
(https://www.packtpub.com/big-data-and-business-intelligence/machine-
learning-opencv) This notebook contains an excerpt from the book Machine
Learning for OpenCV (https://www.packtpub.com/big-data-and-business-
intelligence/machine-learning-opencv) by Michael Beyeler. The code is
released under the MIT license (https://opensource.org/licenses/MIT), and is

available on GitHub (https://github.com/mbeyeler/opencv-machine-learning).

Note that this excerpt contains only the raw code - the book is rich with additional
explanations and illustrations. If you find this content useful, please consider supporting the
work by buying the book (https://www.packtpub.com/big-data-and-business-
intelligence/machine-learning-opencv)!

< Using Random Forests for Face Recognition (10.03-Using-Random-Forests-for-Face-
Recognition.ipynb) | Contents (../README.md) | Combining Different Models Into a Voting
Classifier (10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb) >

Implementing AdaBoost
When the trees in the forest are trees of depth 1 (also known as decision stumps) and we
perform boosting instead of bagging, the resulting algorithm is called AdaBoost.

AdaBoost adjusts the dataset at each iteration by performing the following actions:

Selecting a decision stump
Increasing the weighting of cases that the decision stump labeled incorrectly while
reducing the weighting of correctly labeled cases

This iterative weight adjustment causes each new classifier in the ensemble to prioritize
training the incorrectly labeled cases. As a result, the model adjusts by targeting
highlyweighted data points.

Eventually, the stumps are combined to form a final classifier.

Implementing AdaBoost in OpenCV
Although OpenCV provides a very efficient implementation of AdaBoost, it is hidden under
the Haar cascade classifier. Haar cascade classifiers are a very popular tool for face
detection, which we can illustrate through the example of the Lena image:

In [1]:

After loading the image in both color and grayscale, we load a pretrained Haar cascade:

import cv2
img_bgr = cv2.imread('data/lena.jpg', cv2.IMREAD_COLOR)
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
https://opensource.org/licenses/MIT
https://github.com/mbeyeler/opencv-machine-learning
https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv
http://localhost:8888/notebooks/notebooks/10.03-Using-Random-Forests-for-Face-Recognition.ipynb
http://localhost:8888/notebooks/README.md
http://localhost:8888/notebooks/notebooks/10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb


In [2]:

The classifier will then detect faces present in the image using the following function call:

In [3]:

Note that the algorithm operates only on grayscale images. That's why we saved two
pictures of Lena, one to which we can apply the classifier ( img_gray ), and one on which
we can draw the resulting bounding box ( img_bgr ):

In [4]:

Then we can plot the image using the following code:

In [5]:

Obviously, this picture contains only a single face. However, the preceding code will work
even on images where multiple faces could be detected. Try it out!

filename = 'data/haarcascade_frontalface_default.xml'
face_cascade = cv2.CascadeClassifier(filename)

faces = face_cascade.detectMultiScale(img_gray, 1.1, 5)

color = (255, 0, 0)
thickness = 2
for (x, y, w, h) in faces:
    cv2.rectangle(img_bgr, (x, y), (x + w, y + h),
                  color, thickness)

import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB));



Implementing AdaBoost in scikit-learn
In scikit-learn, AdaBoost is just another ensemble estimator. We can create an ensemble
from 100 decision stumps as follows:

In [6]:

We can load the breast cancer set once more and split it 75-25:

In [7]:

In [8]:

Then fit and score AdaBoost using the familiar procedure:

In [9]:

The result is remarkable, 97.9% accuracy!

We might want to compare this result to a random forest. However, to be fair, we should
make the trees in the forest all decision stumps. Then we will know the difference between
bagging and boosting:

In [10]:

Of course, if we let the trees be as deep as needed, we might get a better score:

Out[9]: 0.97902097902097907

Out[10]: 0.93706293706293708

from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(n_estimators=100,
                         random_state=456)

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, random_state=456
)

ada.fit(X_train, y_train)
ada.score(X_test, y_test)

from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(n_estimators=100,
                                max_depth=1,
                                random_state=456)
forest.fit(X_train, y_train)
forest.score(X_test, y_test)



In [11]:

As a last step in this chapter, let's talk about how to combine different types of models into
an ensemble.

< Using Random Forests for Face Recognition (10.03-Using-Random-Forests-for-Face-
Recognition.ipynb) | Contents (../README.md) | Combining Different Models Into a Voting
Classifier (10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb) >

Out[11]: 0.98601398601398604

forest = RandomForestClassifier(n_estimators=100,
                                random_state=456)
forest.fit(X_train, y_train)
forest.score(X_test, y_test)

http://localhost:8888/notebooks/notebooks/10.03-Using-Random-Forests-for-Face-Recognition.ipynb
http://localhost:8888/notebooks/README.md
http://localhost:8888/notebooks/notebooks/10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb

