Using orientation tests to solve basic problems on polygons

Vera Sacristán

Computational Geometry Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Intersection test line - polygon

Input:

- ℓ : a line (through p and q)
- *P*: a polygon (with vertices p_1, p_2, \ldots, p_m)

Yes/No they intersect.

If they do, the edges of P intersecting ℓ

Intersection test line - polygon

Input:

 ℓ : a line (through p and q) *P*: a polygon (with vertices p_1, p_2, \ldots, p_m)

Yes/No they intersect. If they do, the edges of P intersecting ℓ

What if the polygon is convex?

Point in polygon test

Input:

A polygon p_1, p_2, \ldots, p_n A query point q

Output:

 $\mathsf{Yes}/\mathsf{No}\ q\in P$

Input:

A polygon p_1, p_2, \ldots, p_n A query point q

Output:

 $\mathsf{Yes}/\mathsf{No}\ q\in P$

What if the polygon is convex?

Supporting lines point - polygon

Input:

- A polygon P with vertices p_1, p_2, \ldots, p_n
- A point \boldsymbol{q} not belonging to the convex hull of \boldsymbol{P}

Output:

Lines through $q \mbox{ and } P$ that leave all of P to one side

Supporting lines point - polygon

Input:

- A polygon P with vertices p_1, p_2, \ldots, p_n
- A point \boldsymbol{q} not belonging to the convex hull of \boldsymbol{P}

Output:

Lines through $q \mbox{ and } P$ that leave all of P to one side

Supporting lines point - polygon

Input:

- A polygon P with vertices p_1, p_2, \ldots, p_n
- A point \boldsymbol{q} not belonging to the convex hull of \boldsymbol{P}

Output:

Lines through q and P that leave all of P to one side

How did we prove the correctness of our solutions?

How did we prove the correctness of our solutions?

How did we prove the correctness of our solutions?

Geometric property: No particular one.

How did we prove the correctness of our solutions?

Geometric property: No particular one.

Brute-force solution

O(n) time O(n) space

How did we prove the correctness of our solutions?

Geometric property: No particular one.

Brute-force solution

O(n) time O(n) space

Geometric property: $p \in P \Leftrightarrow$ The number of intersections of ∂P and any halfline with origin at p is odd.

How did we prove the correctness of our solutions?

Geometric property: No particular one.

Brute-force solution

O(n) time O(n) space

Geometric property: $p \in P \Leftrightarrow$ The number of intersections of ∂P and any halfline with origin at p is odd.

Brute-force solution O(n) time O(n) space

How did we prove the correctness of our solutions?

Geometric property: No particular one.

Brute-force solution

O(n) time O(n) space

Geometric property: $p \in P \Leftrightarrow$ The number of intersections of ∂P and any halfline with origin at p is odd.

Brute-force solution O(n) time O(n) space

Geometric property: The solutions are the angularly extreme vertices of P as seen from p.

How did we prove the correctness of our solutions?

Geometric property: No particular one.

Brute-force solution

O(n) time O(n) space

Geometric property: $p \in P \Leftrightarrow$ The number of intersections of ∂P and any halfline with origin at p is odd.

Brute-force solution O(n) time O(n) space

Geometric property: The solutions are the angularly extreme vertices of P as seen from p.

Use a max/min algorithm O(n) time O(n) space

How did we prove the correctness of our solutions?

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

O(n) space (after preprocess)

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

Geometric property: Segments connecting two vertices decompose *P* into two convex subpolygons.

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

Geometric property: Segments connecting two vertices decompose *P* into two convex subpolygons.

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

Geometric property: Segments connecting two vertices decompose *P* into two convex subpolygons.

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

Geometric property: Angle wrt q is unimodal along ∂P .

How did we prove the correctness of our solutions?

Geometric property: Distance to line is unimodal along each chain of ∂P .

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

Geometric property: Segments connecting two vertices decompose *P* into two convex subpolygons.

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

Geometric property: Angle wrt q is unimodal along ∂P .

Binary search solution

 $O(\log n)$ time O(n) space (after preprocess)

FURTHER READING

J. O'Rourke *Computational Geometry in C* Cambridge University Press, 1994 (2nd ed. 1998), pp. 17-35.

F. P. Preparata and M. I. Shamos *Computational Geometry: An Introduction* Springer-Verlag, 1985, pp. 36-45.