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TRIANGULATING POLYGONS

A polygon triangulation is the decomposition of a polygon into triangles. This is done by

inserting internal diagonals. ‘0 ‘W\l_\—-e)(.wdb(‘m !
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TRIANGULATING POLYGONS

A polygon triangulation is the decomposition of a polygon into triangles. This is done by
inserting internal diagonals.

An internal diagonal is any segment...

e connecting two vertices of the polygon and
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TRIANGULATING POLYGONS

A polygon triangulation is the decomposition of a polygon into triangles. This is done by
inserting internal diagonals.
An internal diagonal is any segment...
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TRIANGULATING POLYGONS

A polygon triangulation is the decomposition of a polygon into triangles. This is done by
inserting internal diagonals.

An internal diagonal is any segment...

e connecting two vertices of the polygon and
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1. Every polygon can be triangulated
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3. Algorithms
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TRIANGULATING POLYGONS

Every polygon admits a triangulation

Lemma 1. Every polygon has at least one convex vertex (actually, at least three).
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TRIANGULATING POLYGONS

Every polygon admits a triangulation
Lemma 1. Every polygon has at least one convex vertex (actually, at least three).

The vertex p with minimum z-
coordinate (and, if there are more
than one, the one with minimum
y-coordinate) is convex.
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TRIANGULATING POLYGONS

Every polygon admits a triangulation

Lemma 1. Every polygon has at least one convex vertex (actually, at least three).

The vertex p with minimum z-
coordinate (and, if there are more
than one, the one with minimum
y-coordinate) is convex.

So is the vertex ¢ with maximum
x-coordinate (which is different of
the one with minimum one).
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TRIANGULATING POLYGONS

Every polygon admits a triangulation /
Lemma 1. Every polygon has at least one convex vertex (actudll y//lea/thre/
The vertex p with minimum z- / J/
coordinate (and, if there are mor r P @ v Cd"\/{"’u, ( CI:I()M
than one, the one with minimym

y-coordinate) is convex.

So is the vertex ¢ with maximum
x-coordinate (which is different of

the one with minimum one).

\
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Finally, there is at least one vertex
which is extreme in the direction
orthogonal to pg and does not co-
incide with any of the above. This
third vertex r is necessarily convex.
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TRIANGULATING POLYGONS

Every polygon admits a triangulation

Lemma 1. Every polygon has at least one convex vertex (actually, at least three).

Lemma 2. Every'n-gon with n > 4 has at least one internal diagonal. (&
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Every polygon admits a triangulation

Lemma 1. Every polygon has at least one convex vertex (actually, at least three).
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Let v; be a convex vertex.

Then, either v;_jv; 41 is an internal diagonal...
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In this case, among all the vertices ly-
ing in the triangle, let v; be the farthest  v;
one from the segment v; _1v;11. Then
v;v; is an internal diagonal (it can not
be intersected by any edge of the poly-

gon).
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TRIANGULATING POLYGONS

Every polygon admits a triangulation

Lemma 1. Every polygon has at least one convex vertex (actually, at least three).

Lemma 2. Every n-gon with n > 4 has at least one internal diagonal.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.
Proof by induction.
Base case: When n = 3, the number of diagonalsis d =0 =n — 3.

Inductive step: Consider a diagonal of a triangulation T' of P, decomposing P into two
subpolygons: a (k 4+ 1)-gon P; and an (n — k + 1)-gon P». By inductive hypothesis, the
number of diagonals of the triangulations induced by 7" in P; and P; are:

di=k+1-—3,
dgz’n—k—l-l—?),

therefore,d:d1+d2+1:k+1—3+n—k+1—3+1:n—3.'/m
N— KT4a
.
Veriices
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.
Property 2. Every triangulation of P has n — 2 triangles.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.
Property 2. Every triangulation of P has n — 2 triangles.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.

Property 1. Every triangulation of P has n — 3 diagonals.

Property 2. Every triangulation of P has n — 2 triangles.
Again, the proof is by induction.
Base case: When n = 3, the number of trianglesist =1=n — 2.
Inductive step: With the same conditions of the previous proof,

th=k+1-2,
to=n—k+1-—2,

hence,
t=t1—|—t2zk—|—1—2—|—n—k—i—1—2:n—2.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.

Property 1. Every triangulation of P has n — 3 diagonals.
Property 2. Every triangulation of P has n — 2 triangles.
Property 3. The dual graph of any triangulation of P is a tree.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.

Property 2. Every triangulation of P has n — 2 triangles.

Property 3. The dual graph of any triangulation of P is a tree.

Given a triangulation of P, its dual graph has one vertex for each trian-
gle, and one edge connecting two vertices whenever their corresponding
triangles are adjacent. We want to prove that this graph is connected and
acyclic.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon. g
Property 1. Every triangulation of P has n — 3 diagonals. ]
Property 2. Every triangulation of P has n — 2 triangles. [ - :

Property 3. The dual graph of any triangulation of P is a tree.

Given a triangulation of P, its dual graph has one vertex for each trian-
gle, and one edge connecting two vertices whenever their corresponding ',
triangles are adjacent. We want to prove that this graph is connected and
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.

Property 1. Every triangulation of P has n — 3 diagonals.

Property 2. Every triangulation of P has n — 2 triangles.

Property 3. The dual graph of any triangulation of P is a tree.

Given a triangulation of P, its dual graph has one vertex for each trian-
gle, and one edge connecting two vertices whenever their corresponding
triangles are adjacent. We want to prove that this graph.is connected and
acyclic. (D) conexen —V des covre teado

The graph is trivially connected. @ @L(CQJQQa_@ \‘\0(383 :

About the acyclicity: Notice that each edge of the dual graph “separates”
the two endpoints of the internal diagonal of P shared by the two adjacent
triangles. If the graph had a cycle, it would enclose the endpoint(s) of the
diagonals intersected by the cycle and, therefore, it would enclose points
belonging to the boundary of the polygon, contradicting the hypothesis
that P is simple and without holes.
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TRIANGULATING POLYGONS

Properties of the triangulations of polygons

Let P be a simple n-gon.
Property 1. Every triangulation of P has n — 3 diagonals.

Property 2. Every triangulation of P has n — 2 triangles.

Property 3. The dual graph of any triangulation of P is a tree.

Corollary. Every n-gon with has at least two non-adjacent ears.
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Ore‘éa : Sean a,b,c tren verkPes consecotivesde ¥ . 1‘_ A’Q
Ve rvig,

Decmos que ao,b,c forman vna Oreé'a st ac

UTC/LAO 1

Cd una d‘\’cnaono&o - hO \ A
bo— B \a nfr(t(a
Q\ repce v Q. 4.&330%801&@ NOSe oﬂz
o covoc o, U CO %\7

alb 4 T, som avis fas C(,J ?@,018()74@ - OLl/LO&l%o
B&SAD(/\,CA Con Q&QMO@AW’ZQ‘{ S, %OQ(B OEIR(QC)(
g eve o penoy 2 holoq) .

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC




ALGORITHMS FOR

POLYGON TRIANGULATION




TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure
1 : : . .
Seque.ntlally explore the vertices until you find an ear . % Qo CoNwexXo
2. Crop it
3. Proceed recursively o O

o "(L(
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure

1. Sequentially explore the vertices until you find an ear
2. Crop it
3. Proceed recursively

Running time
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure

1. Sequentially explore the vertices until you find an ear
2. Crop it
3. Proceed recursively

Running time
Detecting whether a vertex is convex: O(1).
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure
1. Sequentially explore the vertices until you find an ear
2. Crop it
3. Proceed recursively

Running time
Detecting whether a vertex is convex: O(1).
Detecting whether a convex vertex is an ear: O(n).
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure

1. Sequentially explore the vertices until you find an ear
2. Crop it
3. Proceed recursively

Running time
Detecting whether a vertex is convex: O(1).
Detecting whether a convex vertex is an ear: O(n).

Findingear: O(n?). =
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure
1. Sequentially explore the vertices until you find an ear
2. Crop it
3. Proceed recursively

Running time
Detecting whether a vertex is convex: O(1).
Detecting whether a convex vertex is an ear: O(n).
Finding an ear: O(n?).

Overall running time:

(=
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

U‘c- ro . l
Improved procedure Q 1 olosanwes an L'-QIOS
Initialization afecta dos son €
1. Detect all convex vertices Coan & e Ve e V-9 j
2. Detect all ears Yy o e\
‘ Con P o Vi1
Next step :

1. Crop an ear Vizq P "S‘ V{1 (\]Vm) eya CaNuexo
2. Update the information of the convex vertices SiRe 6\€W:;QO cONVEX O,

3. Update the information of the ears 05 \- (\)_& ) el CC;V\ ()
oot Ve
podiia ser aloror CondX0.

: Q0
a conCa\,)
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Improved procedure Running time

Initialization
1. Detect all convex vertices O(”) Onlv once
2. Detect all ears O(”Q) Y
Next step

1. Crop an ear
2. Update the information of the convex vertices

O(1)
O(1) O(n) times
3. Update the information of the ears O(n)
SUP'M\ MmQS gl\:e borramos loy, o) ?odﬁo\ a@ec}mse Vq?
orefa a(Va, vz, Uz ) § 2 Cudos

Los Sicas c(?‘\’ceS

de ore)aS obectedss
SON V4 a Uz,

|®° no era a’q{ce,

——

\Zpo e cc'?ic,c & DfCiQ

=> U3 s €5 diagon
esko no cambia
@ =D “-m no s dfcuﬂOf\o-Qv

o U4\Ng &5 externa

V3‘

V4 /

s o estel bloaveado : ANs N ,VSS WD@"N/ \SQC—,\‘ 0.
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Improved procedure Running time
Initialization
1. Detect all convex vertices O(n)
2. Detect all ears O(n?) Only once
Next step
1. Crop an ear O(1)
2. Update the information of the convex vertices O(1) O(n) times
3. Update the information of the ears O(n)

e r
ﬁ(uw\lq,\)g) estl blogveado: A(.\\:;,\Jq,\ls} noest vaclo.
bool  InCone( tvertex: Sea A e puto en el vnteviov de N\, W Vg). X €S
tVertex a0,al; /* al Ql,e V\Z@l/lb ON OCV\ \lvé'D CO/V\CQEO' ‘Por lO ‘—]—QV\.-\D

r ©
al = a->next; No :EOd«r\ N DCorn Y é 7g .Q_o@@ Q/Q/CM(:(({\CAcfQ
@ 7 a-verev all remover et orcja ( boramas On ctgulo
/*If a'is a convex vertex ... */
if(aLZ“gtOn( a—>:f, al-: CDV\%XO) °




TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Improved procedure Running time
Initialization
1. Detect all convex vertices O(”) Onlv once
2. Detect all ears O(”Q) Y
Next step

1. Crop an ear
2. Update the information of the convex vertices
3. Update the information of the ears

O(n) times

QOO
==

vl

Algorithm: TRIANGULATION
Initialize the ear tip status of each vertex.
_______________ while n > 3 do

Locate an ear tip v,.

Output diagonal v, v;.

Delete v,.

Update the ear tip status of v; and v;.

V4 /

Algorithm 1.1 Triangulation algorithm.

Vs
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TRIANGULATING POLYGONS

Tringulating a polygon by subtracting ears
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Improved procedure Running time
Initialization
1. Detect all convex vertices O(n)
2. Detect all ears O(n?) Only once
Next step
1. Crop an ear O(1)
2. Update the information of the convex vertices O(1) O(n) times
3. Update the information of the ears O(n)

Running time: O(n?)
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Q=

Vs
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?

Is it a diagonal?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?

Is it a diagonal?

Check v;v; against all segments v v;41 for intersection.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons

3. Proceed recursively
Test. How to decide whether a given segment v;v; is an internal diagonal?

Is it a diagonal?

Check v;v; against all segments v v;41 for intersection.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?
Is it a diagonal?

Check v;v; against all segments v v;41 for intersection.

Is it internal?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?

Is it a diagonal?

Check v;v; against all segments v v;41 for intersection.

Is it internal?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?
Is it a diagonal?
Check v;v; against all segments v v;41 for intersection.

Is it internal?

- - . 7
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a0,al; /* a0,a,al are consecutive vertices. */
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal

2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?
Is it a diagonal?
Check v;v; against all segments v v;41 for intersection.

Is it internal?

If v; is convex, the oriented line viv} should leave

v;_1 to its left and v;1 1 to its right.

Vi4+1

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively

Test. How to decide whether a given segment v;v; is an internal diagonal?
Is it a diagonal?
Check v;v; against all segments v v;41 for intersection.

Is it internal?

Uit1
If v; is convex, the oriented line v;v; should leave
v;_1 to its left and v;1 1 to its right.
V; Uj

If v; is reflex, the oriented line vz-v;- should not leave

v;_1 to its right and v; 1 to its left.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?
Is it a diagonal?
Check v;v; against all segments v v;41 for intersection.

Is it internal?

If v; is convex, the oriented line viv} should leave

v;_1 to its left and v;1 1 to its right.
If v; is reflex, the oriented line vz-v;- should not leave

v;_1 to its right and v; 1 to its left.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Is it a diagonal?
Check v;v; against all segments v v;41 for intersection.

Is it internal?

If v; is convex, the oriented line viv} should leave

v;_1 to its left and v;1 1 to its right.
If v; is reflex, the oriented line vz-v;- should not leave

v;_1 to its right and v; 1 to its left.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)

Search. How to find an internal diagonal?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?

Brute-force solution:
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?
Brute-force solution:

Apply the test to each candidate segment.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?
Brute-force solution: N

Apply the test to each candidate segment. b O(n?)
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?
Brute-force solution:

Apply the test to each candidate segment. O(n?)

Testing each candidate takes O(n) time,

and there are (%) of them.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?
Brute-force solution:
Apply the test to each candidate segment. O(n?)
Applying previous results:

1. Find a convex vertex, v;.
2. Detect whether v;_1v;11 Is an internal diagonal.
3. If so, report it.
Else, find the farthest vy from the segment v;_1v;11, lying in the triangle v;_1v;v;411.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal?
Brute-force solution:
Apply the test to each candidate segment. O(n?)
Applying previous results: O(n)

1. Find a convex vertex, v;.
2. Detect whether v;_1v;11 Is an internal diagonal.
3. If so, report it.
Else, find the farthest vy from the segment v;_1v;11, lying in the triangle v;_1v;v;411.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)

Search. How to find an internal diagonal? O(n)
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal? O(n)

Partition. How to partition the polygon into two subpolygons?
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.
Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal? O(n)
Partition. How to partition the polygon into two subpolygons?

From the diagonal found, create the sorted list of the vertices of the two subpolygons.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal? O(n)
Partition. How to partition the polygon into two subpolygons? O(n)

From the diagonal found, create the sorted list of the vertices of the two subpolygons.
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TRIANGULATING POLYGONS

Tringulating a polygon by inserting diagonals
Input: vq,...,v,, sorted list of the vertices of a simple polygon P.

Output: List of internal diagonals of P, v;v;, determining a triangulation of P.

Procedure:
1. Find an internal diagonal
2. Decompose the polygon into two subpolygons
3. Proceed recursively Running time

Test. How to decide whether a given segment v;v; is an internal diagonal?  O(n)
Search. How to find an internal diagonal? O(n)

Partition. How to partition the polygon into two subpolygons? O(n)

Total running time of the algorithm: O(n?)

It finds n — 3 diagonals and each one is found in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon ’\VL? 6 P

Trivially done in O(n) time.

Triangulating a star-shaped polygon

Can be done in O(n) time. Posed as problem.
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TRIANGULATING POLYGONS

Is it possible to triangulate a polygon more efficiently?

Triangulating a convex polygon

Trivially done in O(n) time.

Triangulating a star-shaped polygon

Can be done in O(n) time. Posed as problem.

Triangulating a monotone polygon

It can also be done in O(n) time. In the following we will see how.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PN7’ is connected (i.e.,

it is a segment, a point or the empty set).

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,

it is a segment, a point or the empty set).

>

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,

it is a segment, a point or the empty set).
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for

every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,

it is a segment, a point or the empty set).

Local characterization C/QS J; \Qg

A polygon is y-monotone if and only if it does not have any cusp.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
it is a segment, a point or the empty set). oefeea N

Local characterization

A polygon is y-monotone if and only if it does not have any cusp.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction r if, for ¢ o>nULEL T
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e., A O D C
it is a segment, a point or the empty set). =~ E‘ °

~
Local characterization CoW (e U0 0¥

A polygon is y-monotone if and only if it does not have any cusp.

A cusp is a reflex vertex v of the polygon such that its two S
incident edges both lie to the same side of the horizontal line
through v.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
it is a segment, a point or the empty set).

Local characterization

W polygon is y-monotone if and only if it does not have any cus@ VAW
A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line beg(. o o
through v.

Proof: @

If the polygon has a local maximum cusp v, an infinitesimal
downwards translation of the horizontal line through v would
intersect the polygon in at least two connected components.
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TRIANGULATING POLYGONS
Monotone polygon
A polygon P is called monotone with respect to a direction 7 if, for A

every line r’ orthogonal to r, the intersection PNr’ is connected (i.e., A\
it is a segment, a point or the empty set).

Local characterization
A polygon is y-monotone if and only if it does not have any cusp.
A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line
through v.
Proof: }9. """" qg

If the polygon has a local maximum cusp v, an infinitesimal
downwards translation of the horizontal line through v would
intersect the polygon in at least two connected components.

If the polygon is not y-monotone, let  be a horizontal line intersecting the polygon in/two or
more connected components. Consider two consecutive components, with facing endpoints p
and ¢ as in the figure. The polygon boundary needs to connect p and lg. No matter whether it
goes above or below the horizontal line, it will have a cusp.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
it is a segment, a point or the empty set).

Local characterization
A polygon is y-monotone if and only if it does not have any cusp.

A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line
through v.

Proof:

If the polygon has a local maximum cusp v, an infinitesimal
downwards translation of the horizontal line through v would
intersect the polygon in at least two connected components.

If the polygon is not y-monotone, let r be a horizontal line intersecting the polygon in two or
more connected components. Consider two consecutive components, with facing endpoints p
and ¢ as in the figure. The polygon boundary needs to connect p and q. No matter whether it
goes above or below the horizontal line, it will have a cusp.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e., ng NCarl) &

it is a segment, a point or the empty set). —~ 5
CospTde.

Local characterization
A polygon is y-monotone if and only if it does not have any cusp.

A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line
through v.

Proof:

If the polygon has a local maximum cusp v, an infinitesimal
downwards translation of the horizontal line through v would
intersect the polygon in at least two connected components.

If the polygon is not y-monotone, let r be a horizontal line intersecting the polygon in two or
more connected components. Consider two consecutive components, with facing endpoints p
and ¢ as in the figure. The polygon boundary needs to connect p and q. No matter whether it
goes above or below the horizontal line, it will have a cusp.
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TRIANGULATING POLYGONS

Monotone polygon

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
it is a segment, a point or the empty set).

Local characterization
A polygon is y-monotone if and only if it does not have any cusp.

A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line

through v.
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TRIANGULATING POLYGONS

Monotone polygon

>

A polygon P is called monotone with respect to a direction 7 if, for
every line r’ orthogonal to r, the intersection PNr’ is connected (i.e.,
it is a segment, a point or the empty set).

Local characterization

A polygon is y-monotone if and only if it does not have any cusp.

A cusp is a reflex vertex v of the polygon such that its two
incident edges both lie to the same side of the horizontal line
through v.

Corollary

If a polygon is y-monotone, then it can be decomposed into two
y-monotone non intersecting chains sharing their endpoints.
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TRIANGULATING POLYGONS

Triangulating a monotone polygon
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue @ is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in (), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex. / b vede

- All the vertices in () belong to the same monotone chain of P/,
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;:

-
-
-

- -

- I
===-
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;:

e |f v; belongs to the opposite chain, report the diagonals con-
necting v; to every vertex of () and delete them all from (@,
except the last one. Add v; to Q.
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;:

e If v; belongs to the opposite chain, report the diagonals con-
necting v; to every vertex of () and delete them all from (@,
except the last one. Add v; to Q.
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;:

e If v; belongs to the opposite chain, report the diagonals con-
necting v; to every vertex of () and delete them all from (@, @
except the last one. Add v; to Q.

o If v; belongs to the same chain and produces a reflex turn,
add v; to Q.

\]T CarV\rc(u o)
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;: Q

e If v; belongs to the opposite chain, report the diagonals con-
necting v; to every vertex of () and delete them all from (@,
except the last one. Add v; to Q.

e If v; belongs to the same chain and produces a reflex turn,
add v; to Q.

e If v; belongs to the same chain and produces a convex turn,
report the diagonal connecting v; to the penultimate element \}O
of (), delete the last element of () and process v; again.
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

The vertices of the polygon P are processed by decreasing order of their y-coordinate.

During the process a queue () is used to store the vertices that have already been visited but
are still needed in order to generate the triangulation. Characteristics of Q:

- The topmost (i.e., largest y-coordinate) vertex in @), is a convex vertex of the subpolygon
P’ still to be triangulated.

- All the remaining vertices in () are reflex.

- All the vertices in () belong to the same monotone chain of P/,

Processing a vertex v;:

e If v; belongs to the opposite chain, report the diagonals con-
necting v; to every vertex of () and delete them all from (@,
except the last one. Add v; to Q.

e If v; belongs to the same chain and produces a reflex turn,
add v; to Q.

e If v; belongs to the same chain and produces a convex turn,
report the diagonal connecting v; to the penultimate element
of (), delete the last element of () and process v; again.
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TRIANGULATING POLYGONS
Vo 22 Deg 1

Triangulating a monotone polygon ‘

e If v; belongs to the opposite chain, report the diagonals con- 4
necting v; to every vertex of () and delete them all from @,
except the last one. Add v; to Q). 5 6

e If v; belongs to the same chain and produces a reflex turn,
add v; to Q. 7

e If v; belongs to the same chain and produces a convex turn,
report the diagonal connecting v; to the penultimate element 8
of (), delete the last element of () and process v; again. 9)

10

11
12

13

14
15

16

18 19
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TRIANGULATING POLYGONS

Triangulating a monotone polygon 9

Start

Queue state

1, 2 10
11
12

13

e If v; belongs to the opposite chain, report the diagonals con- 14
necting v; to every vertex of @@ and delete them all from @, 15
except the last one. Add v; to Q.

e If v; belongs to the same chain and produces a reflex turn, 1 O
add v; to Q.

e If v; belongs to the same chain and produces a convex turn, 1
report the diagonal connecting v; to the penultimate element
of @, delete the last element of () and process v; again. 18

19
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TRIANGULATING POLYGONS

Triangulating a monotone polygon @
4
0 6
Current vertex: 3
7
Add
8
9
Queue state:
1,2, 3 10
11
12
13
14
15
16
7
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TRIANGULATING POLYGONS

Triangulating a monotone polygon @

Current vertex: 4 §
7
Add
8
9
Queue state:
1,2, 3 4 10
11
12
13
14
15
16
7
18 19
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TRIANGULATING POLYGONS

Triangulating a monotone polygon @

Current vertex: 5
7
Add
8
9
Queue state:
1,2, 3, 4,5 10
11
12
13
14
15
16
7
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TRIANGULATING POLYGONS

Triangulating a monotone polygon @

Current vertex: 6 6 @
7
Add
8
9
Queue state:
1,2,3,4,5,6 10
11
12
13
14
15
16
7
18 19
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
Current vertex: 7 Lol e @
Opposite chain 0 S
9
Queue state:
6, 7 10
11
12
13
14
15
16
7
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
S 5
Current vertex: 3 _______ T @
7 £2z====---""" -~
Ear
9
Queue state:
6, 8 10
11
12
13
14
15
16
n
18 19
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
Current vertex: 9 I == @
7 -’-”‘_7-:: ______ - P
Ear -
8 < -7
Queue state: 9/
6,9 10
11
12
13
14
15
16
n
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
PPt 5
Current vertex: 10 UL == @
7 -’-”‘_::: ------ -~ e
Add .-
8 < -7
Queue state: @
6,9, 10 @
11
12
13
14
15
16
™
18 19
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
PPt 5
Current vertex: 11 UL == @
7 -’-”‘_::: ------ -~ e
Add .-
8 < -7
Queue state: @
6,9, 10, 11 10)
12
13
14
15
16
™
18 19
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
Current vertex: 12 UL == @
7 -’-”‘_::: ------ - P
Add .-
8 < -7
Queue state: @
6, 9, 10, 11, 12 @
13
14
15
16
™
18 19
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TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
A3
4
Current vertex: 13 I == @
7 -’-”‘_7-:: ______ - 7
Ear -
8 < -7
Queue state: @
6,9, 10, 13 10)
11—
12 e
14
15
16
7
18 19

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

1
Triangulating a monotone polygon 5
L3
4
//:',, ’,*"’ 5 @
Current vertex: 14 P L —I
7 Cz===--"° - ’
Ear .
8 -
g
Queue state: Z
6,9, 10, 14 10
11—
12 A
13 é:’,’/
15
16
7
18 19
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

’
4
4
4
d
’ ’
-,
T L 4
’ -,
’ ’
4 P4
v’ -’ ’a’
/,’ -
/3
Current vertex: 15 e
" y 7 - = m == T
7’ f’ ——————————— a",
,f’ ——————————— f’ s
e =T == - s
¢;= ————— -~ s
- - ’
- s
- s
- ,

Opposite chain .

Queue state: \
14, 15 10 \

18 19
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Triangulating a monotone polygon

4
4
d
4
7
’ ’
’
T 4
’ .
’ ’
7’ e
’ . -
/,’ -
7 - - -
rrent vertex: PPt
u V X. y 7 s == e = = -
, .7 == am== P
/” ___________ - '
e =T == - s
¢;= ————— -~ s
- - ’
- ,
- s
- ’

Opposite chain .

Queue state: \
15, 16 10 \

A Y \
11 re » \
Pl N
Pt N \
,’/’ A \
’ N
, PR . \
s PR \
s d ’ N
.7 , N \
‘4 - 4 AN \
7 - i N
/, - < \
o, 7 s N
” ’ N \
,
13y° .- oot
’ \ \
s N
/’ N \

-
—_—
- -
——
—
.
-
-
-
- -
—

p—
-

18 19
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Triangulating a monotone polygon

Current vertex: 17 PP Ly — 0

-

-
- p—

Ear —"” /,,

Queue state: \
15, 17 10 \

A Y \
11 re » \
Pl N
’// N \
,’/’ A \
’ N \
’ ‘.
12 el . :
s d ’ A Y
s \ \
‘4 - 4 AN \
7 - ’ \
/, - < \
o, 7 s N
(d ’ N \
¢ P
13y° .- oo
/’ N '
P > \

18 19
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Triangulating a monotone polygon

Current vertex: 18 PP Ly — 0

-

-
- p—

Ear —"” /,,

Queue state: \
15, 18 10 \

A Y \
11 re » \
Pl N
’// N \
,’/’ A \
’ N \
’ ‘.
12 el . :
s d ’ A Y
s \ \
‘4 - 4 AN \
7 - ’ \
/, - < \
o, 7 s N
(d ’ N \
¢ P
13y° .- oo
/’ N '
P > \

18¥ 19
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Triangulating a monotone polygon

4
4
d
4
7
’ ’
’
T 4
’ .
’ ’
7’ e
’ . -
/,’ -
7 - - -
rrent vertex: PPt
u V X. y 7 s == e = = -
, .7 == am== P
/” ___________ - '
e =T == - s
¢;= ————— -~ s
- - ’
- ,
- s
- ’

Opposite chain .

Queue state: \
18, 19 10 \

A Y \
11 re » \
Pl N
Pt N \
,’/’ A \
’ N
, PR . \
s PR \
s d ’ N
.7 , N \
‘4 - 4 AN \
7 - i N
/, - < \
o, 7 s N
” ’ N \
,
13y° .- oot
’ \ \
s N
/’ N \

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Triangulating a monotone polygon

-’
A 4
-
/’ /’
’ 7’ 4’
7’ ,’ ff’
7 -
7 - Phe - 6
7 - - -
Gy - - == e m== T
, - == mm==T -"0
’ T =T === -,
T L emT e = f’
2 7 =T == - ’
=" == -
Cz=z=z=-~- - .
- - ’
- ,
f” ’
’
f" ’
- 7
’
7’
’
’
9>
\
\
\
\
10 ‘
\
N \
—Z N \
Pl N
s N \
/” N \
’
PR N \
’ PR N
s PR \
/’ ‘ * \
. ’ N
‘- s AN \
7 - 4 Ay
/, - < \
o, 7 s N
d , N \
¢ P
13y° .- N
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e N
’ \ \
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TRIANGULATING POLYGONS

Triangulating a monotone polygon

@QW\%W) Y
; = 7 £2z=z===--"""7" //’,,—"’ ‘
Running time: @ ? 7 '_7 8

Each vertex is removed from 9
the queue @ in O(1) time. -
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TRIANGULATING POLYGONS

Summarizing

Running time for triangulating a polygon:
e O(n?) by subtracting ears
e O(n?) by inserting diagonals

If the polygon is convex:
e O(n) trivially

If the polygon is monotone:

RGN &Sgwwc}wu&@g N

—
—

Algorithm TRIANGULATEMONOTONEPOLY GON(P)

Input. A strictly y-monotone polygon P stored in a doubly-connected edge

list D.

/ Output. A triangulation of P stored in the doubly-connected edge list D.

e O(n) scanning the monotone chains in order

1. Merge the vertices on the left chain and the vertices on the right chain of P
. into one sequence, sorted on decreasing y-coordinate. If two vertices have
the same y-coordinate, then the leftmost one comes first. Let u1.....

denote the sorted sequence.

2. Initialize an cmpty stack 8. and push u; and > onto it.

3. forje—3ton—1

4. doif uj and the vertex on top of $ are on different chains

5. then Pop all vertices from §.

6. Insert into D a diagonal from u; to cach popped vertex,
except the last one.

7. Push u;_; and u; onto S.

8 else Pop one vertex from 8.

9, Pop the other vertices from  as long as the diagonals from

wj to them are inside P. Insert these diagonals into D. Push
the last vertex that has been popped back onto S.

10. Push u; onto §.

I1. Add diagonals from u, to all stack vertices except the first and the last one.
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TRIANGULATING POLYGONS

Algorithm TRIANGULATEMONOTONEPOLYGON(P) OG\’\ )\*DCW\%WX ZFFC fP@C.

Input. A strictly y-monotone polygon P stored in a doubly-connected edge
list D.

Output. A triangulation of P stored in the doubly-connected edge list D.

1. Merge the vertices on the left chain and the vertices on the right chain of P
into one sequence, sorted on decreasing y-coordinate. If two vertices have
the same y-coordinate, then the leftmost one comes first. Let uy,...,u,
denote the sorted sequence.

2. Initialize an empty stack 8, and push u; and u; onto it.

3. forj—3ton—1

-+ do if u; and the vertex on top of 8 are on different chains

5. then Pop all vertices from 8.

6. Insert into D a diagonal from u; to each popped vertex,
except the last one.

7. Push u;_; and u; onto S.

8. else Pop one vertex from S.

9. Pop the other vertices from 8 as long as the diagonals from
u; to them are inside P. Insert these diagonals into D. Push
the last vertex that has been popped back onto S.

10. Push u; onto 3.

11. Add diagonals from u, to all stack vertices except the first and the last one.
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TRIANGULATING POLYGONS

Summarizing

Running time for triangulating a polygon:
e O(n?) by subtracting ears
e O(n?) by inserting diagonals

If the polygon is convex:
e O(n) trivially

If the polygon is monotone:

e O(n) scanning the monotone chains in order (+ OCV\’\ 37\’3 )

pTe - 1350 8GR (

Is it possible to be more efficient more general polygon
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TRIANGULATING POLYGONS

Monotone partition
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon,
all cusps need to be “broken” by internal diagonals.
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon, ”
all cusps need to be “broken” by internal diagonals. “

0"
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TRIANGULATING POLYGONS

Monotone partition

A
In order to create a monotone partition of a polygon, ﬂ
all cusps need to be “broken” by internal diagonals. “

¢ V cle,'\o\ de sex césqi’cle
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon, a
all cusps need to be “broken” by internal diagonals. “

L4
L4
L4
L4
L4
L4
o

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon, ﬂ
all cusps need to be “broken” by internal diagonals. “

This can be done starting from a
trapezoidal decomposition of the polygon.

L4
*
*
*
*
*
o
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon,
all cusps need to be “broken” by internal diagonals.

This can be done starting from a
trapezoidal decomposition of the polygon.
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon,
all cusps need to be “broken” by internal diagonals.

This can be done starting from a
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its
trapezoid (the upper trapezoid, if the cusp is a local
maximum, the lower one, if it is a local minimum).
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon, ’v‘

all cusps need to be “broken” by internal diagonals.

This can be done starting froma ~ [heseeeaaaaaaes
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its
trapezoid (the upper trapezoid, if the cusp is a local
maximum, the lower one, if it is a local minimum).  &&z-----
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TRIANGULATING POLYGONS

Monotone partition

In order to create a monotone partition of a polygon, — a """
all cusps need to be “broken” by internal diagonals.  / ~  Y-=--77----

This can be done starting froma ~ beeeeeaeooo-
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its
trapezoid (the upper trapezoid, if the cusp is a local
maximum, the lower one, if it is a local minimum).  &&z-----
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TRIANGULATING POLYGONS

Monotone partition
In order to create a monotone partition of a polygon, " a """ ‘
all cusps need to be “broken” by internal diagonals. EEEEEEEEE e»‘

This can be done starting from a
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its
trapezoid (the upper trapezoid, if the cusp is a local
maximum, the lower one, if it is a local minimum).
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TRIANGULATING POLYGONS

Monotone partition
In order to create a monotone partition of a polygon, o a """
all cusps need to be “broken” by internal diagonals.  / ~  Yt-=------ “ [

This can be done starting froma ~ beeeeeee-oooos
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its '
trapezoid (the upper trapezoid, if the cusp is a local .
maximum, the lower one, if it is a local minimum).  &&z----- |
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TRIANGULATING POLYGONS

Monotone partition
In order to create a monotone partition of a polygon, o a """
all cusps need to be “broken” by internal diagonals.  / ~  Yt-=------ “ [

This can be done starting froma ~ beeeeeee-oooos
trapezoidal decomposition of the polygon.

Connect each cusp with the opposite vertex in its .
trapezoid (the upper trapezoid, if the cusp is a local .
maximum, the lower one, if it is a local minimum).  &&z----- |

This gives rise to a correct algorithm: [ \beeemmo

e The diagonals do not intersect, because they [ —_ ) , ----------------
belong to different trapezoids. LAY -

e The polygon ends up decomposed into mono- 2
tone subpolygons. !

Sweep line algorithm
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TRIANGULATING POLYGONS

Monotone partition

Sweep line algorithm
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TRIANGULATING POLYGONS

Monotone partition

Sweep line algorithm
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A = véctice split - ; =
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W = vértice merge ,%é__‘
\ e
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TRIANGULATING POLYGONS

Monotone partition

Sweep line algorithm
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TRIANGULATING POLYGONS

Monotone partition

C‘}JCo'mo a%r@aamaa \r(LS d?aaof\c&\@g

[] = vertice inicial

. = vértice ‘-'mal

' .
- vertice reaolar
A = véctice split
(;65 P'v. Aes

W = vértice merge
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TRIANGULATING POLYGONS

Monotone partition /\ vértice SP'?'(:
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TRIANGULATING POLYGONS

Monotone partition

Sweep line algorithm /\vérficc Spli‘('-
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TRIANGULATING POLYGONS

Monotone partition

Sweep line algorithm /\vérficc Spli‘('-
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TRIANGULATING POLYGONS

Monotone partition \/ vértice merae
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TRIANGULATING POLYGONS

Monotone partition \/ vértice merae

oSOPOﬁ amMos %,UC hQS'\-Q 0“‘\'&3 Clﬁ HCSOT_ a Um
el Oﬁudcmjre, ae 63 €S Vf.

08 VE COO:/\AQ l]e_joemqs A VUm es e
(Q’C“\P\Q&Q 0 T COMO qn(oc\wr\'ka de 6&-

o Coneciomos O Vg (ON Um,

Ym
9 ,
o ?&f %e RN OO\
Qe af&é)mon <

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC



TRIANGULATING POLYGONS

Monotone partition
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TRIANGULATING POLYGONS

Monotone partition

Algorithm MAKEMONOTONE(P)

Input. A simple polygon P stored in a doubly-connected edge list D.

QOutput. A partitioning of P into monotone subpolygons, stored in D.

1. Construct a priority queue Q on the vertices of P, using their y-coordinates

as priority. If two points have the same y-coordinate, the one with smaller

x-coordinate has higher priority.

Initialize an empty binary search tree 7.

while Q is not empty

do Remove the vertex v; with the highest priority from Q.

Call the appropriate procedure to handle the vertex, depending on
its type.

N
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TRIANGULATING POLYGONS

Monotone partition

= vertice inicial

B- véetice final

HANDLESTARTVERTEX(v;)
1. Inserte; in T and set helper(e;) to v;.

HANDLEENDVERTEX(v;)
1. if helper(ei—1) is a merge vertex
2. then Insert the diagonal connecting v; to helper(e;_;) in D.

3. Delete ¢;_; from 7.
0\/"
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TRIANGULATING POLYGONS

Monotone partition

HANDLESPLITVERTEX(v;) A /
Search in 7 to find the edge ¢; directly left of v;.

1.
2. Insert the diagonal connecting v; to helper(e;) in D.
3.

helper(e;) « v,
4. Insert ¢; in T and set helper(e;) to v;.
< CSmo f\DoéQ-V"‘— o> ZSJW Y éQi\I\N"XS Cél
[?

%\.»Q, <- stva: e~ L L ol _
S, U e kfycv(ed)@("mc"
|
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TRIANGULATING POLYGONS

Monotone partition

HANDLEMERGEVERTEX(v;) v &

1. if helper(e;_,) is a merge vertex

2 then Insert the diagonal connecting v; to helper(e;_) in D.
3. Delete ¢;_; from 7.

4.  Search in T to find the edge ¢; directly left of v;.

5

6

7

if helper(e;) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) < v;

A = vértice split

cos P'z des

W = vértice merge
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TRIANGULATING POLYGONS

Monotone partition

HANDLEREGULARVERTEX(V})
if the interior of P lies to the right of v;
then if helper(e; 1) is a merge vertex
then Insert the diagonal connecting v; to helper(e; ;) in D.
Delete ¢;_ from 7.
Insert ¢; in T and set helper(e;) to v;.
else Search in T to find the edge e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) «— v

W RN W=

’
@ =vertice regolar
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TRIANGULATING POLYGONS

Monotone partition

HANDLEREGULARVERTEX(V})
if the interior of P lies to the right of v;
then if helper(e; 1) is a merge vertex
then Insert the diagonal connecting v; to helper(e;—1) in D.
Delete ¢;_1 from 7.
Insert ¢; in T and set helper(e;) to v;.
else Search in T to find the edge e; directly left of v;.
if helper(e ;) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) «— v

WX R W=

4
® =vertice reaul or

HANDLEMERGEVERTEX(V;)

1. if helper(e;_1) is a merge vertex

2 then Insert the diagonal connecting v; to helper(e;_1) in D.

3. Delete e¢;_; from 7. W = vértice merge
4. Search in T to find the edge e; directly left of v;.

5. if helper(e;) is a merge vertex

6 then Insert the diagonal connecting v; to helper(e;) in D.

7. helper(e;) < v,
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TRIANGULATING POLYGONS

1 b
Monotone partition . 18
€q Ce
f ) o e
D 3 ~ Cn
2/ 1

17

% C e
16 15
5
o:fo 6'( 6 Cuy
() & Ly
(drbol ) N 1 7 14
e:' 4 eb
J 13
es

8 e, €

HANDLESTARTVERTEX(V;) 11 o
1. Inserte; in T and set helper(e;) to v;. o 2

10
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TRIANGULATING POLYGONS

1
Monotone partition /\ ],§ e iicial

N D

2
17
16 15
5]
Oj €1 . Cug 6
o
s, \V 1 / L, 1 % 7 14
4
J 13
8
HANDLESTARTVERTEX(v;) 11
1. Inserte; in T and set helper(e;) to v;. 2
10
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TRIANGULATING POLYGONS
Monotone partition /\\ 18

[ (o)
D" . 17

16 15
5
€ 3 6
O;fo -6—1. ¢ 61 > ') \ 7
o /\ 14
V3 1% 2
60- = \(\@\Q@v CQ/AT\/L 4
J 13

HANDLESPLITVERTEX(v;) g
1. Search in 7 to find the edge e; directly left of v;.
2. Insert the diagonal connecting v; to helper(e;) in D. 11
3. helper(e;) <—@ 2
4. Insert e¢; in T and set helper(e;) to v;. 10
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TRIANGULATING POLYGONS

Monotone partition

(N

DD,, e . By, £2
\/3/ / Naq

HANDLEMERGEVERTEX(V;)
WO ¢ helper(e;_1) is a merge vertex
2. i
3. Delete ¢;_; from 7.
Search in T to find the edge e; directly left of v;.
if helper(ej) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) < v;

l 11—

Nk
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TRIANGULATING POLYGONS

Monotone partition

HANDLEENDVERTEX(V;)

1. if helper(e;—1) is a merge vertex

2. then Insert the diagonal connecting v; to helper(e;_;) in D.
3. Delete ¢;—; from 7J.
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TRIANGULATING POLYGONS

Monotone partition 18

iaqtu\ev | 17 derecha
P 16 15

14

HANDLEREGULARVERTEX(V;) 13
if the interior of P lies to the r_igﬂof Vi
then if Kelper(e;_|) is a merge vertex
then Insert the diagonal connecting v; to helper(e;—1) in D. 8
Delete ¢;_; from 7.
Insert ¢; in T and set helper(e;) to v;. 1 1
else Search in T to find the edge e; directly left of v;.
if helper(e;) is a merge vertex 2
then Insert the diagonal connecting v; to helper(e;) in D.

helper(e;) — v; 10
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TRIANGULATING POLYGONS

Monotone partition

€3
N1

HANDLEREGULARVERTEX(v;)
if the interior of P lies to the right of v;
then if helper(e;_,) is a merge vertex
then Insert the diagonal connecting v; to helper(e;—1) in D.
Delete ¢;_| from T.
Insert ¢; in T and set helper(e;) to v;.
else Search in T to find the edge ¢; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.

helper(e;) < v;
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TRIANGULATING POLYGONS

Monotone partition

ez |, &
70 \\fr:l/ \}(S'/

HANDLESTARTVERTEX(V;)
1. Inserte; in T and set helper(e;) to v;.

10
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TRIANGULATING POLYGONS

Monotone partition

€=z 615/
1o/ A

HANDLEMERGEVERTEX(V;) ¢ - 4
1. if helper(e;_,) is a merge vertex

2 TT the diagonal connecting v; to helper(e;_;) in D.

3. Delete ¢;_| from T.

4. Search in T to find the edge ¢; directly left of v;.

5

6

7

if helper(e) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) < v;

x4
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TRIANGULATING POLYGONS

Monotone partition

HANDLESTARTVERTEX(V;)
1. Inserte; in T and set helper(e;) to v;.
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TRIANGULATING POLYGONS

Monotone partition

€z , €<
N1 Vs-

.l?;qo‘i’@\rclm

HANDLEKEGULARY ERTEX(V})
if the interior of P lies to the right of v;
then if helper(e;_)) is a merge vertex
then Insert the diagonal connecting v; to helper(e;_1) in D.
Delete ¢;_; from 7.
Insert ¢; in T and set helper(e;) to v;.
else Search in T to find the edge e¢; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diagonal connecting v; to helper(e;) in D.
helper(e;) < v;

XA N AW~
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TRIANGULATING POLYGONS

Monotone partition

HANDLEREGULARVERTEX(Vv;)

1. if the interior of P lies to the right of v;

2 then if helper(e;_) is a merge vertex

3 then Insert the diagonal connecting v; to helper(e;—1) in D.
4. Delete ¢;_; from 7.

5. Insert ¢; in T and set helper(e;) to v;.

6 else Searchin T to find the edge e; directly left of v;.

7 if helper(e;) is a merge vertex

8 then Insert the diagonal connecting v; to helper(e;) in D.

9 helper(e;) < v; 10
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TRIANGULATING POLYGONS

Monotone partition

HANDLEREGULARVERTEX(v;)

1. if the interior of P lies to the right of v;

2 then if helper(e;_) is a merge vertex

3 then Insert the diagonal connecting v; to helper(ei—1) in D.
4. Delete ¢;_; from 7.

5. Insert e¢; in T and set helper(e;) to v;.

6 else Search in T to find the edge e; directly left of v;.

7 if helper(e) is a merge vertex

8 then Insert the diagonal connecting v; to helper(e;) in D.

9

helper(e;) < v; 10
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Monotone partition

10
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TRIANGULATING POLYGONS

Monotone partition

J 13
HANDLEMERGEVERTEX(v;)
1. if helper(e;_1) is a merge vertex 8
2. then Insert the diagonal connecting v; to helper(e;_1) in D.
3. Delete e¢;—1 from 7. 1 1
4. Searchin T to find the edge e; directly left of v;.
5. if helper(e;) is a merge vertex 2
6. then Insert the diagonal connecting v; to helper(e;) in D.
7. helper(e;) — v; 10
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TRIANGULATING POLYGONS

Monotone partition

3
HANDLESPLITVERTEX(V;)
1. Search in T to find the edge e, directly left of v;. 11
2. Insert the diagonal connecting v; to helper(e;) in D. 9
3. helper(e;) < v
4. Insert ¢; in T and set helper(e;) to v;. 10
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TRIANGULATING POLYGONS

Monotone partition

8
HANDLESPLITVERTEX(v;)
1. Search in 7 to find the edge ¢; directly left of v;. 11
2. Insert the diagonal connecting v; to helper(e;) in D. 9
3. helper(e;) < v,
4. Insert ¢; in T and set helper(e;) to v;. 10
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Monotone partition
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Monotone partition

11

10
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Monotone partition

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC




TRIANGULATING POLYGONS

Monotone partition

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC




TRIANGULATING POLYGONS

Monotone partition

2

10
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1
Monotone partition v 18
"'é """ 19
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16 15
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1
Monotone partition 18
2 A
____________ W17
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5
6 _______
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N 13
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TRIANGULATING POLYGONS

18

Monotone partition

10
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TRIANGULATING POLYGONS

Monotone partition

Running time:

e Sorting the vertices in the event queue: 2 R
OO, 0000 W17
O(nlogn) time.
. 16 15
e On each event, update sweep line: replace, . e

insert or delete vertices or edges in O(logn)
time each.

e [ here are n events.

The algorithm runs in O(nlogn) time.
C‘@Cuaﬁ\ 2 A mdxins ndoers
ég_ Cége'& gkuq pueAQ__ J(«-QAA/@\/ oN

_e. A Cuq( dsa/o\ AU X TS ‘HF dQ
béiéé Mo;zcoi(:\%?e»&m .
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TRIANGULATING POLYGONS

Summarizing

Running time of polygon triangulation:
e O(n?) by substracting ears
e O(n?) by inserting diagonals
e O(nlogn) by:

1. Decomposing the polygon into monotone subpolygons in O(nlogn) time

2. Triangulating each monotone subpolygon in O(n) time
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TRIANGULATING POLYGONS

Summarizing

Running time of polygon triangulation:
e O(n?) by substracting ears
e O(n?) by inserting diagonals
e O(nlogn) by:

1. Decomposing the polygon into monotone subpolygons in O(nlogn) time

2. Triangulating each monotone subpolygon in O(n) time

s it possible to triangulate a polygon in o(nlogn) time?
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TRIANGULATING POLYGONS

Summarizing

Running time of polygon triangulation:
e O(n?) by substracting ears
e O(n?) by inserting diagonals
e O(nlogn) by:

1. Decomposing the polygon into monotone subpolygons in O(nlogn) time

2. Triangulating each monotone subpolygon in O(n) time

s it possible to triangulate a polygon in o(nlogn) time?

Yes.
There exists an algorithm to triangulate an n-gon in O(n) time, but it is too complicated
and, in practice, it is not used.
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Storing the polygon triangulation

Possible options, advantages and disadvantages
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Storing the polygon triangulation

Possible options, advantages and disadvantages

Storing the list of all the diagonals of the triangulation
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Storing the polygon triangulation

Possible options, advantages and disadvantages

Storing the list of all the diagonals of the triangulation

Advantage: small memory usage.

Disadvantage: it suffices to draw the triangulation, but it does not contain the proximity

information. For example, finding the triangles incident to a given diagonal, or finding the
neighbors of a given triangle are expensive computations.
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Storing the polygon triangulation

Possible options, advantages and disadvantages

Storing the list of all the diagonals of the triangulation

Advantage: small memory usage.

Disadvantage: it suffices to draw the triangulation, but it does not contain the proximity
information. For example, finding the triangles incident to a given diagonal, or finding the
neighbors of a given triangle are expensive computations.

For each triangle, storing the sorted list of its vertices and edges, as well as the sorted list of
its neighbors.
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Storing the polygon triangulation

Possible options, advantages and disadvantages

Storing the list of all the diagonals of the triangulation

Advantage: small memory usage.

Disadvantage: it suffices to draw the triangulation, but it does not contain the proximity
information. For example, finding the triangles incident to a given diagonal, or finding the
neighbors of a given triangle are expensive computations.

For each triangle, storing the sorted list of its vertices and edges, as well as the sorted list of
its neighbors.

Advantage: allows to quickly recover neighborhood information.

Disadvantage: the stored data is redundant and it uses more space than required.
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Storing the polygon triangulation

Possible options, advantages and disadvantages

Storing the list of all the diagonals of the triangulation
Advantage: small memory usage.

Disadvantage: it suffices to draw the triangulation, but it does not contain the proximity
information. For example, finding the triangles incident to a given diagonal, or finding the
neighbors of a given triangle are expensive computations.

For each triangle, storing the sorted list of its vertices and edges, as well as the sorted list of
its neighbors.

Advantage: allows to quickly recover neighborhood information.

Disadvantage: the stored data is redundant and it uses more space than required.

The data structure which is most frequently used to store a triangulation is the DCEL (doubly
connected edge list).

The DCEL is also used to store plane partitions, polyhedra, meshes, etc.
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Storing the polygon triangulation

DCEL
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Storing the polygon triangulation

DCEL
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Storing the polygon triangulation

DCEL
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Storing the polygon triangulation
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Storing the polygon triangulation

Table of vertices

v x|y | e
L|axg | yr | 1
2 | x2 | y2 | 1
3| x3 | ys | 2
4 Iy Ya 10
S| w5 | ys | 4
6 | 26 | Yo | 6
/ Iy Y 10
8| s | ys | 8
9| 29 | Y9 | 9
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Storing the polygon triangulation

Table of faces

f e
1 |11
2 4
3 |10
4 | 11
5 1
§) 6
7 2
oo | 9
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Storing the polygon triangulation

g hA—
e |vp |vE | fL | [fr|ep|en
1 1 2 5 | o0 | 9 2
2 2 3 7 | oo | 13 3
3 4 3 oo | 7 4 2
4 4 5 2 oo | 15 5
5 5 §) 2 | oo | 4 §)
6 6 { 6 oo | 15 {
7 7 8 4 | oo | 11 38
8 8 9 4 | oo | 7 9
0 0 1 5 oo | 12 1
10 | 4 7 3 6 | 13| 6
11 | 9 7 4 1 8 | 14
12 | 2 9 5 1 1 |11
13 | 2 4 3 7 | 14 | 3
14 | 2 7 1 3 |12 | 10
15 | 4 6 6 2 |10 | 5
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Storing the polygon triangulation

DCEL
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Storing the polygon triangulation

DCEL

VE

UB
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Storing the polygon triangulation

DCEL
VE
/L
e
/R
VB
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Storing the polygon triangulation

DCEL
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Storing the polygon triangulation

e |vB |vE | fr | fr|ep | en
1 1 2 5 00 0 2
2 2 3 7 oo | 13 3
3 4 3 00 7 4 2
4 4 5 2 oo | 15 5
5 5 6 2 00 4 6
6 6 { 6 oo | 15 {
7 7 3 4 | oo | 11 3
3 3 0 4 | o0 { 0
0 0 1 5 oo | 12 1
10 | 4 7 3 § 13 6
11 0 { 4 1 3 14
12 | 2 8] 5 1 1 11
13 | 2 4 3 4 14 3
14 | 2 { 1 3 12 | 10
15| 4 6 6 2 10 5
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Storing the polygon triangulation

Storage space

e For each face:

1 pointer

e For each vertex:

2 coordinates + 1 pointer

e For each edge:

6 pointers

U3

In total, the storage space is O(n).
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Storing the polygon triangulation

DCEL

There are other DCEL variants, as for example:
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Storing the polygon triangulation

DCEL

There are other DCEL variants, as for example:

/

€ >'UBafRaeNae
/

€ }rUBafRaeN?e

‘ Cb
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Storing the polygon triangulation

DCEL

There are other DCEL variants, as for example:

/
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Storing the polygon triangulation

DCEL

There are other DCEL variants, as for example:

/

€ >'UBafRaeNae
/

€ }rUBafRaeN?e
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Storing the polygon triangulation
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Storing the polygon triangulation

e |vB |vE | fu | fr|ep|en
1 1 2 5 00 0 2
2 2 3 7 oo | 13 3
3 4 3 00 7 4 2
4 4 5 2 oo | 15 5
5 5 § 2 00 4 §
§ § 7 § oo | 15 7
7 7 8 4 oo | 11 3
3 3 0 4 00 7 0
0 0 1 5 oo | 12 1
10 | 4 7 3 6 13 6
11 0 4 4 1 3 14
12 2 9 5 1 1 11
13 2 4 3 4 14 3
14 2 4 1 3 12 | 10
15 4 6 § 2 10 5
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Storing the polygon triangulation

e |vg | fr | en | € DCEL v8

1] 1 ]| 21

2 2 o] 3|2

3472173

4 4 00 5 4’

5 5 o] 6 |5

6 | 6 oo | 7 | 6 U1

717 o] 817

88 |o0| 98 | NG o
9 9 |0 | 1|9 5 6] 2 5

10 4166 |10 6 |[7]6|15] 6

119 | 1 |14 |11 77181411 7
12 21 ]11]12 8 |94 7 | 8

13/ 27| 3 |13 9 |[1|/5]12] 9 U3

4] 2 [ 31014 |10 7 [3]13]10

15| 4 25 15|17 4] 8 |11

'] 215 ]9 1 12795112

131 7 113] 2 13431413

3] 3 [ ] 4] 3 4 [ 7111127 14

4 1 5] 2115 4 15 [ 6|6 10| 15
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Storing the polygon triangulation

How to build the DCEL
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Storing the polygon triangulation

How to build the DCEL

Algorithm 1: substracting ears
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Initialize
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Initialize

Table of vertices

(V) X Yy (&
1 1 U1 1
2 i) Yo 2
3 X3 Y3 3
4 T4 Ya 4
5 5 UYs 5
§) WIS Y6 6
{ I (Vi {
38 s Ys 3
9 L9 Yo 9
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Initialize

Table of faces

f le

o0 | 9
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Storing the polygon triangulation

How to build the DCEL

Algorithm 1: substracting ears

Initialize

DCEL
e| v |ve | fu | frR | ep | en
1] 1 2 00 2
2| 2 3 00 3
31 3 4 00 4
4 | 4 5 00 5
5|1 b 6 o0 §
6| 6 7 00 7
7| 7 3 00 38
8| 8 9 00 9
91 9 1 00 1
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Storing the polygon triangulation

How to build the DCEL

Algorithm 1: substracting ears

Initialize
DCEL
e| v |ve | fu | frR | ep | en
1] 1 2 00 2
2| 2 3 00 3
3| 4 3 | o© 4
4 | 4 5 00 5
5|1 b 6 o0 §
6| 6 7 00 7
7| 7 3 00 38
8| 8 9 00 9
91 9 1 00 1
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Advance
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Advance
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Advance

Table of faces
fle
5109
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Storing the polygon triangulation

How to build the DCEL
Algorithm 1: substracting ears

Advance

Table of faces

fle
5
DCEL
e |vB |vE | fr | fr | ep | en
1 1 2 5 o0 9 2
9 9 1 5 oo | 12 1
12 2 9 5 1
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Storing the polygon triangulation

How to build the DCEL

Algorithm 2: inserting diagonals
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Initialize
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Initialize

Table of vertices

(V) X Yy (&
1 1 U1 1
2 i) Yo 2
3 X3 Y3 3
4 T4 Ya 4
5 5 UYs 5
§) WIS Y6 6
{ I (Vi {
38 s Ys 3
9 L9 Yo 9
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals
Initialize

Table of faces

f le

o0 | 9
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Base step

Computational Geometry, Facultat d’'Informatica de Barcelona, UPC




Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals
Base step

Table of faces

f| e
6 | 10
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals
Base step

Table of faces

f| e
6 | 10

DCEL
e |ve |ve | fr | fr | er | en
§) 6 7 §) oo | 15 | 10
10 I 4 §) o0 §) 15
15 4 §) § oo | 10 §
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Merge step
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Merge step
DCEL 1

€ v |vE | fr | fr | epr | en
1 1 2 5 o0 9 14
14 2 7 1 oo | 12 4

DCEL 2

14 | 2 (| oo | 3 2 | 10
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Merge step
DCEL 1

& v | vE | fr. | fr | ep
1 1 2 5 00 9
14 2 4 1 || 12

DCEL 2

14 | 2 | 7 |>»<| 3 | X
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Storing the polygon triangulation

How to build the DCEL
Algorithm 2: inserting diagonals

Merge step
DCEL 1

& v | vE | fr. | fr | ep
1 1 2 5 00 9
14 2 4 1 || 12

DCEL 2

6 6 I 6 15
14 | 2 [ |2

e |vg |ve | fr | fr | ep
o0
3

Merged DCEL

e |vB |ve | fu | fr|epr|en
1 1 2 5 00 0 2
6 § 7 § oo | 15 7
14 2 7 1 3 12 | 10
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Storing the polygon triangulation

How to build the DCEL
Algorithm 3:

Computational Geometry, Facultat d'Informatica de Barcelona, UPC



Storing the polygon triangulation

How to build the DCEL
Algorithm 3:

1. Decompose into monotone polygons

2. Triangulate monotone pieces
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Storing the polygon triangulation

How to build the DCEL
Algorithm 3:

1. Decompose into monotone polygons

2. Triangulate monotone pieces

Computing the DCEL is done by combining previous strategies:
e Separating ears for triangulating each monotone subpolygon.

e Merging DCELs for putting together the monotone pieces.
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WHAT HAPPENS IN 3D?

A polyhedron that can be tetrahedralized:
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WHAT HAPPENS IN 3D?

A cube can be decomposed into 6 tetrahedra...
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WHAT HAPPENS IN 3D?

A cube can be decomposed into 6 tetrahedra... _
but also into 5!
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WHAT HAPPENS IN 3D?

A polyhedron that cannot be tetrahedralized:

Schonhardt polyhedron
P P R A

C
Al |© c A c Ac
B (a) / (b) B (c) B Q (d)

Figure from the book by Devadoss and O'Rourke

Smallest polyhedron that cannot be tetrahedralized

Photo from pinshape.com (designed by mathgrrl)
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TRIANGULATING POLYGONS

TO LEARN MORE

e J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press,
1998.

e M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry:
Algorithms and Applications (3rd rev. ed.), Springer, 2008.
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TRIANGULATING POLYGONS

TO LEARN MORE

e J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press,
1998.

e M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry:
Algorithms and Applications (3rd rev. ed.), Springer, 2008.

A NICE APPLICATION

The art gallery theorem

e J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
http://maven.smith.edu/~orourke /books/ArtGallery Theorems/art.html
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[ = vértice inicial

cos P’\ C‘CS

= vértice final

if the interior of P lies to the right of v;
then if helper(e;_1) is a merge vertex
then Insert the diagonal connecting v; to helper(e;—1) in D.
Delete e¢;_; from 7.
Insert ¢; in T and set helper(e;) to v;.
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Lntonces 4
6 else Searchin T to find the edge e; directly left of v;.
7. if helper(e,-) is a merge vertex HANDLEREGULARVERTEX(v;)
8 then Insert the diagonal connecting v; to helper(e;) in D. - |fthe nterior of 7lies to the right of v;
: 2. then if helper(e;_1) is a merge vertex
9 h(’lpél‘((’j) — V; 3. then Insert the diagonal connecting v; to helper(e;—1) in D.
4, Delete ¢;_ from 7.
5. Insert ¢; in T and set helper(e;) to v;.
6. else Search in T to find the edge e; directly left of v;.
A\ (?'LMQ con 7. if helper(e;) is a merge vertex
p —>D 8 then Insert the diagonal connecting v; to helper(e;) in D.
Q(\&eﬂﬁtbn CO‘T.QC.*Q_ 9. helper(e) < vi



