theorem: A set of *n* points in *d*-space can be preprocessed in $O(n \log n)$ time into a data structure of O(n) size so that any *d*-dimensional range query can be answered in $O(n^{1-1/d} + k)$ time, where *k* is the number of answers reported