
(https://www.packtpub.com/big-data-and-business-intelligence/machine-
learning-opencv) This notebook contains an excerpt from the book Machine
Learning for OpenCV (https://www.packtpub.com/big-data-and-business-
intelligence/machine-learning-opencv) by Michael Beyeler. The code is
released under the MIT license (https://opensource.org/licenses/MIT), and is

available on GitHub (https://github.com/mbeyeler/opencv-machine-learning).

Note that this excerpt contains only the raw code - the book is rich with additional
explanations and illustrations. If you find this content useful, please consider supporting the
work by buying the book (https://www.packtpub.com/big-data-and-business-
intelligence/machine-learning-opencv)!

< Implementing AdaBoost (10.04-Implementing-AdaBoost.ipynb) | Contents (../README.md)
| Selecting the Right Model with Hyper-Parameter Tuning (11.00-Selecting-the-Right-Model-
with-Hyper-Parameter-Tuning.ipynb) >

Combining Different Models Into a Voting
Classifier
So far, we saw how to combine different instances of the same classifier or regressor into an
ensemble. In this chapter, we are going to take this idea a step further and combine
conceptually different classifiers into what is known as a voting classifier.

The idea behind voting classifiers is that the individual learners in the ensemble don't
necessarily need to be of the same type. After all, no matter how the individual classifiers
arrived at their prediction, in the end, we are going to apply a decision rule that integrates all
the votes of the individual classifiers. This is also known as a voting scheme.

Two different voting schemes are common among voting classifiers:

In hard voting (also known as majority voting), every individual classifier votes for a
class, and the majority wins. In statistical terms, the predicted target label of the
ensemble is the mode of the distribution of individually predicted labels.
In soft voting, every individual classifier provides a probability value that a specific data
point belongs to a particular target class. The predictions are weighted by the
classifier's importance and summed up. Then the target label with the greatest sum of
weighted probabilities wins the vote.

You can find an example of how these voting schemes work in practice in the book.

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
https://opensource.org/licenses/MIT
https://github.com/mbeyeler/opencv-machine-learning
https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
http://localhost:8888/notebooks/notebooks/10.04-Implementing-AdaBoost.ipynb
http://localhost:8888/notebooks/README.md
http://localhost:8888/notebooks/notebooks/11.00-Selecting-the-Right-Model-with-Hyper-Parameter-Tuning.ipynb

Implementing a Voting Classifier
Let's look at a simple example of a voting classifier that combines three different algorithms:

A logistic regression classifier from Chapter 3 (03.00-First-Steps-in-Supervised-
Learning.ipynb), First Steps in Supervised Learning
A Gaussian naive Bayes classifier from Chapter 7 (07.00-Implementing-a-Spam-Filter-
with-Bayesian-Learning.ipynb), Implementing a Spam Filter with Bayesian Learning
A random forest classifier from this chapter

We can combine these three algorithms into a voting classifier and apply it to the breast
cancer dataset with the following steps.

Load the dataset, and split it into training and test sets:

In [1]:

In [2]:

Instantiate the individual classifiers:

In [3]:

In [4]:

In [5]:

Assign the individual classifiers to the voting ensemble. Here, we need to pass a list of
tuples (estimators), where every tuple consists of the name of the classifier (a string of
our choosing) and the model object. The voting scheme can be either voting='hard' or
voting='soft' :

In [6]:

from sklearn.datasets import load_breast_cancer
iris = load_breast_cancer()
X = iris.data
y = iris.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
 X, y, random_state=13
)

from sklearn.linear_model import LogisticRegression
model1 = LogisticRegression(random_state=13)

from sklearn.naive_bayes import GaussianNB
model2 = GaussianNB()

from sklearn.ensemble import RandomForestClassifier
model3 = RandomForestClassifier(random_state=13)

from sklearn.ensemble import VotingClassifier
vote = VotingClassifier(estimators=[('lr', model1),
 ('gnb', model2),
 ('rfc', model3)],
 voting='hard')

http://localhost:8888/notebooks/notebooks/03.00-First-Steps-in-Supervised-Learning.ipynb
http://localhost:8888/notebooks/notebooks/07.00-Implementing-a-Spam-Filter-with-Bayesian-Learning.ipynb

Fit the ensemble to the training data and score it on the test data:

In [7]:

In order to convince us that 95.1% is a great accuracy score, we can compare the
ensemble's performance to the theoretical performance of each individual classifier. We do
this by fitting the individual classifiers to the data. Then we will see that the logistic
regression model achieves 94.4% accuracy on its own:

In [8]:

Similarly, the naive Bayes classifier achieves 93.0% accuracy:

In [9]:

Last but not least, the random forest classifier also achieved 94.4% accuracy:

In [10]:

All in all, we were just able to gain a good percent in performance by combining three
unrelated classifiers into an ensemble. Each of these classifiers might have made different
mistakes on the training set, but that's OK because on average, we need just two out of
three classifiers to be correct.

< Implementing AdaBoost (10.04-Implementing-AdaBoost.ipynb) | Contents (../README.md)
| Selecting the Right Model with Hyper-Parameter Tuning (11.00-Selecting-the-Right-Model-
with-Hyper-Parameter-Tuning.ipynb) >

Out[7]: 0.95104895104895104

Out[8]: 0.94405594405594406

Out[9]: 0.93006993006993011

Out[10]: 0.94405594405594406

vote.fit(X_train, y_train)
vote.score(X_test, y_test)

model1.fit(X_train, y_train)
model1.score(X_test, y_test)

model2.fit(X_train, y_train)
model2.score(X_test, y_test)

model3.fit(X_train, y_train)
model3.score(X_test, y_test)

http://localhost:8888/notebooks/notebooks/10.04-Implementing-AdaBoost.ipynb
http://localhost:8888/notebooks/README.md
http://localhost:8888/notebooks/notebooks/11.00-Selecting-the-Right-Model-with-Hyper-Parameter-Tuning.ipynb

